
Methods for causal inference from gene perturbation
experiments and validation
Nicolai Meinshausena, Alain Hauserb, Joris M. Mooijc, Jonas Petersd, Philip Versteegc, and Peter Bühlmanna,1

aSeminar for Statistics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8092 Zurich, Switzerland; bDepartment of Engineering and Information
Technology, Bern University of Applied Sciences, CH-3400 Burgdorf, Switzerland; cInformatics Institute, University of Amsterdam, 1090 GH Amsterdam,
The Netherlands; and dMax Planck Institute for Intelligent Systems, D-72076 Tuebingen, Germany

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved April 5, 2016 (received for review June 5, 2015)

Inferring causal effects from observational and interventional data is
a highly desirable but ambitious goal. Many of the computational
and statistical methods are plagued by fundamental identifiability
issues, instability, and unreliable performance, especially for large-
scale systems with many measured variables. We present software
and provide some validation of a recently developed methodology
based on an invariance principle, called invariant causal prediction
(ICP). The ICP method quantifies confidence probabilities for inferring
causal structures and thus leads to more reliable and confirmatory
statements for causal relations and predictions of external interven-
tion effects. We validate the ICP method and some other procedures
using large-scale genome-wide gene perturbation experiments in
Saccharomyces cerevisiae. The results suggest that prediction and
prioritization of future experimental interventions, such as gene de-
letions, can be improved by using our statistical inference techniques.

interventional–observational data | invariant causal prediction |
genome database validation | graphical models

In this article, we discuss statistical methods for causal inference
from perturbation experiments. As this is a rather general topic,

we focus on the following problem: based on data from observa-
tional and perturbation settings, we want to predict the effect and
outcome of an unseen and new intervention or perturbation.
Taking applications in genomics as an example, a typical task is as
follows: based on observational data from wild-type organisms and
interventional data from gene knockout or knockdown experi-
ments, we want to predict the effect of a new gene knockout or
knockdown on a phenotype of interest. For example, the organism
is the model plant Arabidopsis thaliana, the gene knockouts corre-
spond to mutant plants, and the phenotype of interest is the time it
takes until the plant is flowering (1).
From amethodological viewpoint, the prediction of unseen future

interventions belongs to the area of causal inference where one aims
to quantify presence and strength of causal effects among various
variables. Loosely speaking, a causal effect is the effect of an ex-
ternal intervention (or say the response to a “What if I do?” ques-
tion). The corresponding theory, e.g., using Pearl’s do-operator (2),
provides a link between causal effects and perturbations or ran-
domized experiments. We mostly assume here that all of the vari-
ables in the causal model (for inferring causal effects) are observed:
the case with hidden variables is mentioned only briefly in a later
section, although it is an important theme in causal inference (due
to the problem of hidden confounding variables) (cf. refs. 2 and 3).
A popular and powerful route for causal modeling is given by

structural equation models (SEMs) (2, 4). We consider a set of
random variables X1, . . . ,Xp,Xp+1, and we often denote by Y =X1,
emphasizing that Y is our response variable of interest (e.g., a
phenotype of interest). The main building blocks of a SEM are as
follows: (i) an underlying true causal influence diagram for the
random variables X1, . . . ,Xp,Xp+1, formulated with a directed
graph D whose nodes correspond to the variables, most often with
a directed acyclic graph (DAG); (ii) each of the random variables
is modeled as a function of their parental variables, given by the

graph D, and an error term. The system of structural equations is
then as follows:

Xj ← fj
�
XpaðjÞ, «j

�
  ðj= 1, . . . , p+ 1Þ, [1]

where paðjÞ denotes the set of parents of node j in the underlying
graph or DAG D and «j are error terms that are jointly indepen-
dent. Furthermore, for S⊆ f1, . . . , p+ 1g, XS denotes the variables
fXj;   j∈ Sg, and the arrow “←” is emphasizing that Xj is caused
(or influenced) by XpaðjÞ, which is a stronger statement than an
algebraic equality.
The most commonly used model for an intervention at one or

several variables has been pioneered by Pearl (cf. ref. 2): the do-
operation doðXj = xÞ is setting the single variable Xj to a de-
terministic value x, which corresponds to replacing the structural
equations [1] for Xj with Xj ← x; analogously, the do-operation can
be applied to several variables simultaneously. The distribution
pðyjdoðXj = xÞÞ of Y when doing an intervention doðXj = xÞ can be
derived via the truncated Markov factorization (2, 3, 5) or by the
backdoor adjustment formula, and we can then consider quantities
like the expected response Y when having done an intervention at
Xj putting its value to x:

E
�
Y jdo�Xj = x

��
=

Z
yp
�
yjdo�Xj = x

��
dy. [2]

For more details, we refer to ref. 2. The do-operation has been
generalized to probabilistic “soft” interventions where the interven-
tion value (little x in the notation above) becomes a random vari-
able (6). Furthermore, a so-called “mechanism change” with an
intervention at variable with index j is replacing the conditional
probability distribution pðXj

��XpaðjÞÞ, corresponding to the jth equa-
tion in the SEM [1], by another distribution qðXj

��XpaðjÞÞ (7). In
addition, “fat-hand” interventions (8) (with uncertain intervention
targets) and activity interventions (9) (simultaneous mechanism
changes of all children of a variable) have been used to model
interventions in molecular biology. For the do-interventions, it is
sufficient to know the SEM because the intervention doðXj = xÞ
itself is fully specified by the known quantities j and x. We will
discuss in a section below that do-interventions can be too simple
for certain applications.
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Identifiability and Estimation from Data
One of the major challenges is the estimation of the SEM [1] from
observational or a mix of observational and interventional data. We
are particularly interested in high-dimensional settings where the
number of variables p+ 1 can be much larger than sample size, as
in many applications from, e.g., genomics and genetics.
A first complication concerns identifiability: the data-generating

probability distribution(s) might be represented by different struc-
tures (acyclic directed graphs) D and corresponding different func-
tions in the SEM [1]. The different graph structures D that can
generate the data-generating distribution(s) build an equivalence
class D. Situations where this equivalence class is large (and hence
the degree of identifiability is low) occur when the data-generating
distribution is observational and the SEM in [1] is either fully non-
parametric with no specified additional structure or when the func-
tions fjð·Þ are linear and the error terms are Gaussian (cf. ref. 2).
More identifiability is possible when the data-generating distribution
corresponds to a mix of observational and interventional data (7–12)
or when the SEM has additional structure. Regarding the latter, it is
possible to identify from the observational data distribution P the
single underlying causal DAG: the most prominent examples are
linear, non-Gaussian, acyclic models (LiNGAM) where the functions
fj are linear but all error terms are non-Gaussian (13), the functions
are nonlinear and the error terms are additive (14, 15), or the
functions fj are linear with Gaussian error terms that all have the
same variances (16).

Algorithms and Methods.Given data, we want to estimate the SEM
in [1] (its equivalence class if it is not identifiable), and based on
this, we often aim to estimate the total causal average effect
d=dxðE½Y jdoðXj = xÞ�Þ (see also [2]) or its generalization when in-
tervening at more than one variable. If the underlying causal DAG
D is not identifiable from the distributions, we can only obtain
bounds for d=dxðE½Y jdoðXj = xÞ�Þ.
For linear Gaussian SEMs, estimation of the Markov equivalence

class based on observational data can be done by penalized maxi-
mum-likelihood estimation (17) or by constraint-based methods with
the PC-algorithm using conditional independence testing (3, 18).
Based on the estimated Markov equivalence class, lower bounds for
the absolute value of the parameter αjðxÞ = d=dxðE½Y jdoðXj = xÞ�Þ
can be derived using a computationally efficient strategy (19). The
setting with a mix of observational and interventional data and es-
timation of the corresponding smaller Markov equivalence class is
discussed in ref. 20. Bayesian methods for structure and parameter
estimation include those in refs. 8, 9, 21, and 22. Theoretical per-
formance guarantees in the high-dimensional setting with underlying
sparse DAGs have been given in refs. 19, 23, and 24.
For identifiable models, some other estimation strategies

have been proposed. For linear SEMs with non-Gaussian errors
(LiNGAM), one can make use of independent component analysis
(13), and for additive SEMs, proposals include independence testing
of residuals (15) or penalized nonparametric maximum-likelihood
estimation (25). Based on an estimated causal graph, the quantity
E½Y jdoðXj = xÞ� in [2] can be nonparametrically inferred using mar-
ginal integration for the backdoor formula adjustment (26).
Sometimes, the direct (instead of total) causal effects are of in-

terest. They are typically given by the parameters of a graphical or
SEM. For example, the edge function fj in [1] encodes all of the
direct effects from XpaðjÞ to Xj, or the parameter γj* in [4] describes
the direct effect of Xj to Y.

Challenges and Validation. There are a number of difficulties that
occur, implying that estimation of a causal graph or influence dia-
gram or of a total causal effect is a very ambitious goal, particularly
in the high-dimensional context where p is much larger than sample
size. Even with simulated data from a specific model under con-
sideration, one often needs a substantial sample size to ensure that
the estimated (equivalence class of) graphs or causal effects are

fairly accurate. The supporting mathematical theory is often of
crude asymptotic nature as sample size tends to infinity and does not
advance more detailed understanding; for an exception, presenting
some more refined convergence rates, see ref. 24. Furthermore, the
faithfulness assumption can become rather severe for moderate
dimensions already (27, 28). (A distribution P is faithful with respect
to a DAG D if all conditional and marginal dependencies among
the variables can be derived from the DAG D.)
Quantifying uncertainty. When using methods based on estimating
first a causal graph or an equivalence class thereof and sub-
sequently inferring the direct or total causal average effect, it seems
difficult to accurately quantify uncertainty in terms of confidence
bounds. Confidence regions based on sample-splitting procedures
are rather unreliable and much worse than for inferring association
in regression models (29). Thus, in absence of “error bars,” one
cannot draw reliable confirmatory conclusions. We will discuss later
a recently proposed methodology that provides confidence intervals
for direct causal effects, in the setting with not only observational
but also additional, rather general kind of interventional data.
Validation. Because (asymptotic as sample size tend to infinity) cor-
rectness of causal inference relies on strong assumptions, with some
of them being uncheckable in practice, a central point is their em-
pirical validation with new interventional data. Perhaps best posed is
the validation of the “total causal effect.” [A total causal effect of X
to Y measures the overall effect on Y when doing a perturbation at
X. Its expected value (as a function of x) is defined in ref. 2.] This can
be done by holding out some interventional test data. Mathemati-
cally, we aim to predict the expected value E½Y jdoðXj = xÞ� in [2].
The prediction error is then a measure between the estimated
quantity of E½Y jdoðXj = xÞ�, based on the training data, and the
actual value of the variable Y under the perturbation doðXj = xÞ in a
new (test data) intervention experiment. Instead of this qualitative
measure, we can also test for the existence of a total causal effect.
Mathematically, this is the case if E½Y jdoðXj = xÞ� is different from
E½Y � for some x; see [2]. To validate this in empirical data, we define
below a notion of (total) “strong intervention effect” (SIE); it is a
binary event and allows to validate whether a method (based on
training data) was successful in correctly predicting the binary out-
come of a SIE being present or absent in new test data.
We note that a procedure that is estimating direct causal effects,

as most causal prediction methods do, can also be used to predict
total (strong) intervention effects; for more details, see SI Appendix.
Validation of estimated lower bounds of the total causal effects

in a large-scale gene deletion experiment for yeast has been per-
formed in ref. 30: however, the result depends in a rather sensitive
way on how a true positive finding is defined. We thus suggest next
a conservative notion for validation of total causal effects.
We propose here the criterion of SIE, which is well suited for

validation with large-scale interventions having one measurement
each, such as gene knockdowns or deletions. It conservatively classifies
total intervention (causal) effects as being strong or not. Consider a
variable Xj that is intervened on and a response variable Y of interest.

SIE. The intervention of variable Xj on the response Y is strong if
both of the following events occur:

i) the intervened variable Xj has a value that is below or above all
values of variable Xj seen in other interventional/observational
data (with no intervention on Xj);

ii) the response variable Y has a value below or above the range of
values of Y in all other interventional/observational data (with
no intervention on Y).

Thus, the definition of an SIE is based on a given dataset. An
SIE of Xj to Y corresponds to an event with corresponding extreme
behavior of the realized values of the two variables. It is an estimate
of presence or absence of a strong total causal effect. We note that,
for a given Y, there can only be at most one Xj that fulfills the

7362 | www.pnas.org/cgi/doi/10.1073/pnas.1510493113 Meinshausen et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510493113/-/DCSupplemental/pnas.1510493113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1510493113


criterion. Therefore, the criterion is conservative, meaning that not
all non-SIE effects are noncausal.
The existence of a “direct causal effect” is difficult to extract from

hold-out interventional validation data, unless we adopt a model
that we want to avoid for validation purposes. (In an SEM as in [1],
there is a direct effect from X to Y if X is a parent of Y.) In Vali-
dation: Gene Perturbation Experiments, we consider scores measuring
direct effects using external information from a genome database
and transcription factor (TF) binding based on ChIP-on-chip data as
a source of indirect evidence for a direct effect. With such ap-
proaches, we have to keep in mind that the external source of val-
idation might be very noisy and error-prone. In particular, it turns
out to be difficult to predict SIEs from external information alone.

Causal Inference Based on Invariance Across Experiments
We outline here a recently published method (31) that exploits the
fact that the data arise from different experimental conditions or
perturbations. In the advent of big-data scenarios, the latter setting
with heterogeneous data sources becomes more common. The
method has a few crucial benefits addressing some of the difficulties
mentioned in the previous section: (i) an “automatic identifiability”
property (see the discussion after [5]); (ii) some confidence bounds
for inferring causal variables (see [5]); (iii) the flexibility that the
interventions and perturbations do not need to be exactly specified;
and (iv) avoiding some typically unstable and complicated estimation
of a graph (or an equivalence class of graphs) from data.
The method is based on invariance of conditional distributions

across intervention experiments from a rather general type. The
role of invariance in causal inference has received some attention in
the literature (2, 32–34). To the best of our knowledge, however,
the work in ref. 31 is the first of its kind that exploits invariance of
conditional distributions for statistical estimation and confidence
statements.
As before, we consider a response or target variable of in-

terest, denoted by Y, and a p-dimensional predictor variable
X = ðX1, . . . ,XpÞ. We assume a setting with data ðYe,XeÞ for dif-
ferent experimental settings e∈ E. For example, with E = f1,2g in
the context of gene perturbation experiments, the experimental
settings could correspond to observational data (e= 1) and data
from unspecified interventions (e= 2). We could also consider a
larger set of experimental settings E = f1,2,3,4g when having in
addition data from say two gene-specific interventions, encoded in
addition by e= 3 and e= 4. Thereby, Ye is a ne × 1 vector of the
response variable and Xe an ne × p design matrix, containing the ne
different data points in the setting e. It is important to point out that
we have more than say observational data only (assuming that E
does contain more than one element of experimental settings). We
use a linear model for the response or target variable:

Ye =Xeγe + «e, [3]

where the error or noise term «e has mean zero. We note that the
regression vector γe and the noise term «e are unknown or unobserv-
able, respectively. An intercept that is constant across environments
could be added, but we will not do so here for notational simplicity.
We refer to SI Appendix for some potential violations of the as-
sumed linearity in [3].
The response variables in [3] are assumed to correspond to a

linear SEM:

Y ←
X
k∈Sp

γpkXk + «Y , [4]

where «Y is a noise term that is independent from XS*, and
S* = paðY Þ is unique and equals the parental set of Y and γ* cor-
responds to the coefficients (edge weights) in such a SEM. The
variables Ye and Xe are generated from a rather general class of
interventions on X. We require that these interventions, or the

corresponding experimental settings, are such that the following
invariance assumption holds. (The invariance assumption will be
exploited in the next section: the main idea will be to look for
components of the regression vector that are invariant among
experimental settings.)

Invariance Assumption. For S* and γ* from [4], define a p× 1
vector γ such that γj = γ*j   ðj∈ S*Þ and γj = 0  ðj∉ S*Þ. Then:

  for  all  e∈ E :Ye =Xeγ + «e,
  «e   has  the  same  distribution  for  all  e∈ E   and
  «e   is  independent  of   Xe

S*   for  all  e∈ E.

We note that S* = paðY Þ are the causal variables for Y (sometimes
called the direct causes of Y) and the distribution for «e (for all
e∈ E) is equal to the one of «Y in [4].
As an example, consider experimental settings E that arise from

do-interventions (2) at variables different from Y in a SEM as in
[4]: then the invariance assumption holds.
We give in the following a simple example under noise inter-

ventions. Assume the SEM for a target of interest Y and two po-
tentially causal variables X1,X2 is given by the following (to improve
readability, we omit the superscript “e” and write X1,X2,Y instead
of Xe

1 ,X
e
2 ,Y

e):

Y ←X2 + «y
X1 ← 2Y + σðeÞ«1
X2 ← σðeÞ«2,

where «y, «1, «2 are independent with mean zero and unit variance
and the strength of the noise σðeÞ is a function of the environment.
The true causal parent of Y is just the second variable S* = f2g. A
simple regression from Y on the two variables X1,X2 will put a
nonzero regression coefficient on both variables (even though X1
is a child of Y in the causal graph and hence not causal for Y, it has
predictive power for the outcome Y). For the causal discovery, we
propose, intuitively speaking, to look through all possible subsets S
of f1,2g. For each subset S, we ask whether it is possibly a parental
set of the outcome of interest by checking an invariance property
across different environments. For the true causal parents, the re-
gression coefficients when regressing Y on XS and the residual var-
iance will be identical across environments. Let γSðeÞ be the optimal
regression coefficient when regressing Y onto XS for a given subset S
of predictor variables (a function of the environment e) and let VSðeÞ
be the residual variance of VarðY −XsγSðeÞÞ. The two environments
E = f1,2g are defined in this example by a change in the noise level
so that σðe= 1Þ= 1 and σðe= 2Þ= 2 (this fact does not have to be
known; the change could also consist of do-interventions or other
types of interventions on X1,X2, and we do not require knowledge
of the precise location or type of intervention). The regression co-
efficients and residual variances in the two environments are then
given for all possible subsets of variables by Table 1.
We can see from Table 1 that both the optimal regression co-

efficient γS and the residual variance VS stay constant in all envi-
ronments for the true set of causal parents (here, if S is equal to
S* = f2g), whereas the residual variance changes for all other subsets
of variables, including the empty set S= 0= that would correspond to
Y being a root node in the SEM. The invariant causal prediction

Table 1. Invariance example

Set γSðe=1Þ γSðe=2Þ Invariant? VSðe=1Þ VSðe=2Þ Invariant?

S=0= — — Yes 2 5 No
S= f1g 4/9 5/12 No 18/81 5/6 No
S= f2g 1 1 Yes 1 1 Yes
S= f1,2g (2/5, 1/5) (1/4,1/2) No 1/5 1/2 No
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(ICP) method works by collecting all subsets S of variables for which
we cannot statistically reject the hypothesis that γðeÞ is identical in
all environments e∈ E and can also not reject the hypothesis that
V ðeÞ is constant in all environments e∈ E. In the population ex-
ample above, only S= f2g satisfies this invariance. Once we have
collected all subsets S of variables for which we cannot reject in-
variance, we take the empirical estimate Ŝ to be the intersection
across all of the subsets with the invariance property (where we
cannot statistically reject the hypothesis of invariance); that is, we
look for variables that are common among all invariant subsets. For
sufficiently many data points, in the example this yields the answer
Ŝ= f2g, and we thus detect that variable 2 has to be causal for the
outcome Y. Note that, if we just observed a single environment, we
would see invariance for all subsets S, including the empty set
(because invariance across one environment always holds). The
intersection across all invariant sets would thus be the empty set,
and we could not determine that one or more of the variables is
causal for the outcome of interest from observational data alone.
The same phenomenon would occur if the strengths σðe= 1Þ and
σðe= 2Þ of the noise in both environments had the same value.

Invariant Prediction Method. Having data as in [3] from various
experimental settings, the main idea (as outlined in the example
above) is to look for sets of predictor variables that leave the
corresponding regression vectors and noise terms invariant across
experimental settings. This is the basis of the invariant prediction
method (31) (more details in SI Appendix). Here, we simply pre-
sent the main result.
As with any causal inference method, one might face identifi-

ability problems. This is a fundamental and unavoidable issue.
However, assuming the invariance assumption, the ICP approach
will lead to a set ŜðEÞ⊆ f1, . . . , pg (SI Appendix, formula S.4),
which has the following confidence property:

P
�
ŜðEÞ⊆ S* = paðY Þ�≥ 1− α, [5]

for some prespecified confidence level 1− α such as 0.95 or 0.99.
[The set ŜðEÞ depends on the data, and hence is random when
interpreting the data as usual as realizations of random variables.]
Thus, when applying the method many times to different datasets,
we expect that in approximately ð1− αÞ× 100% of the cases, all of
the selected variables are causal (i.e., direct causes). The main
assumption for deriving the statement in [5] is the invariance as-
sumption. As described above, it holds if the experimental settings
E come from a rather broad class of interventions that do not di-
rectly act on the response variable Y (SI Appendix). As an example
where this assumption is plausible in practice, consider gene per-
turbation experiments and assume a phenotypic response Y and
predictor variables corresponding to expression values of all of
the genes in the genome (the columns of the matrix X). Suppose
that the interventions act on some of the (possibly vaguely speci-
fied) genes, such as gene deletions or gene knockdowns. Then,

these interventions do not directly target the response Y, and thus,
the main assumption outlined above is satisfied.
The elegance of the method and of the statement is that we do

not need to know or specify whether a causal variable is identifiable
from the data-generating probability distribution: the method au-
tomatically takes care about potential identifiability problems. (We
do not know whether the method is complete: that is, whether all
direct causal effects that are identifiable from the data-generating
distribution would be correctly detected by the method.)

Heterogeneity in Big Data. The ICP method outlined above crucially
depends on the fact that we have access to different experimental
conditions from E. In presence of say observational data alone
(E consisting of one experimental setting only, i.e., jEj= 1), we would
not detect any causal variable. [Causal inference from observational
data would require approaches based on, e.g., fitting SEMs and
graphical modeling (Identifiability and Estimation from Data).]
With the ICP method, the degree of identifiability increases as

the space of experimental settings E becomes larger. Denote the
causal variables that are identifiable from the invariance assumption
by SðEÞ⊆ f1, . . . , pg (SI Appendix, formula S.1). We then have that

SðEÞ%as  E%, [6]

meaning that for E2 ⊇ E1 we have SðE2Þ⊇ SðE1Þ. Sufficient condi-
tions under which SðEÞ= S* , that is the causal variables are
uniquely identifiable, have been worked out for linear Gaussian
SEMs, requiring that E is sufficiently “rich” and form a certain class
of interventions (31).
From [6], we conclude that with a larger amount of experimental

settings (“more heterogeneity”) we have higher degree of identi-
fiability of causal effects. Thus, in the setting of big data with a large
space E of experimental settings, we have an advantage to exploit
invariance across a large E. For example, with gene perturbation
experiments discussed below, it can be of interest to consider ex-
perimental settings not only from different gene interventions but
also arising from change of environments from potentially different
datasets.
The ICP method can deal with a general variety of experimental

settings, including observational data, known interventions of a certain
type at a known variable, random interventions at an unknown vari-
able, or observational data in a changed environment. We emphasize
the importance that one does not need to know what the working
experimental conditions from E actually mean. In practice, it is often
difficult to know whether an intervention has been done at, e.g., one
specified variable only, or to specify the kind of intervention that has
been done, e.g., a do-intervention (2) or a “soft” intervention (6). The
fact that one does not need to specify the nature of an experimental
setting in E contributes to robustness and generality of the procedure.
The only necessary background knowledge regarding the types of
interventions is that they do not target the response variable Y itself.
It has been assumed so far that E is the set of the true available

experimental settings, but this is not necessary. In principle, we can
construct the working experimental settings E as we like and still
obtain [5], as long as the invariance assumption is satisfied with
respect to E. (The data in such a constructed experimental setting
has then a mixture distribution. For an experiment e∈ E, the mixture
distribution is

P
j∈Aw

e
j Fj, where A is the entire space of all possible

experimental settings, we
j are positive weights summing up to 1, and

Fj are probability distributions.)

Invariance in Presence of Hidden Variables. The ICP method from
the previous section implicitly assumes that there are no hidden
confounding variables. The method can be generalized to situations
where invariant effects correspond to causal effects in SEMs where
the intervention or perturbation does not have an effect on the
hidden variables (35). Further explanation is beyond the scope of
this paper.

Table 2. Timing comparisons in minutes

No. genes

Method 50 500 5,000

ICP 0.233 2.64 27.7
hiddenICP 0.012 0.12 1.4
pc 0.004 0.10 2.4
rfci 0.004 0.12 3.6
ges 0.002 0.80 1,002.4
gies 0.010 4.06 842.8
Regression 0.069 0.70 7.5
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Software
Comparing different approaches for detection of causal effects is in
practice often cumbersome as they use very different implementa-
tions. To address this issue, we provide a software package Com-
pareCausalNetworks (36) for the R language (37). It provides a
unified interface to the following methods: GES [Greedy Equiva-
lence Search (17)], CAM [Causal Additive Model (25)], Lingam
[Linear, Non-Gaussian, Acyclic Models (13)], rfci (38) (really fast
causal inference), and pc [PC-algorithm (3)], which are all classically
applied to observational data only, as well as GIES [Greedy Inter-
ventional Equivalence Search (12)], which is making explicit use of
the knowledge where interventions took place. The ICP methods
are implemented as ICP and hiddenICP (allowing for hidden vari-
ables) in the R package InvariantCausalPrediction. They use the
knowledge of the environment where an observation took place
(for example, whether it is part of the observational or inter-
ventional data) but are not requiring knowledge about the
precise nature of the interventions. As a further benchmark, we
also implement cross-validated sparse regression as a method
regression and offer the option of using stability selection (39)
on all implemented methods.

Validation: Gene Perturbation Experiments
We consider large-scale gene deletion experiments in yeast (Sac-
charomyces cerevisiae) (40). Genome-wide mRNA expression levels
are measured for 6,170 genes: 160 observational data points from
wild-type individuals and 1,479 interventional data arising from sin-
gle gene deletions (1,479 perturbation/deletion experiments where a
single gene has been deleted from a strain). The goal is to predict the
expression levels of all (except the deleted) genes of a new and
unseen single gene deletion intervention. More precisely, denoting
the expression levels of the genes by variables X1, . . . ,Xp+1 with
p+ 1= 6,170, we want to predict whether Y ∈ fX1, . . . ,Xp+1g∖Xj
significantly changes when deleting gene j (for each of the 6,170
different responses Y).
For this task, we aim to obtain a confidence statement from the

ICP method for γj*≠ 0 in [4], or to estimate γj* using other methods,
describing the direct causal effect of Xj on Y. We then use the
strong direct effects [ranked according to the proportion of times
the effect gets selected/top-ranked when running each procedure
on 50 random subsamples of the data (39)] as a proxy for the strong
total effect of Xj to Y, because we expect strong direct and strong
total effects to be very similar to each other (SI Appendix).

We use the following separation into training and validation
data. We divide the 1,479 interventional data into five blocks
B1,B2,B3,B4,B5. We use as training data all 160 observational data
points and four blocks Br ,  ðr∈TÞ with T ⊂ f1, . . . , 5g and jTj= 4,
of interventional data, and the validation data are the remaining
block Bt, ðt∈ f1, . . . , 5g∖TÞ. Therefore, we can predict the effects
from the interventions from block Bt without having used these
interventional data in the training set. By repeating the separation
into training and validation data five times, each gene perturbation
is held out once and we can use it to validate the predictions.
For the ICP method, we use a very simple labeling of experi-

mental settings: E = f1,2g, where e= 1 corresponds to observational
data and e= 2 to all interventional data (regardless which gene has
been targeted to be knocked down). As discussed above, when
choosing a small set E, we might pay a price in terms of statistical
power to detect significant causal variables. On the other hand, due
to potential off-target effects of interventions, pooling all interven-
tions into one experimental setting is more robust against “noisy
interventions” that potentially affect many genes. As significance
level, we use a level of α= 0.01 corresponding to a probability
greater or equal to 0.99 in the confidence statement in [5]. We re-
peat the experiment on subsamples of the data in the spirit of sta-
bility selection (39, 41) and rank the edges in order of decreasing
selection frequency. [For the ICP method, there is a directed edge
from gene j to k if: gene k is the response variable and gene j is an
element of the selected causal variables ŜðEÞ. For methods using
directed graphical modeling, the meaning of “directed edge” is given
by the corresponding DAG.] Going down this list, we check whether
the prediction of a directed edge from gene j to gene k is “successful”
in the sense of an SIE as defined before (where gene j corresponds to
the X variable and gene k to the response variable Y). Note that the
SIE is an estimate of the total causal effect. Among 9,125,430 possible
edges, there are 10,757 interventions (about 0.1% of all edges) that we
classify as strongly successful with this criterion.
Fig. 1 shows two examples. On the left is a pair of genes

YOL067C,YPR089W that was selected due to the high correlation
between the two genes on observational data. When intervening on
YOL067C (the gene on the x axis), the activity of gene YPR089W is
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Fig. 1. The activities of two pairs of genes. Observational data are shown as
red crosses and interventional data as blue circles. A blue arrow marks the
experiment where an intervention on gene YOL067C occurs (activity shown
on the x axis in the left panel) and analogously in the right panel. The in-
tervention on the Left is deemed not “strongly successful” [not fulfilling
(i) in the definition of an SIE] as the activity of gene YPR089W (y axis) under
the intervention is well within its usual range. The intervention on the Right
is called strongly successful as the activity of YMR103C (y axis) under the
intervention is outside of the previously seen range and likewise for the
gene YMR104C on which the intervention occurs (strongly successful area is
marked by the green box).
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Fig. 2. The average number of successful interventions (y axis) against the
number of selected edges (x axis) for various methods.
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still well within its usual range and the intervention is deemed not
successful according to our criterion. The right side shows the pair
YMR104C,YMR103C. The edge from the first to the second one of
these genes is the most frequently selected edge by our method of ICP.
It is selected because the model for observational and interventional
data fits equally well to the data (and there is no other explanation
using other genes that would achieve this). This is in contrast to the
gene pair on the left, where the interventional data have a much
broader variance around a regression fit than the observational data.
For the K most often selected edges, we can check how many of

the corresponding interventions were strongly successful on the test
data. Fig. 2 shows results for several methods, where gene pairs are
ordered by the selection frequency for each method when fitting
models on 100 random bootstrap samples of the data. In case of
equal selection frequency, we compute the expected number of
SIEs when breaking the ties randomly. The number of SIEs among
the most frequently selected gene pairs can thus take a noninteger
value in the presence of ties. As a crude benchmark, we can first
look at the success of random guessing. If choosing randomly, we
will with probability of at least 95% not predict a single SIE for
K < 40 and the expected number of selected SIE with random
guessing is just 0.029 � 1 for K = 25. With ICP (allowing for hid-
den variables or not), the first four top edges correspond to an SIE.
As a comparison, we show results for GES, GIES, PC, RFCI,

and a regression-based estimate, where we always choose the first
25 ranked candidate genes with stability selection. These methods
are fitted with the default values once on just observational data
and then also (as shown here) on both observational and inter-
ventional data, but the difference between the two is very small,
with the results that use interventional data (the ones shown)
slightly superior. All of the considered methods yield estimates of
direct effects, but we validate with SIE which is estimating the total
effect (justification in SI Appendix).
To give an impression of the computational complexity of the

algorithms, Table 2 shows the runtime of used methods (with the
same settings as used to produce the other results on the whole
dataset) on a single core of a 2.8-GHz processor when estimating
the causal graph for either the first 50, 500, or 5,000 genes. The
runtimes reported here do not include the prescreening (SI Ap-
pendix), as this was a common preprocessing step for all methods.
One question is whether a mechanism is already known that

links the top-scoring gene pairs. If so, this can be viewed as a
validation of the SIEs one can see in the data. The question can be
turned around, however. We can ask whether we could predict the
SIEs just using biological background knowledge.
To this end, we extracted six scores that measure interactions

between gene pairs from a bioinformatics source, the Saccharo-
myces Genome Database (SGD) based on ref. 42 at yeastmine.
yeastgenome.org. This database contains over 3× 106 gene inter-
actions collected by the BioGRID public resource from the sci-
entific literature. Interactions are categorized as either “physical”
or “genetic,” and a subset of each is labeled as manually curated.
For all gene pairs, we queried the database for an interaction and
interpret the “bait” to “hit” directionality of the interaction as a
direct causal effect from bait to hit. [One has to keep in mind that
this interpretation is questionable. The presence of an edge in the
database indeed may suggest the presence of a direct causal

relation, but the directionality of the edge in the database need not
coincide with the directionality of the causal relation but could point
in the opposite direction. Furthermore, the fact that two proteins
bind (physical interaction) or that two genes have a nonlinear in-
teraction on some phenotype (genetic interaction) does not yet
imply that there is a causal relation between the gene expression
levels.] This resulted in six binary scores for gene pairs. Scores A,
B, and C use the following, respectively: (A) both physical and
genetic interactions, (B) only physical interactions, and (C) only
genetic interactions. Scores D, E, and F are similar but use only
the subsets of manually curated interactions.
In addition, we used ChIP-on-chip data from ref. 43 as another

source of indirect evidence for validation. The dataset contains
binding activity of a subset of genes that function as TFs and regulate
the expression levels of other genes. A binary score was constructed
by matching the binding activity at 10−4 confidence level for 118 TFs
with the SGD naming scheme, resulting in 8,073 nonzero entries.
Table 3 shows the number of gene pairs that have both an SIE

and also a nonzero value in the scores from the yeastgenome.org
and TF datasets among all of more than 9 million possible gene
pairs. There are 10,679 gene pairs with an SIE, 8,073 with a score
on TF, and the number of gene pairs with a score on A–F are given
by 109,549, 38,377, 73,688, 17,778, 8,581, 10,324, respectively. Ta-
ble 3 shows that the number of pairs that have both an SIE and
score is substantially higher compared with a situation where these
measures would be independent. Using Fisher’s exact test, these
associations are significant at level less than 10−9 for all scores. Still,
the overlap is rather small, as just a few hundred out of all 10,679
gene pairs with an SIE have a nonvanishing score. We note that,
although SIE measures the total effect and the six yeastgenome.org
scores A–F and TF are more related to direct effects, some joint
occurrences are interesting to look at; see also the discussion on
validation in Challenges and Validation. [A strong direct effect is
expected to result in a strong total effect (SI Appendix).]
We also show the 20 gene pairs that are most frequently selected

with the ICP method in Table 4, starting with the most frequently
selected pair “YMR104C → YMR103C.” The columns show
whether the pairs have an SIE and whether an interaction is in-
dicated by the nonzero score A–F from yeastgenome.org dataset
and by a nonzero score TF from the ChIP-on-chip data.
Out of the top 20 pairs from the ICP method, 7 show an SIE

(measuring a total effect), as already seen in Fig. 2. Four pairs

Table 3. Overlap between SIEs and scores from yeastgenome.org
and TF bindings

A B C D E F TF

No. gene pairs with both SIE
and score

327 92 267 105 60 61 117

Expected no. under
independence

128.2 44.9 86.2 20.8 10.0 12.1 9.5

Table 4. Top 20 stable results from ICP

Rank Cause Effect SIE A B C D E F TF

1 YMR104C YMR103C ✓

2 YPL273W YMR321C ✓

3 YCL040W YCL042W ✓

4 YLL019C YLL020C ✓

5 YMR186W YPL240C ✓ ✓ ✓ ✓ ✓ ✓

6 YDR074W YBR126C ✓ ✓ ✓ ✓ ✓ ✓

7 YMR173W YMR173W-A ✓

8 YGR162W YGR264C
9 YOR027W YJL077C ✓

10 YJL115W YLR170C
11 YOR153W YDR011W ✓ ✓

12 YLR270W YLR345W
13 YOR153W YBL005W
14 YJL141C YNR007C
15 YAL059W YPL211W
16 YLR263W YKL098W
17 YGR271C-A YDR339C
18 YLL019C YGR130C
19 YCL040W YML100W
20 YMR310C YOR224C
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correspond to an indication of an interaction based on the scores A–F
derived from the yeastgenome.org database. Just a single pair shows
both an SIE and a positive interaction score. Even though the
overlap is small, both results on their own are significant, if
compared with random sampling of gene pairs, as shown in Table
5. As the causes from these top 20 pairs include no TFs found in
the TF dataset, there is no overlap with the corresponding score.

Application to Flow Cytometry Data
As another example of the possible applications of invariant pre-
diction, we consider the flow cytometry data of ref. 44. The abun-
dance of 11 biochemical agents is measured in several different
environments. One of the environments can be considered as ob-
servational data without external interventions. In the other envi-
ronments, different reagents have been added (or stimulants have
been removed) that modify the behavior of some of the biochemical
agents (see refs. 44 and 9 for a more detailed description of the
experiments). [The description in ref. 9 is not entirely accurate:
conditions 7 and 8 (activation by PMA and β2cAMP) are abun-
dance interventions in combination with a global intervention, as
the α-CD3 and α-CD28 activators were not applied in those con-
ditions (in contrast with all other conditions, including the base-
line).] Each environment contains between 700 and 1,000 samples.
Here, we only use a subset of eight environments, the same ones
that ref. 9 used, to allow comparison of the results.
A naive implementation of invariant prediction would try to find

an invariant regression model for each of the 11 agents in turn,
where invariance is measured across all eight environments si-
multaneously. The ICP method does not allow interventions on the
target variable itself (see the discussion after [5] and also SI Ap-
pendix). We thus follow a slightly adapted strategy by comparing all
28 possible pairs of environments. For each pair of environments,
we estimate the set of causal predictors using ICP. Taking the
union of all of the estimated parental sets across the 28 pairs of
environments leads to the graph of edges shown in Fig. 3 when
controlling the overall familywise error rate at 10−3. We give a
more detailed description of the application of the ICP method to
the flow cytometry data in the SI Appendix.
Allowing for hidden variables with hiddenICP allows correlation

between the noise input at different variables. Under a shift mecha-
nism for the interventions described in more detail in ref. 35, the
presence of feedback loops will not invalidate the output of hiddenICP
(for details, see refs. 31 and 35). Some two-cycles can be seen to be
selected by the method in Fig. 3. Of the 15 edges found by invariant
prediction (with or without hidden variables), 12 have been previously
reported in the literature. Each of the three previously unreported
edges adds a reverse link to a previously reported edge. In general,
one would expect feedback loops to be present in this system.
However, there seems to be no consensus yet on the exact nature
of these feedback loops. Therefore, we should consider what
Sachs et al. (44) call the “consensus” network to be an incomplete
description of a more complicated biological reality. SI Appendix,
Table S1, gives a list of all of the edges that have been found by

different causal discovery methods. Our estimated network in
Fig. 3 also confirms quite well with the point estimate in ref. 35,
which allows for interventions on the target variables but cannot
produce confidence intervals and significance testing.

Conclusions
The recently developed ICP method (31) for causal inference is
equipped with confidence bounds for inferential statements, with-
out the need of prespecifying whether causal effects are identifiable
or not. A notable feature of the approach is that with increased
heterogeneity, in terms of more experimental settings, it automati-
cally achieves better identifiability. The underlying invariance prin-
ciple (invariance assumption) can be used if data from different
experimental conditions (such as observational–interventional data)
are available. We provide open-source software in the R language
(36), which enables an easy use of the ICP method and comparing it
to some other, well-known causal inference algorithms.
We validate the statistical ICP method for Saccharomyces cer-

evisiae. We consider new interventional gene deletion experiments
that have not been used for training the method, and we also look at
additional information from the SGD at yeastgenome.org and from
TF binding based on ChIP-on-chip data. The validation itself has to
be set up carefully to avoid validating spurious effects: we propose
here the notion of an SIE. To increase the range of validation to
other applications and datasets, we also considered flow cytometry
data: the validation is on less rigorous grounds without hold-out
intervention experiments and SIE, but it nevertheless allows to
compare with existing results in the literature. The best validation is,
in our opinion, successful prediction of the effects of previously
unseen interventions, as demonstrated here for the ICP method and
gene knockout data.

ACKNOWLEDGMENTS. We thank Patrick Kemmeren for generously pro-
viding the gene perturbation data. J.M.M. and P.V. were supported by The
Netherlands Organization for Scientific Research (VIDI Grant 639.072.410).

Fig. 3. The graph of estimated causal relations between the biochemical
agents in the ref. 44 data. Blue edges are found by an invariant prediction
approach, whereas red edges are found if allowing hidden variables and
feedback with invariant prediction. Purple edges are found with invariant
prediction whether allowing for hidden variables or not. The solid edges
(including the gray edges) are all relations that have been reported in either
the consensus network according to ref. 44, or the newly reported edges in
ref. 44, 9, or 8. See also SI Appendix, Table S1.

Table 5. Significance of top 20 ICP results

Score
Strong effects among

top 20 ICP results
Expected no. under
random guessing P value

SIE 7 ≤0.03 ≤10−18

A 3 ≤0.3 ≤2 · 10−3

B 3 ≤0.09 ≤8 · 10−5

C 2 ≤0.2 ≤2 · 10−2

D 2 ≤0.04 ≤8 · 10−4

E 1 ≤0.02 ≤2 · 10−2

F 2 ≤0.03 ≤3 · 10−4

TF 0 ≤0.02 1
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