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Abstract
We consider the problem of function estimation
in the case where an underlying causal model can
be inferred. This has implications for popular
scenarios such as covariate shift, concept drift,
transfer learning and semi-supervised learning.
We argue that causal knowledge may facilitate
some approaches for a given problem, and rule
out others. In particular, we formulate a hypoth-
esis for when semi-supervised learning can help,
and corroborate it with empirical results.

1. Introduction
A large part of machine learning research aims at exploiting
statistical associations or dependences between variables
to make predictions about certain variables. This is use-
ful especially in situations where we have sizable training
sets, but no detailed model of the underlying data gener-
ating process. It has been argued that statistical associa-
tions are always due to underlying causal structures (Re-
ichenbach, 1956). This suggests the question how machine
learning could benefit from knowledge of these structures.
The present paper addresses this question in the simplest
possible setting, where the causal structure only consists of
cause and effect, and there are no unobserved confounders.
We argue that under certain assumptions, detailed below,
there are asymmetries in joint distributions that have impli-
cations for statistical machine learning. We try to give a
systematic outline of these implications. This paper does
not prove theorems; rather, it aims at providing insight and
drawing connections. It does not contain new experimental
data, but a meta-analysis of performances reported by three
other studies, focusing on an implication of causal structure
for semi-supervised learning. We believe that the implica-
tions of causal structure for machine learning are concep-
tually intriguing, and we hope that they will raise interest
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for causal inference in the machine learning community.

An example illustrating the difference between the statisti-
cal and the causal point of view is the correlation between
the frequency of storks and the human birth rate (Matthews,
2000). We may be able to train a good predictor of the
birth rate which uses the frequency of storks (along with
other features) as an input. However, if politicians asked
us whether one could boost the birth rate by increasing the
number of storks, we would have to tell them that this kind
of intervention is not covered by the standard i.i.d. assump-
tion of statistical learning. In practice, however, interven-
tions can be relevant, distributions may shift over time, and
we might want to combine data recorded under different
conditions or from different but related regularities.

We briefly summarize some aspects of causal graphical
models as pioneered by Pearl (2000); Spirtes et al. (1993).
These are usually thought of as joint probability distribu-
tions over a set of variables X1, . . . , Xn, along with a di-
rected acyclic graph with vertices Xi and arrows indicat-
ing direct causal influences. The causal Markov assump-
tion states that each vertex Xi is independent of its non-
descendants in the graph, given its parents. Crucially, this
links causal semantics (which is important for predicting
how a system reacts to interventions) to something that has
empirically measurable consequences. Given observations
from a joint distribution, it allows us to test conditional in-
dependence statements and thus infer (subject to a gener-
icity assumption referred to as faithfulness) which causal
models are consistent with an observed distribution. This
will typically not lead us to a unique causal model though.

An alternative approach, referred to as a functional causal
model (a.k.a. structural causal model or nonlinear structural
equation model), starts with a set of jointly independent
noise variables, one per vertex, and each vertex computes a
deterministic function of its noise variable and its parents.
These functions do not describe relations between obser-
vations only, but also how the system behaves under inter-
ventions: by changing the input of some of the functions,
one can compute the effect of setting some variables to spe-
cific values. A functional model entails a joint distribution
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Figure 1. A simple functional causal model, where C is the cause
variable, ϕ is a deterministic mechanism, and E is the effect vari-
able. NC is a noise variable influencing C (without restricting
generality, we can identify this with C), and NE influences E via
E = ϕ(C,NE). We assume that NC and NE are independent.

which along with the graph satisfies the causal Markov as-
sumption (Pearl, 2000). Vice versa, each causal graphical
model can be expressed as a functional causal model.

The functional point of view allows us to come up with
assumptions on causal models that would be harder to
conceive in a pure probabilistic view. Such assumptions
(see below) allow us to distinguish between X → Y and
X ← Y . This cannot be achieved by conditional inde-
pendence testing, since no nontrivial conditional indepen-
dences exist if we only have two variables.

The functional point of view thus opens up the possibility
to infer the causal direction for input-output learning prob-
lems. Perhaps somewhat surprisingly, learning problems
need not always predict effect from cause, and we will ar-
gue that the direction of the prediction has consequences
for which tasks are easy and which tasks are hard.

Notation. We consider the causal structure shown in
Fig. 1, with two observables, modeled by random variables.
The variableC stands for the cause andE for the effect. We
denote their distributions by P (C) and P (E) (overloading
the notation P ), and the domains by calligraphic symbols C
and E. The variable X will always be the input and Y the
output (or prediction), but input and output can either be
cause or effect — more below. For simplicity, we assume
that their distributions have a joint density with respect to
some product measure. We write the values of this den-
sity as P (c, e) and the values of the marginal densities as
P (c) and P (e), again keeping in mind that these three P
are different functions — we can always tell from the argu-
ment which function is meant. In some places, we will use
conditional densities, always implicitly assuming that they
exist.

The following assumptions are used throughout the paper.

Causal sufficiency. We assume that there are two inde-
pendent noise variables NC and NE , modeled as random
variables with distributions P (NC) and P (NE).

The function ϕ and the noise NE jointly determine
P (E|C) via E = ϕ(C,NE) . We think of P (E|C) as the
mechanism transforming cause C into effect E.1

1Note that we will use the term “mechanism” both for the

Independence of mechanism and input. We finally as-
sume that the mechanism is “independent” of the distribu-
tion of the cause (i.e., independent of P (C) = P (NC),
cf. Fig. 1), in the sense that P (E|C) contains no informa-
tion about P (C) and vice versa; in particular, if P (E|C)
changes at some point in time, there is no reason to believe
that P (C) changes at the same time.2

This assumption has been used by Janzing & Schölkopf
(2010), inspired by Lemeire & Dirkx (2007). It is plausible
if we are dealing with a mechanism of nature that does not
care what we feed into it. For instance, in the problem of
predicting splicing patterns from genomic sequences, the
basic splicing mechanism (driven by the ribosome) may be
assumed evolutionarily stable and thus independent of the
species (Schweikert et al., 2009), even though the genomic
sequences and their statistical properties differ. Intuitively,
if we learn a causal model of splicing, we could hope to be
more robust with respect to changes of the input statistics.

The independence assumption introduces an asymmetry
between cause and effect, since it will usually be violated
in the backward direction, i.e., P (E) and P (C|E) are de-
pendent because both inherit properties from P (E|C) and
P (C) (Janzing & Schölkopf, 2010; Daniušis et al., 2010).

Richness of functional causal models It turns out that
the two-variable functional causal model is so rich that the
causal direction cannot be inferred. To understand the rich-
ness of the class intuitively, consider the simple case where
the noise NE can take only a finite number of values, say
{1, . . . , v}. This noise could affect ϕ for instance as fol-
lows: there is a set of functions {ϕn:n = 1, . . . , v}, and
the noise randomly switches one of them on at any point,
i.e., ϕ(c, n) = ϕn(c). The functions ϕn could implement
arbitrarily different mechanisms, and it would thus be hard
to identifyϕ from empirical data sampled from such a com-
plex model. In view of this, it is surprising that conditional
independence alone does allow us to do causal inference
of practical significance, as implemented by the PC and
FCI algorithms (Spirtes et al., 1993; Pearl, 2000). How-
ever, additional assumptions that prevent the noise switch-
ing construction can significantly facilitate the task of in-
ferring causal graphs from data. Intuitively, such assump-
tions need to control the sensitivity of the mechanism ϕ
to the change in the noise NE , and thus the complexity of
P (E|C).
Additive noise models. One such assumption is referred
to as ANM, standing for additive noise model (Hoyer et al.,
2009). This model assumes ϕ(C,NE) = φ(C) + NE for
some function φ:

E = φ(C) +NE , (1)

function ϕ and for the conditional P (E|C), but not for P (C|E).
2This “independence” condition is closely related to the con-

cept of exogeneity in economics (Pearl, 2000). Given two vari-
ables C and E, we say C is exogenous if P (E|C) remains in-
variant to changes in the process that generates C.
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and it has been shown that φ and NE can be inferred in the
generic case, provided that NE has zero mean. This means
that apart from some exceptions, such as the case where φ
is linear and NE is Gaussian, a given joint distribution of
two real-valued random variables X and Y can be fit by an
ANM model in at most one direction (which we then con-
sider the causal one). A similar statement has been shown
for the postnonlinear ANM model (Zhang & Hyvärinen,
2009) E = ψ(φ(C) +NE) , where ψ is an invertible func-
tion. In practice, an ANM model can be fit by regressing the
effect on the cause while enforcing that the residual noise
variable is independent of the cause (Mooij et al., 2009). If
this is impossible, the model is incorrect (e.g., cause and
effect are interchanged, the noise is not additive, or there
are confounders; in the latter two cases the method cannot
find the causal direction).

ANMs play an important role in this paper; first, the meth-
ods below will presuppose that we know what is cause and
what is effect, and second, we will generalize ANM to han-
dle the case where we have several models of the form (1)
that share the same φ. The following sections provide an
overview of how causal direction affects various learning
scenarios, partly relying on assumptions such as ANMs.

The comprehensive work of Storkey (2009) already de-
scribes the cases discussed in Sections 2.1.1 and 3.2.1, but
not the other cases where further assumptions are needed.
He also describes several scenarios where both P (C) and
P (E|C) change, for instance if the data set is obtained by
sample selection according to the value of a common effect
of C and E, or an effect of E, and the case where the data
sets correspond to different values of a common cause of C
and E. Pearl & Bareinboim (2011) introduce a variable S
that labels different domains or data sets and explain how
the way in which S is causally linked to variables of interest
is relevant for transferring causal or statistical statements
across domains. Their notion of transportability employs
conditional independences to express invariance of mecha-
nisms, which is not general enough to include all the types
of invariances we have in mind. For instance, the functions
representing a causal mechanism could remain the same,
while the unobserved noise terms may differ across data
sets. Finally, we point out that an earlier version of the
present work appeared as (Schölkopf et al., 2011).

2. Predicting Effect from Cause
Let us consider the case where we are trying to estimate a
function f : X → Y or a conditional distribution P (Y |X)
in the causal direction, i.e., thatX is the cause and Y the ef-
fect. Intuitively, this situation of causal prediction should
be the ‘easy’ case since there exists a functional mecha-
nism ϕ which f should try to mimic. We are interested in
the question how robust the estimation is with respect to
changes in the noise variables of the underlying model.

X Y
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Figure 2. Predicting effect Y from cause X .

2.1. Additional information about the input

2.1.1. ROBUSTNESS W.R.T. INPUT CHANGES

Given: training points from P (X,Y ) and an additional set
of inputs sampled from P ′(X), with P (X) 6= P ′(X).

Goal: estimate P ′(Y |X).

Solution: by independence of mechanism and input, there
is no reason to assume that the observed change in P (X)
(i.e., in P (NX)) entails a change in P (Y |X), and we thus
conclude P ′(Y |X) = P (Y |X). This scenario is referred
to as covariate shift (Sugiyama & Kawanabe, 2012). The
equation P ′(Y |X) = P (Y |X) should, however, not be
mistaken as saying that the rule for predicting Y from X
need not be adapted to the new input distribution P (X).
This is because prediction from finite data may favor sim-
ple functions that fit the data well in the region where P (X)
has high probability, but not where P ′(X) is high.

2.1.2. SEMI-SUPERVISED LEARNING (SSL)

Given: training points sampled from P (X,Y ) and an ad-
ditional set of inputs sampled from P (X).

Goal: estimate P (Y |X).

Note: by independence of the mechanism, P (X) contains
no information about P (Y |X). A more accurate estimate
of P (X), as may be possible by the addition of the test in-
puts P (X), does thus not influence an estimate of P (Y |X),
and SSL is pointless for the scenario in Figure 2.

2.2. Additional information about the output

2.2.1. ROBUSTNESS W.R.T. OUTPUT CHANGES

Given: training points from P (X,Y ) and an additional set
of outputs sampled from P ′(Y ), with P ′(Y ) 6= P (Y ).

Goal: estimate P ′(Y |X).

Assumption: not clear

Solution: first we need to decide whether P (X)
or P (Y |X) has changed, for some rough ideas see
Localizing distribution change (Section 4). If
P (X) has changed, proceed as in Section 2.1.1. If P (Y |X)
has changed, we can estimate P ′(Y |X) via Estimating
causal conditionals (Section 4). Here, additive noise
is a sufficient assumption.
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2.2.2. ADDITIONAL OUTPUTS

Given: training points sampled from P (X,Y ) and an ad-
ditional set of outputs sampled from P (Y ).

Goal: estimate P (Y |X).

Assumption: P (X,Y ) has an additive noise model from
X to Y and P (Y ) has a unique decomposition as convolu-
tion of two distributions, say P (Y ) = Q ∗ R. This is, for
instance, satisfied if the noise is Gaussian and P (φ(C)) is
indecomposable (i.e., it cannot be written as a non-trivial
convolution of two distributions).

Solution: The additional outputs help because the decom-
position tells us that either P (NY ) = Q or P (NY ) = R.
The additive noise model learned from the x, y-pairs will
probably tell us which of the alternatives is true. Know-
ing P (Y ), learning P (Y |X) reduces to learning φ from
the x, y-pairs, which is a weaker problem than learning
P (Y |X) would be in general.

2.3. Additional information about input and output

2.3.1. TRANSFER LEARNING (ONLY NOISE CHANGES)

Given: training points sampled from P (X,Y ) and an
additional set of points sampled from P ′(X,Y ), with
P ′(X,Y ) 6= P (X,Y ).

Goal: estimate P ′(Y |X).

Assumption: Additive noise, where φ is invariant but the
noises can change.

Solution: run Conditional ANM to output a single func-
tion, only enforcing independence of residuals separately
for the two data sets (Section 4).

There is also a SSL variant of this scenario: Given a
training set plus two unpaired sets from the two original
marginals, the extra sets help to better estimate P (X,Y )
because we have argued in Section 2.2.2 that additional y-
values sampled from P (Y ) already help.

The fact that causal directions matter for transferring
knowledge from one data set to another one has previously
been pointed out by Storkey (2009).

2.3.2. CONCEPT DRIFT (ONLY FUNCTION CHANGES)

Given: training points sampled from P (X,Y ) and an
additional set of points sampled from P ′(X,Y ), with
P ′(X,Y ) 6= P (X,Y ).

Goal: estimate P ′(Y |X).

Assumption: ANM with NX , NY invariant, but φ has
changed.

Solution: Apply ANM to points sampled from P ′(X,Y )
to obtain φ. Then P ′(Y |X) is given by P ′(Y |X) =

X Y
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Figure 3. Predicting cause Y from effect X .

PNY
(Y − φ(X)) , where the index NY indicates the vari-

able this distribution refers to.

3. Predicting Cause from Effect
We now turn to the opposite direction, where we consider
the effect as input and we try to predict the value of the
cause variable that led to it. This situation, that we refer to
as anticausal prediction, may seem unnatural, but it is actu-
ally ubiquitous in machine learning. Consider, for instance,
the task of predicting the class label of a handwritten digit
from its image. The causal structure is as follows: a person
intends to write the digit 7, say, and this intention causes a
motor pattern producing an image of the digit 7 — in that
sense the class label Y causes the image X .

P (X|Y ) represents the causal mechanism that generatesX
from Y , and it is independent from the distribution of the
cause, P (Y ). On the other hand, P (Y |X) is sensitive to
the change of the distribution of P (Y ). Therefore, gener-
ally speaking, when estimating P (Y |X), it would be better
to model P (X|Y ) first and then construct P (Y |X) using
Bayes’ rule P (Y |X) = P (X|Y )P (Y )/P (X).

For a simple illustration, suppose X = Y + NX , where
both Y and NX are independent from each other and uni-
formly distributed. Fig. 4 shows the scatter plot of Y and
X . The expectation E(X|Y ) is linear in Y , and P (X|Y )
can be easily described. However, one can see that E(Y |X)
is rather complex; it is nonlinear inX and its shape depends
heavily on the distribution of P (Y ).

3.1. Additional information about the input

3.1.1. ROBUSTNESS W.R.T. INPUT CHANGES

Given: training points sampled from P (X,Y ) and an ad-
ditional set of inputs from P ′(X), with P ′(X) 6= P (X).3

Goal: estimate P ′(Y |X).

Assumption: additive Gaussian noise with invertible func-
tion φ and indecomposable P (φ(Y )) is sufficient. Other
assumptions are also possible, but invertibility of the causal
conditional P (X|Y ) is necessary in any case.

3A related scenario is that we do not have additional data from
P ′(X), but we want to still use our knowledge of the causal di-
rection to learn a model that is somewhat robust w.r.t. changes of
P (X) due to changes in either P (Y ) or P (X|Y ).
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Figure 4. An illustration on the difference between predicting the
effect and predicting the cause. Left: predicting effect X from
cause Y under the causal relation X = Y + NX , where Y and
NX are uniformly distributed. Right: predicting cause Y from
effect X .

Solution: We apply Localizing distribution
change (Section 4) to decide if P (Y ) or P (X|Y ) has
changed. In the first case, we can estimate P ′(Y ) via
Inverting conditionals (Section 4) if we assume
that P (X|Y ) is an injective conditional.4 From this we get
P ′(X,Y ), and then P ′(Y |X) = P ′(X,Y )∫

P ′(X,Y )dY
.

If, of the other hand, P (X|Y ) has changed, we
can estimate P ′(X|Y ) via Estimating causal
conditionals (Section 4).

3.1.2. SEMI-SUPERVISED LEARNING

Given: training points sampled from P (X,Y ) and an ad-
ditional set of inputs sampled from P (X).

Goal: estimate P (Y |X).

Assumption: various options, see below

Note: P (X) and P (Y |X) are not independent and thus
contain information about each other. The additional inputs
hence may allow a more accurate estimate of P (X).

Known assumptions for SSL, as discussed by Chapelle
et al. (2006), can indeed be viewed as linking properties
of P (X) to properties of P (Y |X): for instance, the cluster
assumption stipulates that points lying in the same cluster
of P (X) have the same Y ; and the low density separation
assumption states that the decision boundary of a classifier
(i.e., the point where P (Y |X) crosses 0.5) should lie in a
region where P (X) is small. The semi-supervised smooth-
ness assumption says that the estimated function (which
we may think of as the expectation of P (Y |X)) should be
smooth in regions where P (X) is large.

4Injectivity means that the input distribution can uniquely be
computed from the output distribution, see Section 4.

3.2. Additional information about the output

3.2.1. ROBUSTNESS W.R.T. OUTPUT CHANGES

Given: training points sampled from P (X,Y ) and an ad-
ditional set of outputs sampled from P ′(Y ), with P ′(Y ) 6=
P (Y ). This scenario is also refered to as prior probability
shift (Storkey, 2009).

Goal: estimate P ′(Y |X).

Solution: independence of mechanism implies
P ′(X|Y ) = P (X|Y ), thus P ′(X,Y ) = P (X|Y )P ′(Y ).
From this, we compute P ′(Y |X) = P ′(X|Y )P ′(Y )∫

P ′(X,Y )dY
.

3.3. Additional information about input and output

3.3.1. ROBUSTNESS W.R.T. CHANGES OF INPUT AND
OUTPUT NOISE (TRANSFER LEARNING)

Given: training points sampled from P (X,Y ) and an
additional set of points sampled from P ′(X,Y ), with
P ′(X,Y ) 6= P (X,Y ).

Goal: estimate P ′(Y |X).

Assumption: additive noise where φ is invariant, but the
noises can change.

Solution: analogous to Section 2.3.1, but use the model
backwards in the end.

3.3.2. CONCEPT DRIFT (CHANGE OF FUNCTION)

Given: training points sampled from P (X,Y ) and an
additional set of points sampled from P ′(X,Y ), with
P ′(X,Y ) 6= P (X,Y ).

Goal: estimate P ′(Y |X).

Assumption: NX , NY invariant, but φ has changed to φ′.

Solution: We can learn φ′ from P ′(X,Y ) and then esti-
mate the entire distribution P ′(X,Y ) using the estimates
of P (NX) and P (NY ) obtained from observing those x, y
pairs that were sampled from P (X,Y ).

4. Modules
Inverting conditionals We can think of a condi-

tional P (Y |X) as a mechanism that transforms P (X) into
P (Y ). In some cases, we do not lose any information by
this mechanism:

Definition 1 (injective conditionals) a conditional distri-
bution P (Y |X) is called injective if there are no two dis-
tributions P (X) 6= P ′(X) such that∫

P (y|x)P (x)dx =

∫
P (y|x)P ′(x)dx .

Example 1 (full rank stochastic matrix) Let X,Y have



On Causal and Anticausal Learning

finite range. Then P (Y |X) is given by a stochastic ma-
trix M and is injective if and only if M has full rank. Note
that this is only possible if |X| ≤ |Y|.

Example 2 (post-nonlinear model) Let X,Y be real-
valued and let Y = ψ(φ(X) + NY ) with NY ⊥⊥ X be a
post-nonlinear model where φ andψ are injective. Then the
distribution of Y uniquely determines the distribution of
φ(X) +NY because ψ is invertible. This in turn, uniquely
determines the distribution of φ(X) provided that the con-
volution with P (NY ) is invertible. Since ψ is invertible,
this determines the distribution of X uniquely.

Localizing distribution change Given data
points sampled from P (C,E) and additional points from
P ′(E) 6= P (E), we wish to decide whether P (C) or
P (E|C) has changed. To show that appropriate assump-
tions render this problem solvable, we sketch some rough
ideas. Let E = φ(C) + NE , with the same φ for both
distributions P (E,C) and P ′(E,C), but the distribution
of the noise NE or the distribution of C changes. Let
P (φ(C)) denote the distribution of φ(C).5 Then the
distributions of the effect are given by

P (E) = P (φ(C)) ∗ P (NE),

P ′(E) = P ′(φ(C)) ∗ P ′(NE) ,

where either P ′(φ(C)) = P (φ(C)) or P ′(NE) = P (NE).
In the following situations, for instance, we can decide
which of the cases is true:

1) If the Fourier transform of P (E) contains zeros, then
some of them correspond to zeros in the spectrum of
P (φ(C)), the others to zeros of the spectrum of P (NE).
Then we may check which zeros still appear in P ′(E).

2) Suppose P (φ(C)) and P ′(φ(C)) are indecomposable
and P (NE) and P ′(NE) are zero mean Gaussian; then the
distribution P (E) = P (φ(C)) ∗ P (NE) uniquely deter-
mines P (φ(C)) by deconvolving P (E) with the Gaussian
of maximal possible width that still yields a density.

Estimating causal conditionals Given P ′(E),
estimate P ′(E|C) under the assumption that P (C) remains
constant. Assume that P (E,C) and P ′(E,C) have been
generated by the additive noise model E = φ(C) + NE ,
with the same P (C) and φ, while the distribution of NE

has changed. We have

P (E) = P (φ(C)) ∗ P (NE) ,

P ′(E) = P (φ(C)) ∗ P ′(NE) .

Hence, P ′(NE) can be obtained by the deconvolution
P ′(NE) = P (φ(C)) ∗−1 P ′(E) . This way, we can com-
pute the new conditional P ′(E|C).

5Explicitly, it is derived from the distribution of C by
P (φ(C) ∈ A) = P (C ∈ φ−1(A)).

Conditional ANM Given two data sets generated by
E = φ(C) +NE and E′ = φ(C ′) +N ′E , respectively. We
modify the algorithm of Mooij et al. (2009) to obtain the
shared function φ, enforcing separate independence C ⊥⊥
NE and C ′ ⊥⊥ N ′E .

This can be interpreted as a generalized ANM model, en-
forcing conditional independence inE|i = φ(C|i)+NE |i,
where i ∈ {1, 2} is an index, and C ⊥⊥ NE | i.

5. Empirical Results
An evaluation of all methods described is beyond the scope
of this paper. We focus on assaying our main prediction
regarding the difficulty of SSL; for a toy example applying
Conditional ANM in transfer learning, see [1].

Semi-supervised classification We compare the perfor-
mance of SSL algorithms with that of base classifiers using
only labeled data. For many examples X is vector-valued.
We assign each dataset to one of three categories:
1. Anticausal/Confounded: (a) datasets in which at least
one feature Xi is an effect of the class Y to be predicted
(Anticausal) (includes also cyclic causal relations between
Xi and Y ) and (b) datasets in which at least one feature Xi

has an unobserved common cause with the class Y to be
predicted (Confounded). In both (a) and (b) the mechanism
P (Y |Xi) can be dependent on P (Xi). For these datasets,
additional data from P (X) may thus improve prediction.
2. Causal: datasets in which some features are causes of
the class, and there is no feature which (a) is an effect of the
class or (b) has a common cause with the class. If our as-
sumption on independence of cause and mechanism holds,
then SSL should be futile on these datasets.
3. Unclear: datasets which were difficult to be categorized
to one of the aforementioned categories. Some of the rea-
sons for that are incomplete documentation or lack of do-
main knowledge.

In practice, we count a dataset already as causal when we
believe that the dependence between X and Y is mainly
due to X causing Y , although additional confounding ef-
fects may be possible.

We first analyze the results in the benchmark chapter of a
book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In [1], we give details on our subjective
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
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Figure 5. Accuracy of base classifiers (star shape) and different
SSL methods on eight benchmark datasets.

ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) − error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised

learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered by Guo et al. (2010), and
not the transductive ones (cf. our discussion above).

The web page [1] describes our subjective categorization of
the 26 UCI datasets into Anticausal/Confounded, Causal,
or Unclear. e

In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
on 32 real-world data sets by Brefeld et al. (2006) (two of
which are identical, so 31 data sets were considered). We
categorized them into causal/anticausal/unclear, prior to the
subsequent analysis.

We deemed seven of the data sets anticausal, i.e., the tar-
get variable can be considered as the cause of (some of)
the predictors; Fig. 7 shows that SSR reduces the root
mean square errors (RMSE) in all these cases. Nine of
the remaining datasets can be considered causal, and Fig. 8
shows that there is usually little performance improvement
for those. As Brefeld et al. (2006), we used the Wilcoxon
signed rank test to assess whether SSR outperforms super-
vised regression, in the anticausal and causal cases. The
null hypothesis is that the distribution of the difference be-
tween the RMSE produced by SSR and that by supervised
regression is symmetric around 0 (i.e., that SSR does not
help). On the anticausal datasets, the p-value is 0.0156,
while it is 0.6523 on the causal datasets. Therefore, we
reject the null hypothesis in the anticausal case at a 5% sig-
nificance level, but not in the causal case.

6. Conclusion
If one is interested in predicting one variable from another
one, it helps to know the causal structure underlying the
variables. We give an overview of the implication of pre-
diction in causal and anticausal directions, in particular
formulating the hypothesis that under an independence as-
sumption for causal mechanism and input, semi-supervised
learning works better in anticausal or confounded problems
than in causal problems. Our preliminary meta-analysis of



On Causal and Anticausal Learning

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

breastTumor

cholesterol
cleveland

lowbwt pbc
pollution

wisconsin

R
M

SE
 ±

 s
td

. e
rro

r

 

 
Supervised
Semi supervised

Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

results from the literature seems to support this claim.
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Brefeld, U., Gärtner, T., Scheffer, T., and Wrobel, S. Effi-
cient co-regularised least squares regression. In ICML,
2006.

Chapelle, O., Schölkopf, B., and Zien, A. Semi-Supervised
Learning. MIT Press, Cambridge, MA, USA, 2006.
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