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Abstract

Random Differential Equations provide a nat-
ural extension of Ordinary Differential Equa-
tions to the stochastic setting. We show how,
and under which conditions, every equilib-
rium state of a Random Differential Equation
(RDE) can be described by a Structural Causal
Model (SCM), while pertaining the causal se-
mantics. This provides an SCM that captures
the stochastic and causal behavior of the RDE,
which can model both cycles and confounders.
This enables the study of the equilibrium states
of the RDE by applying the theory and sta-
tistical tools available for SCMs, for example,
marginalizations and Markov properties, as we
illustrate by means of an example. Our work
thus provides a direct connection between two
fields that so far have been developing in iso-
lation.

1 Introduction

Uncertainty and random fluctuations are a very common
feature of real dynamical systems. For example, most
physical, financial, biochemical and engineering systems
are subjected to time-varying external or internal random
disturbances. These complex disturbances and their as-
sociated responses are most naturally described in terms
of stochastic processes. A more realistic formulation of
a dynamical system in terms of differential equations
should involve such stochastic processes. This led to
the fields of stochastic and random differential equations,
where the latter deals with processes that are sufficiently
regular. Random differential equations (RDEs) provide
the most natural extension of ordinary differential equa-
tions to the stochastic setting and have been widely ac-
cepted as an important mathematical tool in modeling

and analysis of numerous processes in physics and en-
gineering systems (Bunke, 1972; Soong, 1973; Sobczyk,
1991; Rupp and Neckel, 2013).

These internal and external disturbances of RDEs are not
only of stochastic nature, but they are also of causal na-
ture. They are causal in the sense that the disturbance
processes are affecting other processes of the system.
This allows us to model interventions on RDEs by forc-
ing certain processes to be of a certain form, e.g. moving
an object to a fixed position. Perfect or surgical interven-
tions break any other causal influences on the intervened
processes, but other types of interventions also occur in
practice.

Although at least in principle random differential equa-
tions could be used for modeling causal relationships be-
tween the processes, infering such causal models from
data is often difficult. A significant practical drawback
of this modeling class is that obtaining time series data
with sufficiently high temporal resolution is often costly,
impractical or even impossible. Another issue is that if
one has only access to a subset of the system’s processes,
for example due to practical limitations on the measura-
bility of some of the processes, then in general there does
not have to exist an RDE on this subset of processes that
could be estimated. A similar issue arises when the RDE
contains exogenous latent confounding processes.

Structural causal models (SCMs), also known as struc-
tural equation models, are another well-studied causal
modeling tool and have been widely applied in the genet-
ics, economics, engineering and social sciences (Pearl,
2009; Spirtes et al., 2000; Bollen, 1989). One of the ad-
vantages of SCMs over other causal modeling tools is
that they have the ability to deal with cyclic causal re-
lationships (Spirtes, 1995; Hyttinen et al., 2012; Mooij
et al., 2011; Forré and Mooij, 2017; Bongers et al., 2016).
In particular, recent work has shown how one can apply
Markov properties (Forré and Mooij, 2017), how one can
deal with marginalization and how one can causally in-
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terpret these models in the cyclic setting (Bongers et al.,
2016).

Over the years, several attempts have been made to in-
terpret these structural causal models that include cyclic
causal relationships. They can be derived from an under-
lying discrete-time or continuous-time dynamical system
(Fisher, 1970; Iwasaki and Simon, 1994; Dash, 2005;
Lacerda et al., 2008; Mooij et al., 2013). All these meth-
ods assume that the dynamical system under consider-
ation converges to a single static equilibrium, with the
exception of the analysis by Fisher (1970), who assumes
that observations are time averages of a dynamical sys-
tem. These assumptions give rise to a more parsimonious
description of the causal relationships of the equilibrium
states and ignore the complicated but decaying transient
dynamics of the dynamical system. The assumption that
the system has to equilibrate to a single static equilibrium
is rather strong and limits the applicability of the theory,
as many dynamical systems have multiple equilibrium
states.

In this paper, we relax this condition and capture, under
certain convergence assumptions, every random equilib-
rium state of the RDE in an SCM. Conversely, we show
that under suitable conditions, every solution of the SCM
corresponds to a sample-path solution of the RDE. Intu-
itively, the idea is that in the limit when time tends to in-
finity the random differential equations converge exactly
to the structural equations of the SCM. Moreover, we
show that this construction is compatible with interven-
tions under similar convergence assumptions. We like
to stress that our construction automatically captures the
stochastic behavior of the RDE in the associated SCM.
It can deal with randomness in the initial conditions, the
coefficients and via the random inhomogenous part (cap-
tured as additive noise in the SCM), thereby significantly
extending the work by Mooij et al. (2013) who only con-
siders the deterministic setting.

The advantage of SCMs over RDEs is that by not mod-
eling the transient random dynamics of the RDE, one ar-
rives at a more compact representation for learning and
prediction purposes of random systems that have reached
equilibrium. Another advantage is that one can marginal-
ize over a subset of the systems variables and get a more
parsimonious representation that preserves the causal se-
mantics (Bongers et al., 2016). Yet another advantage
is that it is easier to deal with confounders within the
framework of SCMs, as we only need to model the equi-
librium distribution of these confounders, and don’t need
to model their dynamics.

The remainder of the paper is organized as follows: In
Section 2 we review the necessary theory about stochas-
tic processes in order to describe RDEs. In Section 3 we

introduce random dynamical models, that define RDEs
together with interventions, and we discuss convergence
properties of those models. In Section 4 we introduce
structural causal models. In Section 5 we present our
main result, which builds the bridge between RDEs and
SCMs. In Section 6 we give an example from chemi-
cal kinetics and Section 7 contains a discussion including
some open problems. Proofs are provided in the Supple-
mentary Material.

2 Preliminaries

Let T be a set. A stochastic process is an Rn-valued
functionX : T ×Ω→ Rn such thatXt (which denotes
X(t, .)) is for each t ∈ T an F-measurable function1

(i.e. a random variable) on a probability space (Ω,F ,P).
We will always assume that there exists some back-
ground probability space (Ω,F ,P) on which the random
variables and processes live. Furthermore, T will always
denote an interval in R and has the meaning of time, if
not stated otherwise. For each ω ∈ Ω we have an Rn-
valued function Xt(ω) : T → Rn from t to Xt(ω),
which is called a sample path or realization ofX .

Let two such processes X and Y be equivalent, i.e.,
for all t ∈ T we have P(Xt = Yt) = 1, then for all
t ∈ T there are sets Ωt ∈ F such that P(Ωt) = 1 and
Xt(ω) = Yt(ω) holds for all (t, ω) ∈ ∪t∈T ({t} × Ωt).
If, moreover, one can choose the sets Ωt independently
of t, that is Ωt = Ω∗ such thatXt(ω) = Yt(ω) holds for
all (t, ω) ∈ T ×Ω∗, then we denote such an equivalence
between the processesX and Y byX T

= Y .

If the sample paths of a stochastic processX are contin-
uous on T for almost all ω ∈ Ω, then the process X is
called sample-path continuous on T . For a sample-path
continuous process X and t ∈ T the function defined,
with probability one, by

lim
s→t

Xs

is a random variable, if it exists (Doob, 1953; Loéve,
1977). Moreover, a stochastic process X is called
sample-path differentiable on T , if there exists a set
Ω∗ ∈ F such that P(Ω∗) = 1 and that for all ω ∈ Ω∗

the derivative

Ẋt(ω) :=
d

dt
Xt(ω) := lim

h→0

Xt+h(ω)−Xt(ω)

h
, t ∈ T ,

exists. The mapping Ẋ : T × Ω∗ → Rn is called the
sample-path derivative of X . Note that there is always
a stochastic process Y such that Y T

= Ẋ . Similarly
1Assuming the Borel σ-algebra Bn on Rn, that is the small-

est σ-algebra on Rn which contains all open n-balls.



the sample-path integral is defined, that is, a stochastic
process X is called sample-path integrable on T , if the
integral2

∫
T
Xt(ω)dt exists for almost all ω ∈ Ω.

A random vector X : Ω → Rn can itself be seen as a
stochastic process, that is the process X : T × Ω→ Rn

defined by X(t, ω) := X(ω). This stochastic process
is by definition sample-path continuous. Moreover, if a
process X : T × Ω→ Rn is sample-path continuous on
T = R and there exists a random variableX∗ : Ω→ Rn

such that
lim
t→∞

Xt = X∗

almost surely, then we say that X converges to X∗ and
we will call the processX convergent.

3 Random Differential Equations

Ordinary differential equations, which have the general
form

dx

dt
= f(t, x) , (1)

provide a simple deterministic description of the dynam-
ics of dynamical systems. The solution x(t) of an initial
value problem consisting of differential equation (1) to-
gether with an initial value

x(t0) = x0 (2)

represents the state of such a system at time t, given that
the state (2) was attained at time t0. The inclusion of ran-
dom effects in the dynamical system leads to a number of
modifications that can be made to the formulation of the
initial value problem (1), (2) (Gard, 1988). The first, and
simpler, case arises when the initial value is replaced by a
random variableX0. The second case arises when the de-
terministic function f(t, x) has random coefficients, i.e.
it is replaced by a random function F (t,X,E), where E
is a stochastic process uncoupled with the solution pro-
cess X . As a special case, f(t, x) may be replaced by a
random function with a random inhomogenous part (i.e.,
additive noise), that is, it is replaced by a random func-
tion F (t,X) + E. Of course, a combination of these
cases could hold.

The inclusion of random effects in differential equa-
tions leads to two distinct classes of equations, for
which the random processes have differentiable and non-
differentiable sample paths, respectively. If the random
processes occuring in a differential equation (for exam-
ple X and E) are sufficiently regular, i.e. have differen-
tiable sample paths, then the majority of problems can be

2We use here Lebesgue integration, hence we assume the
Lebesgue measure on the Lebesgue σ-algebra of Lebesgue
measurable sets of T .

analyzed by use of methods which are analogous to those
in deterministic theory of differential equations; such
equations are called random differential equations. The
second class occurs when the inhomogenous part is an ir-
regular stochastic process such as Gaussian white noise.
The equations are then written symbolically as stochas-
tic differentials, but are interpreted as integral equations
with Ito or Stratonovich stochastic integrals. These dif-
ferential equations are called stochastic differential equa-
tions. In this paper, we will focus on random differential
equations.

3.1 Observational random dynamical models

We will define a random differential equation in terms of
an observational random dynamical model:

Definition 1. An observational random dynamical model
(oRDM) is a tuple

Ro := 〈T, I,J ,X ,E,F ,E〉

where

• T ⊆ R is a time interval,

• I is a finite index set of endogenous processes,

• J is a finite index set of exogenous processes,

• X =
∏

i∈I X i is the product of the codomains
of the endogenous processes, where each codomain
X i = Rdi ,

• E =
∏

j∈J Ej is the product of the codomains
of the exogenous processes, where each codomain
Ej = Rej ,

• F : X × E → X is a function that specifies the
dynamics,

• E : T ×Ω→ E is an exogenous stochastic process.

The oRDM gives the observational random dynamics of
the random dynamical system, without any intervention
from outside. The random dynamics are described in
terms of random differential equations (Bunke, 1972):

Definition 2. A stochastic processX : T ×Ω→ X is a
sample-path solution of the random differential equations
(RDE) associated toRo,

Ẋ = F (X,E) , (3)

if the ordinary differential equations (ODE)

Ẋ(t, ω) = F (X(t, ω),E(t, ω))

are satisfied for almost all ω ∈ Ω.

Let t0 ∈ T and let X0 be a d-dimensional random vari-
able, where d =

∑
i∈I di, such thatXt0 = X0 a.s., then



X is called a sample-path solution of (3) with respect to
the initial condition (X0, t0).

The sample-path solution of (3) with respect to the initial
condition (X0, t0) is called unique on T if for an arbi-
trary pairX , X̃ of sample-path solutions with respect to
the initial conditions (X0, t0) we haveX T

= X̃ .

We associated an ordinary differential equation to any
specific sample path Xt(ω). The solutions of these or-
dinary differential equations are the sample paths of a
stochastic process X , which is the sample-path solution
of the random differential equation.

In particular, an oRDM is a deterministic dynam-
ical model, if the background probability space is
({1}, {∅, {1}},P{1}). In this setting, the associated RDE
is just a single ODE.
Example 1 (Damped coupled harmonic oscillator).
Consider the well-known damped coupled harmonic os-
cillator, consisting of a one-dimensional system of d
point masses mi ∈ R (i = 1, . . . , d) with positions
Qi and momenta Pi. They are coupled by springs, with
spring constants ki ∈ R and equilibrium lengths `i ∈ R
(i = 0, . . . , d), under influence of friction with friction
coefficients bi ∈ R and with fixed end-points Q0 = 0
and Qd+1 = L (see Figure 1).

m1 m2 m3 m4 m5

`0 `1 `2 `3 `4 `5

Q = 0 Q = L

Figure 1: Damped coupled harmonic oscillator for d =
5.

The equations of motion of this system are provided by
the ODE:

Ṗi = ki(Qi+1 −Qi − `i)

− ki−1(Qi −Qi−1 − `i−1)− bi
m1

Pi

Q̇i = Pi/mi .

Suppose that the lengths `i are not constant, but are inde-
pent normally distributed around L/(d + 1) with a cer-
tain variance. Then this ODE with random coefficients
is actually a random differential equation modeled by an
oRDM.

If the oRDM is sufficiently regular, then the majority
of problems for such models can be analyzed by use of
methods which are analogous to those in the theory of
ordinary differential equations (Bunke, 1972; Sobczyk,
1991; Rupp and Neckel, 2013).
Definition 3. An oRDMRo is called regular if F : X ×
E → X is continuous and E is sample-path continous.

For ordinary differential equations a sufficient condition,
for the existence and uniqueness of a solution with re-
spect to an initial value, is the Lipschitz condition. Sim-
ilarly, one can prove, by using results from the theory of
ordinary differential equations, that there exists a similar
sufficient condition for random differential equations of
regular oRDMs.

Theorem 1. Consider a regular oRDMRo. If for almost
all ω ∈ Ω there exists a continuous function Lω : T → R
such that for each t ∈ T and x1, x2 ∈ X the condition

‖F (x1,E(t, ω))− F (x2,E(t, ω))‖ ≤ Lω(t)‖x1 − x2‖

is satisfied, where ‖ · ‖ means the Euclidean norm in
X , then for any initial condition (X0, t0) there ex-
ists a unique sample-path solution of the RDE (3) w.r.t.
(X0, t0).

3.2 Intervened random dynamical models

Interventions on an observational random dynamical
model can be modeled in different ways. Here we will
consider interventions on the endogenous processes. We
model an intervention on a subset K ⊆ I of the en-
dogenous processes by forcing those processes to be
ηK : T ×Ω→ XK . This can be seen as a “surgical” in-
tervention, since they break the causal influences on the
intervened processes (Eberhardt, 2014). The random dy-
namics of the other processes I \ K are still untouched
and are described in terms of the RDE associated to those
processes, that is3

Ẋ\K = F\K(X\K ,ηK ,E) .

This yields the following random dynamical model in-
cluding interventions.

Definition 4. A random dynamical model (RDM) is a
tuple

R := 〈T, I,J ,K,X ,E,F\K ,ηK ,E〉

where

• T ⊆ R is a time interval,

• I is a finite index set of endogenous processes,

• J is a finite index set of exogenous processes,

• K ⊆ I is a subset of intervened processes,

• X =
∏

i∈I X i is the product of the codomains
of the endogenous processes, where each codomain
X i = Rdi ,

• E =
∏

j∈J Ej is the product of the codomains
of the exogenous processes, where each codomain
Ej = Rej ,

3For K ⊆ I, we adopt the notation \K for I \K.



• F\K : X × E → X \K is a function that specifies
the dynamics of the I \K processes,

• ηK : T × Ω → XK is an intervened stochastic
process,

• E : T ×Ω→ E is an exogenous stochastic process.

If K = ∅, then we call R also a non-intervened random
dynamical model, otherwise we will call it an intervened
random dynamical model.

The (intervened) random dynamical model gives the (in-
tervened) random dynamics of the random dynamical
system, where the random dynamics are described by the
following set of equations:

Definition 5. A stochastic process X : T × Ω → X
is a sample-path solution of the (intervened) random dif-
ferential equations associated to the (intervened) RDM
R,

Ẋ\K = F\K(X,E)

XK = ηK ,
(4)

ifXK
T
= ηK and the ordinary differential equations

Ẋ\K(t, ω) = F\K(X(t, ω),E(t, ω))

are satisfied for almost all ω ∈ Ω.

Let t0 ∈ T and let X0 be a d-dimensional random vari-
able, where d =

∑
i∈I di, such thatXt0 = X0 a.s., then

X is called a sample-path solution of the (intervened)
RDE (4) with respect to the initial condition (X0, t0).

The sample-path solution of (4) with respect to the initial
condition (X0, t0) is called unique on T if for an arbi-
trary pairX , X̃ of sample-path solutions with respect to
the initial conditions (X0, t0) we haveX T

= X̃ .

In particular, the non-intervened model
〈T, I,J , ∅,X ,E,F , ∗,E〉, where ∗ is the terminal
process ∗ : T × Ω → {1}, yields the same sample-path
solutions as the observational random dynamical model
〈T, I,J ,X ,E,F ,E〉. They describe the same random
dynamics and in this sense the class of observational
random dynamical models can be seen as a subclass of
the class of random dynamical models.

Definition 6. We call an RDM R linear, if the function
F\K : X × E → X \K is given by

F\K(x, e) := Bx+ Γe ,

whereB ∈ RK×I and Γ ∈ RK×J are matrices.

The function F\K that defines the dynamics of the RDM
encodes a functional structure that can be represented by
a directed mixed graph.

Q1 Q2 Q3 Q4 Q5

P1 P2 P3 P4 P5

Figure 2: Functional graph of the RDM for the damped
coupled harmonic oscillator of Example 1 for d = 5.

Definition 7. We define the functional graph G(R) of an
RDM R as the directed mixed graph with nodes I, di-
rected edges i→ j if and only if i is a functional parent4

of j w.r.t. F\K and bidirected edges i ↔ j if and only if
there exists a k ∈ J such that k is a functional parent of
both i and j w.r.t. F\K .

For a linear RDM one would draw an edge i → j if Bji

is non-zero and i ↔ j if both Γik and Γjk are non-zero
for some k.

The causal semantics of a random dynamical model can
be modeled using interventions:

Definition 8. Given an RDM R =
〈T, I,J ,K,X ,E,F\K ,ηK ,E〉, a subset I ⊆ I and a
stochastic process ξI : T × Ω → X I , the intervention
do(I, ξI) maps R to the intervened RDM Rdo(I,ξI) =
〈T, I,J , I ∪K,X ,E,F\(I∪K), (ηK\I , ξI),E〉.

Note that interventions on disjoint subsets of the endoge-
nous processes commute.

Example 2 (Damped coupled harmonic oscillator).
Consider the damped coupled harmonic oscillator of Ex-
ample 1. Its functional graph is depicted in Figure 2. We
can perform an intervention on Qi by moving the posi-
tion of the ith mass to a fixed position ξ∗i ∈ R. This
is modeled by replacing the equation of motion of the ith

position by the process ξi, that defines the motion of mov-
ing the ith mass to the fixed position ξ∗i ∈ R. Performing
a similar intervention on the momentum Pi usually does
not lead to an RDM with sample-path solutions that con-
verge to a certain random variable.

We can define a regularity condition for the RDMR sim-
ilar to the one for oRDMs.

Definition 9. An RDM R is called regular if F\K :
X × E → X \K is continuous and both E and ηK are
sample-path continous.

The existence and uniqueness Theorem 1 generalizes to
the RDMR.

4Let X :=
∏

i∈I X i and Y :=
∏

j∈J Yj and consider a
function f : X → Y . We call an i ∈ I a functional parent of
j ∈ J w.r.t. f , if there does not exist a function f̃j : X \{i} →
Yj such that f̃j = fj .



Corollary 1. Consider a regular RDM R. If for almost
all ω ∈ Ω there exists a continuous function Lω : T → R
such that for each t ∈ T and x1, x2 ∈ X \I the condition

‖F\K(x1,ηK(t, ω),E(t, ω))

−F\K(x2,ηK(t, ω),E(t, ω))‖
≤Lω(t)‖x1 − x2‖

is satisfied, then for any initial condition (X0, t0) such
that (X0)K = (ηK)t0 a.s. there exists a unique sample-
path solution of the RDE (4) w.r.t. (X0, t0).

Every linear RDM for which E and ηK are sample-path
continuous is regular. Moreover, there always exists an
Lω ∈ R, which is independent of ω, such that the condi-
tion of Corollary 1 holds, hence for every regular linear
RDM there exists a unique sample-path solution for any
initial condition (X0, t0) (Bunke, 1972).

3.3 Steady random dynamical models

Here we consider an important subclass of regular RDMs
that satisfies certain convergence properties.

Definition 10. We call an RDMR steady, ifR is regular,
T = R, the process E converges to a random variable
E∗ and the process ηK converges to a random variable
η∗K ∈ XK .

The class of steady RDMs is not stable under arbitrary
interventions, that is a steady RDM R does not have to
stay steady under an intervention, however it is stable
under the following class of interventions:

Definition 11. We call an intervention do(I, ξI) a per-
fect intervention if the process ξI converges to a random
variable ξ∗I ∈ X I .

Note that for any perfect intervention do(I, ξI), the pro-
cess ξI is sample-path continuous by definition.

Although steadiness of an RDM guarantees that the ex-
ogenous and intervened processes converge, it does, in
general, not guarantee that any of its sample-path solu-
tions converges. However:

Definition 12. Given a steady RDMR. If a sample-path
solutionX converges to a random variableX∗, then we
say that the sample-path solution equilibrates and we call
X∗ an equilibrium variable of the sample-path solution
X .

If a sample-path solutionX , that describes the behaviour
of the system, equilibrates, then in particular we have

lim
t→∞

Ẋt = 0 .

almost surely.

4 Structural Causal Models

Structural causal models (SCMs), also known as struc-
tural equation models, provide a probabilistic description
of the causal semantics of a system. They are widely
used for causal modeling purposes (Pearl, 2009; Spirtes
et al., 2000; Bollen, 1989). In this paper, we will follow
the terminology of Bongers et al. (2016).

Definition 13. A structural causal model (SCM) is a tu-
ple

M := 〈I,J ,X ,E,f ,E〉

where

• I is a finite index set of endogenous variables,

• J is a finite index set of exogenous variables,

• X =
∏

i∈I X i is the product of the codomains
of the endogenous variables, where each codomain
X i = Rci ,

• E =
∏

j∈J Ej is the product of the codomains
of the exogenous variables, where each codomain
Ej = Rdj ,

• f : X × E → X is a measurable function that
specifies the causal mechanism,

• E : Ω→ E is a random variable.5

The solutions are described in terms of structural equa-
tions.

Definition 14. A random variable X : Ω → X is a
solution of the SCMM if the structural equations

X = f(X,E)

are satisfied almost surely.

The causal mechanism encodes a functional structure
that can be represented by a directed mixed graph.

Definition 15. We define the functional graph G(M) of
an SCM M as the directed mixed graph with nodes I,
directed edges i→ j if and only if i is a functional parent
of j w.r.t. f and bidirected edges i ↔ j if and only if
there exists a k ∈ J such that k is a functional parent of
both i and j w.r.t. f .

4.1 Intervened structural causal models

The causal semantics of a structural causal model can be
modeled using perfect interventions (Pearl, 2009).

5We slightly deviate from Bongers et al. (2016), where in-
stead they take an exogenous probability measure on E .



Definition 16. Given an SCM M, a subset I ⊆ I
and an endogenous variable ξI : Ω → X I , the in-
tervention do(I, ξI) maps M to the intervened model
Mdo(I,ξI) = 〈I,J ,X ,E, f̃ ,PE〉 where the intervened
causal mechanism f̃ is defined by:

f̃i(x, e) :=

{
ξi i ∈ I
fi(x, e) i ∈ I \ I .

We call an intervention do(I, ξI) a perfect intervention
if ξI ∈ X I .

Note that interventions on disjoint subsets of endogenous
variables commute.

5 From Steady RDMs to SCMs

We now have set the stage for constructing an SCM from
an RDM under some convergence properties. Here, we
will consider steady RDMs, as discussed in Section 3.3,
for which the exogenous and intervened processes are
well-behaved as time tends to infinity. For this class of
RDMs we will see that the random differential equations,
that determine the sample-path solutions of the RDM,
play an analogous role to the structural equations, that
determine the solutions of the SCM.

Definition 17. Given a steady RDM R =
〈T, I,J ,K,X ,E,F\K ,ηK ,E〉. Define the SCM
MR associated to R to be 〈I,J ,X ,E,f∗,E∗〉 where
the associated causal mechanism f∗ : X × E → X is
defined by

f∗(x, e) := (x\K + F\K(x, e),η∗K)

with
η∗K := lim

t→∞
(ηK)t

and
E∗ := lim

t→∞
Et .

Note that the steadiness of R implies the measurability
of f∗. This leads to our first main result:

Theorem 2. Given a steady RDM R. If there exists a
sample-path solution X of R that equilibrates to X∗,
thenX∗ is a solution of the associated SCMMR.

The converse does not hold in general, however we have
the following sufficient condition:

Proposition 1. Consider a steady RDM R such that
ηK ∈ XK (i.e., ηK is constant in time). If X∗ is a
solution for the associated SCMMR, then there exists a
sample-path solutionX ofR that equilibrates toX∗.

RDM
R

SCM
MR

intervened RDM
Rdo(I,ξI)

intervened SCM
MRdo(I,ξI )

t → ∞

do(I, ξI)

t → ∞

do(I, ξ∗I )

Figure 3: This diagram shows that perfect intervention
commutes with the mapping from steady RDM to SCM
as is made explicit in Theorem 3.

We can weaken the condition that ηK has to be constant
over time by imposing the following additional assump-
tion on the model.

Proposition 2. Consider a steady RDM R for which
(i) there exists an η∗K ∈ XK and a t0 ∈ T such that
(ηK)t = η∗K for all t ≥ t0 and (ii) for almost all ω ∈ Ω
there exists a continuous function Lω : T → R such that
for each t ∈ T and x1, x2 ∈ X \K the condition

‖F\K(x1,ηK(t, ω),E(t, ω))

−F\K(x2,ηK(t, ω),E(t, ω))‖
≤ Lω(t)‖x1 − x2‖

is satisfied. If X∗ is a solution for the associated SCM
MR, then there exists a unique sample-path solution X
ofR that equilibrates toX∗.

Consider the diagram in Figure 3. So far, we have de-
fined each mapping in this diagram separately (see Def-
inition 8, 16 and 17). The next result shows that this
diagram commutes:

Theorem 3. Given a steady RDM R =
〈T, I,J ,K,X ,E,F\K ,ηK ,E〉, a subset I ⊆ I
and a process ξI : T × Ω → X I such that ηK equili-
brates to η∗K ∈ XK and ξI equilibrates to ξ∗I ∈ X I .
Then:

(MR)do(I,ξ∗
I )

=MRdo(I,ξI )
.

In other words, perfect intervention commutes with the
mapping from steady RDM to SCM.

Example 3. Consider a linear RDM R =
〈T, I,J , ∅,X ,E,F , ∗,E〉 where F is of the form
as in Definition 6 and E is a random variable, that is
a stochastic process that is constant in time. Then the
associated SCM is MR = 〈I,J ,X ,E,f∗,E〉 where
the causal mechanism is defined by

f∗(x, e) = Ax+ Γe

whereA := I +B.



Example 4 (Damped coupled harmonic oscillator).
Consider again the damped coupled harmonic oscillator
of Example 1. The structural equations of the associated
SCM are given by

P ∗i = ki(Q
∗
i+1 −Q∗i − `i)

− ki−1(Q∗i −Q∗i−1 − `i−1) + (1− bi
m1

)P ∗i

Q∗i = Q∗i + P ∗i /mi .

These equations describe the equilibria of the positions
and momenta. Figure 2 reflects the intuition that at equi-
librium the position of each mass has a direct causal ef-
fect on the position of its neighbors. This can be seen
more clearly by marginalizing over the momentum vari-
ables. Observing that the momentum variables always
vanish at equilibrium, we can focus on the position vari-
ables as the variables of interest. We can marginal-
ize over the momentum variables by solving each equa-
tion of P ∗i w.r.t. itself and then substituting these in the
equations of Q∗i (Bongers et al., 2016). This yields the
marginal model with the following structural equations

Q∗i = Q∗i +
ki
bi

(Q∗i+1−Q∗i−`i)−
ki−1
bi

(Q∗i−Q∗i−1−`i−1)

Resolving the self-loops of this marginal model by solv-
ing each equation w.r.t. itself gives the structural equa-
tions

Q∗i =
ki(Q

∗
i+1 − `i) + ki−1(Q∗i−1 − `i−1)

ki + ki−1

and this model yields the same causal semantics for the
position variables as the original model (Bongers et al.,
2016). The functional graph associated to this model is
depicted in Figure 4a. If we now perform a perfect inter-
vention on Q3 by moving the 3th mass to a fixed position
ξ∗3 ∈ R, then we get the graph as depicted in Figure 4(b).
Because these models are uniquely solvable and linear
we can perform d-separation w.r.t. both graphs and con-
clude thatQ∗1⊥⊥Q∗5|Q∗3 holds in the intervened model but
not in the observational model (Forré and Mooij, 2017).

Q∗1 Q∗2 Q∗3 Q∗4 Q∗5

(a)

Q∗1 Q∗2 Q∗3 Q∗4 Q∗5

(b)

Figure 4: Functional graph of the marginal SCM asso-
cied to the damped coupled harmonic oscillator of Ex-
ample 1 for d = 5 after resolving the self-loops, under
(a) no intervention and (b) perfect intervention on Q∗3.

This example demonstrates that the equilibrium variables
of the RDM can be studied by statistical tools applicable
to SCMs. This sheds some new light on the concept of
causality as expressed within the framework of structural
causal models.

6 Application: Chemical Kinetics

S + E C P + E

kf

kr

kc

koki

Figure 6: Basic enzyme reaction

Chemical kinetics is the study of rates of chemical pro-
cesses. The chemical processes are described by the
chemical reactions which are often modeled through or-
dinary differential equations. A well-known chemical re-
action is the basic enzyme reaction which is schemati-
cally represented in Figure 6 (Murray, 2002).

E∗

S∗

C∗ P ∗

(a)

E∗

S∗

C∗ P ∗

(b)

Figure 7: The functional graph of the SCM associated to
the basic enzyme reaction under (a) perfect intervention
on C∗ and (b) perfect intervention on C∗ and S∗.

It describes an enzyme E, binding to a substrate S, to
form a complex C, which in turn releases a product P
while regenerating the original enzyme. The k’s, called
the rate constants, quantify the rate of a chemical reac-
tion. These chemical reactions satisfy the law of mass
action, which states that the rate of a reaction is propor-
tional to the product of the concentrations of the reac-
tants. Applying this to the concentration processes S, E,
C and P of the basic enzyme reaction, gives the RDE:

Ṡ = ki − kfES + krC

Ė = −kfES + (kr + kc)C

Ċ = kfES − (kr + kc)C

Ṗ = kcC − koP .
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(b) Perfect intervention on C.
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(c) Perfect intervention on C and S.

Figure 5: Simulation of the RDE associated to the basic enzyme reaction with random initial conditions under different
interventions.

Although this RDE has no random coefficients (or ran-
dom inhomogenous part), randomness can enter the
RDE via the initial conditions. In Figure 5a we simu-
lated the RDE with rate constants (ki, kf , kr, kc, ko) =
(0.5, 1.1, 0.9, 1.6, 0.6) and random initial conditions.
The randomness of the initial conditions evolves over
time and is captured in the associated SCM at equilib-
rium. That is, they are described by the associated SCM:

S∗ = kik
−1
f E∗−1 − krk−1f E∗−1C∗

E∗ = k−1f (kr + kc)S
∗−1C∗

C∗ = kf (kr + kc)
−1E∗S∗

P ∗ = kck
−1
o C∗ ,

where we removed the self-loops for convenience. This
is an example of an SCM that is not uniquely solvable,
which is illustrated in Figure 5a by the dispersion of the
concentration S and E at large t, hence this example
cannot be treated with the theory of Mooij et al. (2013)
which assumes no dependence on initial conditions.

Let us for the moment fix the concentration of the com-
plex by performing a perfect intervention on C as illus-
trated in Figure 5b. From the functional graph of the
associated intervened SCM in Figure 7a we can read off
that performing another perfect intervention on the sub-
strate S should have no effect on the product P , as it
would lead to the functional graph in Figure 7b where
there is no directed path from S to P . This prediction,
based on the functional graph of the SCM associated to
the RDM, is indeed verified by the simulations in Fig-
ures 5b–5c. Intuitively, this is also what one would ex-
pect, since the complex is the only element in the system
that is capable of releasing the product.

This illustrates that random differential equations are ca-
pable of modeling randomness through the initial con-

ditions, while the causal semantics at equilibrium of the
dynamical system are parsimoniusly described by the as-
sociated SCM.

7 Discussion

In this paper we built a bridge between the world of ran-
dom differential equations and the world of structural
causal models. This allows us to study a plethora of
physical and engineering systems subject to time-varying
random disturbances within the framework of structural
causal models. We naturally extend the work of Mooij
et al. (2013) to the stochastic setting, which allows us to
address both cycles and confounders. In particular, we
relaxed the condition that the dynamical system has to
equilibriate to a single static equilibrium, and show that
if an RDE is sufficiently regular all equilibrium sample-
path solutions of the RDE are described by the solutions
of the associated SCM, while pertaining the causal se-
mantics.

There are two possible interesting directions for future
research. The first is relaxing the regularity assump-
tion. Earlier work has shown that SCMs can be de-
rived from stochastic differential equations (Hansen and
Sokol, 2014), however they restrict to the acyclic case.
The second is relaxing the convergence assumption. Al-
though the convergence assumption is a convenient and
simplifying assumption, convergence of the stochastic
processes is not always satisfied in practice. Recent
work has shown that dynamic asymptotic behaviour of
ordinary differential equations can be captured by dy-
namic structural causal models (Rubenstein et al., 2016).
Other related work on discrete-time dynamical system
and causality which does not require a single static equi-
librium assumption is (Voortman et al., 2010).
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Supplementary Material

Proofs

Proof of Theorem 1

Proof. Continuity of F : X × E → X and sample-path continuity of E : T × Ω → E implies that for almost all
ω ∈ Ω the function F (x,E(t, ω)) is continuous on T × X . Moreover, continuity of F implies separate continuity
of F . That is, for each x ∈ X the function F (x, e) is continuous in e and in particular measurable in e. Hence for
all (t,x) ∈ T × X the function F (x,E(t, ω)) is F-measurable. Applying theorem 1.2 in Bunke (1972) proves the
result.

Proof of Corollary 1

Proof. Apply Theorem 1 to the regular oRDM 〈T, \K,K ∪ J ,X \K ,XK × E,F\K , (ηK ,E)〉.

Proof of Theorem 2

Proof. LetX be a sample-path solution that equilibrates toX∗. Then

lim
t→∞

Ẋt = 0 a.s.,

which gives
0 = lim

t→∞
F\K(Xt,Et) = F\K( lim

t→∞
Xt, lim

t→∞
Et)

= F\K(X∗,E∗) a.s.,

where we used continuity of F in the second equality, and steadiness in the last equality. This gives

X∗\K = X∗\K + F\K(X∗,E∗)

X∗K = X∗K a.s.,

and hence
X∗ = f(X∗,E∗) a.s..

Proof of Proposition 1

Proof. Let X∗ be a solution ofMR. Then the stochastic process X : T × Ω → X defined by X(t, ω) := X∗ is a
sample-path solution ofR that equilibrates toX∗.

Proof of Proposition 2

Proof. Let X∗ be a solution of MR. Then by Corollary 1 there exists a unique sample-path solution X w.r.t. the
initial condition (X∗, t0). HenceX is the unique sample-path solution that equilibrates toX∗.

Proof of Theorem 3

Proof. Applying the perfect intervention do(I, ξ∗I ) (by Definition 16) to MR yields the SCM (MR)do(I,ξ∗
I )

:=
〈I,J ,X ,E,f∗,E〉 where f∗ is defined by

f∗(x, e) := (x\(I∪K) + F\(I∪K)(x, e),η∗K\I , ξ
∗
I ) .

Applying Definition 17 to the RDM Rdo(I,ξI) := 〈T, I,J , I ∪ K,X ,E,F\(I∪K), (ηK\I , ξI),E〉 yields the same
SCM.
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