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Abstract

Faithfulness is a ubiquitous assumption in causal inference, often motivated by the fact that
the faithful parameters of linear Gaussian and discrete Bayesian networks are typical, and the
folklore belief that this should also hold for other classes of Bayesian networks. We address this open
question by showing that among all Bayesian networks over a given DAG, the faithful Bayesian
networks are indeed ‘typical’: they constitute a dense, open set with respect to the total variation
metric. However, this does not imply that faithfulness is typical in restricted classes of Bayesian
networks, as are often considered in statistical applications. To this end we consider the class of
Bayesian networks parametrised by conditional exponential families, for which we show that under
mild regularity conditions, the faithful parameters constitute a dense, open set and the unfaithful
parameters have Lebesgue measure zero, extending the existing results for linear Gaussian and
discrete Bayesian networks. Finally, we show that the aforementioned results also hold for Bayesian
networks with latent variables.

1 Introduction

Given a Bayesian network over a DAG G with variables V and a finite sample from its distribution
P(XV ), the task of causal discovery algorithms is to infer the graph G from the data. Constraint-based
causal discovery methods do so by testing for conditional independencies XA⊥⊥PXB |XC for multiple
choices of A,B,C ⊆ V , and use this information to reconstruct G, up to certain equivalences. A core
assumption of many constraint-based causal discovery algorithms is that a correctly inferred set of
conditional independencies in P(XV ) characterises the corresponding set of d-separations in G: for all
subsets of vertices A,B,C ⊆ V we have

A ⊥d
G B |X ⇐⇒ XA⊥⊥PXB |XC .

Bayesian networks for which this condition holds are called faithful. The implication from left to right
holds for all Bayesian networks, and is called the Markov property. The implication from right to left
does not always hold: there exist Bayesian networks which have conditional independencies that are
not due to a corresponding d-separation in the graph – instead, they might be due to cancelling paths,
deterministic variables, or deterministic relations (see Example 1 below).

In absence of any knowledge of the graph G, faithfulness is an untestable assumption (Zhang and
Spirtes, 2008). In practice, this assumption is often motivated by theoretical results that for certain
parametric models, the faithful distributions are ‘typical’. For a given DAG G, Spirtes et al. (1993) and
Meek (1995) consider specific parametrisations ΘN and ΘD of linear Gaussian and discrete Bayesian
networks respectively (which are subsets of Rd for appropriate d ∈ N) and show that drawing the
parameters at random will give a faithful Bayesian network with probability one:

Theorem 1 (Spirtes et al., 1993). With respect to Lebesgue measure over ΘN , the set of parameters
whose distribution is unfaithful to G is measure-zero.

Theorem 2 (Meek, 1995). With respect to Lebesgue measure over ΘD, the set of parameters whose
distribution is unfaithful to G is measure-zero.

To our knowledge, no such results are available for other parametric or nonparametric classes
of distributions. In this work we prove such a result: without restriction to any parametric or
nonparametric class of distributions, the faithful distributions are typical. As there is no canonical
analogue of the Lebesgue measure for the nonparametric space of Bayesian networks, we don’t consider
the measure-theoretic notion of typicality but instead consider a topological notion. Our main
nonparametric result is as follows:
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Among all distributions that are Markov with respect to a given DAG, the
faithful distributions constitute a dense, open set.

As a consequence, the set of faithful distributions is non-empty, and unfaithful distributions are nowhere
dense and are thus ‘atypical’. This topological property is with respect to the total variation metric on
the joint distribution P(XV ) over all vertices V of the Bayesian network. This result holds for any
choice of standard Borel outcome spaces; it holds in particular for continuous variables XV ∈ R|V |,
discrete variables XV ∈ Z|V |, and mixed data.

In practice, one often imposes parametric assumptions on the data to facilitate statistical inference.
To this end, we consider the class of Bayesian networks parametrised by conditional exponential families.
Under mild regularity conditions, we obtain the following generalisation of Theorems 1 and 2:

Considering a conditional exponential family parametrisation over a given DAG,
the faithful parameters constitute a dense, open set, and the set of unfaithful
parameters has Lebesgue measure zero.

There exist multiple mathematical notions of ‘atypicality’. Given a set M , ‘small’ subsets of M are
characterised by so-called σ-ideals: collections of subsets of M containing ∅, which are closed under
taking subsets and countable unions. The family of Lebesgue measure 0 sets is a σ-ideal, and so is the
family of meager sets:

Definition 1. A set I ⊆ M is dense in another set U ⊆ M if every point in U is in I or is a limit
point of I. The set I is nowhere dense if there is no open subset of M in which I is dense, and it is
meager if it is a countable union of nowhere dense sets.

For example, the set of integers Z is nowhere dense in R, and the rationals Q are meager in R. The
boundary of every open or closed set is nowhere dense, and subsets of nowhere dense sets are nowhere
dense. Complements of dense sets are not necessarily nowhere dense or meager, but complements
of dense, open sets are nowhere dense. Comeager sets (complements of meager sets) are commonly
referred to as typical (Kechris, 1995). We show that unfaithful distributions and parameters are
nowhere dense, which is an even a stronger notion of atypicality.

In causality, the σ-ideal of meager sets is considered by Ibeling and Icard (2021), who show that
discrete causal models for which Pearl’s Causal Hierarchy collapses1 are meager, which is a topological
analogue of a Lebesgue measure-zero result from Bareinboim et al. (2022). Lin and Zhang (2020)
prove nowhere denseness of unfaithful parameters of discrete Bayesian network to relieve consistency
requirements of causal discovery methods for discrete variables.

The outline of this paper is as follows. In Section 2 we provide some technical prerequisites
about Bayesian networks and the total variation metric. In Section 3 we state and prove our main
nonparametric result: that faithful distributions are dense and open. In Section 4 we lift this result
from the space of distributions to the space of Bayesian networks. We focus in particular on finite
dimensional parametrisations of Bayesian networks, and we specifically prove the topological analogue
of the measure-zero results of Spirtes et al. and Meek for linear Gaussian and discrete Bayesian networks.
In Section 5 we extend our results to Bayesian networks with latent variables.

2 Technical prerequisites

A directed acyclic graph (DAG) is a tuple G = (V,E) with V a finite set of vertices and E ⊂ V × V
a set of directed edges such that there are no directed cycles. Given such a finite index set V , let
XV =

∏
v∈V Xv be a product of separable complete metric spaces, each equipped with the Borel

σ-algebra B(Xv) (which are standard Borel spaces), and let P(XV ) be the set of probability measures
on XV . Random variables will be denoted with XV , and their values with xV . For A,B ⊆ V , a Markov
kernel P(XB |XA) is a measurable map XA → P(XB), where P(XB) is equipped with the smallest

1A structural causal model ‘collapses’ when all counterfactual (interventional) queries are identifiable from interventional
(observational) distributions.
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σ-algebra that makes for all D ∈ B(XB) the evaluation map evD : P(XB) → [0, 1],P 7→ P(XB ∈ D)
measurable. For Markov kernels P(XA |XB),P(XB |XC), their product is defined as the Markov kernel

P(XA |XB)⊗ P(XB |XC) : XC → P(XA∪B), xC 7→
(
D 7→

∫
D
dP(xA |xB)dP(xB |xC)

)
where D ∈ B(XA∪B). Since XV is standard Borel, there exists for any joint distribution P(XA, XB)
(where A,B ⊆ V ) a Markov kernel (often referred to as conditional distribution) P(XB |XA) such
that P(XA, XB) = P(XB |XA)⊗ P(XA). Given distribution P ∈ P(XV ) and sets A,B,C ⊆ V , we say
that XA is conditionally independent of XB given XC , written XA⊥⊥PXB |XC , if P(XA, XB |XC) =
P(XA |XC) ⊗ P(XB |XC) holds P(XC) almost surely. This is equivalent to independence of the
generated σ-algebras σ(XA)⊥⊥P σ(XB) |σ(XC) or, if P(XA, XB, XC) has a density p(xA, xB, xC), to
p(xA, xB |xC) = p(xA |xC)p(xB |xC) for all xA, xB, xC with p(xC) > 0.

Writing pa(v) for the set of parents of v in G, a Bayesian network over G is a tuple of Markov
kernels (P(Xv |Xpa(v)))v∈V . The joint distribution P(XV ) =

⊗
v∈V P(Xv |Xpa(v)) is referred to as the

observational distribution. Given DAG G with path π = a ... b, a collider is a vertex v with
... → v ← ... in π. For sets of vertices A,B,C ⊆ V we say that A and B are d-separated given C,
written A ⊥d

G B |C, if for every path π = a ... b between every a ∈ A and b ∈ B, there is a
collider on π that is not an ancestor of C, or if there is a non-collider on π in C. The sets A and B are
d-connected given C if they are not d-separated, written A ̸⊥d

GB |C.

Theorem 3 (Verma and Pearl, 1990). For any Bayesian network over DAG G with observational
distribution P the global Markov property holds:

A ⊥d
G B |C =⇒ XA⊥⊥PXB |XC (1)

for all A,B,C ⊆ V .

In general, the set of conditional independencies in P does not characterise the set of d-separations in
G: we might have a d-connection A ̸⊥d

GB |C but still have a conditional independence XA⊥⊥PXB |XC .
A Bayesian network is called faithful if these cases are excluded:

Definition 2. A Bayesian network is called faithful if for all A,B,C ⊆ V we have

A ̸⊥d
GB |C =⇒ XA⊥̸⊥PXB |XC .

Example 1. The following Bayesian networks are unfaithful. Corresponding graphs are depicted in
Figure 1.

a) Cancelling paths: let P(XA) be any distribution and let P(XB |XA) = N (βABXA, σ
2
B) and

P(XC |XA, XB) = N (βACXA + βBCXB, σ
2
C) for given variances σ2

A, σ
2
B, σ

2
C > 0 and coefficients

βAC , βAB, βBC ∈ R with βAC = −βABβBC . Then A ̸⊥d
Ga C and XA⊥⊥XC .

2

b) Deterministic variables: let P(XA |XB) and P(XC |XB) be Markov kernels and let P(XB) = δxB

for some xB ∈ XB, so XB deterministically has the value xB. Then we have A ̸⊥d
Gb C and

XA⊥⊥XC .

c) Deterministic relations: let P(XA |XD) and P(XC |XD) be Markov kernels and P(XD) any
distribution and let P(XB |XD) = δXD

, so we deterministically set XB = XD. Then we have
A ̸⊥d

Gc C |B and XA⊥⊥XC |XB.
3

An important step in our proof of the typicality of faithful distributions, is that conditional
independence is preserved when taking limits. Whether this holds depends on the particular choice
of the topology on P(XV ). A well-known topology is the one related to weak convergence: given

2A realistic example of this phenomenon is when opening a window (A) and subsequently turning up the heating (B)
has no net effect on room temperature (C).

3For Bayesian networks with known deterministic variables or relations, Geiger et al. (1990) introduced the D-separation
criterion.
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A

B

C

(a) DAG Ga

A

B

C

(b) DAG Gb

A

D

B

C

(c) DAG Gc

Figure 1: DAGs of the Bayesian networks that are given in Example 1.

probability measures P,P1,P2, ... ∈ P(XV ) we say that Pn converges weakly to P (also known as
convergence in distribution) if EPn [f ]→ EP[f ] for all continuous functions f : XV → [−1, 1]. However,
weak convergence does not necessarily preserve conditional independence: for a weakly convergent
sequence Pn → P with XA⊥⊥Pn XB |XC for all n ∈ N, we might have XA⊥̸⊥PXB |XC ; see e.g. Lauritzen
(1996), pp. 38-39. Instead of weak convergence, we consider a different topology:

Definition 3. The total variation metric dTV on P(XV ) is defined as

dTV (P,Q) := sup
A∈B(XV )

|P(A)−Q(A)|.

Convergence in this metric is denoted by Pn
tv→ P. It is equivalent to convergence EPn [f ]→ EP[f ]

uniformly over all measurable functions f : XV → [−1, 1], so it is (much) stronger than weak convergence.
By Lauritzen (2024) we have that conditional independence is closed in total variation:

Theorem 4 (Lauritzen, 2024). Given probability measures P,P1,P2, ... ∈ P(XV ) such that Pn
tv→ P, if

we have XA⊥⊥Pn XB |XC for all n ∈ N, then also XA⊥⊥PXB |XC .

3 Typicality of faithful distributions of Bayesian networks

Given a DAG G = (V,E), we consider the following sets of Markov, faithful, and unfaithful distributions
relative to G:

MG :=
{
P ∈ P(XV ) : A ⊥d

G B |C =⇒ XA⊥⊥PXB |XC for all A,B,C ⊆ V
}

FG :=
{
P ∈MG : A ̸⊥d

GB |C =⇒ XA⊥̸⊥PXB |XC for all A,B,C ⊆ V
}

UG := MG \ FG.

We will derive properties of FG and UG as subsets of the (complete) metric space (MG, dTV ). First, if
we let IA,B,C = {P ∈ P(XV ) : XA⊥⊥PXB |XC}, note that we can write

MG = P(XV ) ∩
⋂

A⊥d
GB |C

IA,B,C , FG = MG ∩
⋂

A ̸⊥d
G B |C

(MG \ IA,B,C), UG = MG \ FG.

From Theorem 4 it is immediate that MG is a closed subspace of P(XV ), and that FG is open in MG.
For our main nonparametric result, it remains to show that FG is dense. The following result states
that the set of distributions that are Markov and have a particular conditional dependence is dense in
total variation. The proof refers to technical lemmas that are provided in Section 3.1.

Theorem 5. For every P ∈ MG and every A,B,C ⊆ V , there is a sequence Pn ∈ MG such that

XA⊥̸⊥Pn
XB |XC for all n ∈ N and Pn

tv→ P.

Proof. By Lemma 1, there exists a P1 that is Markov and has XA⊥̸⊥P1
XB |XC . Let P ∈ MG be

given, then there exists an interpolation (Pλ)λ∈(0,1) between P and P1 in MG (Definition 4) such that
XA⊥̸⊥Pλ

XB |XC for all positive λ below some λ∗ ∈ (0, 1) (Lemma 2), which converges in total variation
to P as λ→ 0 (Lemma 3). One obtains a suitable sequence by setting Pn := Pλ∗/2n. ■
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In other words, the set {P ∈MG : XA⊥̸⊥PXB |XC} is dense in MG. As a corollary that might be
of independent interest, we have that conditional dependence is dense in total variation.

Corollary 1. The set {P ∈ P(XV ) : XA⊥̸⊥PXB |XC} is dense in (P(XV ), dTV ).

Proof. Given a finite index set V , let G be a fully connected DAG, in which case MG = P(XV ) and
the result follows from Theorem 5. ■

Our main result concerning faithfulness of nonparametric Bayesian networks is as follows.

Theorem 6. The set of unfaithful distributions FG is a non-empty, dense and open set, and the
unfaithful distributions UG are nowhere dense.

Proof. By Theorems 4 and 5 we have for any given A,B,C ⊆ V with A ̸⊥d
GB |C that MG \ IA,B,C is

dense and open. Hence, FG is a dense open set as it is a finite intersection of dense open sets. Since
MG is non-empty (take for example a product of independent binary distributions), the dense set FG

is non-empty as well, proving the existence of a faithful distribution. Finally, UG is the complement of
a dense open set, hence nowhere dense. ■

To conclude, unfaithful distributions are ‘atypical’: there is no open set of distributions that are
Markov with respect to G, in which any faithful distribution in this set can be approximated by
unfaithful ones. This loosely says that there is no ‘cluster’ of unfaithful distributions.

3.1 Conditional dependence is dense in total variation

Lemma 1. For any DAG G, standard Borel space XV and subsets A,B,C ⊆ V such that A ̸⊥d
GB |C,

there exists a distribution P ∈MG with the conditional dependence XA⊥̸⊥PXB |XC .

Proof. For each v ∈ V pick an injective fv : {0, 1} → Xv and note that sets fv(0) and fv(1) are
measurable since Xv is standard Borel. We will construct a binary distribution on the image of fV that
has the required dependence. Note that without loss of generality we can assume that A and B are
singletons: any P(XV ) with XA⊥̸⊥PXB |XC also has XA′ ⊥̸⊥PXB′ |XC for supersets A ⊂ A′ and B ⊂ B′.
Also, the given d-connection implies A,B /∈ C. If we have A = B, for all v ∈ V set P(Xv = fv(0)) = p
and P(Xv = fv(1)) = 1− p for some p ∈ (0, 1) and let P(XV ) =

⊗
v∈V P(Xv). Then P(XV ) is Markov

and XA⊥̸⊥PXB |XC . If A ̸= B, then by Meek (1998) Lemma 3,4 there exists a distribution P̃ on
{0, 1}|V | that is Markov with respect to G and which has the conditional dependence XA⊥̸⊥P̃XB |XC ,

so there are x̃A, x̃B, x̃C with P̃(x̃C) > 0 such that P̃(x̃A, x̃B | x̃C) ̸= P̃(x̃A | x̃C)P̃(x̃B | x̃C). Define the
pushforward P(XV ) := P̃ ◦ f−1

V , which has

P(XA = fA(x̃A), XB = fB(x̃B) |XC = fC(x̃C))

= P̃(x̃A, x̃B | x̃C)
̸= P̃(x̃A | x̃C)P̃(x̃B | x̃C)
= P(XA = fA(x̃A) |XC = fC(x̃C))P(XB = fB(x̃B) |XC = fC(x̃C))

so indeed XA⊥̸⊥PXB |XC . By a similar reasoning, for any A,B,C ⊆ V a conditional independence
XA⊥⊥P̃XB |XC implies XA⊥⊥PXB |XC , and thus P ∈MG. ■

Next, we aim to construct an interpolation of any two given P0,P1 ∈ MG, within MG. Naively
taking a mixture of the observational distributions does not give a distribution that is Markov with
respect to G, as is shown in the following example.

Example 2. Let (Pi(XA |XC),Pi(XB |XC),Pi(XC)) for i ∈ {0, 1} be Bayesian networks with DAG G
as depicted in Figure 2a, which both have XA⊥⊥XB |XC . A mixture of the observational distributions
Pλ(XA, XB, XC) = (1− λ)P0(XA, XB, XC) + λP1(XA, XB, XC) would correspond to the (A ∪B ∪ C)-
marginal of the Bayesian network (Pα(XA |XC),Pα(XB |XC),Pα(XC),P(α)) with α ∼ Bernoulli(λ).

4Meek (1995) proves this result assuming weak transitivity of binary distributions, which does not hold in general.
Meek (1998) provides a correct proof based on marginal weak transitivity.
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Its graph is depicted in Figure 2b, from which we see that Pλ need not be Markov with respect to
G, as we might have XA⊥̸⊥Pλ

XB |XC . Instead, taking a mixture of the conditional distributions
of the Bayesian networks gives (PαA(XA |XC),PαB(XB |XC),PαC (XC),P(αA),P(αB),P(αC)) with
αA, αB, αC ∼ Bernoulli(λ) i.i.d., whose (A ∪B ∪C)-marginal Pλ(XA, XB, XC) is Markov with respect
to G (see Figure 2c).

A

C

B

(a) DAG G

A B

C

α

(b) Non-Markov mixture

A B

C

αA

αC

αB

(c) Markov mixture

Figure 2: Graphs relating to different mixtures of Bayesian networks with graph G.

This issue that is detailed in the previous example is resolved in Definition 4.

Definition 4. Given a DAG G and two distributions P0,P1 ∈MG define the interpolation

Pλ(XV ) :=
⊗
v∈V

(
(1− λ)P0(Xv |Xpa(v)) + λP1(Xv |Xpa(v))

)
.

It is immediate that Pλ ∈MG for all λ ∈ [0, 1]. If P0 and P1 have densities p0 and p1 with respect
to some measure Q, then Pλ has a density pλ given by the expansion

pλ(xV ) =
∏
v∈V

(
(1− λ)p0(xv |xpa(v)) + λp1(xv |xpa(v))

)
=

∑
α∈{0,1}d

(1− λ)d−|α|λ|α|pαd
(xvd |xpa(vd))...pα1(xv1)

(2)

where d = |V | and (v1, ..., vd) is a topological ordering of G. Our goal is to show that if we have
conditional dependence XA⊥̸⊥P1

XB |XC in P1, then it is maintained in the interpolation Pλ as λ
approaches 0. This is not immediate, as shown in the following example.

Example 3. Consider a Bayesian network with variables X,Y taking values in the interval [−1, 1]
and graph X → Y . Let P0(X,Y ) be a uniform distribution on (0, 1)× (0, 1) ∪ (−1, 0)× (−1, 0) and
P1 a uniform distribution on (−1, 0) × (0, 1) ∪ (0, 1) × (−1, 0). The interpolation Pλ has a uniform
distribution on (−1, 1)2 for λ = 1/2, and thus an independence X ⊥⊥Y . This is graphically depicted in
Figure 3.

Nevertheless, given P0 and P1, the dependence is maintained on an interval (0, λ∗) ⊂ (0, 1), as
shown by the following result.

-1 1

-1

1

(a) P0 : X ⊥̸⊥Y

-1 1

-1

1

(b) P 1
2
: X ⊥⊥Y

-1 1

-1

1

(c) P1 : X ⊥̸⊥Y

Figure 3: Mixtures of dependent variables might become independent.
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Lemma 2. Given two distributions P0,P1 ∈MG with independence XA⊥⊥P0 XB |XC and dependence
XA⊥̸⊥P1

XB |XC and the interpolation Pλ from Definition 4, there exists a λ∗ ∈ (0, 1) such that
XA⊥̸⊥Pλ

XB |XC for all λ ∈ (0, λ∗).

Proof. Define Q := P0 + P1, and let p0, p1, pλ be densities of P0,P1 and Pλ with respect to Q. There
exist EA ∈ B(XA), EB ∈ B(XB), EC ∈ B(XC) with P1(EC) > 0 and p1(xC) > 0 for all xC ∈ EC , and

5

P1(XA ∈ EA, XB ∈ EB |XC = xC) ̸= P1(XA ∈ EA |XC = xC)P1(XB ∈ EB |XC = xC)

⇐⇒
∫
EA×EB

p1(xA, xB |xC)dQ(xA, xB) ̸=
∫
EA

p1(xA |xC)dQ(xA)

∫
EB

p1(xB |xC)dQ(xB)

⇐⇒
∫
EA×EB

p1(xA, xB, xC)p1(xC)dQ(xA, xB) ̸=
∫
EA

p1(xA, xC)dQ(xA)

∫
EB

p1(xB, xC)dQ(xB).

Define

q(λ, xC) :=

∫
EA×EB

pλ(xA, xB, xC)pλ(xC)dQ(xA, xB)

−
∫
EA

pλ(xA, xC)dQ(xA)

∫
EB

pλ(xB, xC)dQ(xB),

for which we have q(0, xC) = 0 ̸= q(1, xC) for all xC ∈ EC . From (2) we see that q(λ, xC) is a non-trivial
polynomial in λ for every xC ∈ XC , and so q(λ, xC) ̸= 0 for all λ ∈ (0, λ∗(xC)) with λ∗(xC) the smallest
strictly positive root of the polynomial. Our goal is to show that there is a λ∗ ∈ (0, 1) (independent
of xC) and a set E∗

C ∈ B(XC) with Pλ(E
∗
C) > 0 and q(λ, xC) ̸= 0 for all λ ∈ (0, λ∗) and all xC ∈ E∗

C ,
which would imply that XA⊥̸⊥Pλ

XB |XC for all λ ∈ (0, λ∗). Define En
C := {xC ∈ EC : λ∗(xC) > 1/n},

then E1
C ⊆ E2

C ⊆ ... ⊆ EC with limn P1(E
n
C) = P1(EC) > 0, so there exists a N such that P1(E

n
C) > 0

for all n ≥ N . Setting λ∗ := 1/N and E∗
C := EN

C we get q(λ, xC) ̸= 0 for all λ ∈ (0, λ∗) for all xC ∈ E∗
C .

Since P1 ≪ Pλ for all λ ∈ (0, 1) we also have Pλ(E
∗
C) > 0, implying that XA⊥̸⊥Pλ

XB |XC for all
λ ∈ (0, λ∗), which is the desired result. ■

Lemma 3. Given two distributions P0,P1 ∈MG and the interpolation Pλ from Definition 4, we have

Pλ
tv→ P0 as λ→ 0.

Proof. Define Q := P0 + P1, and let p0, p1, pλ be densities of P0,P1 and Pλ with respect to Q. From
(2) we get the expression

pλ(xV ) = (1− λ)dp0(xV ) +
∑

α∈{0,1}d
|α|>0

(1− λ)d−|α|λ|α|pαd
(xvd |xpa(vd))...pα1(xv1)

so we have pointwise convergence pλ(xV ) → p0(xV ) as λ → 0. By Scheffé (1947) we conclude that

Pλ
tv→ P0. ■

4 Typicality of faithful Bayesian networks

In this section we extend Theorem 6 from the space of observational distributions of Bayesian networks
to the space of Bayesian networks:

Definition 5. Given a DAG G with finite index set V , standard Borel XV , the space of Bayesian
networks is defined as

BNG :=
∏
v∈V

{
P(Xv |Xpa(v)) : Xpa(v) → P(Xv) measurable

}
.

5Note that conditional independence does not imply P1(XA ∈ EA, XB ∈ EB |XC ∈ EC) ̸= P1(XA ∈ EA |XC ∈
EC)P1(XB ∈ EB |XC ∈ EC). See also Neykov et al. (2021), p.3.
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Whether a Bayesian network is faithful depends on its observational distribution P ∈ MG. To
formalise the relation between the Bayesian network and the observational distribution we introduce
the following mapping:

Definition 6. The distribution map is defined as

D : BNG →MG, (P(Xv |Xpa(v)))v∈V 7→
⊗
v∈V

P(Xv |Xpa(v)).

4.1 A pseudometric topology on the space of Bayesian Networks

We are interested in whether the faithful Bayesian networks D−1(FG) are typical in BNG. To get a
well-defined notion of typicality we require a topology on BNG.

Definition 7. For m,m′ ∈ BNG, the pseudometric6 d◦ on BNG is defined as

d◦(m,m′) := dTV (D(m), D(m′)).

We equip BNG with the topology generated by the open balls B(m, r) := {m′ ∈ BNG : d◦(m,m′) <
r} for all m ∈ BNG and r > 0. Note that this space is not T0, meaning that points are not necessarily
topologically distinguishable. In particular, we have d◦(m,m′) = 0 for any two m,m′ that have the
same observational distribution.

The preimage of a dense open set through a function that is open and continuous is dense and
open. Hence, a sufficient condition for the faithful Bayesian networks D−1(FG) to be typical is that
the map D : (BN, d◦)→ (M,dTV ) is open and continuous. This is immediate from the definition of
the pseudometric d◦, so we get the following result:

Theorem 7. The set of unfaithful Bayesian networks D−1(UG) is nowhere dense.

4.2 Exponential family parametrisations of Bayesian networks

The preceding section begs the question whether the topological typicality of faithful Bayesian networks
also holds for specific parametrisations of Bayesian networks. In this section we answer this question in
the affirmative, by extending the results of Spirtes et al. (1993) and Meek (1995) to sufficiently regular
exponential family parametrisations of Bayesian networks.

Definition 8. A parametrisation of a Bayesian network is a set Θ ⊆ Rd with d ∈ N and a map

φ : Θ→ BNG, θ 7→ (Pθ(Xv |Xpa(v)))v∈V .

The corresponding map from the parameter to the observational distribution is defined as

T : Θ→MG, T := D ◦ φ.

We consider the question whether the set of faithful parameters T−1(FG) is typical in Θ with
respect to the Euclidean topology, in particular for the following class of conditional exponential
families (Feigin, 1981).

Definition 9. Let X ⊆ Rm for some m ∈ N and Y ⊆ R be codomains of random variables X and Y ,
then a conditional exponential family parametrised by θ ∈ Θ ⊆ Rn is a set of conditional densities with
respect to a σ-finite measure µ on Y of the form

pθ(y |x) = eη(θ)
⊤t(y,x)−A(η(θ),x)

for a given sufficient statistic t : Y × X → Rk and natural parameter η : Θ → Rk such that
A(η(θ), x) <∞ for all θ ∈ Θ and x ∈ X , where A(η, x) := log

∫
eη

⊤t(y,x)dµ(y).

6A pseudometric can have d(m,m′) = 0 for m ̸= m′; it is a metric if d(m,m′) > 0 for all m ̸= m′.
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Given DAG G, we can consider a parametrisation of a Bayesian network over G where every
conditional distribution is parametrised by a conditional exponential family, so where for every v ∈ V
we have a sufficient statistic tv : Xv∪pa(v) → Rkv for some kv, a parameter space Θv ⊆ Rnv for some
nv, a natural parameter ηv : Θv → Nv, and consider the conditional distribution pθv(xv |xpa(v)) =
eηv(θv)

⊤tv(xv ,xpa(v))−A(ηv(θv),xpa(v)) with respect to some underlying measure µv. This gives rise to a joint
density pθ(xV ) =

∏
v∈V pθv(xv |xpa(v)) and the parameter space Θ :=

∏
v∈V Θv. Note that this model

class allows the modelling of mixed data types, see e.g. Yang et al. (2014).

Example 4. For linear Gaussian Bayesian networks, Spirtes et al. (1993) parametrise for each v ∈ V
the conditional distribution Pθ(Xv |Xpa(v) = xpa(v)) = N (β⊤

v xpa(v), σ
2
v) by a linear coefficient βv and a

variance σ2
v . This gives the parameter space

ΘN :=
∏
v∈V

{
(βv, σ

2
v) ∈ R| pa(v)| × R>0

}
,

so when writing θv = (βv, σ
2
v) it has sufficient statistic tv(xv, xpa(v))

⊤ = (xvx
⊤
pa(v), x

2
v), natural parameter

ηv(θv)
⊤ = (β⊤

v /σ
2
v ,−1/(2σ2

v)), and dominating measure µv = λ/
√
2π, where λ denotes the Lebesgue

measure.

Example 5. For discrete distributions with finite state space, Meek (1995) considers for each conditional
distribution Pθ(Xv |Xpa(v) = xpa(v)) a parameter θv,xpa(v)

in the |Xv|-dimensional simplex. This gives
the parameter space

ΘD :=
∏
v∈V

{
θv,xpa(v)

∈ ∆|Xv | : xpa(v) ∈ Xpa(v)

}
.

The sufficient statistic is the vector tv(xv, xpa(v)) of length |Xpa(v)| × |Xv| with entry 1 at the
(xpa(v), xv) position and zeros elsewhere, the natural parameter ηv(θv) is given by the vector with entry
log(θv,xpa(v),xv) for every (xpa(v), xv) pair, and the dominating measure µv is the counting measure.

In the main result of this section, we require the natural parameters to be sufficiently regular, such
that the marginal densities pθ(xA) are analytic functions in the parameter θ.

Theorem 8. Let G be a DAG and let φ : Θ → BNG be a parametrisation of the Bayesian network
with Θ open and connected, such that the marginal density pθ(xA) is analytic in θ for each A ⊆ V . If
there is at least one faithful parameter in Θ, then the set of unfaithful parameters is nowhere dense and
has Lebesgue measure zero.

Proof. LetA,B,C ⊆ V such thatA ̸⊥d
GB |C, and let θ1 ∈ Θ be a parameter such thatXA⊥̸⊥Pθ1

XB |XC ,

which exists by assumption. Let xA, xB, xC be such that pθ1(xA, xB |xC) ̸= pθ1(xA |xC)pθ1(xB |xC)
and define

q(θ) = pθ(xA, xB, xC)pθ(xC)− pθ(xA, xC)pθ(xB, xC),

for which we have q(θ1) ̸= 0. For any θ ∈ Θ with conditional independence XA⊥⊥Pθ
XB |XC we have

q(θ) = 0, so {θ ∈ Θ : XA⊥⊥Pθ
XB |XC} ⊆ {θ ∈ Θ : q(θ) = 0}. It follows from the identity theorem (see

e.g. Krantz and Parks (2002)) that the zero set of a nonconstant real analytic function on an open and
connected domain is nowhere dense and has Lebesgue measure zero. Since q(θ) is analytic, we have
that T−1(UG) =

⋃
A ̸⊥d

G B |C{θ ∈ Θ : XA⊥⊥Pθ
XB |XC} is nowhere dense and has Lebesgue measure

zero, which is the desired result. ■

Remark 1. The proof of Theorem 8 only requires that for every d-connection A ̸⊥d
GB |C in the graph

there is a parameter θ ∈ Θ such that XA⊥̸⊥Pθ
XB |XC . Given the required analyticity, it follows from

the preceding theorem that this is equivalent to the existence of a parameter that is faithful with
respect to all d-connections. For a specific parametrisation, the former condition might be easier to
prove than the latter – this strategy has also been employed in the original proofs of Theorems 1 and 2.

Remark 2. Theorem 8 also holds when Θ is the closure of an open convex set with a faithful parameter
in its interior, since the boundary of an open set is nowhere dense, and the boundary of a convex set
has Lebesgue measure zero.
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We specifically focus on exponential families because their marginal densities satisfy the required
regularity condition, provided the natural parameters are sufficiently regular.

Theorem 9. For an exponential family parametrisation of a Bayesian network with ηv(θv) analytic,
every marginal density pθ(xA) is analytic in θ.

Proof. Let p̃θ(xv |xpa(v)) = eη(θv)
⊤t(xv ,xpa(v)) be the unnormalised density. Considering a topological or-

dering (v1, ..., vd) ofG we can write η(θ)⊤ = (ηv1(θv1)
⊤, ..., ηvd(θvd)

⊤) and t(xV )
⊤ = (tv1(xv1 , xpa(v1))

⊤, ..., tvd(xvd)
⊤)

so that the unnormalised joint density can be expressed as p̃θ(xV ) = eη(θ)
⊤t(xV ). From Brown (1986),

Lemma 2.8 it follows that η 7→
∫
XI

eη
⊤t(xV )dµ(xI) is analytic for every I ⊆ V . As a composi-

tion of analytic functions, so is θ 7→
∫
XI

eη(θ)
⊤t(xV )dµ(xI). Then the following functions are ana-

lytic in θ: the unnormalised density p̃θ(xA) =
∫
XV \A

eη(θ)
⊤t(xV )dµ(xV \A), the normalisation constant

Z(θ) :=
∫
XV

eη(θ)
⊤t(xV )dµ(xV ), and finally the density pθ(xA) = p̃θ(xA)/Z(θ). ■

Given that Spirtes et al. (1993) and Meek (1995) have shown for every DAG G the existence of
faithful parameters in ΘN and ΘD, we obtain Theorems 1 and 2 and their topological analogues as
corollaries of Theorems 8 and 9:

Corollary 2. The set of unfaithful parameters {θ ∈ ΘN : T (θ) ∈ UG} is nowhere dense and Lebesgue
measure zero.

Corollary 3. The set of unfaithful parameters {θ ∈ ΘD : T (θ) ∈ UG} is nowhere dense and Lebesgue
measure zero.7

5 Bayesian networks with latent variables

The assumption that all variables in the Bayesian network must be observed is often too restrictive in
practice. When certain variables remain unobserved, a suitable modelling class is that of Bayesian
networks with observed variables V and latent variables W .

Given a DAG G over V ∪W , the latent projection of G onto V is the Acyclic Directed Mixed
Graph (ADMG) Gp with vertices V , directed edges a→ b if there is a path a→ w1 → ...→ wn → b
in G with wi ∈ W for all i = 1, ..., n (if any), and bi-directed edges a ↔ b if there is a bifurcation
a← w1 ← ...← wk → ...→ wn → b in G with wi ∈W for all i = 1, ..., n (Verma, 1993). An example
of a DAG G and its latent projection Gp is given in Figure 4.

The definition of d-separation for ADMGs (also known as m-separation (Richardson, 2003)) employs
an extended notion of a collider: given ADMG Gp with path π = a ... b, a collider is a vertex v
with → v ←, ↔ v ←, → v ↔ or ↔ v ↔ in π. As for DAGs, sets of vertices A and B are d-separated
given C in ADMG G, written A ⊥d

G B |C, if for every path π = a ... b between every a ∈ A
and b ∈ B, there is a collider in π that is not an ancestor of C, or if there is a non-collider in π in
C. The independence models of G and Gp with respect to V are equal: for any A,B,C ⊆ V we have
A ⊥d

G B |C if and only if A ⊥d
Gp B |C (Verma, 1993). As a corollary the Markov property (1) also

holds for the latent projection Gp of Bayesian networks with latent variables.
The question that we consider is whether (parameters of) Bayesian networks with latent variables

are typically faithful to their latent projection. Write UGp , FGp for the distributions over XV ∪W that are

7That this set is nowhere dense has also been shown by Lin and Zhang (2020).

A B

L1

L2 C

(a) DAG G

A B C

(b) Latent projection Gp

Figure 4: DAG G and latent projection Gp onto {A,B,C}.
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unfaithful and faithful with respect to the ADMG Gp respectively. The core observation for extending
results of Sections 3 and 4 from DAGs to ADMGs is the following:

Lemma 4. Given DAG G with vertices V ∪W and its latent projection Gp onto V , any distribution
over V ∪W that is unfaithful with respect to Gp is also unfaithful with respect to G.

Proof. The latent projection preserves d-separations, so the result follows immediately from the
expression for the set of unfaithful distributions:⋃

A ̸⊥d
G B |C

{P ∈MG : XA⊥⊥PXB |XC}.

For UGp the union ranges over subsets A,B,C ⊆ V and for UG the union ranges over A,B,C ⊆ V ∪W
(with a d-connection), hence we get UGp ⊆ UG. ■

Now, we can extend preceding results to ADMGs as follows:

Theorem 10. Theorems 6, 7, 8 and Corollaries 2 and 3 also hold for Bayesian networks with latent
variables, when faithfulness is only required to hold with respect to the latent projection.

Proof. Subsets of nowhere dense (Lebesgue measure zero) sets are nowhere dense (Lebesgue measure
zero). The extension of Theorem 6 immediately follows from Lemma 4. Considering the distribution
map D : BNG → MG we get the extension of Theorem 7 from the inclusion D−1(UGp) ⊆ D−1(UG),
and given a parametrisation φ : Θ→ BNG and map T = D ◦ φ, the extension of Theorem 8 (and the
related corollaries) follows from T−1(UGp) ⊆ T−1(UG). ■

6 Discussion

One should be careful with interpreting the typicality results from this work and from Spirtes et al.
(1993) and Meek (1995), as the employed notion of ‘typicality’ depends on somewhat arbitrary choices.
The choice of σ-ideal makes an essential difference: the σ-ideals of null sets and meager sets do not
necessarily coincide. For example, the Smith-Volterra-Cantor set is a nowhere dense subset of [0, 1]
that has Lebesgue measure 1/2. In general, every subset of R is the disjoint union of a meager set
and a null set (Oxtoby, 1980, Theorem 1.6): a set that is small in one sense may be large in the
other sense. When considering the σ-ideal of measure-zero sets, the results depend on the choice of
σ-algebra and the probability measure. For the σ-ideal of meager sets, the results depend on the choice
of the topology. The pseudometric topology that we consider on the space BNG might be too weak for
purposes of causal modelling, as it does not distinguish between two causal models that have different
causal mechanisms but the same observational distribution.

Faithfulness might be an assumption that is too weak for the purposes of causal discovery, as faithful
distributions can have extremely weak dependencies that are undetectable from finite samples. The
(perhaps more practically relevant) notion of strong faithfulness of linear Gaussian Bayesian networks
(Zhang and Spirtes, 2002) is not measure-zero, as is shown by Uhler et al. (2013). It is unclear whether
or not it is typical in a topological sense.

From a philosophical perspective, it is absolutely unclear whether ‘in nature, unfaithful Bayesian
networks are nowhere dense’, just as there is no reason to believe that ‘nature picks parametric Bayesian
networks via a distribution that has a density’. At least we can view it as a positive result that the
opposite of our result, i.e. that unfaithful distributions are typical, does not hold.
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Texts, Basler Lehrbücher. Birkhäuser, Boston, MA, second edition edition.

Lauritzen, S. (1996). Graphical models. Clarendon Press.

Lauritzen, S. (2024). Total variation convergence preserves conditional independence. Statistics &
Probability Letters, 214:110200.

Lin, H. and Zhang, J. (2020). On Learning Causal Structures from Non-Experimental Data without
Any Faithfulness Assumption. In Proceedings of the 31st International Conference on Algorithmic
Learning Theory, pages 554–582. PMLR.

Meek, C. (1995). Strong completeness and faithfulness in Bayesian networks. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence, UAI’95, page 411–418, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Meek, C. (1998). Graphical Models: Selecting Causal and Statistical Models. PhD thesis, Carnegie
Mellon University.

Neykov, M., Balakrishnan, S., and Wasserman, L. (2021). Minimax optimal conditional independence
testing. The Annals of Statistics, 49(4):2151–2177.

Oxtoby, J. C. (1980). Measure and Category. Graduate Texts in Mathematics. Springer New York,
New York, NY, Second edition.

Richardson, T. (2003). Markov Properties for Acyclic Directed Mixed Graphs. Scandinavian Journal
of Statistics, 30(1):145–157.
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