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Causality: from data to science
(inaugural lecture)

prof. dr. Joris M. Mooij

October 13th, 2022

Mijnheer de rector magnificus, mijnheer de decaan, waarde toehoorders,
ik weet vrij zeker dat niet alle aanwezigen Nederlands verstaan, but I hope that everyone
understands English.

In the next 45 minutes, I will be your guide on a tour through what I consider one of the
most fascinating scientific disciplines: causality. We will consider a diverse range of scientific
questions from a variety of fields. For example:

• Does smoking cause lung cancer? There is widespread agreement nowadays that it
does, but this question was the topic of a huge debate in the sixties of the last century,
involving famous statisticians like Ronald Fisher and Jerzy Neyman.

• Does chocolate consumption increase cognitive abilities? In other words: do you get
smarter, if you eat lots of chocolate? This (perhaps more innocent) question is still the
subject of scientific debate as of today, and the available evidence seems inconclusive.

• Does the new COVID-19 vaccine protect better against hospitalization? Pharmaceuti-
cal companies have updated their vaccines to protect against the new variants of the
SARS-CoV-2 virus. To decide which vaccine to use, it is important to know whether
someone who got a booster with the new vaccine has a lower probability to end up in
hospital because of COVID-19 compared to someone who got a booster with the old
vaccine instead.

• Does knocking out gene X change the activity of gene Y ? A cell of a typical living
organism has thousands of genes, which control the bio-chemical ‘machinery’ of the
cell. Not all genes are active at the same time, and the activity of a gene is regulated
by the activity of other genes. If a researcher disables one specific gene in a so-called
‘knock-out’ experiment, this may result in a change in the activity of one or multiple
other genes. Understanding these gene regulatory mechanisms is one of the quests in
biology.

You might wonder: what do all these questions have in common? The answer is that they
are all of the form: what will happen to Y if action X is performed?

Similarly, many policy decisions and questions of societal relevance are of a causal nature.
For example,
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• How will the revenue of a company change if it increases the price of a product? A
higher price typically means that less products will be sold. Does this decrease in
volume compensate for the increased pricing?

• How much will inflation in the Netherlands decrease if the European Central Bank
increases the interest rate by 1 percent point? An important question, but hard to
answer reliably, because of the complex nature of our macro-economy.

• Do female graduate students applying for college have lower admission chances than
male graduate students? This appeared to be the case at UC Berkeley (California) in
1973. However, it turned out to be a statistical paradox. Upon closer investigation of
the available data by statisticians, it appeared that there was no evidence for gender
bias.

• Would changing gender increase the chance of graduating cum laude for female PhD
candidates? This is a similar type of question, but closer to home, and still relevant
today. The Dutch newspaper NRC discovered in 2018 that at many Dutch universities,
the fraction of male PhD candidates that graduate cum laude (‘with distinction’) is
about twice as high as that of female PhD candidates. Is this gender bias, or a näıve
(and possibly incorrect) interpretation of the data, like in the UC Berkeley case?

Again, note that all these questions are of the same general form. They all concern to
what extent a cause X influences its (potential) effect Y .

Historical remarks

For many centuries, humans have been trying to understand the universe by thinking in terms
of causes and effects. The importance of this way of thinking can hardly be overestimated.
Let me take you on a brief excursion through history to show how various philosophers and
scientists thought about causality. While Judea Pearl goes all the way back to Adam and Eve
in his recent Book of Why [Pea18], I will start with one of the ancient Greek philosophers,
Democritus (ca. 460–370 b.C.). Democritus is mostly known for his formulation of an atomic
theory of the universe. He clearly appreciated the importance of causality when he wrote:

I would rather discover one true cause than gain the kingdom of Persia.

But what does it mean to “discover one true cause”? Philosophers, amongst them David
Hume (1711–1776), have been struggling with this question. Hume wrote [Hum40]:

Thus we remember to have seen that species of object we call flame, and to have
felt that species of sensation we call heat. We likewise call to mind their constant
conjunction in all past instances. Without any farther ceremony, we call the one
cause and the other effect, and infer the existence of the one from that of the
other.

While this definition of causality contains many appropriate elements, one could criticize it
as being overly simplistic. For example, does the rooster’s crow really cause the sun to rise?
And does the barometer needle really cause rain? Furthermore, is the “constant conjunction
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in all past instances” really necessary? If we say “smoking causes lung cancer”, we do not
necessarily mean that everyone who smokes will get lung cancer.

Difficulties like these have led some to throw the towel in the ring. One of them was
Bertrand Russell (1872–1970), a famous logician and philosopher, and one of the authors
of the Principia Mathematica [WR27] (an attempt to derive all of mathematics by pure
logic from a small set of axioms). Russell proposed to abandon the concept of causality
completely. He wrote [Rus13]:

All philosophers, of every school, imagine that causation is one of the fundamental
axioms or postulates of science, yet, oddly enough, in advanced sciences such as
gravitational astronomy, the word ‘cause’ never occurs. The law of causality, I
believe, like much that passes muster among philosophers, is a relic of a bygone
age, surviving, like the monarchy, only because it is erroneously supposed to do
no harm.

The difficulties of formally defining the notion of causality also led Karl Pearson (1857–
1936), one of the founders of statistics—still well-known today from the correlation coefficient
named after him—to propose to get rid of the notion. Pearson wrote [Pea92]:

Beyond such discarded fundamentals as ‘matter’ and ‘force’ lies still another fetish
amidst the inscrutable arcana of even modern science, namely, the category of
cause and effect.

You may have heard the slogan ‘correlation is not causation’. Pearson’s point of view was that
one should only consider correlation. It is striking that even today, I teach BSc. mathematics
students how to calculate Pearson’s correlation coefficient in an introductory statistics course,
but I do not teach them anything about causality. And this is not just me: this appears
to be typical for most statistics courses taught at most universities in most countries. I am
convinced that this is a missed opportunity!

In the last decades, though, things have changed quite dramatically. If we fastforward
to today, we see that causality is a thriving and growing scientific discipline. It is scat-
tered across fields, and has seen important contributions from epidemiology, econometrics,
genetics, machine learning, statistics, artificial intelligence, computer science, and more.1 For
example, the consultancy company Gartner recently included Causal AI in its Hype Cycle
for Emerging Technologies [Gar22], because they expect that it will deliver “a high degree
of competitive advantage over the next 5 to 10 years.”

Causation or correlation?

Let us revisit the causal question ‘does smoking cause lung cancer? ’. One might wonder:
what evidence exists that smoking causes lung cancer? I illustrated one piece of evidence in
Figure 1: if we plot the number of cigarettes sold per adult per day in the US (in purple),
and the rate of lung cancer deaths for men in the US (in red), both over a period of several
decades, we observe a striking similarity in the shapes of these curves (although the lung
cancer deaths occur with a delay of about 25 years).

However, following in the footsteps of for example Ronald Fisher, you may argue that
this is not a very convincing proof. Indeed, this could also be an example of a so-called
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Figure 1: There is a clear (time-lagged) correlation between cigarette sales and lung cancer mortality
in the US.2

Figure 2: Two examples of correlations between time-series that appear to be spurious.3
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spurious correlation, that is, a correlation without causation. Two examples of such spurious
correlations are shown in Figure 2. If we plot US spending on science, space and technology
over the years, and the number of suicides by hanging, strangulation and suffocation, we
observe a striking similarity between the two curves. It appears quite implausible, though,
that there is any causal relation between the two. The divorce rate in Maine (a state in the
US) over the years also shows a strikingly similar pattern as the per capita consumption of
margarine. Would one take this as evidence for a causal relation between the two?

I took these examples from a website, where you can find many more.4 The surprising
nature of these examples is due to selection bias: the website was created with the help of an
algorithm that searches for short pieces of highly correlated time-series in a large database
containing many different time-series. Because of the multiple-testing issue, these strong
correlations may actually not be statistically significant (indeed, even if you search for such
patterns in random data, you will eventually find them).

So, if causation is not correlation, then what is it? Giving a precise definition is not
straightforward. It is perhaps as challenging as defining other elementary notions like ‘space’
and ‘time’. I provide here a simplified definition that contains the basic gist (note, though,
that it is still so vague that no mathematician or statistician would be satisfied with it!).

First, consider deterministic systems, that is, systems in which chance plays no role.
Suppose that variables X and Y describe part of the system’s state.

Definition 1 We say that X causes Y if a minimal external intervention on the system
that sets the value of X may change the possible values of Y .

For example, consider a bicycle. If we take for X the position of the break lever, and for Y
the rotation angle of the wheels, then X causes Y (since pulling the break lever prevents the
wheels from rotating). However, rotating the wheels does not change the possible positions
that the break lever can have, so Y does not cause X.

For stochastic systems, where chance plays a role, we just need a small change in the
definition. As we noted before: not everyone who smokes will get lung cancer. Therefore, we
replace ‘the possible values of’ by ‘the probability of’. This leads to the following definition
for stochastic systems.

Definition 2 We say that X causes Y if a minimal external intervention on the system
that sets the value of X may change the probability distribution of Y .

I would like to illustrate this by using the ‘path diagram’ in Figure 3, used by geneticist
Sewall Wright in 1920 to communicate a causal model of how the fur pattern of guinea pigs
is determined by various genetic and environmental factors [Wri20]. ‘Chance’ is explicitly
represented here, and plays a role in how the genetic constitution of the offspring depends
on that of the parents. If we take for X the genetic constitution of the parent individuals,
and for Y the fur patterns of their children, then X causes Y in a non-deterministic way,
according to the above definition applied to Wright’s model.

As a remark to the statisticians in the audience: note that this definition shows that the
standard framework of classical statistics is too narrow and needs to be extended. Indeed, a
statistical model describes the joint distribution of X and Y , but not how the distribution
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Figure 3: ‘Path diagram’ in [Wri20] expressing causal relations between fur patterns and various
genetic and environmental factors. This is perhaps the first instance of a graphical causal
model.

of Y changes when we intervene on X. Two such extensions have become popular for mod-
eling stochasticity and causality. The potential outcome framework considers jointly defined
random variables for each hypothetical intervention (so-called ‘potential outcomes’). The
other framework models how the probability distribution of the system’s variables depends
on interventions (thus essentially treating interventions as parameters of the distribution).5

In both frameworks, graphs can be used to represent causal relations and independence re-
lations between the variables. While there has been a heated debate on which of the two
frameworks is superior, the differences are actually minor.6

Chocolate consumption and Nobel laureates

Now that we have some idea of how causation differs from correlation, let us return to the
question ‘does chocolate consumption increase cognitive abilities? ’. In a publication in the
prestigious New England Journal of Medicine, an interesting observation was reported: the
average annual chocolate consumption is significantly correlated with the number of Nobel
laureates per capita [Mes12]. The graph in Figure 4(a) visualizes the data. Chocolate
consumption is on the horizontal axis, and the fraction of Nobel laureates is on the vertical
axis. We indeed observe a striking linear correlation, as the data fall more or less on a straight
line (although there are some notable exceptions, like Sweden), with a Pearson correlation
coefficient of about 0.8. In particular, we can read off that an average Dutch inhabitant
eats 5 kg of chocolate a year. This is just half of the average chocolate consumption of an
inhabitant of the United Kingdom. What would happen if the Dutch ate twice as much
chocolate? Would the number of Dutch Nobel laureates also double? And thus, would it be
a good idea for the University of Amsterdam to provide free chocolate for all staff members
and students? As we shall see, the answer depends on the causal relations between these
two variables.

Messerli provided the following possible explanation of the observed correlation [Mes12],
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Hypothesis H1:

Chocolate consumption

Dietary flavonoids

Cognitive functions

Nobel laureates

(a)

Hypothesis H2:

Income

Chocolate consumption

Research funding

Nobel laureates

(b)

H2

H1

Figure 4: (a) There is a significant correlation between chocolate consumption and Nobel laure-
ates across countries [Mes12];7 (b) Two causal hypotheses that might explain the observed
correlation between chocolate consumption and Nobel laureates. For both hypotheses, I
indicated with colored arrows in (a) the expected effects of an intervention in which the
Dutch government doubles the chocolate consumption in the Netherlands.

that I will refer to as hypothesis H1. Chocolate contains certain chemical substances known
as ‘dietary flavonoids’. There is some evidence in animal studies that dietary flavonoids
may have positive effects on brain regions involved with memory and learning. Messerli
speculates that the consumption of chocolate may lead to an increased uptake of dietary
flavonoids in the brain, which may improve the cognitive functions of the brain, eventually
leading to more Nobel laureates. I have illustrated this hypothesis by means of a causal
graph in Figure 4(b), where the arrows indicate a direct causal relationship of one variable
on another, just like in the ‘path diagram’ of Wright that we just saw.

But we can also consider an alternative theory, hypothesis H2: the average income in a
country determines how much money the inhabitants have for buying chocolate, and also
how much tax payers’ money is used to fund scientific research, eventually leading to Nobel
laureates. In this hypothesis, the variable ‘income’ is a common cause of our two variables
of interest (chocolate consumption and Nobel laureates), and is called a confounder for that
reason. This confounder may explain the observed correlation of chocolate consumption and
Nobel laureates, even if there is no direct causal relation between the two.

According to these hypotheses, what would happen if the government intervened to
double the chocolate consumption in the Netherlands? I illustrated this in Figure 4(a). Under
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intervention

control

Figure 5: Schematic illustration of a randomized controlled trial.

hypothesis H1 (red arrow), chocolate consumption causes Nobel laureates, and therefore, we
would expect the number of Nobel laureates to go up as well, perhaps even to the level of
that of Denmark. In contrast, under hypothesis H2 (blue arrow), chocolate consumption
does not cause Nobel laureates, hence we would not expect any change, and the Netherlands
would probably end up somewhere between Ireland and Germany.

We may conclude that predictions of the consequences of actions can depend in a very
sensitive way on the underlying causal relationships between the variables. This also means
that using off-the-shelve machine learning tools for supervised learning (including deep neural
networks) to make such predictions may be a bad idea.

Randomized controlled trials

One way to investigate whether chocolate consumption indeed improves cognitive abilities is
to setup a so-called randomized controlled trial. This approach to estimating causal effects
is called a ‘gold standard’, as it is considered to be the most reliable method. In our case,
it would work as follows (see also Figure 5). We first select a sample of individuals (say,
a representative sample of inhabitants of the Netherlands). Then, by flipping a coin we
divide the individuals into two groups, the intervention group and the control group. On all
individuals in the intervention group, we enforce a diet containing large amounts of chocolate.
The eating habits of the individuals in the control group are left unchanged. We sustain the
diets for several years, and then meausure the cognitive abilities of all individuals. Finally, we
compare the outcomes in the two groups. If we see that the individuals in the intervention
group have become significantly smarter on average than those in the control group, we
conclude that there is a causal relationship, and can estimate the size of the causal effect.

The approach of randomized controlled trials was popularized by Ronald Fisher, and
nowadays provides the pillar of ‘evidence-based’ medicine. Also known as ‘A/B-testing’, it
is used extensively by big tech companies to optimize their business algorithms.

The example also points out some of the limitations of randomized controlled trials. First,
there are logistic aspects. We need a sufficiently large sample size to arrive at statistically
significant conclusions. If the outcome of interest is a rare event (for example, winning a
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Figure 6: An optical illusion by Maurits C. Escher (1898–1972).9

Nobel price), the number of participants in the trial needs to be huge. And how exactly
would we enforce this chocolate diet in practice? Another issue is ethics. This is the reason
that no randomized controlled trial has yet been performed on humans to investigate whether
smoking causes lung cancer: it would simply not be ethical to force subjects in the treatment
group to smoke for many years, given that we expect many of them to develop lung cancer as a
result of the experiment. Another limitation lies in the inclusion criteria. In medical studies,
subjects are often healthy young males, whereas one might be interested more specifically in
the effect of treatment on elderly diseased females. To which extent can the conclusions of
a randomized controlled trial be extrapolated to other subpopulations?

So, do we have alternatives? I don’t believe that a randomized controlled trial has ever
been performed in astronomy, for instance. Yet, astronomers rely on purely observational
data to arrive at a causal understanding of the universe.8 In medicine, could we perhaps make
use of routinely collected electronic health records to estimate the causal effect of treatments
on health outcomes?

Näıve attempts to use observational data (rather than experimental data) to infer causal
effects can fail horribly. A striking illustration of this is related to a phenomenon known as
Simpson’s paradox. This paradox can be thought of as a statistical analogue to an optical
illusion (like in the beautiful drawing by Escher in Figure 6): we appear to see something
that cannot exist.
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Table 1: Data for the fictitious example of Simpson’s paradox. Treatment X (type of COVID-19
vaccine) can take values A,B. Outcome Y (hospitalization after COVID-19 infection) can
take values +,−. The aggregated data can be split into gender-specific subgroups.

♂ + ♀ ♂ ♀
Y = + Y = − Y = + Y = − Y = + Y = −

X = A 2500 2500 1500 2250 1000 250
X = B 3000 2000 375 875 2625 1125

Simpson’s paradox

Although I don’t have the drawing skills of Escher, I will attempt to visualize Simpson’s
paradox for you. Consider the following hypothetical scenario. Suppose someone has col-
lected data from electronic patient records concerning COVID-19 vaccinations. The question
at stake is which of two vaccine types (A or B) is most effective at preventing hospitaliza-
tion because of COVID-19. I will denote the treatment variable with X, and the outcome
variable with Y . Suppose for the moment that there are two possible treatments (A and B,
corresponding to the two vaccines), and two possible outcomes: positive and negative (where
negative corresponds to hospitalization within 6 months after vaccination).

In total, the data concerns 10,000 cases of COVID-19. In Table 1 (columns “♂ + ♀”)
we see for instance that of the 5,000 individuals that had vaccine B, 2,000 ended up in
hospital, but 3,000 did not.10 This means that 60% of the individuals that had vaccine B
had a positive outcome. Of the individuals that had vaccine A, only 50% had a positive
outcome. I visualized these fractions in Figure 7(a). Please take a moment to decide for
yourself, based upon this data, which treatment you would prefer (vaccine A or vaccine B).

A closer look at the data reveals something remarkable. The genders of these 10,000
individuals were also recorded. For simplicity of exposition, assume that all of them are
either male or female. I provided the counts for both genders separately in Table 1 (columns

(a)

♂ + ♀:

60%

50%

+ −

B

A

(b)

♂:

30%

40%

+ −

B

A

♀:

70%

80%

+ −

B

A

Figure 7: Visualizations of the fractions of positive outcomes corresponding to the data in Table 1;
(a) aggregated over genders; (b) gender-specific. Area is proportional to counts.
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X Y

Z

(a)

X Y

Z

L

(b)

X Y

Z

L1 L2

(c)

X Y

Z

(d)

X Y

Z

L

(e)

Figure 8: Different possible causal hypotheses for the data in Table 1 (X is treatment, Z is gender,
Y is outcome, L is an unobserved confounder). One can show that for (a) and (b), treatment
A is better than B, while for (c) and (d), the opposite holds. For (e) it is unclear which
treatment is better.

“♂” and “♀”). For example, of the 3,000 individuals that got vaccine B and had a positive
outcome, only 375 were male, and 2,625 were female. You can check for yourselves that all
the numbers add up. Let us look at the fractions, which I visualized in Figure 7(b). For
males, those that got vaccine A had 40% probability on a positive outcome, versus only 30%
for vaccine B. For females, 80% of those that got vaccine A had a positive outcome, versus
only 70% for vaccine B. So, based on this additional information, which of the two vaccines
would you now prefer?

Before I proceed with explaining how I would answer this question, let me emphasize
the paradoxical nature of these numbers. It is intuitively clear that it cannot be the case
that vaccine A is best for men and best for women, but worst overall. Indeed, if these data
came from a randomized controlled trial, such a paradox could not happen. The paradox
stems from an incorrect interpretation of the correlations between treatment and outcome
as causal relations, the very mistake that Karl Pearson warned us against!

To understand this better, we consider different causal hypotheses that might apply in
our case. I have illustrated them as causal graphs in Figure 8. Under the hypothesis in
(a), gender (Z) causes both vaccine type (X) and hospitalization outcome (Y ). One can
prove that under this causal hypothesis, the data implies that vaccine A should be preferred.
Another hypothesis, the one in (b), assumes an unobserved common cause L of X and Z,
which explains the observed correlation between these two variables. Also in this case, one
can prove that vaccine A should be preferred. But, there also exist causal hypotheses for
which one can prove that vaccine B should be preferred! Two such hypotheses are shown in
(c) and (d). So we see that the right answer to the question which vaccine to prefer depends
not only on the data, but also on our causal assumptions!

However, we can still rule out some of these hypotheses. Indeed, we may assume that
treatment does not affect gender (I have heard many rumours and conspiracy theories about
what undesired effects COVID-19 vaccines may have, but not yet that they transform males
into females or vice versa!). That assumption allows us to rule out hypothesis (d). Further-
more, according to basic biology, gender is determined at conception by the chromosomes in
the sperm cell that enters the egg cell and is an independent random event (like flipping a
coin). Therefore, it is hard to think of any possible common cause of gender and treatment.
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♂:

A: 0 1

B: 0 1

C: 0 1

♀:

0 1

0 1

0 1

Figure 9: The probability of a positive outcome under enforced treatment x for gender z,
p(Y (x) |Z = z), must lie within the corresponding intervals (obtained by applying The-
orem 1 to the data in Table 1). For a third possible treatment C, the probability of a
positive outcome under enforced treatment is assumed to be precisely known (indicated by
the blue dots).

That assumption allows us to rule out hypotheses (b) and (c).
Does this then lead us to the final conclusion that one should prefer vaccine A? Not yet!

Indeed, we cannot easily rule out the possibility of another variable that causes treatment
and outcome, as in hypothesis (e). For example, ‘age’ could be such a variable. Different
vaccines have been used for different age groups, and elderly people generally have a higher
risk of ending up in hospital with a virus infection. But including ‘age’ might lead to another
instance of Simpson’s paradox!11

So, is there then nothing we can conclude from the data? One concrete answer to
this question is provided by the natural bounds [MN98]. If we cannot rule out unobserved
confounders, the best we can do is to calculate lower and upper bounds on the causal effect.
For the mathematicians in the audience, I show here the theorem and the proof. Though
conceptually advanced, the derivation itself is straightforward.

Theorem 1 ([MN98]) If treatment X, outcome Y and observed confounder Z are discrete
variables, then in the presence of additional unobserved confounding (of X, Y and Z) we
can bound:

p(X = x, Y = y|Z = z) ≤ p(Y (x) = y|Z = z)

≤ p(X = x, Y = y|Z = z) + 1− p(X = x|Z = z).

Proof. Using consistency (Y = Y (X)) and elementary probability theory:

p(X = x, Y = y|Z = z) = p(X = x, Y (x) = y|Z = z)

≤ p(Y (x) = y|Z = z)

= p(X = x, Y (x) = y|Z = z) + p(X 6= x, Y (x) = y|Z = z)

≤ p(X = x, Y = y|Z = z) + p(X 6= x|Z = z)

= p(X = x, Y = y|Z = z) + 1− p(X = x|Z = z)

for all z with p(Z = z) > 0. �

I have visualized these natural bounds for our data in Figure 9. The fact that the lower
and upper bounds have to be estimated from a finite sample of individuals yields additional
(statistical) uncertainty, which I have visualized here by making the bounds fuzzy. Note,
however, that in this case most uncertainty is ‘causal’ (due to uncertainty about the causal
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relations) rather than ‘statistical’ (due to extrapolating from a finite sample to the entire
population). In other words, most uncertainty would not go away as we collect more and
more samples. If we gave all males vaccine A, they would have a probability for a positive
outcome between ∼30% and ∼55% (in the left light-green bar in Figure 9). If, instead, we
gave all males vaccine B, that probability must lie between ∼7.5% and ∼82.5% (in the left
dark-green bar). Since we only know that these probabilities must fall within these two
ranges, and these ranges overlap, we cannot conclude which vaccine is to be preferred for
males (based on the data, and our causal hypothesis). For females, the situation is similar,
although the probability ranges differ.

Does this mean that the observational data is useless? Not at all! Suppose there is a third
vaccine C, for which a randomized controlled trial has been done, which has a probability
of a positive outcome of 90%. Then we know that vaccine C is to be preferred over both
vaccines A and B for males, and that it is preferred over vaccine B for females. So, in a
randomized controlled trial we only need to compare vaccines A and C for females (which is
obviously more efficient than setting up a large randomized controlled trial to compare all
three vaccines for both genders).

Estimating causal effects from observational data is done routinely by medical researchers.
What I don’t understand, though, is why these bounds are typically not reported. Instead,
researchers usually only report confidence intervals for point estimates, making the strong,
typically untestable (and likely wrong), assumption that there is no unobserved confounding
between treatment and outcome.

Gender bias at UC Berkeley?

The numbers in the previous example of Simpson’s paradox were made up. But one also
encounters this paradox in real life. A famous case concerned the admission of graduate
students at University College Berkeley [BHO75]. In 1973, university officials noticed in
pooled data that while ∼45% of all male applicants were admitted, only ∼30% of all fe-
male applicants were admitted.12 This being a statistically significant difference (with an
astronomically small p-value of 10−22), the officials called for a closer investigation as they
were anxious the university might get sued for gender discrimination. Statisticians looking
into the data noticed that the difference in acceptance probability mostly disappeared when
looking at the level of individual departments, while some departments even showed a slight
bias in favor of females. What would you conclude: does this provide evidence of gender
bias, or not?

It is again helpful to consider possible causal hypotheses, three of which are illustrated in
Figure 10. The simplest hypothesis is (a): gender (Z) causes department choice (M), which
then influences admission (Y )—but without an unfair direct effect of gender on admission.
Hypothesis (b) and (c) add an unobserved confounder (L) of department choice and admis-
sion. An example of such a confounder could be someone’s math skills, which may influence
both their department choice (as someone with bad math skills might be more likely to
apply at a literature department than at an engineering department) and their admission
(if math skills are taken into account in the selection procedure). Hypothesis (c), finally,
incorporates the possibility of unfair gender bias as a direct effect of gender on admission
(the arrow marked in red). For (a) one can prove that admission rates are the same for males
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(a)

Z Y

M

Z ⊥⊥ Y |M

(b)

Z Y

M

L

Z 6⊥⊥ Y |M

(c)

Z Y

M

L

Z 6⊥⊥ Y |M

Figure 10: Three possible causal hypotheses for the Berkeley admission data (Z: gender; Y : ad-
mission; M : department choice; L: latent confounder). (c) is considered unfair, whereas
(a) and (b) are considered fair. (a) implies a conditional independence between Z and Y
given M , whereas for (b) and (c) this would generically not be the case.

and females within each department, while for (b) and (c) this is not necessarily the case.13

Testing for this conditional independence (of Z and Y given M) in the data, we find that
hypothesis (a) is almost compatible with the data, but there is still some evidence of a weak
conditional dependence of Z and Y given M .14 If we decide to therefore reject hypothesis
(a), we can proceed by performing a statistical test whether the data would favor hypothesis
(c) over (b).15 It turns out that the data is perfectly compatible with hypothesis (b), which
describes a fair selection process, and contains no evidence that hypothesis (c) would be
more likely. This means that based on the data itself, and our causal hypotheses, we cannot
conclude that there must have been gender bias in the selection process.16

Gender bias at Dutch universities?

In the Netherlands, about 5% of the PhD students that graduate, do so cum laude (‘with
distinction’). Näıvely, one would expect that this percentage should be the same for male
and female PhD students. However, in 2018, the Dutch newspaper NRC reported that at
most Dutch universities, the fraction of male PhD students that graduate cum laude is about
twice as large as the fraction of female PhD students that do so [dB18]:

Aan alle Nederlandse universiteiten hadden mannen de afgelopen jaren meer kans
om cum laude te promoveren dan vrouwen. De criteria voor cum laude promov-
eren zijn niet objectief gedefinieerd, dus er is volop ruimte voor genderbias.

The University of Amsterdam is no exception: 6.1% of the male PhD candidates gradu-
ated cum laude in 2010–2017, versus 3.7% of the female PhD candidates according to the
newspaper article.

This story starts out analogous to that of the UC Berkeley admission case, but I do
not know how it unfolds. Could this be an instance of Simpson’s paradox, and would the
difference disappear if we conditioned on, say, faculty? Or is this perhaps a real case of
gender bias? I do not know, but it certainly deserves closer investigation!17

14



My research as flow diagram

Mathematical representation

Mathematical theory

Algorithms, Statistics

Data Science

Modeling

Reasoning

Problem
Solving

Validation

Application

I Feedback loops

I Different domains

I Dynamical systems

I Confounders

I Selection bias

I Different tasks:
I Discovery
I Estimation
I Prediction
I Optimization

I Reliability vs. computation time

I Assumptions
simulator?

I Ground truth not
known

Figure 11: Summary of my research over the past 15 years.

My research

After this introduction to the field of causality, I would like to say a few words about my
own research. I have tried to summarize the research I have been doing over the past 15
years on a single slide. The result is shown in Figure 11.

It all starts with research questions related to modeling : in other words, what are appro-
priate and useful mathematical representations of causality in various types of systems.

Once the modeling framework has been established, the next stage consists of developing
mathematical results that aid causal reasoning, for example, Markov properties, or the nat-
ural bounds that we have seen before. Some challenging aspects in these first two stages are
feedback loops (or ‘causal cycles’, more on those in a minute), modeling and reasoning with
data from different domains (for example, combining observational and interventional data),
and modeling dynamical systems (where variables become time-dependent). Generality and
complexity both increase when not ruling out unobserved confounding and selection bias.

The next stage, ‘problem solving’, is where most of the hard work has to be done: in
order to answer causal questions, we develop statistical algorithms that estimate quantities
of interest from data. We improve existing algorithms to become more generally applicable,
or more efficient in terms of statistical power or computation time. We attempt to give
theoretical guarantees for our algorithms: we try to prove that with a high probability, the
algorithms give the correct answer for sufficiently large data sets, under suitable assump-
tions. Here, one has to distinguish different tasks: discovering causal relations, estimation of
model parameters, predicting results of actions, or optimizing a reward. Each problem can
often be solved in many different ways, yielding different tradeoffs between statistical power,
computation time and generality.

As the British say, “the proof of the pudding is in the eating”. The next, and perhaps most
important, stage is to validate how well the algorithms work on real data, by establishing
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Figure 12: An enigmatic feedback loop by Maurits C. Escher (1898–1972).18

benchmarks. This is the part of the field that is still most in its infancy, especially compared
with other parts of AI (like computer vision and natural language processing), where the
availability of good benchmarks has led to rapid and impressive developments. It is easy to
run computer simulations to get a feeling for how well our algorithms perform on finite data
sets, but how realistic are such simulations? When using real data, we often face the problem
that the ground truth is not known, and we cannot assess how reliable our algorithms are. In
my experience, results on real data often turn out to be disappointing, which then motivates
going back to the ‘problem solving’ stage, and try harder to design an efficient algorithm, or
to go back entirely to the ‘modeling’ stage.

I would love to tell you more about several of my research projects, but time is limited.
Therefore, I just picked two topics that I am especially passionate about.

Feedback loops

The research I am most proud of is our work on feedback loops. Many causality researchers
have, for a long time, considered feedback loops as exotic, complicated, and some even went
as far as to question their very existence. The drawing by Escher (in Figure 12) of two hands
that cause each other’s existence might be an appropriate illustration of the typical mindset
that many causality researchers had regarding causal cycles: an intriguing possibility, but
unlikely to be relevant in the real world.

However, once you start looking for feedback loops, you will see them everywhere. In
other fields, noone questions their existence (see also Figure 13). As an example, take climate
science. Citing a report of the United Nations Environment Programme [OWW07]:

Part of the uncertainty around future climates relates to important feedbacks
between different parts of the climate system: air temperatures, ice and snow

16



Figure 13: Feedback loops occur in many different systems, for example in climate science19 (left)
and in biology20 (right).

albedo (reflection of the sun’s rays), and clouds.

The word feedback appears 43 times in this 238-page report! Or, in biology. I cite from an
editorial of the American Society of Clinical Oncology daily news [McA14]:

Feedback mechanisms may be critical to allow cells to achieve the fine balance
between dysregulated signaling and uncontrolled cell proliferation (a hallmark
of cancer) as well as the capacity to switch pathways on or off when needed for
physiologic purposes.

Or, take econometry. In simple models of an ideal economic market, a feedback loop deter-
mines the equilibrium price of a commodity trading good: the price is determined by supply
and demand, while supply and demand both depend on price. This is why it is difficult to
predict, for example, the gas price.

In a series of papers that my collaborators and I wrote over the past 10 years, we ex-
tended the popular causal modeling framework of path diagrams (pioneered by Wright one
century ago) to incorporate feedback loops, and we generalized causal reasoning theory and
algorithms to allow for feedback loops.

Causal discovery

A research topic that I am also passionate about is causal discovery, that is, inferring the
presence or absence of causal relations from data. An intriguing alternative to randomized
controlled trials is to exploit conditional independences. About three decades ago, causality
researchers realized that certain statistical patterns in data can be considered as ‘finger-
prints’ of the causal relationships between the variables. These conditional independence
patterns can be probed with statistical tests, and under certain assumptions one can draw
some conclusions on what the causal relationships between the variables must have been. I
illustrated the inference process in Figure 14. Interestingly, this idea works even when al-
lowing for unobserved confounders and selection bias (and, as we have shown more recently,
also causal cycles).
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Data:

X1 X2 X3 X4

2 0.1 0.2 0.5
2 0.13 0.21 0.49
2 0.23 0.21 0.51
5 0.5 0.19 0.52
5 0.6 0.18 0.51
2 0.2 0.22 0.92
2 0.23 0.21 0.99
5 0.53 1.2 0.95
5 0.55 1.19 0.97

X2 6⊥⊥ X4

X2 ⊥⊥ X4 |X3

X1 ⊥⊥ X2

X1 6⊥⊥ X2 |X3

. . .

Conditional
independencies:

Possible causal graphs:

X1 X2

X3

X4

X1 X2
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Figure 14: Constraint-based causal discovery algorithms infer possible causal structures from con-
ditional independences (certain statistical patterns that can be tested in data).

Based on this principle, many causal discovery algorithms have been developed. We
can prove that these algorithms work under suitable assumptions. We can demonstrate
empirically that they work in computer simulations. But do they work in the real world?
Answering this question turned out to be surprisingly hard.

One of our attempts involves yeast. Yeast is a pretty useful organism: you can use it to
bake bread, to brew beer, or, as we did, to validate causal discovery algorithms. We made
use of a large-scale gene expression data set for yeast, measured in a huge experimental effort
by researchers from UMC Utrecht and Utrecht University [KSvdP+14]. The expression lev-
els of about 6,000 yeast genes were measured under many different experimental conditions,
including almost 1,500 single gene knockout interventions. This gigantic randomized con-
trolled trial allowed the researchers to estimate the gene regulatory network. The resulting
causal graph (with almost 6,000 variables!) is depicted in Figure 15, and as you can see, it
looks pretty complicated.

The challenge we took on was to predict from this data which gene expression levels
change if we knock-out a certain gene without actually using the data for that knock-out
experiment. This challenge, at first sight, appears similar to reading off from the data
in Figure 4 whether chocolate consumption causes Nobel laureates. I have visualized the
expression data for two examples of correlated gene pairs in Figure 16. On the horizontal
axis we have the expression of one gene, and on the vertical axis, the expression of another
gene. The data points correspond with relative gene expression levels in colonies of yeast
cells. The blue points are the observational data, and the red points are interventional data
corresponding with different single gene knockouts. The causal discovery algorithm is solving
a challenging task: it has to decide from the data what will happen with the expression of
the gene on the vertical axis if we reduce the expression of the gene on the horizontal axis
by knocking it out. There are millions of such gene pairs that we can consider!

A key difference with the data in Figure 4 is that we have an additional variable: the
experiment type (observational or interventional). With a conditional independence test, we
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Figure 15: Gene regulatory network for yeast [KSvdP+14].21
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Figure 16: Examples of correlated gene pairs in the yeast gene expression data from [KSvdP+14].
Observational data are in blue, interventional (some gene knockout) in red, and the black
cross shows the result of knocking out the gene on the horizontal axis. (a) is causal
(YPL273W causes YMR321C), while (b) is not (YPL154C does not cause YDR032C).
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Figure 17: Validation of causal discovery algorithms with the knockout data from [KSvdP+14].
Random: randomly selected gene pairs (baseline); Preselected: gene pairs preselected using
L2Boosting; LCD/ICP: further selected using LCD/ICP.

can use this additional information to decide whether an observed correlation between gene
expression levels implies a causal relationship of one on the other. Figure 16(a) shows a case
in which the causal discovery algorithm correctly identified a causal relation: the expression
of gene YPL273W causes the expression of gene YMR321C.22 In Figure 16(b) we see a case
where a causal relation found by the causal discovery algorithm is incorrect: there, knocking
out YPL154C does not significantly change the expression of YDR032C.

With collaborators of ETH Zürich we validated how well causal discovery algorithms per-
form in this challenge [MHM+16]. Here I will focus on LCD, one of the simplest constraint-
based causal discovery algorithms [Coo97]. Out of more than 19 million candidate cause-
effect gene pairs, I preselected roughly 1,000 using an algorithm called L2Boosting, and of
those 88 were selected by the causal discovery algorithm LCD. For 9 of those, the data
provides the ground truth causal effect. One can see clearly in Figure 17 that these 9 gene
pairs indeed correspond with a nonzero causal effect, and hence, a true gene regulatory re-
lation. To my knowledge, this was the first convincing proof that causal discovery based on
conditional independences can indeed work in practice.

Applied research

While the core of my research has always been theoretical, I also enjoy more applied research
projects where we try to put the theory to use. I will mention a few examples. I am involved
in the AI4Science project of the Faculty of Science of the University of Amsterdam, where
we collaborate with biologists to apply and further develop causal discovery methods to
improve the understanding of gene regulation in a bacterium, bacillus subtilis. Microsoft
Research sponsors one of my PhD students to study how causality can be used for developing
personalised medication and treatment strategies. The Mercury Machine Learning Lab, one
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of the labs of the Innovation Centre for Artificial Intelligence, was funded by booking.com. I
am involved in this lab as co-director and as a supervisor of two PhD students and a postdoc.
The aim of the lab is to carry out fundamental scientific research on learning from controlled
sources, for example for taking informed business decisions. It should come as no surprise
that causality is considered to be of essential importance. These collaborations are great
opportunities to see some of the algorithms being deployed in practice.
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Notes

1. While this multi-disciplinarity emphasizes its scientific and practical relevance, it also bears a cost:
many ideas are lost in translation. The often isolated, scientific communities have developed different
(sometimes contradictory) terminology and conceptual frameworks. Even within statistics, different
frameworks are being used. This is unfortunate, as it puts a considerable hurdle on scientific exchange
and interaction.

2. Reproduced from https://ourworldindata.org/smoking-big-problem-in-brief, licensed under
CC BY 4.0 (see https://creativecommons.org/licenses/by/4.0/).

3. Reproduced from https://tylervigen.com/spurious-correlations, licensed under CC BY 4.0
(see https://creativecommons.org/licenses/by/4.0/).

4. https://tylervigen.com/spurious-correlations

5. A more precise definition is the following. Consider modeling a system with two real-valued variables
X and Y , where X is the cause and Y the effect (for example, X could be the dosage of ibuprofen
administered to a patient, and Y the patient’s body temperature measured 60 minutes later). The
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potential outcomes are random variables Y (x) : Ω → R for x ∈ [0,∞), where Y (x) is distributed as
the effect after an intervention that sets X to x, and Ω is a probability space. At most one of the
potential outcomes can be measured (indeed, it is not possible to administer two different dosages
simultaneously). Alternatively, one can define a statistical causal model that consists of the family
of distributions x 7→ P(Y |do(x)), with P(Y |do(x)) the distribution of Y (x). Here, x is treated as
a parameter, and we have avoided to introduce the potential outcomes as random variables jointly
defined on the same probability space Ω. While the potential outcomes allow for specification of their
joint distribution, the alternative approach only provides access to their marginal distributions.

6. For an account on the history of the various frameworks by some of the pioneering researchers, see
issue 2 in volume 9 of the Journal of Observational Studies, 2022.

7. Adapted with permission from [Mes12].

8. That is actually a simplification. Instead, astronomers also rely on experiments performed in our solar
system, but they extrapolate the results of these experiments to the rest of the universe, assuming
that the same physical laws hold everywhere.

9. Reproduced with permission from the M.C. Escher Company. All M.C. Escher’s works ©2022—The
M.C. Escher Company, The Netherlands. All rights reserved. https://www.mcescher.com.

10. Keep in mind that these numbers are not supposed to be realistic at all, the numbers were just chosen
to make it easier to tell this story. I took them from [Was04].

11. It could be the case that for each combination of gender and age, vaccine B seems preferable, while
vaccine A seems preferable when aggregating the data over all age groups.

12. For my calculations, I used the 4,257 samples concerning the six largest departments, available as
UCBAdmissions in the R package datasets. This appears to be a subset of the 12,763 samples
reported in [BHO75], which may explain any discrepancy with their numbers.

13. This amounts to showing that hypothesis (a) implies the conditional independence of Z and Y given M ,
something that follows for example by using the d-separation criterion [Pea09]. In (b), conditioning
on department choice may create a dependence between gender and admission via the ‘explaining
away’ phenomenon (Berkson’s paradox). In (c), a direct effect of gender on admission can also lead
to a conditional dependence between gender and admission given department choice.

14. Using the G-test to test for dependence between gender and admission, one finds that gender and
admission are strongly correlated when aggregating over departments (p-value 4 × 10−22 for testing
Z ⊥⊥ Y ), whereas after conditioning on department only a slight correlation is left (p-value 0.0014 for
testing Z ⊥⊥ Y |M).

15. This is more complicated than testing for a conditional independence, but can be done by defining
‘response variables’ and using linear programming to characterize the probability distributions com-
patible with hypothesis (b) as the convex hull of a finite number of extreme points (see also [Bon01]),
which can be translated into a finite set of inequality constraints on p(Z, Y |M). Since the empirical
distribution turns out to fall inside this convex hull, hypothesis (b) need not be rejected in favor of
hypothesis (c).

16. This conclusion differs from that of [BHO75], who conclude that the data suggest evidence of gender
bias against males.

17. Unfortunately, the data is not publicly available.

18. Reproduced with permission from the M.C. Escher Company. All M.C. Escher’s works ©2022—The
M.C. Escher Company, The Netherlands. All rights reserved. https://www.mcescher.com

19. Reproduced from https://www.grida.no/resources/5261 with permission of the creator (Hugo
Ahlenius, UNEP/GRID-Arendal).

20. Reproduced with permission from [SRC+09].
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21. Reproduced with permission from [KSvdP+14].

22. Indeed, the black cross in Figure 16(a) denotes the data point that corresponds with the knockout
of YPL273W. In this knockout experiment, we see that the expression of YPL273W is substantially
reduced (so normally this gene is active), but also the expression of YMR321C; hence, YPL273W
causes YMR321C. Interestingly, YPL273W and YMR321C turn out to be paralogs: these two genes
contain an almost (> 98%) identical subsequence of more than 300 base pairs. Therefore, I do not know
whether this finding that YPL273W causes the expression of YMR321C is biologically interesting, or
is just an artefact of the experimental knockout procedure.
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