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Abstract

We present a new, efficient procedure to estab-
lish Markov equivalence between directed graphs
that may or may not contain cycles under the d-
separation criterion. It is based on the Cyclic Equi-
valence Theorem (CET) in the seminal works on
cyclic models by Thomas Richardson in the mid
’90s, but now rephrased from an ancestral per-
spective. The resulting characterization leads to
a procedure for establishing Markov equivalence
between graphs that no longer requires tests for
d-separation, leading to a significantly reduced al-
gorithmic complexity. The conceptually simplified
characterization may help to reinvigorate theoret-
ical research towards sound and complete cyclic
discovery in the presence of latent confounders.
This version includes a correction to rule (iv) in
Theorem 1, and the subsequent adjustment in
part 2 of Algorithm 2.

1 INTRODUCTION

Discovering causal relations from observational and experi-
mental data is one of the key goals in many research areas.
Developing principled, automated causal discovery meth-
ods has been an active area of research within the machine
learning community, which has resulted in a wide variety of
algorithms and techniques. Two of the main challenges here
are handling the impact of unobserved confounders, and the
possible presence of feedback mechanisms or cycles in the
system under investigation. Both have a long history in the
field: in this article we solely focus on the latter.

Building on earlier work by Spirtes (1994, 1995) on (linear)
cyclic directed models that obey the global directed Markov
property (see section 2.1, below), Richardson (1996b) intro-
duced the Cyclic Causal Discovery (CCD) algorithm that
was able to infer a sound cyclic causal model from independ-

ence constraints on data. It was based on the so-called Cyclic
Equivalence Theorem (Richardson, 1997) that characterized
Markov equivalence between cyclic directed graphs.

Strangely enough, after this promising start progress in cyc-
lic directed models slowly ground to a halt, even though
many challenges remained: the CCD output was certainly
not complete, and could not account for latent confounders.

In the mean time theory and methods for acyclic causal
discovery took flight, where, for example Zhang (2008)
managed to extend FCI to a provably sound and complete
algorithm under latent confounders and selection bias.

And even to this day fundamental progress continues to be
made: recently several new and faster algorithms and char-
acterizations for establishing Markov equivalence between
maximal ancestral graphs (graphical independence mod-
els closed under marginalization and conditioning) have
been developed (Hu and Evans, 2020; Wienöbst et al., 2022;
Claassen and Bucur, 2022), ultimately bringing it down
to linear complexity for sparse graphs. However, despite
a widely acknowledged need to handle feedback cycles in
learning algorithms for real world causal discovery, major
steps towards that goal have been few and far between.

A promising attempt to extend CCD to the case of unob-
served confounders was made by Strobl (2018), but though
the resulting CCI algorithm was sound, it was by no means
complete, foregoing on key FCI elements like discriminating
paths and selection bias, and the output was not guaranteed
to uniquely identify the Markov equivalence class.

Fundamentally different approaches to cyclic causal discov-
ery have also been developed: for example, Lacerda et al.
(2008) employs independent component analysis, Mooij
et al. (2011); Mooij and Heskes (2013) proposed likelihood-
based structure learning approaches for additive noise mod-
els, Hyttinen et al. (2012) exploits experiments to build a
complete model, and Rothenhäusler et al. (2015) builds on
information from unknown shift interventions to reconstruct
the underlying cyclic causal graph.

Correction to - Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:433–442.
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On another front, Forré and Mooij (2018) showed that for
nonlinear causal models with cycles and confounders, the
usual d-separation criterion needs to be replaced with their
σ-separation criterion (see also section 3 in the supplement).
More recently, Mooij and Claassen (2020) showed that
vanilla FCI was in fact already sound and complete for these
nonlinear cyclic models. However, it does not account for
the peculiarities encountered when handling linear cyclic
models, as in Figure 1.

For linear or discrete cyclic causal models, σ-separation
is too weak, as the stronger d-separation may apply. Per-
haps surprisingly, this significantly complicates the causal
structure analysis. But even in nonlinear systems we often
consider linear approximations, which means in practice
we may expect to encounter similar complications there as
well. In section 3 in the supplement we summarize some
results from the literature under which cyclic causal models
are known to satisfy the stronger d-separation criterion. For
the current paper it suffices to know that we focus on d-
separation equivalence between cyclic directed graphs with
no unobserved confounders, which, for the important class
of systems where the global directed Markov condition in
combination with its corresponding faithfulness assumption
holds, also implies Markov equivalence.

Part of the reason for the slow progress on cyclic models that
satisfy the d-separation criterion may be that the associated
theoretical machinery developed to characterize Markov
equivalence is quite imposing, which may make extensions
towards confounders seem an overly daunting task.

In this article we find things may not be quite as bad as
perhaps once feared. We show, for example, that establish-
ing Markov equivalence between directed graphs becomes
more intuitive when viewed from an ancestral perspective,
leading to a simplified characterization and an efficient al-
gorithm that greatly speeds up identification. Although this
is of course but a small step, we hope that it may inspire re-
newed investigation into full-fledged cyclic causal discovery
in the presence of latent confounders and selection bias.

In the rest of the article, section 2 introduces the necessary
tools to handle cyclic directed graphs, section 3 describes
an alternative, ancestral formulation of the CET, section
4 shows how to infer a graphical characterization of the
Markov equivalence class without the need for d-separation
tests, and section 5 demonstrates the remarkable efficiency
of the resulting procedure compared to current state of the
art. Detailed proofs as well as some additional experimental
results are provided in the supplement.

2 CYCLIC DIRECTED GRAPHS

In this section we start with a few standard graphical model
definitions, and then continue with some perhaps less famil-
iar terminology and results specific to cyclic graphs.

Directed cyclic models

• but certain pairs of induced edges can be recognized!
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Figure 1: Two different cyclic graphs (left) that together form the
only two members of the Markov equivalence class on the right,
where the dashed lines signal two virtual v-structures (see §3.1).
For linear/discrete models conditioning on C would make A and
B dependent, but conditioning on {C,D} would not.

2.1 GRAPH NOTATIONS AND TERMINOLOGY

Throughout this article we use capital letters for ver-
tices/variables, boldface capitals to indicate sets, and calli-
graphic letters to indicate graphs or distributions.

A directed graph (DG) G is an ordered pair ⟨V,E⟩, where
V is a set of vertices (nodes), and E is a set of directed
edges (arcs) between vertices. Two nodes in G are adjacent
if they are connected by an edge, two edges are adjacent
if they share a node. A path in the graph G is a sequence
of adjacent edges where each consecutive pair along the
path is adjacent in G and each node occurs at most once,
or just a single node (a trivial path). A directed path X0 →
X1 → .. → Xk is a path where each pair of consecutive
nodes is connected by an arc Xi → Xi+1 in G. A cycle
is a directed path X0 → .. → Xk together with an edge
Xk → X0. A directed graph with no cycles is called a
directed acyclic graph (DAG). If X → Y in G then X is
called a parent of Y , and Y a child of X . Similarly, if
there is a directed path from X to Y in G then X is an
ancestor of Y , and Y a descendant of X . We use paG(X)
to denote the set of parents of X in graph G. Idem chG(X),
anG(X) and deG(X) for the sets of children, ancestors,
and descendants of X in G, with natural extensions to sets,
e.g. paG(X) ∶ {V ∶ ∃X ∈ X, V ∈ paG(X)}. A node Z is
a collider on a path ⟨..,X,Z,Y, ..⟩ if the subpath is of the
form X → Z ← Y , otherwise it is a noncollider. A triple
of nodes ⟨..,X,Z,Y, ..⟩ on a path is said to be unshielded
if X and Y are not adjacent in G. An unshielded collider
X → Z ← Y is known as a v-structure.

A DG model is an ordered pair ⟨G,P⟩ where G is a (cyclic
or acyclic) directed graph and P is a probability distribu-
tion over the vertices (variables) in G. The global directed
Markov property links the structure of the graph G to probab-
ilistic independences in P via the d-separation criterion: for
sets of vertices X,Y,Z in a graph G, X is d-connected to Y
given Z iff there is an X ∈X and Y ∈Y such that there is a
path π between X and Y on which every noncollider is not
in Z, and every collider on π is an ancestor of Z; otherwise
X and Y are said to be d-separated given Z. Two graphs
G1 and G2 are said to be d-separation (Markov) equivalent
iff every d-separation in G1 also holds in G2 and v.v. For
more details on graphical causal models, see (Koller and
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Friedman, 2009; Spirtes et al., 2000; Pearl, 2009; Bongers
et al., 2021). In section 3 in the supplement, we provide
more details on Markov properties in structural causal mod-
els, and describe some concrete classes of models for which
the d-separation criterion applies.

2.2 FEATURES OF CYCLIC GRAPHS

Next we will state a few properties and definitions that are
specific to directed graphs with cycles.

Definition 1 In a directed graph G over set of vertices V,
a subset S ⊆V is a strongly connected component (SCC)
of G iff S is a maximal set of vertices where every vertex is
reachable via a directed path in G from every other vertex
in S.

In cyclic graphs the presence of arcs into directed cycles
can create dependencies that behave like additional induced
edges:

Definition 2 In a graph G, two nodes A and B are said to
be virtually adjacent iff there is no edge between A and
B in G, but A and B have a common child C which is an
ancestor of A or B.

Two nodes connected by a virtual edge cannot be d-
separated by any set of nodes, and therefore appear like
they are connected by an edge. In (Richardson, 1997) vir-
tual edges were also called p(seudo)-adjacent.

These induced virtual edges can also be part of paths we
have to consider, giving rise to the generalized concept of
an itinerary:

Definition 3 In a graph G, a sequence of vertices
⟨X0, ...,Xn+1⟩ where all neighbouring nodes in the se-
quence are (virtually) adjacent in the graph is said to be an
itinerary. If none of the nodes on the itinerary are (virtually)
adjacent to each other except for the ones that occur con-
secutively on it then the itinerary is said to be uncovered,
otherwise it is said to be covered.

Virtual edges can also appear in regular (non)collider triples,
leading to the generalized notion of (non)conductors:

Definition 4 In a graph G, a triple ⟨A,B,C⟩ forms a con-
ductor if ⟨A,B,C⟩ is an itinerary, and B is an ancestor of
A and/or C. If ⟨A,B,C⟩ is an itinerary, but B is NOT an
ancestor of A or C, then ⟨A,B,C⟩ is a nonconductor. A
(non)conductor ⟨A,B,C⟩ is said to be unshielded if A and
C are not (virtually) adjacent, otherwise it is shielded.

In some case we can actually detect the presence of some
induced edge, although we can never be sure which one:

Definition 5 In a graph G a nonconductor triple ⟨A,B,C⟩
is a perfect nonconductor if B is also a descendant of
a common child of A and C. If not, then ⟨A,B,C⟩ is an
imperfect nonconductor.

Key notion here is that for unshielded perfect nonconductors
conditioning on a set that includes B always creates a de-
pendence between A and C, whereas unshielded imperfect
nonconductors do create a dependence when conditioning
on B, but not for every set containing B. This is impossible
in acyclic graphs and is therefore a hallmark for the presence
of cycles. See the two virtual v-structures in Figure 1 for an
example.

Finally, as pièce de résistance, we have some patterns that
introduce a nonlocality aspect:

Definition 6 If ⟨X0, ...,Xn+1⟩ is a sequence of vertices
such that each consecutive triple along the (uncovered) itin-
erary is a conductor, and all nodes {X1, ..,Xn} are ancest-
ors of each other, but not ancestors of either X0 or Xn+1,
then the triples ⟨X0,X1,X2⟩ and ⟨Xn−1,Xn,Xn+1⟩ are
mutually exclusive (m.e.) conductors w.r.t. an (uncovered)
itinerary.

An example is depicted in Figure 2. As a result, graphs that
have identical d-separation relations locally everywhere in
the graph can still differ regarding a d-separation between
nodes that are arbitrarily far apart in the graph (something
that is impossible in the acyclic case).

2.3 THE CYCLIC EQUIVALENCE THEOREM

With the features introduced in the previous section Richard-
son (1997) established the following characterization:

Cyclic Equivalence Theorem (CET): Two directed graphs
G1 and G2 over vertices V are Markov (d-separation) equi-
valent iff

(i) they have the same (virtual) adjacencies,

(ii).a they have the same unshielded conductors,

(ii).b they have the same unshielded perfect nonconductors,

(iii) two triples ⟨A,B,C⟩ and ⟨X,Y,Z⟩ are mutually ex-
clusive conductors on some uncovered itinerary P =
⟨A,B,C, ..,X,Y,Z⟩ in G1 iff they are also m.e. con-
ductors on some uncovered itinerary in G2,

(iv) if ⟨A,X,B⟩ and ⟨A,Y,B⟩ are unshielded imperfect
nonconductors in G1 and G2, then X is an ancestor of
Y in G1 iff X is an ancestor of Y in G2,

(v) if ⟨A,B,C⟩ and ⟨X,Y,Z⟩ are m.e. conductors on an
uncovered itinerary P = ⟨A,B,C, ..,X,Y,Z⟩, and
⟨A,M,Z⟩ is an unshielded imperfect nonconductor
(in G1 and G2), then M is a descendant of B in G1 iff
M is a descendant of B in G2.
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different cycle groups between Markov equivalent graphs

• cycle orientations are never identifiable (!)
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Figure 2: Two Markov equivalent graphs (left) with ⟨A,D,F ⟩ and ⟨D,F,B⟩ a pair of m.e. conductors on uncovered itinerary
⟨A,D,F,B⟩; (right) corresponding (maximally informative) CPAG.

2.4 CYCLIC PAGS

To characterize the (d-separation) Markov equivalence class
of a cyclic directed graph G, denoted MEC(G), Richard-
son (1996c) described an algorithm that created a set of
exhaustive lists of instances in the graph matching one of
the individual rules in the CET, above. Establishing Markov
equivalence then boils down to comparing the lists construc-
ted for each.

Later on, Richardson (1996b) introduced a more intuitive
graphical representation in the form of a (cyclic) partial an-
cestral graph that also captured enough elements to uniquely
identify the equivalence class of a directed graph:

Definition 7 A graph P is a partial ancestral graph (PAG)
for directed (a)cyclic graph G with vertex set V, iff

(i) there is an edge between vertices A and B iff A and B
are d-connected given any subset W ⊆V ∖ {A,B},

(ii) If A ÐÐ∗ B is in P , then in every graph in MEC(G),
A is ancestor of B,

(iii) If A ∗→ B is in P , then in every graph in MEC(G),
B is NOT an ancestor of A,

(iv) if A∗Ð∗B ∗Ð∗C in P , then B is ancestor of A and/or
C in every G′ ∈MEC(G),

(v) if AÐ→B←ÐC in P , then B is NOT a descendant of
a common child of A and C in every G′ ∈MEC(G),

(vi) any remaining edge mark not oriented in the above
ways obtains a circle mark ○ÐÐ∗ in P .

We use the term cyclic PAG (CPAG) of a graph G to denote
a PAG P that captures invariant ancestral relations shared
by all and only the graphs in the Markov equivalence class
of G.

In these rules the asterisk ∗Ð mark on an edge is used
as a meta symbol that represents any of the other marks
{−,>, ○}. The solid underlining in rule (iv), indicating that
the middle node is not a collider between the other two, is
superfluous and therefore often omitted from the graph P .
The dashed underlining in rule (v), however, is essential,
and unique to cyclic graphs, and appears in the virtual v-
structures introduced in §3.1. See Figure 2 for an example
CPAG.

The CPAG has the same purpose and interpretation as the
familiar PAG output by the well-known FCI algorithm
(Spirtes et al. (2000); Zhang (2008)), including circle marks
X ○ÐÐ∗ Y from rule (vi) to explicitly denote ‘not determ-
ined’. This can be either because the implied ancestral re-
lation is not invariant between all members in the Markov
equivalence class of G, i.e. there are some graphs where X
is an ancestor of Y and some where it is not (‘can’t know’),
or because the relation is invariant but we have not determ-
ined what it is yet (‘don’t know’). As a result, a graph G
can correspond to different CPAGs P that differ in level
of completeness. In this paper we are not concerned with
obtaining the (unique) maximally informative CPAG, but
instead settle for any Markov complete PAG that represents
a unique (d-separation) Markov equivalence class.

2.5 CPAG-FROM-GRAPH ALGORITHM

Using the CPAG definition above we now describe an al-
gorithm by Richardson (1996a) that takes as input a (pos-
sibly cyclic) directed graph G and outputs a CPAG P such
that two graphs G1 and G2 are Markov equivalent iff the
algorithm outputs the same CPAG for both. In other words,
the algorithm is d-separation complete.

(a) form the complete undirected graph P with all circle
edges ○Ð○, and then for every edge A ○Ð○ B in P , if
A is d-separated from B given C = An({A,B}) ∖
{A,B} then remove edge A ○Ð○ B from P and record
C in Sepset(A,B) and Sepset(B,A),

(b) for each unshielded triple A ∗ÐÐ∗ B ∗ÐÐ∗ C inP , orient
A→ B ← C if B ∉ Sepset(A,C),

(c) for each triple ⟨A,X,Y ⟩ such that X ∗ÐÐ∗ Y in P , A
is not adjacent to X or Y in P , X ∉ Sepset(A,Y ),
orient X ← Y if A and X are d-connected given
Sepset(A,Y ),

(d) for each unshielded triple A → B ← C in P , if
A and C are d-separated given a specific set R,1

then orient AÐ→B←ÐC in P and record R in
SupSepset⟨A,B,C⟩ (and SupSepset⟨C,B,A⟩),

(e) for each quadruple ⟨A,B,C,D⟩, if AÐ→B←ÐC in
P , A→D ← C or AÐ→D←ÐC in P , B and D are

1We omit the definition of the set R here for brevity.
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adjacent in P , then if D ∈ SupSepset⟨A,B,C⟩ then
orient B ∗ÐÐD, otherwise orient B →D in P ,

(f) for each quadruple ⟨A,B,C,D⟩, such that
AÐ→B←ÐC in P , and D is not adjacent to
both A and C in P , if A and C are d-connected given
SupSepset⟨A,B,C⟩ ∪ {D}, then orient B ∗ÐÐ○D as
B →D.

The algorithm has complexity O(N7), and is d-separation
complete:

Theorem 2 in (Richardson, 1996a): For two graphs G1 and
G2, the CPAG-from-Graph algorithm outputs corresponding
CPAGs P1 and P2 that are identical iff G1 and G2 are d-
separation equivalent.

Actually, the theorem was formulated for the CCD algorithm
(Richardson, 1996b) for obtaining a CPAG from (oracle)
independence information, but the two are so similar that the
proof automatically carries over to the CPAG-from-Graph
algorithm. The algorithm is an improvement by a factor
O(N2) on the earlier list-based Cyclic Classification al-
gorithm in (Richardson, 1996c, §5.4).

3 AN ANCESTRAL PERSPECTIVE ON
THE CET

On reflection of the characterization of Markov equivalence
between cyclic graphs obtained, one may note that the rather
daunting definitions and terminology in the CET seem to
contrast quite sharply with the apparent simplicity of the
actual invariant features contained in the CPAG. At the
same time complicated again by the fact that some of these
‘invariant features’ like edges in the CPAG are not actually
invariant in the underlying graph at all.

Furthermore, there is no clear match from some rules in the
CET to specific invariant features in the CPAG. In partic-
ular the ‘mutually exclusive conductors on an uncovered
itinerary’2 in rule CET-(iii) are never explicitly recorded,
even though they can of course be inferred from the CPAG
afterwards.

A natural question, inspired by the familiar DAG-MAG-
PAG triad for acyclic graphs, would be whether it might
make sense to also consider an intermediate ancestral stage
for cyclic graphs.

In this section we answer that question with an emphatic:
yes! We first introduce the CMAG as the cyclic analogue
to the (acyclic) maximal ancestral graph (Richardson and
Spirtes, 2002), and rephrase the CET in terms of ancestral
graphs. This results in a simplified set of rules that each
are in direct correspondence with invariant features in the

2Actually this term is a bit of a misnomer, as the two conduct-
ors need not be mutually exclusive when there is an induced virtual
edge along the uncovered itinerary connecting the two.

CPAG. In the next section we will show that this approach
also leads to an efficient procedure to establish Markov
equivalence that no longer needs to rely on d-separation
tests.

3.1 INTRODUCING THE CMAG

In keeping with the spirit of regular (acyclic) maximal an-
cestral graphs, we will define a cyclic MAG as:

Definition 8 The cyclic maximal ancestral graph (CMAG)
M corresponding to (cyclic) directed graph G over set of
vertices V is a graph where:

(i) there is an edge between every distinct pair of vertices
{X,Y } iff they cannot be d-separated by any subset of
V ∖ {X,Y } in G,

(ii) there is a tail mark X ÐÐ∗ Y at vertex X on the edge
to Y iff there exists a directed path from X to Y in G,
otherwise there is an arrowhead mark X ←∗ Y ,

(iii) every unshielded collider triple X → Z ← Y in M
where Z is not a descendant of a common child of X
and Y in G obtains a dashed underline XÐ→Z←ÐY .

Unshielded collider triples without underlining are called
v-structures. The ‘dashed-underlined’ collider triples in a
CMAG are referred to as virtual v-structures.

With this definition, a CPAG becomes a straightforward
collection of invariant edges and edge marks (rather than
‘ancestral relations’) shared by all and only the CMAGs
corresponding to graphs in the same Markov equivalence
class.

The ‘virtual’ in the dashed-underlined v-structures from rule
(iii) emphasises that they resemble regular v-structures in the
CMAG, but look and behave differently in the underlying
directed graph G. They are a direct consequence of rule (v)
in Def. 7, and correspond to unshielded imperfect noncon-
ductors in G, that are unique to cyclic graphs. In a CMAG
M, node A is an ancestor of node B (and B a descendant
of A) iff there exists an ancestral path AÐÐ∗ ..ÐÐ∗ B inM.

An SCC in directed graph G corresponds to a maximal set
of nodes in a connected, undirected subgraph inM, as each
node in an SCC is ancestor of all other nodes in the same
SCC. Given this one-to-one correspondence we will also
use SCC(Z) in the context of a CMAGM to denote the
nodes in the strongly connected component of Z in G.

3.2 VIRTUAL COLLIDER TRIPLES

Having brought out the CMAG we can make a straightfor-
ward mapping from elements in the CET to their ancestral
counterpart: (virtual) adjacencies become edges, itineraries
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become paths, unshielded conductors become unshielded
noncolliders, unshielded (perfect) nonconductors become v-
structures, and unshielded imperfect nonconductors become
virtual v-strucutures.

That only leaves the ‘mutually exclusive conductors w.r.t. an
uncovered itinerary’. For that we note that these only appear
in the CPAG as the invariant arcs into a cycle, oriented in
step (c) of the CPAG-from-Graph algorithm. In other words,
from an ancestral perspective it is not about the conductor
triples at the beginning and end of the uncovered itinerary,
but only about the first and last edge along the corresponding
path in the CMAG.

This brings us to the following definition:

Definition 9 In a CMAGM, a quadruple of distinct nodes
⟨X,Z,Z ′, Y ⟩ is a u-structure if there is an uncovered path
X → Z ÐÐ .. ÐÐ Z ′ ← Y inM, where all intermediate
nodes are also in SCC(Z).

The term u-structure reflects the fact that it is similar to a
v-structure, but with the central collider node replaced by an
uncovered path through a strongly connected component.

There is a straightforward connection between u-structures
and the ‘m.e. conductors w.r.t. an uncovered itinerary’ from
Definition 6:

Lemma 1 For a directed graph G and corresponding
CMAG M, there is a u-structure ⟨X,Z,Z ′, Y ⟩ in M iff
there is an uncovered itinerary π = ⟨X,Z,U, .., U ′, Z ′, Y ⟩
in G, possibly with Z = U ′ or U = U ′, where ⟨X,Z,U⟩
and ⟨U ′, Z ′, Y ⟩ are a pair of m.e. conductors w.r.t. the un-
covered itinerary π in G.

(For proof details for this and other results in the rest of this
article, see supplement.)

Crucially, in the CMAG or CPAG we do not actually record
the u-structure explicitly. In fact, the only elements of a
u-structure that need to be oriented in the CPAG are the first
and last edge into the strongly connected component (cf.
step (c) of the CPAG-from-Graph algorithm, §2.5).

As a result, we do not have to identify the full quadruple
⟨X,Z,Z ′, Y ⟩ of each u-structure, but only if an edge X −Z
is part of some u-structure pattern. For that, we can rely on
the following result:

Lemma 2 In a CMAGM, a pair of nodes ⟨X,Z⟩ is part
of a u-structure ⟨X,Z,Z ′, Y ⟩ with a node Y ∈ Y ⊆
pa(SCC(Z))∖adj({X,Z}), iff X ∈ pa(Z), and X and Y
are connected in the subgraph over ((SCC(Z)∖adj(X))∪
{X,Z} ∪Y.

This significantly reduces the complexity of establishing
Markov equivalence later on, as it means we only need to

search over triples rather than quadruples in the CMAG.
More importantly, it motivates the introduction of the fol-
lowing invariant element, which in turn will significantly
simplify the CET.

Definition 10 In a CMAG M, a triple of distinct nodes
⟨X,Z,Y ⟩ is a virtual collider triple iff ⟨X,Z,Y ⟩ is a virtual
v-structure, or there is some Z ′ ∈ SCC(Z), such that either
⟨X,Z,Z ′, Y ⟩ or ⟨X,Z ′, Z, Y ⟩ is a u-structure.

Intuitively, a virtual collider triple ⟨X,Z,Y ⟩ implies that X
and Y are connected by an uncovered itinerary via nodes
in SCC(Z) that identifiably contains one or more virtual
edges. The strongly connected component of Z fulfils the
role of collider in X → SCC(Z) ← Y , and the virtual
emphasises there is no ‘real’ collider triple X → Z ← Y in
the underlying directed graph.

Cyclic Equivalence Theorem (CET) [Richardson,1997]

Two graphs G1 and G2 are Markov equivalent iff they have
1) the same induced skeleton
2) the same unshielded conductors and unshielded perfect nonconductors
3) if <A,B,C> and <X,Y,Z> are m.e. conductors in G1, then also in G2

4) if <A,X,B> and <A,Y,B> are unshielded imperfect nonconductors (in G1 and 
G2), then X is ancestor of Y in G1 iff X is ancestor of Y in G2

5) if <A,B,C> and <X,Y,Z> are m.e. conductors, and <A,M,Z> is an 
unshielded imperfect nonconductor (in G1 and G2), then M is descendant of 
B in G1 iff M is descendant of B in G2

Example CET rule 4 : invariant edge D->E between two cycle groups

DC E F

A B

Figure 3: Example CET orientation rule (iv) on virtual collider
triples ⟨A,D,B⟩ and ⟨A,E,B⟩ for invariant edge D → E, with
virtual edges as dashed grey arcs.

3.3 A NEW CET

We are now ready to restate the Cyclic Equivalence Theorem
in terms of CMAGs:

Theorem 1 Two directed graphs G1 and G2, correspond-
ing to CMAGs M1 and M2, are Markov (d-separation)
equivalent iff

(i) M1 andM2 have the same skeleton,

(ii) M1 andM2 have the same v-structures,

(iii) M1 andM2 have the same virtual collider triples,

(iv) if ⟨A,B,C⟩ is a virtual collider triple, and ⟨A,D,C⟩
a virtual v-structure, then B is an ancestor of D inM1

iff B is an ancestor of D inM2.3

In this case, we callM1 andM2 ‘Markov equivalent’.

3In the original published version, ⟨A,D,C⟩ was erroneously
included as a virtual collider triple, but the distinction is needed to
restrict the pairs of virtual collider triples to check.
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Each rule in this ancestral CET can be linked directly to spe-
cific invariant elements in the CPAG: rule (i) to the edges in
the CPAG, (ii) to all v-structures, (iii) to remaining invariant
arcs into strongly connected components (incl. under-dashed
marks for virtual v-structures), and (iv) to invariant edges
within or between (identifiable) cycles.

Comparing to the original CET in §2.3, we can see that the
ancestral formulation greatly simplifies the Markov equival-
ence characterization, leading to two fewer rules and only
requiring (collider) triples.

An interesting observation is that in the acyclic case go-
ing from DAGs to MAGs (to allow for unobserved con-
founders) implied going from ‘(unshielded) collider triples’
(v-structures) to ‘collider triples with order’ in the charac-
terization of Markov equivalence between graphs (Ali et al.,
2009; Claassen and Bucur, 2022). Given that analogy we
conjecture that for the cyclic case allowing for latent con-
founders can similarly be accomplished by extending to
‘(virtual) collider triples with order’.

4 ESTABLISHING MARKOV
EQUIVALENCE FOR CYCLIC GRAPHS

We now show that with the intermediate CMAG representa-
tion we can derive a consistent CPAG that uniquely defines
the equivalence class of a (cyclic) directed graph without the
need for any d-separation tests. The resulting algorithm is
extremely fast, and allows to determine Markov equivalence
between graphs by directly comparing the output CPAGs.

4.1 OBTAINING THE CMAG

To capture the first rule of the new CET, we need to obtain
the skeleton of the CPAG. To avoid the d-separation tests in
step (a) of the CPAG-from-Graph algorithm in §2.5, we can
use the following result:

Lemma 3 In a CMAGM corresponding to directed graph
G, two variables X and Y are adjacent, iff X and Y are
(virtually) adjacent in G.

It implies we can read off the CMAG skeleton directly from
the graph G, by starting from the skeleton of G, and adding
an edge between X and Y for every v-structure X → Z ← Y
in G with Y ∈ SCCG(Z).
It does mean that we first need to partition the vertices in the
graph into the set of strongly connected components. This
can be achieved in time linear in the number of vertices and
edges O(Nd) using e.g. Tarjan’s algorithm (Tarjan, 1972).4

4Actually, we use a modified version of Tarjan’s algorithm that
also tracks ancestral relations in one go. For details on this and all

Subsequent orientations of edges inM follow orientations
in G, where edges between nodes in the same SCC become
undirected edges, signifying they are all ancestor of each
other. Induced edges between nodes in the same cycle also
become undirected, and induced edges by a triple X → Z ←
Y in G with X ∉ SCCG(Z) become X → Y .

Alternatively, we can process each node X in G in turn, and
draw undirected edges between all of its parents in the same
cycle as X (incl. X) inM, and add arcs from all remaining
parents into the first set of parents (again incl. X), which is
what we do in Algorithm 1, below.

Algorithm 1 Graph-to-CMAG

Input: directed cyclic graph G over nodes V
Output: CMAGM, SCCs,
SCC ← Get_StronglyConnComps(G)
part 1: CMAG rules (i) + (ii)
for all X ∈V do
Z← paG(X)
Zcyc ← Z ∩ SCC(X)
Zacy ← Z ∖Zcyc

add all arcs Zacy → Zcyc ∪ {X} toM
add all undirected edges Zcyc ÐÐ Zcyc ∪ {X} toM

end for
part 2: CMAG rule (iii)
for all X ∈V ∶ ∣SCC(X)∣ ≥ 2 do
Z← paM(X)
for all non-adjacent pairs {Zi, Zj} ⊆ Z do

if {Zi, Zj} ⊈ adjG(X) then
if X ∉ deG(chG(Zi) ∩ chG(Zj)) then

mark virtual v-structure ⟨Zi,X,Zj⟩ inM
end for

end for

The second part of Algorithm 1 simply involves checking all
v-structures inM with central collider node in a non-trivial
SCC, and with at least one virtual edge in G. Here we use
the matrix of ancestral relations, constructed when identi-
fying the SCCs at the start of the algorithm, to reduce the
‘descendant of’ check in the second ‘if’-clause to constant
time per node.

4.2 CONSTRUCTING THE CPAG

Before we can go on to construct a CPAG from the CMAG
M obtained above, we still need to recognise the virtual col-
lider triples corresponding to so-called u-structures. These
are not marked explicitly in the CMAG (contrary to virtual
v-structures), but they are needed to orient certain invariant
edges in the CPAG corresponding to rules (iii) and (iv) in
Theorem 1. Fortunately, for that we can rely on Lemma 2,
where the fact that we only need to consider straightforward

other algorithms used in the paper, see source code available at
https://github.com/tomc-ghub/CET_uai2023
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‘connected subgraphs’ means the complexity of this step
scales linearly with the number of edges in the subgraph.

It also means that, in the construction of the CPAG, to cover
invariant arcs from u-structures, we only need to consider
edges X → Z in M that are not yet oriented in P , and
where Z is part of a nontrivial SCC (size ∣SCC(Z)∣ ≥ 2),
and the Y in Lemma 2 are all other parents of SCC(Z)
that are not adjacent to X and/or Z inM. Note that the arcs
oriented thusly were previously captured by the exhaustive
search in step (c) of the CPAG-from-Graph algorithm in
section 2.5.

We can now bring these steps together in Algorithm 2.5

Algorithm 2 Graph-to-CPAG

Input: directed cyclic graph G over nodes V,
Output: CPAG P ,
(M, SCC) ← Graph-to-CMAG(G)
part 1: new-CET rules (i)-(iii)
P ← skeleton ofM with all ○Ð○ edges
P ← copy all (virtual) v-structures fromM
for all X ○Ð○ Z in P , X → Z inM, ∣SCC(Z)∣ ≥ 2 do

if ∃⟨X,Z,Z ′, Y ⟩ as u-structure inM then
orient X → Z in P {Lemma 2}

end for
part 2: new-CET rule (iv)
for all Z ○Ð○W at virtual v-structures ⟨X,Z,Y ⟩ do

if ⟨X,W,Y ⟩ is virtual collider triple or
∃⟨X,B,Y ⟩ as virt. coll. triple, with B ∉ an(Z),
uncovered B ÐÐ∗ ..ÐÐ∗W ← Z inM, and
∄U ∶ {v-structure X → U ← Y inM,W ∈ de(U)}

then copy edge Z ∗ÐÐ∗W fromM to P
end for

In practice we already copy invariant features to the CPAG
while constructing the CMAG to improve efficiency. Note
that the final output CPAG is d-separation complete, but not
guaranteed to be identical to the CPAG from the original
CPAG-from-Graph algorithm. This is because steps (c) and
(f) there contain an exhaustive search that also orients certain
arcs that are sound but not needed for the CET, but could
also be obtained from subsequent implied orientation rules,
similar to the PC/FCI algorithm. Therefore the CPAGs from
the two algorithms cannot be compared directly against each
other to establish Markov equivalence. However the main
result remains the same:

Theorem 2 For two different directed graphs G1 and G2, let
P1 andP2 be the corresponding CPAGs output by algorithm
2. Then G1 is Markov (d-separation) equivalent to G2 iff
P1 = P2.

5The second clause in the ‘if’ statement in part 2 was added as
a result of the correction to CET rule (iv).

4.3 COMPUTATIONAL COMPLEXITY

The scaling behaviour of Algorithm 2 depends primarily
on the number of vertices N and average node degree d
corresponding to N ∗ d edges in the graph.

The first part of algorithm 1 requires order O(N +N ∗ d)
steps to find the strongly connected components, followed
by a loop over N vertices comparing d2 parents, so over-
all O(N ∗ d2). Similarly, the second part of algorithm 1
considers d2 parents for N nodes, checking it is not a des-
cendant of d possible common children for O(N ∗ d3)
(provided the Get_StronglyConnComps step also tracks
the ancestral matrix for constant-time descendant checks).

Next, the first two steps in part 1 of algorithm 2, initializing
the skeleton and (virtual) v-structures, are also O(N ∗ d2).
Next, for the u-structures we may need to loop over O(N ∗
d) edges and establish connectedness in a subgraph over at
most N nodes, which can be done in order O(N ∗ d) steps
(similar to the SCC procedure) leading to overall O(N2 ∗
d2). Finally, in part 2 of algorithm 2 we need to loop over
N ∗ d edges to virtual v-structures, considering d2 other
virtual collider triples (previously identified in part 1), each
with links to d candidate nodes B, followed by a (single)
test for connectedness per edge, order O(N ∗ d), giving a
total of O(N ∗ d ∗ (d3 +N ∗ d).
So overall worst case complexity scales with O(N5) for
arbitrary density, which is a significant improvement over
the O(N7) achieved by the current state-of-the-art CPAG-
from-Graph algorithm.

In practice, even for large graphs there is typically only a
relatively small number of cases to consider in the final steps,
and so for both procedures the actual scaling behaviour is
usually much better than this worst-case bound suggests, as
evidenced by the next section.

5 EXPERIMENTAL EVALUATION

In order to evaluate the performance of the CPAG-from-
graph procedure as a function of size and density of the
graph we generate collections of random directed cyclic
graphs and track both average and worst-case performance
in terms of number of elementary operations and time.

Note that in generating the random cyclic graphs we intro-
duced a few parameters to be able to tweak the number and
type of cycles included, as for increasing size and density
truly random cyclic graphs quickly tend to collapse into the
‘one big cycle’ type, avoiding most of the intricacies from
CET rules (iv) and (v) that relate to invariate edges between
cycles; see section 1.1 in the supplement for details.
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Figure 4: Log-log plot depicting scaling behaviour of original
(red/magenta) and new CPAG algorithms (blue/green), as a func-
tion of size of the graph N , for two different densities d ∈
{3.0,5.0}. Solid lines indicate average performance over 100 in-
stances, dashed lines the worst case encountered.

5.1 SCALING BEHAVIOUR

Figure 4 shows the results for the two CPAG-from-graph
procedures. As expected, the scaling behaviour of the new
procedure in Algorithm 2 is much more benign. As a result,
for graphs of N = 200 nodes with density d = 3.0, the latter
requires only about 0.05 sec. on average to construct the
CPAG, whereas the original version takes about 78 sec.: a
speed-up by 3 orders of magnitude.

In the supplement we see that the original CPAG-from-
Graph procedure spends the vast majority of its time in the
expensive d-separation searches in stage (a) and (c), whereas
for sparse graphs the new Graph-to-CPAG version spends
roughly equal amounts in each phase. For denser graphs,
the final stage in the latter starts to dominate, as expected
from the complexity analysis in section 4.3.

Finally, note that for both algorithms in this experiment there
is not much difference between average and worst-case scal-
ing behaviour in the collection of randomly sampled graphs
(around 1.5 − 2.0 times more expensive for both versions),
and both stay well below their theoretical worst-case limits.
The reason is that, in order to reach the dreaded ‘worst case’
scenario, the graphs require very specific configurations that
are extremely unlikely to occur in truly random graphs. As
a result, a reassuring message of Figure 4 is that in practice
the challenge of handling even (very) large cyclic directed
graphs is likely to remain feasible in practice, despite the
quite imposing theoretical worst-case limit.

6 DISCUSSION

We presented a new, ancestral perspective on the Cyclic
Equivalence Theorem for directed graphs that resulted in
a fast and efficient procedure to obtain the CPAG from an
arbitrary directed graph.

The resulting CPAGs can be compared directly to establish
Markov equivalence between cyclic directed graphs, but
so far we made no attempt to derive all invariant features
shared by all (and only) the CMAGs in the same equivalence
class. In other words, we did not yet aim for the maximally
informative CPAG. As a result, not all identifiable cycles
are guaranteed to appear in an easily recognisable form.
Squeezing out all available information would likely entail
a set of additional orientation propagation rules, similar to
augmented FCI in (Zhang, 2008).

The obtained efficiency of the Graph-to-CPAG procedure in
algorithm 2 also means it is fast enough to be a viable route
for extending score-based greedy equivalence search al-
gorithms like GES (Chickering, 2002) towards cyclic graphs,
similar to recent extensions for acyclic graphs in the pres-
ence of confounders (Claassen and Bucur, 2022).

However, we consider the most promising aspect of our
results the significantly reduced conceptual complexity
provided by the ancestral perspective. The new ancestral
CET is notably simpler than the original version, and sug-
gests a natural extension to cyclic models with confounders,
analogous to that for MAGs.

Finally, the CMAG under d-separation treats strongly con-
nected components more similar to the nonlinear case under
σ-separation (Mooij and Claassen, 2020), which suggests
they may be merged to handle arbitrary cyclic relationships
in the near future. We hope this may encourage researchers
to renew work towards extending available constraint-based
algorithms towards sound and complete causal discovery in
the presence of confounders, cycles, and selection bias.
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Abstract

This part contains the revised version of the sup-
plement to the original UAI2023 publication ‘Es-
tablishing Markov Equivalence in Cyclic Directed
Graphs’. It includes the correction to rule (iv) in
Theorem 1 and the subsequent adjustment in Al-
gorithm 2, as well as a number of extensions that
should make the proofs essentially self-contained.
Numbering and notations follow the main article.

7 ADDITIONAL EXPERIMENTAL
RESULTS

This section elaborates on the random cyclic graph generat-
ing process, and a result that offers some added insight into
the inner workings of the two CPAG algorithms.

7.1 GENERATING RANDOM CYCLIC GRAPHS

In contrast to the familiar acyclic graphs, in cyclic graphs
there can be two edges between each pair of nodes, corres-
ponding to a total of N(N − 1) possible directed edges for
graphs over N nodes. However, in both the Erdos-Renyi
model (all graphs with n edges equally likely) and the Gil-
bert model (all edges appear with equal probability p), as
density or size of the graph increases, the resulting graph
is overwhelmingly likely to contain just one, big strongly
connected component, with only a few other nodes on its
periphery. As a key part of the CET is about invariant edges
between components in rule (iv) (see e.g. Figure 3 in the
main article), just evaluating on arbitrary random graphs
would likely lead to an incomplete or biased perspective.
In addition, a number of challenges in finding the correct
CPAG are related to sequences of connected two-cycles (see
main, Figure 2), which in larger fully random graphs are
also exceedingly unlikely to appear.

Therefore we tweak the random graph generating process to
allow some control over the number and size of the strongly
connected components. We introduce a 3-stage process para-
meterized by size N and density d, as well as parameters
ptwo for the proportion of two-cycles, and pacy and pcyc
for the proportion of recursive resp. nonrecursive edges that
remain:

1. randomly sample the required number of two-cycles,

2. add random arcs from lower to higher numbered nodes,

3. add completely random arcs for the remaining edges.

Afterwards a random permutation of the nodes is applied to
ensure there is no implicit bias in the ordering.

With this procedure, setting [ptwo, pacy, pcyc] = [0,1,0]
would lead to a random acyclic graph, whereas setting
[0.1,0.9,0]would lead to a random acyclic graph with some
edges turned into two-cycles. Setting [0,0,1] would lead
to a fully random cyclic graph in the Erdos-Renyi model.
In practice setting e.g. [ptwo, pacy, pcyc] = [0.1,0.82,0.08]
leads to a varied number and size of the strongly connected
components for graphs of up to N = 200 nodes with density
d = 3.0. For N = 200 this leads on average to about 11 non-
trivial strongly connected components with average largest
component size of about 17 vertices.

For larger/higher density graphs the pcyc proportion should
be reduced to avoid collapsing into the ‘one big cycle’ trap.
In our experiments for d = 5.0 we used [ptwo, pacy, pcyc] =
[0.05,0.93,0.02], which, for N = 200 resulted on average
in about 5 nontrivial strongly connected components, with
an average largest size of about 70 vertices.

Additional implementation details will be published with
the accompanying source code.

7.2 RELATIVE TIME SPENT PER STAGE

To take a closer look at the relative contribution of each stage
in the two different CPAG procedures to the overall time

Correction to - Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:433–442.
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complexity we also timed each stage separately. Average
results are depicted below.

Figure 5: Plots depicting the relative proportion each algorithm
spends on average in the different stages, as a function of the size
of the graph N , for two different densities d ∈ {3.0,5.0}. Stages
are ordered bottom up, i.e. first stage on the x-axis, second stage
on top of that etc.

We see that the original CPAG-from-Graph procedure
spends the vast majority of its time in the expensive d-
separation searches in stage (a) (blue) and (c) (yellow),
whereas the new Graph-to-CPAG version spends roughly
constant amounts in each phase. For denser graphs, the final
stage (cyan) in the latter is theoretically the most expens-
ive worst case, but remains at nearly constant proportion in
practice, as it is extremely rare to encounter such instances
in arbitrary random graphs.

The correction to rule (iv) in Theorem 1 resulted in an addi-
tional clause in the ‘if’ statement in part 2 of the Graph-to-
CPAG algorithm, but also allowed for more efficient filtering
of candidate edges to check. As a result, the implementa-
tion now spends a bit more time preparing in the 4th stage
(purple), but significantly less in the final stage (cyan), mak-
ing the new implementation as a whole scale slightly better
than the original version (about twice as fast for N = 200).

8 PROOF DETAILS

First a few results on properties of ancestral paths in
CMAGs, i.e. paths of the form X1 ÐÐ∗ .. ÐÐ∗ Xn, so that
every vertex Xi is ancestor of all X>i, and in particularX1

is ancestor of Xn, and Xn is a descendant of X1.

Lemma 3 In a CMAGM corresponding to directed graph
G, two variables X and Y are adjacent, iff X and Y are
(virtually) adjacent in G.

Proof This is Lemma 1 in (Richardson, 1997).

Lemma 4 In a CMAGM corresponding to directed graph
G, A is ancestor of B inM iff A is ancestor of B in G.

Proof If A is ancestor of B inM, then there exists a path
π = ⟨A =X0 ÐÐ∗ (X1 ÐÐ∗ ..ÐÐ∗Xn−1) ÐÐ∗Xn = B⟩ in
M. By Definition 8-(ii), each edge Xi ÐÐ∗Xi+1 along π in
M implies a directed path in G from Xi to Xi+1. Concaten-
ating them provides a directed path from A to B in G which
implies A is ancestor of B in G. Conversely, if A is ancestor
of B in G, then this implies the existence of a directed
path π = ⟨A =X0 → (X1 → ..→Xn−1) →Xn = B⟩ in G.
By Definition 8-(i), each edge Xi ∗ÐÐ∗ Xi+1 along π in
G is also present inM, and again by 8-(ii) is of the form
Xi ÐÐ∗Xi+1. Concatenating them creates the required path
inM which proves the Lemma.

Lemma 5 In a CMAG M, if π = X1 ∗ÐÐ∗ .. ∗ÐÐ∗ Xn

is a path in M, then there is a subsequence of the Xi’s
that forms an uncovered path between X1 and Xn inM.
Similarly, if π is an ancestral path X1 ÐÐ∗ .. ÐÐ∗ Xn from
X1 to Xn, then there is a subsequence of the Xi’s that forms
an uncovered ancestral path from X1 to Xn inM.

Proof Follows directly from Lemma 4 in combination with
Lemma 13 in (Richardson, 1996a).

Now the proofs for some results in the main article.

Lemma 1 For a directed graph G and corresponding CMAG
M, there is a u-structure ⟨X,Z,Z ′, Y ⟩ in M iff there is
an uncovered itinerary π = ⟨X,Z,U, .., U ′, Z ′, Y ⟩ in G,
possibly with Z = U ′ or U = U ′, where ⟨X,Z,U⟩ and
⟨U ′, Z ′, Y ⟩ are a pair of m.e. conductors w.r.t. the uncovered
itinerary π in G.

Proof By Definition 9, a u-structure ⟨X,Z,Z ′, Y ⟩
implies the existence of an uncovered path π =
⟨X,Z,U1, .., Uk, Z

′, Y ⟩ (possibly with U1 = Uk or U1 =
Z ′, Uk = Z) between nonadjacent X and Y inM, corres-
ponding to an uncovered itinerary in G where all nodes
{Z,Z ′, U1, .., Uk} are ancestors of each other, but not of X
or Y , which implies ⟨X,Z,U1⟩ and ⟨Uk, Z

′, Y ⟩ are a pair
of m.e. conductors w.r.t. the uncovered itinerary π in G.

Conversely, if ⟨X,Z,U⟩ and ⟨U ′, Z ′, Y ⟩ are a pair
of m.e. conductors w.r.t. an uncovered itinerary
π = ⟨X,Z,U, .., U ′, Z ′, Y ⟩ in G, then π is a also
an uncovered path ⟨X,Z, .., Z ′, Y ⟩ in M, where all
intermediate nodes are ancestor of each other, as
{Z,U, .., U ′, Z ′} ⊂ SCC(Z), but not ancestors of X or Y ,
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and so X → Z and Z ′ ← Y inM, which by Definition 9
implies ⟨X,Z,Z ′, Y ⟩ is a u-structure.

Lemma 2 In a CMAG M, a pair of nodes ⟨X,Z⟩ is
part of a u-structure ⟨X,Z,Z ′, Y ⟩ with a node Y ∈ Y ⊆
pa(SCC(Z))∖adj({X,Z}), iff X ∈ pa(Z), and X and Y
are connected in the subgraph over ((SCC(Z)∖adj(X))∪
{X,Z} ∪Y.

Proof The given implies the existence of some path from
X , via adjacent nodes in the undirected part of the subgraph,
to some node from Y. Let Y be the first node from Y en-
countered along this path, then ⟨X,Z1, .., Zk, Y ⟩ is a path
over distinct nodes where all Zi ∈ SCC(Z) are ancestors of
each other, but not of X or Y . If the path ⟨X,Z1, .., Zk, Y ⟩
is not uncovered, then by Lemma 5 some subsequence
⟨X,U1, .., Um, Y ⟩ with {U1, .., Um} ⊂ {Z1, .., Zk} can be
chosen so that ⟨X,U1, .., Um, Y ⟩ is an uncovered path con-
sisting solely of nodes in the subgraph. Furthermore, as all
nodes adjacent to X inM are excluded from this subgraph
with the exception of Z, it means that Z = U1 = Z1. We also
know that m ≥ 2, as all Y ∈Y were taken not to be adjacent
to Z, so Z ′ = Um ≠ Z.

Finally, as all Ui ∈ SCC(Z) are ancestors of each other,
but not of X or Y , in accordance with Definition 9,
⟨X,Z,Z ′, Y ⟩ is a u-structure.

8.1 PROOF OF THEOREM 1

In the proof of Theorem 1 we use the following (straightfor-
ward) implication:

Lemma 6 In a CMAG M, a virtual collider triple
⟨A,B,C⟩ uniquely corresponds to either:

1. a virtual v-structure ⟨A,B,C⟩, or

2. a u-structure ⟨A,B,B′,C⟩, or

3. a u-structure ⟨A,B′,B,C⟩,

where for the latter two the complementary triple ⟨A,B′,C⟩
is also a virtual collider triple.

Proof If virtual collider triple ⟨A,B,C⟩ corresponds to a
virtual v-structure, then it cannot be part of a u-structure
⟨A,B,B′,C⟩ or ⟨A,B′,B,C⟩, as that would imply the
path from A to C via B is not uncovered, contrary
Definition 9. Similarly, if virtual collider triple ⟨A,B,C⟩
corresponds to a u-structure ⟨A,B,B′,C⟩, then it cannot
also correspond to a u-structure ⟨A,B′,B,C⟩, as the
combination would imply the presence of edges A→ B and
B ← C inM, which again would contradict the fact that
the path ⟨A,B, ..,B′,C⟩ inM is uncovered. By Definition

10, in both cases the u-structure would imply that the
complementary ⟨A,B′,C⟩ also satisfies the definition of a
virtual collider triple.

We are now ready to prove the new ancestral CET:

Theorem 1 Two directed graphs G1 and G2, correspond-
ing to CMAGs M1 and M2, are Markov (d-separation)
equivalent iff

(i) M1 andM2 have the same skeleton,

(ii) M1 andM2 have the same v-structures,

(iii) M1 andM2 have the same virtual collider triples,

(iv) if ⟨A,B,C⟩ is a virtual collider triple, and ⟨A,D,C⟩
a virtual v-structure, then B is an ancestor of D inM1

iff B is an ancestor of D inM2.

Proof We show that in terms of the CPAG the first 3 rules
are equivalent to the first 4 rules in the original CET, and
that the last rule is sound and implies the last two rules in
the original CET, which means the combined set of rules is
sound and sufficient to ensure Markov equivalence.

(i) By Lemma 3, two nodes in a CMAGM are adjacent if
and only if they are (virtually) adjacent in the underlying
graph G, and so rule (i) is equivalent between the two CETs.

(ii)+(iii) By definitions 4 and 5 and rule (i), an unshielded
triple ⟨A,B,C⟩ in a CPAG is either an unshielded con-
ductor, an unshielded perfect nonconductor, or an unshiel-
ded imperfect nonconductor in G. Therefore (ii).a+(ii).b in
the original CET are equivalent to ‘have the same unshiel-
ded perfect and imperfect nonconductors’ (as the remaining
unshielded triples then all must correspond to unshielded
conductors). An unshielded perfect nonconductor in G is
a v-structure in the CMAG M, and by Definition 8 the
subset of unshielded imperfect nonconductors is equival-
ent to the set of virtual v-structures. By Lemma 6, a vir-
tual collider triple ⟨A,B,C⟩ is either a virtual v-structure,
or part of a u-structure ⟨A,B,B′,C⟩ or ⟨A,B′,B,C⟩, for
which, by Definition 10, the complementary ⟨A,B′,C⟩ is
also a virtual collider triple. By Lemma 1, that means that,
depending on the skeleton from rule (i), either ⟨A,B,U⟩
and ⟨U ′,B′,C⟩ are a pair of m.e. conductors w.r.t. un-
covered itinerary ⟨A,B,U, .., U ′,B′,C⟩, or ⟨A,B′, U ′⟩ and
⟨U,B,C⟩ are a pair of m.e. conductors w.r.t. uncovered it-
inerary ⟨A,B′, U ′, .., U,B,C⟩. The latter all follow from
rule (iii) in the original CET, and therefore rules (ii) + (iii)
combined are equivalent to rules (ii).a + (ii).b + (iii) in the
original CET.

(iv) If virtual collider triple ⟨A,B,C⟩ is a virtual v-structure,
then, by Definition 8, rule (iv) is equivalent to the original
CET rule (iv), and therefore sound. If ⟨A,B,C⟩ is part of a
u-structure, then, by Lemma 1, rule (iv) is equivalent to the
original CET rule (v), and therefore also sound. By Lemma
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6, these are the only two possibilities for virtual collider
triple ⟨A,B,C⟩, and so rule (iv) is sound.

In conclusion, all rules in Theorem 1 are sound, and imply
the rules in the original CET. Therefore, Theorem 1 suffices
to establish d-separation equivalence, which in turn, under
the assumed global directed Markov property, ensures
Markov equivalence between two graphs G1 and G2.

8.2 PROOF OF THEOREM 2

First a result on invariant ancestral paths from virtual col-
lider triples in CMAGs.

Lemma 7 Let CMAGs M1 and M2 agree on CET(i)-
(iii) in Theorem 1. Let ⟨A,B,C⟩ be a virtual collider
triple in M1, and let there be an uncovered ancestral
path π = B ÐÐ∗X1 ÐÐ∗ ..ÐÐ∗Xk in M1, so that B is
an ancestor of Xk in M1. Assume there are no (vir-
tual) v-structures ⟨A,Xi,C⟩ along the path π in M1.
Then ⟨A,B,C⟩ is also a virtual collider triple in M2,
B ÐÐ∗X1 ÐÐ∗ ..ÐÐ∗Xk is an uncovered ancestral path in
M2, and in particular, B is ancestor of Xk inM2 as well.

Proof If M1 and M2 agree on CET(i)-(iii), then both
have the same skeleton, v-structures, and virtual collider
triples. In particular, it implies that ⟨A,B,C⟩ is also a virtual
collider triple inM2, and that the uncovered path π inM1

corresponds to an uncovered path π2 = B ∗ÐÐ∗ X1 ∗ÐÐ∗
.. ∗ÐÐ∗Xk inM2 as well. Remains to show this path is also
ancestral inM2.

By contradiction: assume the path π2 is not ancestral inM2,
and let Xj be the first node along π2 (starting from X0 =
B) that has Xj ← Xj+1 in M2. No (virtual) v-structures
⟨A,Xi≥1,C⟩ implies that every node Xi along π2 has at
most one edge to A or C (i.e. not to both), so assume no
edge between A and Xj+1.

Now virtual collider triple ⟨A,B,C⟩ implies there is an
uncovered path A = X−(m+1) → X−m ÐÐ .. ÐÐ X0 = B
(possibly X−m = B) inM2. We concatenate this path and
π2 to obtain π+ = X−(m+1) → X−m ÐÐ .. ÐÐ X0 ÐÐ∗
X1 ÐÐ∗ .. ÐÐ∗ Xj ← Xj+1 in M2. Let Xi≤j be the node
along π+, closest to Xj , that has an arc Xi−1 → Xi in
M2. Note there is no edge between Xi−1 and Xj+1: for
0 < i ≤ j because π2 was uncovered, and for i = −m
because we assumed no edge between A and Xj+1, and for
the remaining −m < i ≤ 0 the edges are all undirected.

Then there is a subpath Xi−1 → Xi ÐÐ .. ÐÐ Xj ← Xj+1
(possibly Xi =Xj) inM2 where all intermediate nodes are
ancestors of each other, but not of Xi−1 or Xj+1, and so by
Lemma 5 there is also an uncovered path Xi−1 → Xp ÐÐ
..ÐÐXq ←Xj+1 inM2. This path would either correspond

to a (virtual) v-structure (if p = q), or a u-structure (if p < q)
inM2, and so, ifM1 andM2 agree on CET(i)-(iii), would
also appear as Xq ← Xj+1 inM1. But that would imply
Xq is not an ancestor of Xj+1, in contradiction with the
ancestral path from A via Xq to Xj+1 inM1.

Therefore, there can be no edge Xj ← Xj+1 along π2

in M2, and so π2 = B ÐÐ∗ X1 ÐÐ∗ .. ÐÐ∗ Xk is also
an uncovered ancestral path in M2, and in particular,
B ∈ an(Xk) as well.

We can apply the same approach to invariant descendants of
v-structures.

Lemma 8 Let CMAGsM1 andM2 agree on CET(i)-(iii)
in Theorem 1. Let Xk be a descendant of a node X0 in a
v-structure ⟨A,X0,C⟩ inM1. Then Xk is also a descend-
ant of some node Xj (possibly Xj = X0) in a v-structure
⟨A,Xj ,C⟩ inM2.

Proof IfM1 andM2 agree on CET(i)-(iii), then both have
the same skeleton, v-structures, and virtual collider triples.
Therefore, if Xk is part of a v-structure ⟨A,Xk,C⟩ inM1,
then also inM2, and so the lemma is trivially true.

If not, then Xk ∈ de(X0) inM1 implies there is an ancestral
path from X0 to Xk inM1, and so by Lemma 5 also an
uncovered ancestral path π =X0 ÐÐ∗X1 ÐÐ∗ ..ÐÐ∗Xk in
M1. By CET(i) the path π is also an uncovered path inM2.
Furthermore, by Definition 8-(iii), none of nodes Xi along
the path can be part of a virtual v-structure ⟨A,Xi,C⟩ in
M1, and so also not inM2.

Let Xj be the node closest to Xk along the path π that
is part of a v-structure ⟨A,Xj ,C⟩ (possibly Xj = X0), so
there are no other (virtual) v-structures ⟨A,Xi>j ,C⟩ along
the path inM1.

We can now apply the same argument as in the proof of
Lemma 7 to conclude that Xj ÐÐ∗ .. ÐÐ∗ Xk is also an
uncovered ancestral path inM2, and therefore indeed Xk

is also a descendant of a v-structure ⟨A,Xj ,C⟩ inM2.

Lemma 5 has the following implication, analogous to the
Claim in Case 5 in Theorem 2 in (Richardson, 1996a, p.38),
showing that CET (iv) is only needed to distinguish edges
at virtual v-structures.

Lemma 9 Let CMAGsM1 andM2 agree on CET(i)-(iii)
in Theorem 1. Let ⟨A,B,C⟩ be a virtual collider triple
and ⟨A,D,C⟩ be a virtual v-structure inM1, with B an
ancestor of D inM1, but not inM2, i.e. they do not agree
on CET (iv) and soM1 andM2 are not Markov equivalent.
Then they also differ on CET (iv) for some virtual collider
triple ⟨A,B′,C⟩ (possibly B′ = B), and virtual v-structure
⟨A,D′,C⟩ (possibly D′ = D), such that B′ ∈ an(D′) in
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M1, but B′ ∉ an(D′) inM2, where there is an uncovered
ancestral path B′ ÐÐ∗ X1 ÐÐ∗ .. ÐÐ∗ Xk ÐÐ∗ D′ in M1

(possibly B′ = Xk), corresponding to an uncovered path
B′ ÐÐ∗X1 ÐÐ∗ ..ÐÐ∗Xk ←D′ inM2.

Proof In words: if CET (iv) is needed to distinguish between
two CMAGs that are not Markov equivalent, but agree on
CET (i)-(iii), then they differ on an edge Xk ∗ÐÐ∗ D′ at a
virtual v-structure ⟨A,D′,C⟩ along an uncovered ancestral
path (except for edge Xk ∗ÐÐ∗ D) from another virtual
collider triple ⟨A,B′,C⟩ that is an ancestor of Xk in both
M1 andM2.

As B is ancestor of D in M1 there is an ancestral path
from B to D inM1, and so by Lemma 5 also an uncovered
ancestral path from B to D.

Starting from B, let D′ be the first node in a virtual v-
structure ⟨A,D′,C⟩ along this uncovered ancestral path in
M1, such that B ∉ an(D′) inM2 (possibly D′ = D). Let
B′ be the node in a virtual v-structure ⟨A,B′,C⟩ closest to
D′ on the path from B, or B′ = B if no such triple exists.

Then there is an uncovered ancestral path π = B′ ÐÐ∗
X1 ÐÐ∗ .. ÐÐ∗ Xk ÐÐ∗ D′ in M1, and so B′ ∈ an(D′)
inM1. However B′ ∉ an(D) inM2: by construction B is
an ancestor of B′ inM2 (otherwise B′ would satisfy the
criterion for D′ but be closer to B, contrary the assumed),
so if B′ ∈ an(D′) inM2, then B would also be ancestor of
D′ inM2, again contrary the assumed.

At least one node along the path π is not an ancestor of
its successor along the path in M2, otherwise B′ would
be ancestor of D′ inM2 as well. Let Xj be the first such
node along the path starting from B′, such that B′ ÐÐ∗
X1 ÐÐ∗ .. ÐÐ∗ Xj ← Xj+1 ∗ÐÐ∗ .. ∗ÐÐ∗ Xk ∗ÐÐ∗ D′ in
M2. By definition, no node Xi along this path appears in a
v-structure ⟨A,Xi,C⟩ inM1, otherwise ⟨A,D′,C⟩ would
not be a virtual v-structure. By construction, there are also
no virtual v-structures ⟨A,Xi,C⟩ on this path between B′

and D′ inM1.

We now show this implies Xj+1 = D′. By contradiction,
suppose Xj+1 ≠ D′. Then there exists an uncovered
ancestral path B′ ÐÐ∗ .. ÐÐ∗ Xj ÐÐ∗ Xj+1 in M1, where
no node Xi along this path (except perhaps B′) is part of
a virtual v-structure ⟨A,Xi,C⟩. Therefore by Lemma 7,
then B′ ÐÐ∗ .. ÐÐ∗ Xj ÐÐ∗ Xj+1 in M2, in contradiction
with the assumed Xj ← Xj+1. Therefore Xj+1 = D′, and
Xj = Xk, and so B′ ÐÐ∗ .. ÐÐ∗ Xk ← D′ is an uncovered
path inM2. It also implies that B′ ∈ an(Xk) in bothM1

andM2.

It means that if two CMAGsM1 andM2 are only different
on CET rule (iv), then they (also) differ on rule (iv) between
two nodes connected by a very specific path configuration,
which we will use in the subsequent Graph-to-CPAG al-

gorithm.

Next we show that for the caseM2 with B ∉ an(D) above,
the final edge Xk ←D′ is an invariant edge in any CMAG
that is Markov equivalent toM2. We also show that in order
to identify this invariant edge, we do not need to find all
possible pairs of nodes B and D that satisfy the conditions
in Lemma 9 above, but only the existence of some pair that
do.

Lemma 10 In CMAG M1, let ⟨A,D,C⟩ be a virtual v-
structure, with Xk ←D inM1, with Xk is not a descendant
of some node X ′ in a v-structure ⟨A,X ′,C⟩. Assume there
exists a virtual collider triple ⟨A,B,C⟩ inM1 such that B
is not an ancestor of D, B is an ancestor of Xk, and there
exists an uncovered path π = B ÐÐ∗X1 ÐÐ∗ ..ÐÐ∗Xk ←D
in M1. Then there exists a node B′ in a virtual collider
triple ⟨A,B′,C⟩ in M1 (possibly B′ = B), such that for
any CMAGM2 that is Markov equivalent toM1, in both
M1 andM2 it holds that: 1) B′ is not an ancestor of D, 2)
B′ is an ancestor of Xk, 3) Xk is not a descendant of some
node X ′ in a v-structure ⟨A,X ′,C⟩, and 4) there exists an
uncovered path π = B′ ÐÐ∗ Xj ÐÐ∗ .. ÐÐ∗ Xk ← D, and in
particular, then Xk ←D inM2 as well.

Proof The given implies thatM1 andM2 agree on CET
rules (i)-(iv). By rules (i)-(iii), both have the same skeleton,
uncovered paths, v-structures, and virtual collider triples.
Then if Xk is not a descendant of some node X ′ in a v-
structure ⟨A,X ′,C⟩ in M1, then by Lemma 8 neither in
M2, so (3) holds.

Let B′ be the node closest to D along the path π inM1 that
is part of a virtual v-structure ⟨A,B′,C⟩ (possibly B′ = B
or B′ =Xk), or B′ = B if no such virtual v-structure exists.
Then the subpath π′ = B′ ÐÐ∗ Xj ÐÐ∗ .. ÐÐ∗ Xk ← D
is an uncovered path in M1, and by construction there
are no other v-structures or virtual v-structures ⟨A,Xi,C⟩
along the path π′ between B′ and D. Then by Lemma 7
the subpath B′ ÐÐ∗ Xj ÐÐ∗ .. ÐÐ∗ Xk is also an uncovered
ancestral path in M2, and by CET(i), π′ itself is also an
uncovered path inM2, and therefore B′ ÐÐ∗Xj ÐÐ∗ ..ÐÐ∗
Xk ∗ÐÐ∗D is an uncovered path inM2, which implies (2)
holds as well.

Node B′ is not an ancestor of D inM1 (otherwise B as
ancestor of B′ would be as well, contrary the given). For
Markov equivalent graphM2, CET rule (iv) on virtual col-
lider triple ⟨A,B′,C⟩ and virtual v-structure ⟨A,D,C⟩ then
implies B′ is not an ancestor of D inM2 either, which en-
sures (1).

But then by contradiction, if Xk →D or Xk ÐÐD inM2,
then π′ would be an ancestral path from B′ to D, which
would imply B′ is an ancestor of D inM2, contrary the
given. Therefore Xk ←D inM2 as well, which proves (4).

15



The Lemma above implies that if the triggering conditions in
the second clause of the ‘if’ statement in part 2 of Algorithm
2 apply to a CMAGM1, then the same conclusion Xk ←D
will (also) trigger on a pattern that is identical between all
CMAGs Markov equivalent toM1.

Note that for B ∈ an(D) inM1, the final edge Xk ÐÐ∗D′
is not necessarily an invariant edge in every CMAG that is
Markov equivalent toM1, as an edge Xk ← D′ does not
preclude the existence of another path π′ along which B′ is
an ancestor of D′. Therefore, the invariance in Lemma 10
only applies to the explicit case ‘B ∉ an(D)’.
We can also show that when Lemma 10 is needed to orient
an invariant Xk ←D, then Xk is part of a cycle. Corollary
1 In a CMAGM, let ⟨A,B,C⟩ be a virtual collider triple,
and ⟨A,D,C⟩ be a virtual v-structure, with B ∉ an(D). Let
π = B ÐÐ∗ X1 ÐÐ∗ .. ÐÐ∗ Xk ← D be an uncovered path
inM (possibly B = Xk), with Xk not a descendant of a
node X ′ in a v-structure ⟨A,X ′,C⟩. Then, if Xk ← D is
not already implied by CET rules (i)-(iii), then Xk is part of
a cycle inM.

Proof If Xk is part of a virtual collider triple ⟨A,Xk,C⟩,
then by definition Xk is part of a cycle, and so then the
claim holds.

If Xk is not part of a virtual collider triple ⟨A,Xk,C⟩, then
if Xk−1 → Xk in M, then Xk−1 → Xk ← D would be
a (virtual) v-structure, and so already be implied by CET
(i)-(iii). Therefore, if CET (iv) is needed to orient Xk ←D,
then Xk−1 ÐÐ∗Xk ←D must be an unshielded noncollider,
and so Xk−1 ÐÐ Xk, which implies Xk−1 and Xk are part
of a cycle.

We use this in the implementation to quickly filter out can-
didate nodes W in part 2 of Algorithm 2 that are not part
of a cycle (∣SCC(W )∣ = 1), in order to avoid unnecessary
path searches.

Finally, we show that all edges between two virtual collider
nodes in a CMAG are invariant.

Lemma 11 If two CMAGsM1 andM2 are Markov equi-
valent, then if ⟨A,B,C⟩ and ⟨A,D,C⟩ are virtual collider
triples with B and D adjacent, then B is ancestor of D in
M1 iff B is ancestor of D inM2.

Proof We consider three cases: 1) both virtual collider
triples correspond to virtual v-structures, 2) one virtual col-
lider triple corresponds to a virtual v-structure, and the other
is part of a u-structure, or 3) both are part of a u-structure.
Below we will tackle each of these cases in turn:

Case 1: this is equivalent to rule (iv) of the original CET.

Case 2: let ⟨A,B,C⟩ be the virtual v-structure, and
⟨A,D,C⟩ be part of a u-structure ⟨A,D,D′,C⟩. Note this
implies there is no edge between C and D. Then if B →D

in M1, i.e. B is NOT a descendant of D, then this satis-
fies rule (v) of the original CET, meaning B is also not a
descendant of D in M2, and so B → D in M2 as well.
If B ← D inM1, then C → B ← D would be a (virtual)
v-structure, and be invariant by CET rule (ii)/(iii). The only
remaining possibility is D ÐÐ B in M1, which by sym-
metry then must also apply toM2.

Case 3: now both ⟨A,B,C⟩ and ⟨A,D,C⟩ are part of a
u-structure, but neither are virtual v-structures.

Consider B →D inM1. As A and C cannot both have an
edge to B (for then ⟨A,B,C⟩would be a virtual v-structure),
assume there is no edge between B and C. Then if vir-
tual collider triple ⟨A,D,C⟩ corresponds to a u-structure
⟨A,D′,D,C⟩, then B →D ← C corresponds to a (virtual)
v-structure, and would be invariant by CET rule (ii)/(iii). If
virtual collider triple ⟨A,D,C⟩ corresponds to a u-structure
⟨A,D,D′,C⟩, then B → D ÐÐ .. ÐÐ D′ ← C would be
a path inM1. Let D∗ be the node closest to C along the
path with an edge to B. If D∗ = D′, then B → D∗ ← C
would be a invariant (virtual) v-structure. If D∗ ≠ D′ then
B → D∗ ÐÐ .. ÐÐ D′ ← C would be an invariant u-
structure inM1, and so then B → D∗ inM2. Given that
D and D∗ are both ancestors/descendants of each other, it
follows that then B →D inM2 as well. In all cases this im-
plies edge B →D would be invariant by CET rule (ii)/(iii),
and so appear as B →D inM2.

For B ← D inM1 we can repeat the previous argument
with the roles of B and D reversed, which implies B ←D
in M2 as well. That leaves B ÐÐ D in M1 as the only
remaining option, and so necessarily must appear as
B ÐÐD inM2 as well.

We can now prove that the Graph-to-CPAG algorithm in
the main article is sound and d-separation complete, mean-
ing that the output CPAG can be used to establish Markov
equivalence between cyclic directed graphs.

Theorem 2 For two different directed graphs G1 and G2,
let P1 and P2 be the corresponding CPAGs output by
the Graph-to-CPAG algorithm. Then G1 is Markov (d-
separation) equivalent to G2 iff P1 = P2.

Proof We cover three aspects of the claim: 1) soundness of
the output PAG, 2) d-separation completeness of the output
PAG (which implies it is a CPAG), and 3) equality between
CPAGs if and only if they are Markov equivalent.

1) Soundness of the algorithm follows from Theorem 1,
in combination with the fact that: a) each orientation in
part 1 of the algorithm has a direct match to an invariant
feature implied by the CET rules (i)-(iii), b) all orientations
between adjacent triples from the first ‘if’ clause in part
2 of the algorithm are sound by Lemma 11, and c) the
remaining orientations between nonadjacent triples implied
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by CET rule (iv) from the second ‘if’ clause in part 2 are
sound by Lemma 10. Therefore all orientations correspond
to invariant features in the Markov equivalence class of the
input graph G, which guarantees the output is a valid PAG.

2) d-separation completeness follows from the fact that if
two graphs G1 and G2 are not Markov equivalent, then the
algorithm will make at least one different orientation in the
corresponding output PAGs P1 and P2 (which therefore
qualify as CPAGs).

Part 1 of the algorithm captures the entire skeleton, all v-
structures, all virtual v-structures, and all invariant edges
from u-structures into a cycle. Therefore, if CMAGsM1

andM2 corresponding to graphs G1 resp. G2 differ in any
feature corresponding to CET rules (i)-(iii), then this will
lead to at least one different edge/orientation between the
output PAGs P1 and P2.

IfM1 andM2 agree on CET (i)-(iii), but are not Markov
equivalent (i.e. they disagree only on CET (iv)), then by
Lemma 9 they differ on (at least) one Xk ∗ÐÐ∗D along an
uncovered path B ÐÐ∗ X1 ÐÐ∗ .. ÐÐ∗ Xk ∗ÐÐ∗ D between
some virtual collider triple ⟨A,B,C⟩ and virtual v-structure
⟨A,D,C⟩, for which B ∈ an(D) inM1, but B ∉ an(D)
inM2.

In part 2 of the algorithm, if B ∉ an(D) in the CMAGM
corresponding to input graph G, then all such uncovered
paths (or edge) between B and D will obtain an orienta-
tion Xk ← D (possibly Xk = B) in the output PAG P . If
B ∈ an(D) in the CMAG M, then at least one of these
paths must have Xk ÐÐ∗D inM (again possibly Xk = B),
otherwise there would be no ancestral path from B to D in
M, contrary the assumption that B ∈ an(D). By the sound-
ness of the algorithm, this edge will obtain either Xk →D,
Xk ÐÐ D, or Xk ○Ð○ D in the output PAG P (again pos-
sibly with Xk = B).

Therefore if two CMAGs M1 and M2 are not Markov
equivalent, then there is at least one edge or orientation
different between the corresponding output PAGs P1 and
P2. Therefore the output PAG P uniquely identifies the
Markov equivalence class of input graph G, which also
implies the output PAG P is indeed a CPAG.

3) equality: the ‘only if’ part follows from the d-separation
completeness of the algorithm, above. Remains to show that
when two graphs G1 and G2 are Markov equivalent then the
corresponding output CPAGs P1 and P2 are also identical.
For an input graph G1, part 1 of the algorithm exhaustively
searches for all and only the edges (skeleton), v-structures,
and virtual collider triples implied by CET (i)-(iii). Any
graph G2 that is Markov equivalent to G1 must have the
same skeleton, v-structures, and virtual collider triples, and
therefore the two (intermediate) PAGs P1 and P2 must be
identical after part 1.

For the remaining orientations in part 2 of the algorithm,

note that all required elements: virtual v-structures, vir-
tual collider triples, and skeleton are implied by CET rules
(i)-(iii), and therefore identical between the corresponding
CMAGsM1 andM2. By Lemma 10, if an orientation in
part 2 is triggered for some CMAGM1, then it would also
trigger on a pattern in M1 that is invariant between all
Markov equivalent CMAGs.

Therefore, for Markov equivalentM1 andM2, any orient-
ation for P1 in part 2 of the algorithm will also be oriented
identically in P2 and v.v. Combined with the fact that P1

and P2 are identical after part 1 of the algorithm, this proves
the ‘if’ part of the Theorem.

As a result, for graphs G1 and G2, the corresponding output
P1 and P2 of the Graph-to-CPAG algorithm is identical iff
G1 and G2 are Markov equivalent.

9 MARKOV PROPERTIES FOR
STRUCTURAL CAUSAL MODELS

We state here some of the key definitions and results in the
theory of Structural Causal Models (SCMs). These models,
also known as Structural Equation Models (SEMs), were in-
troduced a century ago by Wright (1921) and popularized in
AI by Pearl (2009). We follow here the treatment of Bongers
et al. (2021), as it deals with cycles in a mathematically rig-
orous way.

Definition 11 (SCM) A Structural Causal Model (SCM) is
a tuple M = ⟨V,W,XV,XW, f , PM ⟩ of:

1. finite disjoint index sets V,W for the endogenous and
exogenous variables in the model, respectively;

2. a product of standard measurable spaces XV =
∏v∈VXv, which define the domains of the endogen-
ous variables;

3. a product of standard measurable spaces XW =
∏w∈WXw, which define the domains of the exogen-
ous variables;

4. a measurable function f ∶ XV ×XW → XV, the causal
mechanism;

5. a product probability measure PM = ∏w∈W Pw on
XW, with each Pw a probability measure on Xw, spe-
cifying the exogenous distribution.

The causal structure of the SCM is encoded by the depend-
ences of the components of f on the variables in the model.
This is formalized by:

Definition 12 (Parent) Let M be an SCM. We call i ∈V ∪
W a parent of k ∈ V if and only if there does not exist a
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measurable function f̃k ∶ XV∖{i} × XW∖{i} → Xk such that
for PM -almost every w ∈ XW, for all v ∈ XV,

vk = f̃k(v∖i,w∖i) ⇐⇒ vk = fk(v,w).

Intuitively, this means that the k’th component of f does
depend on the i’th variable. This definition allows us to
define the directed mixed graph (DMG) associated to an
SCM:

Definition 13 (Graph) Let M be an SCM. The graph of
M , denoted G(M), is defined as the directed mixed graph
with nodes V, directed edges v1 → v2 iff v1 is a parent
of v2 according to M , and bidirected edges v1 ↔ v2 iff
there exists w ∈W such that w is parent of both v1 and v2
according to M .

If G(M) is acyclic, we call the SCM M acyclic, otherwise
we call the SCM cyclic. If G(M) contains no bidirected
edges, we call the endogenous variables in the SCM M
causally sufficient (which is what we assumed in the present
work for simplicity).

SCMs provide an implicit description of their solutions.

Definition 14 (Solutions) A random variable
X = (XV,XW) is called a solution of the SCM
M if XV = (Xv)v∈V with Xv ∈ Xv for all v ∈ V,
XW = (Xw)w∈W with Xw ∈ Xw for all w ∈ W, the
distribution P(XW) is equal to the exogenous distribution
PM , and the structural equations:

Xv = fv(XV,XW) a.s.

hold for all v ∈V.

For acyclic SCMs, solutions exist and have a unique distribu-
tion that is determined by the SCM. This is not generally the
case in cyclic SCMs, as these could have no solution at all,
or could have multiple solutions with different distributions.

Definition 15 (Unique solvability) An SCM M is said to
be uniquely solvable w.r.t. O ⊆V if there exists a meas-
urable mapping gO ∶ XpaG(M)(O)∖O → XO such that for
PM -almost every w ∈ XW, for all v ∈ XV:

vO = gO(v(paG(M)(O)∖O)∩V,wpaG(M)(O)∩W)
⇐⇒ vO = fO(v,w).

Loosely speaking: the structural equations for O have an
essentially unique solution for vO in terms of the other
variables appearing in those equations. If M is uniquely
solvable with respect to V (in particular, this holds if M is
acyclic), then it induces a unique observational distribution
PM(XV), the push-forward of PM through gV.

One of the key aspects of SCMs—which we do not dis-
cuss here in detail because we do not make use of it in this
work—is their causal semantics, which is defined in terms
of interventions. Instead, we discuss only their probabilistic
properties. In particular, under appropriate assumptions, the
graph G(M) of an SCM M represents conditional independ-
ences that its solutions must satisfy. As shown already by
Spirtes (1994, 1995), the directed global Markov property
does not hold in general for cyclic SCMs.

Example 1 (d-separation fails) Consider the SCM M =
⟨{A,B,C,D},{5,6,7,8},R4,R4, f , PM ⟩ where PM is the
standard-normal distribution on R4, and the causal mech-
anism is given by:

f(x) = (x5, x6, xAxD + x7, xBxC + x8)

The graph G(M) is depicted in Figure 1 (left). This SCM
is uniquely solvable with respect to its strongly connected
components {A}, {B}, and {C,D}. One can check that for
every solution X of M, XA is not independent of XB given
{XC ,XD}. However, the nodes A and B are d-separated
given {C,D} in G(M). Hence the global directed Markov
property does not hold for M .

For more concrete examples of cyclic SCMs, we refer the
reader to (Bongers et al., 2021). Spirtes (1994) proved a
weaker Markov property in terms of a ‘collapsed graph’,
assuming causal sufficiency and densities. Forré and Mooij
(2017) found the following formulation in terms of ‘σ-
separation’ that is immediately applicable to the graph of
the SCM itself.

Definition 16 (Blockable and unblockable noncolliders)
Let G be a directed mixed graph and π a path in G. We
call a noncollider on π unblockable if it is not an end-node
and it only has outgoing edges on π to nodes in the same
strongly connected component of G; otherwise, it is called
blockable.

If G is acyclic then all noncolliders are blockable.

Definition 17 (σ-separation) For a triple of node sets
X,Y,Z in a graph G, we say that X is σ-connected to
Y given Z iff there is an X ∈X and Y ∈Y such that there
is a path π between X and Y on which every blockable non-
collider is not in Z, and every collider on π is an ancestor
of Z; otherwise X and Y are said to be σ-separated given
Z.

Note the small difference with the definition of d-connection:
σ-connection only considers the blockable noncolliders. The
following general result was shown by Forré and Mooij
(2017).
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Theorem 3 (σ-Separation Markov property) Let M be
an SCM that is uniquely solvable w.r.t. each strongly connec-
ted component of G(M). Then, the observational distribu-
tion of M exists and is unique. Furthermore, for a solution
X of M and for A,B,C ⊆V: if A is σ-separated from B
given C in G(M), then XA is conditionally independent of
XB given XC.

Proof See the proof of Theorem A.21 in Bongers et al.
(2021).

Under certain additional assumptions, one can show the
stronger d-separation criterion (also known as the global
directed Markov property).

Theorem 4 (d-Separation Markov property) Let M be
an SCM that satisfies one of the following three assump-
tions:

1. M is acyclic;

2. • all endogenous domains Xv for v ∈ V are dis-
crete, and

• M is uniquely solvable w.r.t. each ancestral sub-
set A ⊆V (that is, each subset A ⊆V such that
anG(M)(A) = A);

3. • XV = RV and XW = RW, and
• f is a linear mapping, and
• each v ∈V has at least one parent in W accord-

ing to M , and
• PM has a density w.r.t. the Lebesgue measure on
RW.

Then, the observational distribution of M exists and is
unique. Furthermore, for a solution X of M and for
A,B,C ⊆V: if A is d-separated from B given C in G(M),
then XA is conditionally independent of XB given XC.

Proof See the proof of Theorem A.7 in Bongers et al.
(2021). The acyclic case is well known. The discrete case
fixes the erroneous theorem by Pearl and Dechter (1996),
for which a counterexample was found by Neal (2000), by
adding the assumption of unique solvability with respect
to each ancestral subset, and extends it to allow for bid-
irected edges in the graph. The linear case is an extension
of existing results for the linear-Gaussian setting without
bidirected edges Spirtes (1994, 1995); Koster (1996) to a
linear (possibly non-Gaussian) setting with bidirected edges
in the graph.

For this paper, we assume that the global directed Markov
property holds with respect to a graph that contains no bid-
irected edges. From the above theorem, it follows that this
will hold if the data comes from the observational distribu-
tion of a causally sufficient SCM that falls into either the
acyclic case (1), the discrete case (2), or the linear case (3).
Note that these assumptions are sufficient, but not necessary.
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