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Abstract

Structural causal models (SCMs), also known as (non-parametric)
structural equation models (SEMs), are widely used for causal mod-
eling purposes. A large body of theoretical results is available for the
special case in which cycles are absent (i.e., acyclic SCMs, also known
as recursive SEMs). However, in many application domains cycles are
abundantly present, for example in the form of feedback loops. In
this paper, we provide a general and rigorous theory of cyclic SCMs.
The paper consists of two parts: the first part gives a rigorous treat-
ment of structural causal models, dealing with measure-theoretic and
other complications that arise in the presence of cycles. In contrast
with the acyclic case, in cyclic SCMs solutions may no longer exist,
or if they exist, they may no longer be unique, or even measurable
in general. We give several sufficient and necessary conditions for the
existence of (unique) measurable solutions. We show how causal rea-
soning proceeds in these models and how this differs from the acyclic
case. Moreover, we give an overview of the Markov properties that
hold for cyclic SCMs. In the second part, we address the question of
how one can marginalize an SCM (possibly with cycles) to a subset of
the endogenous variables. We show that under a certain condition, one
can effectively remove a subset of the endogenous variables from the
model, leading to a more parsimonious marginal SCM that preserves
the causal and counterfactual semantics of the original SCM on the re-
maining variables. Moreover, we show how the marginalization relates
to the latent projection and to latent confounders, i.e. latent common
causes.
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1 Introduction

Structural causal models (SCMs), also known as (non-parametric) struc-
tural equation models (SEMs), are widely used for causal modeling pur-
poses (Pearl, 2009; Spirtes et al., 2000). In these models, the causal
relationships are expressed in the form of deterministic, functional re-
lationships, and probabilities are introduced through the assumption
that certain variables are exogenous latent random variables. SCMs
arose out of certain causal models that were first introduced in genetics
(Wright, 1921), econometrics (Haavelmo, 1943), electrical engineering
(Mason, 1953, 1956), and the social sciences (Goldberger and Duncan,
1973; Duncan, 1975).

Acyclic SCMs, also known as recursive SEMs, form a special well-
studied class of SCMs that are closely related to causal Bayesian net-
works (Pearl, 2009). These directed graphical models have relatively
simple definitions in terms of various equivalent Markov properties, are
computationally scalable and have several appealing statistical prop-
erties (Pearl, 1988; Lauritzen et al., 1990; Lauritzen, 1996). However,
an important limitation of acyclic SCMs is that they cannot represent
systems that involve cycles. For that purpose, cyclic SCMs (or non-
recursive SEMs) form an appropriate model class (see e.g., Mooij et al.,
2013; Bongers and Mooij, 2018). In contrast to the acyclic case, how-
ever, cyclic SCMs have enjoyed less attention and are not as well under-
stood as their acyclic counterparts, although some progress has been
made in the case of discrete (Pearl and Dechter, 1996; Neal, 2000) and
linear models (Spirtes, 1994, 1995; Hyttinen et al., 2012). More re-
cently, their Markov properties have been elucidated (Forré and Mooij,
2017) in more generality.

When allowing for cyclic functional relationships between variables,
one encounters various technical complications. The structural equa-
tions of an acyclic SCM trivially have a unique solution. This unique
solvability property ensures that the SCM gives rise to a unique, well-
defined probability distribution on the variables. In the case of cycles,
however, this property may be violated, and consequently, the SCM
may have no solution at all, or may allow for multiple different proba-
bility distributions, which leads to ambiguity. Worse, even if one starts
with a cyclic SCM that is uniquely solvable, performing an interven-
tion on the SCM may lead to an intervened SCM that is not uniquely
solvable. Furthermore, solutions need not be measurable in complete
generality. Moreover, the causal interpretation of SCMs with multi-
ple different probability distributions can be counter-intuitive, as the
functional relations between variables no longer need to coincide with
their causal relations. All these issues make cyclic SCMs a notoriously
more complicated class of models to work with than the class of acyclic
SCMs. In the first part of this paper we will give a general, rigorous
treatment including both acyclic and cyclic SCMs, dealing with the
technical complications that arise in the presence of cycles.

In the second part of this paper, we attempt to define the concept
of marginalization for SCMs. Consider an SCM (possibly with cycles)
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that is defined on a large system, consisting of observable endoge-
nous variables and latent exogenous variables. For example, such an
SCM could be obtained by starting with an ordinary differential equa-
tion model and considering its equilibrium states (Mooij et al., 2013;
Bongers and Mooij, 2018). Often, one is not interested in modeling the
entire system, but would like to focus attention on a smaller subsystem
instead, for example due to practical limitations on the observability of
some of the endogenous variables in the model. The central question
in this part of the paper is whether and how the SCM that represents
the large system can be “projected down” to a more parsimonious SCM
that represents the smaller subsystem.1 This so-called marginal SCM
representing the subsystem is defined on a subset of the original en-
dogenous variables and should preserve the causal semantics of the
variables of the subsystem. Marginalizing an SCM over a set of en-
dogenous variables allows us to focus our causal modeling efforts on a
part of the system and ignore the rest of the system. On a high level,
this concept is analogous to marginalizing a probability distribution
over a set of variables: this also reduces the description of a set of vari-
ables to a description of a subset of those, but the difference is that
while the original meaning of marginalization is purely probabilistic,
for SCMs it can in addition be interpreted causally.

We will define a marginalization operation that effectively removes
a subset of the endogenous variables from the model, while preserving
the probabilistic, causal and even counterfactual semantics. Intuitively,
the idea is to think of the subset of endogenous variables of interest
as a subsystem that can interact with the rest of the system. Under
some suitable conditions, one can ignore the internals of this subsys-
tem and treat it effectively as a “black box”, which has a unique output
for every possible input. We will show that this marginalization op-
eration indeed preserves the causal and counterfactual semantics, i.e.,
all interventional and counterfactual distributions of the remaining en-
dogenous variables induced by the original SCM are identical to those
induced by its marginalization.

This paper is structured as follows. In Section 2 we will provide
a formal definition of SCMs, define the (augmented) functional graph,
describe interventions and counterfactuals, discuss the concept of solv-
ability, consider various equivalence relations between SCMs, discuss
their causal interpretation, and finally discuss the Markov properties.
In Section 3, we will give a definition of a marginalization operation
that is under certain conditions applicable to cyclic SCMs. We discuss
several properties of this marginalization operation, define a marginal-
ization operation on directed graphs and discuss their relation. We will
give a causal interpretation of marginal SCMs and in the end discuss
latent confounders. We wrap up and discuss the implications of this
work in the last section.

1This question relates to the concept of “latent projection” (Verma, 1993; Tian, 2002)
that has been formulated for DAG models and for ancestral graph Markov models
(Richardson and Spirtes, 2002).
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2 Structural causal models

2.1 Structural causal models and their solutions

In this section, we will start by formally defining structural causal
models (SCMs) and their solutions. One usually considers solutions, in
terms of random variables, to be part of an SCM. We will use a slightly
different approach here that makes it easier to deal with cyclic SCMs.
Our approach is to strip off the random variables from the definition
of the SCM, which ensures that SCMs form a well-defined model class
that is closed under any perfect intervention (see also Section 2.4). In
Section 2.6, we will give conditions under which these SCMs induce a
well-defined set of (measurable) random variables.

Definition 2.1.1 A structural causal model (SCM) is a tuple2

M := 〈I,J ,X ,E,f ,PE〉

where

• I is a finite index set of endogenous variables,

• J is a finite index set of exogenous variables,

• X =
∏

i∈I Xi is the product of the codomains of the endoge-
nous variables where each codomain Xi is a standard3 measurable
space,

• E =
∏

j∈J Ej is the product of the codomains of the exogenous
variables where each codomain Ej is a standard measurable space,

• f : X ×E → X is a measurable function that specifies the causal
mechanisms,

• PE =
∏

j∈J PEj
where PEj

is a probability measure on Ej for all
j ∈ J .

Although it is common to assume the absence of cyclic functional
relations (see Definition 2.2.4), we will make no such assumption here.
When allowing for such cycles, it turns out that the most natural
setting is obtained when allowing for self-loops as well. Under certain
conditions, the existence of self-loops are obstructed. We will discuss
this in more detail in Section 2.6.5.

In structural causal models, the functional relationships are ex-
pressed in terms of (deterministic) functional equations.

2We often use boldface for variables that have multiple components, e.g., vectors or
tuples in a Cartesian product.

3A standard measurable space is a measurable space (Ω,Σ) that is isomorphic to a
measurable space (Ω̃, Σ̃), where Ω̃ is a Polish space (i.e., a complete separable metric
space) and Σ̃ = B(Ω̃) are the Borel subsets of Ω̃ (i.e., the σ-algebra generated by the
open sets in Ω̃). In several proofs we will assume without loss of generality that the
standard measurable space is a Polish space Ω with σ-algebra B(Ω). Examples of standard
measurable spaces are open and closed subsets of Rd, and finite sets with the complete
σ-algebra. See for example Cohn (2013) for more details.
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Definition 2.1.2 For an SCM M = 〈I,J ,X ,E ,f ,PE〉, we call the
set of equations:

x = f(x, e) x ∈ X , e ∈ E

the structural equations of the structural causal model M.

Somebody familiar with structural causal models will note that we
are still missing an important ingredient: random variables. In our
approach, they come in as follows:

Definition 2.1.3 A pair of random variables (X,E) is a solution of
the SCM M = 〈I,J ,X ,E,f ,PE〉 if

1. E takes values in E,

2. X takes values in X ,

3. PE = PE , i.e., the distribution of E is equal to PE ,

4. the structural equations

X = f(X,E)

are satisfied almost surely.

For convenience, we will call a random variable X a solution ofM, if
there exists a random variable E such that (X,E) forms a solution of
M.

Often, the endogenous random variables X can be observed, and the
exogenous random variables E are latent. Latent exogenous variables
are often referred to as “disturbance terms” or “noise variables”. When-
ever a solution X exists, we call the distribution PX the observational
distribution of M associated to X. Note that in general there may be
several different observational distributions associated to an SCM due
to the existence of different solutions. This is, as we will see later, a
consequence of the allowance of the existence of cycles in SCMs.

The reason for stripping off the random variables from the definition
of the structural causal model is that, as we will see in Section 2.4,
it may happen that an SCM with a solution may have no solution
anymore after performing an intervention on the SCM. Conversely, it
may also happen that intervening on an SCM without any solution
gives an SCM with a solution. By separating the SCMs from their
solutions, interventions can always be defined.

In terms of the solutions of an SCM, this definition leads to an
ambiguity, which can be illustrated by the following example:

Example 2.1.4 Consider the SCM M = 〈1,1,X , E , f,PE〉, where we
take X = E = {−1, 0, 1} with PE({−1}) = PE({1}) = 1

2 and causal
mechanism f(x, e) = e2+e−1. For brevity, we use here and throughout
this paper the notation n := {1, 2, . . . , n} for n ∈ N. Let M̃ be the
SCM M but with a different causal mechanism f̃(e) = e. Then the
structural equations for both SCMs have a different solution set, which
only differs on the point where e = 0 which has probability equal to
zero. Hence any random variable X is a solution for M if and only if
it is for M̃.
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This ambiguity follows from the fact that the structural equations are
only satisfied almost surely. To accommodate for this it seems natural
to not differentiate between causal mechanisms that have different so-
lutions on at most a PE-null set of exogenous variables and thus leads
to an equivalence relation between the causal mechanisms.

Before we state the equivalence relation we will introduce the follow-
ing notation: For a subset Ĩ ⊆ I and J̃ ⊆ J we write X Ĩ :=

∏
i∈Ĩ Xi

and EJ̃ :=
∏

j∈J̃ Ej . Moreover, for a subset U ⊆ I ∪ J , we use the
convention that we write XU and EU instead of XU∩I and EU∩J re-
spectively and we adopt a similar notation for the (random) variables
in those spaces, that is, we write xU and eU instead of xU∩I and eU∩J

respectively.

Definition 2.1.5 Consider two mappings f : X I × EJ → XK and
f̃ : X Ĩ × E J̃ → X K̃ together with a probability distribution PEJ∪J̃

on EJ∪J̃ . The mappings f and f̃ are (componentwise) equivalent,

denoted by f ≡ f̃ , if K = K̃ and for all k ∈ K, for PEJ∪J̃
-almost every

eJ∪J̃ for all x{k}∪I∪Ĩ ∈ X {k}∪I∪Ĩ:4

xk = fk(xI , eJ ) ⇐⇒ xk = f̃k(xĨ , eJ̃ ) .

This gives rise to an equivalence relation for SCMs:

Definition 2.1.6 Two SCMsM = 〈I,J ,X ,E,f ,PE〉 and M̃ = 〈I,J ,X ,E, f̃ ,PE〉
are equivalent (denoted by M≡ M̃) if f ≡ f̃ .

This equivalence relation ≡ on the set of all SCMs gives rise to the
quotient set of equivalence classes of SCMs. Note that two equiva-
lent SCMs can only differ by their causal mechanism. Importantly,
equivalent SCMs have the same solutions.

In this paper we will prove several properties and define several
operations and relations on the quotient set of equivalence classes of
SCMs. A common approach for proving a certain property for an
equivalence class of SCMs is that we start by proving that the property
holds for a representative of the equivalence class, and then show that
it holds for any other element of that equivalence class. Similarly, in
order to define a certain operation (or relation) on the equivalence class
of SCMs, we usually start by defining the operation on an SCM and
then show that this operation preserves the equivalence relation. In
both cases we say that the property or operation descends to the set
of equivalences classes.

2.2 The (augmented) functional graph

The functional relations of an SCM are described by the causal mech-
anism of the SCM. The causal mechanism encodes an (augmented)
functional graph that can be summarized by a directed (mixed) graph.
In acyclic SCMs the functional graph describes the direct causal graph,

4Please note that in general the quantifier “for P-almost every” does not commute with
the quantifier “for all”.
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but in cyclic SCMs this may not be the case, as we will see in Sec-
tion 2.8. Before we define the (augmented) functional graph in terms
of directed (mixed) graphs, we first state some standard terminology
on directed (mixed) graphs.

2.2.1 Graphical notation and terminology

A directed graph is a pair G = (V , E), where V is a set of nodes and E
a set of directed edges, which is a subset E ⊆ V × V of ordered pairs
of nodes. Each element (i, j) ∈ E can be represented by the directed
edge i→ j. In particular, (i, i) ∈ E represents a self-loop i→ i.

A directed mixed graph is a triple G = (V , E ,B), where the pair
(V , E) forms a directed graph and B is a set of bidirected edges, which
is a subset B ⊆ (V × V) \∆, where ∆ := {(i, i) : i ∈ V}, of unordered
(distinct) pairs of nodes. Each element (i, j) ∈ B can be represented
by the bidirected edge i↔ j. Note that a directed graph is a directed
mixed graph where B is the empty set.

Consider a directed mixed graph G = (V , E ,B). Then, a directed
mixed graph G̃ = (Ṽ , Ẽ , B̃) is a subgraph of G, if Ṽ ⊆ V , Ẽ ⊆ E and
B̃ ⊆ B. For a subset W ⊆ V , we define the induced subgraph of G on
W by GW := (W , Ẽ , B̃), where Ẽ and B̃ are the set of directed and
bidirected edges in E and B respectively that lie in W ×W .

A walk between i and j in a directed (mixed) graph G is a sequence
of edges (directed or bidirected) (ǫ1, . . . , ǫn) for which there exists a
sequence of nodes (i = i0, i1, . . . , in−1, in = j) for some n ≥ 0, such
that ǫk ∈ {ik−1 → ik, ik−1 ← ik, ik−1 ↔ ik} for k = 1, 2, . . . , n (note
that n = 0 corresponds with a walk consisting of a single node); if all
nodes i0, . . . , in are distinct, it is called a path. A path (walk) of the
form i→ · · · → j, i.e., such that ǫk is ik−1 → ik for all k = 1, 2, . . . , n,
is called a directed path (walk) from i to j. A cycle is a sequence of
edges (ǫ1, . . . , ǫn+1) such that (ǫ1, . . . , ǫn) is a directed path from i to
j and ǫn+1 is j → i. In particular, a self-loop is a cycle. Note that a
path cannot contain any cycles. A directed graph and a directed mixed
graph are acyclic, if they contain no cycles, and are then referred to
as a directed acyclic graph (DAG) and an acyclic directed mixed graph
(ADMG) respectively.

For a directed (mixed) graph G and a node i ∈ V we define the set
of parents of i by paG(i) := {j ∈ V : j → i ∈ E}, the set of children of
i by chG(i) := {j ∈ V : i→ j ∈ E}, the set of ancestors of i by

anG(i) := {j ∈ V : there is a directed path from j to i in G}

and the set of descendants of i by

deG(i) := {j ∈ V : there is a directed path from i to j in G} .

Note that we have {i} ∪ paG(i) ⊆ anG(i) and {i} ∪ chG(i) ⊆ deG(i).
We can apply these definitions to subsets U ⊆ V by taking the union
of these sets, for example paG(U) := ∪i∈UpaG(i).

We call a directed mixed graph G = (V , E ,B) strongly connected if
every two distinct nodes i, j ∈ V are connected via a cycle, i.e. via two
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directed paths i → · · · → j and j → · · · → i. The strongly connected
component of i ∈ V , denoted by scG(i), is the biggest subset S ⊆ V
such that i ∈ S and the induced subgraph GS is strongly connected.
In other words, scG(i) is the biggest subset S ⊆ V such that i ∈ S and
every two distinct nodes j, k ∈ S are connected via a cycle, i.e.. via
two directed paths j → · · · → k and k → · · · → j.

In the rest of this paper we will omit the subscript G whenever it
is clear which directed (mixed) graph G we are referring to.

2.2.2 The (augmented) functional graph

The functional relations of an SCM are given by:

Definition 2.2.1 We say that for an SCM M = 〈I,J ,X ,E,f ,PE〉:
(i) i ∈ I is a functional parent of k ∈ I if and only if there does

not exist a measurable function5 f̃k : X \i × E → Xk such that

f̃k ≡ fk (see Definition 2.1.5).

(ii) j ∈ J is a functional parent of k ∈ I if and only if there does
not exist a measurable function f̃k : X × E\j → Xk such that

f̃k ≡ fk.

By definition these functional relations are preserved under the equiv-
alence relation ≡ on SCMs and can be represented in a directed graph
or a directed mixed graph:

Definition 2.2.2 Given an SCM M = 〈I,J ,X ,E,f ,PE〉. We de-
fine:

(i) the augmented functional graph Ga(M) as the directed graph with
nodes I∪J and directed edges i→ j if and only if i is a functional
parent of j.

(ii) the functional graph G(M) as the directed mixed graph with nodes
I, directed edges i → j if and only if i is a functional parent of
j and bidirected edges i ↔ j if and only if there exists a k ∈ J
such that k is a functional parent of both i and j.

In particular, the augmented functional graph contains no directed
edges between exogenous variables, because they are not functionally
related by the causal mechanism. These definitions mapM to Ga(M)
and G(M), we call these mappings the augmented functional graph
mapping Ga and the functional graph mapping G respectively. By
definition, the mappings Ga and G are invariant under the equivalence
relation≡ on SCMs and hence the whole equivalence class of an SCM is
mapped to a unique augmented functional graph and functional graph.

5For X =
∏

k∈I Xk for some index set I, we denote X \i =
∏

k∈I\{i} Xk, and similarly
for its elements.
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E1 E2

E3X1 X2

X3 X4

X5

X1 X2

X3 X4

X5

Figure 1: The augmented functional graph (left) and the functional graph (right) of the SCM M
of Example 2.2.3.

Example 2.2.3 Consider an SCM M = 〈5,3,R5,R3,f ,PR3〉 with a
causal mechanism given by:

f1(x, e) = e1 + e2

f2(x, e) = e2

f3(x, e) = x1 · x2 + x5

f4(x, e) = x4 + x2
4 − e3 · x2

f5(x, e) = sin(x3)/x4 ,

with PR3 an arbitrary product probability distribution over R3. The aug-
mented functional graph and the functional graph of M are depicted6

in Figure 1.

As is illustrated in this example, the augmented functional graph is
a more verbose representation than the functional graph. Because
of this, we will take in this paper the augmented functional graph
as the standard graphical representation for SCMs. We will use the
functional graph only in Section 2.9. For an SCM M, we often write
the sets paGa(M)(U), chGa(M)(U), anGa(M)(U), etc., for some subset
U ⊆ I ∪J , simply as pa(U), ch(U), an(U), etc., whenever, besides the
SCM M, there is no explicit graph given.

Definition 2.2.4 We call an SCM M acyclic if Ga(M) is a DAG,
otherwise we call M cyclic.

Equivalently, an SCM M is acyclic if G(M) is an ADMG, and other-
wise it is cyclic.

Most of the existing literature considers only acyclic SCMs. In the
structural equation model (SEM) literature, acyclic SCMs are referred
to as recursive SEMs and cyclic SCMs as non-recursive SEMs. Par-
ticularly interesting classes of acyclic SCMs are the Markovian SCMs,

6For visualizing an (augmented) functional graph, we will stick to the common conven-
tion to use random variables, with the index set as subscript, instead of using the index
set itself. With a slight abuse of notation, we will still use random variables notation in
the (augmented) functional graph in the case that the SCM has no solution at all.
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E1 E2

X

Figure 2: The augmented functional graph of the acyclic SCM M of Example 2.3.2.

which are acyclic SCMs for which each exogenous variable has at most
one child, and the semi-Markovian SCMs, which are acyclic SCMs for
which each exogenous variable has at most two childs. They satisfy
several Markov properties (Pearl, 2009). In Section 2.9 we will discuss
general Markov properties that holds for cyclic SCMs. Acyclic SCMs
have a considerable technical advantage: they are always uniquely solv-
able, as we will see in Section 2.6.4. This property makes acyclic SCMs
a convenient class to work with, which may explain the focus on acyclic
SCMs in the literature.

2.3 The canonical representation

Definition 2.3.1 An SCM M = 〈I,J ,X ,E,f ,PE〉 is called canon-
ical if for all i ∈ I the components fi are of the form fi : X pa(i) ×
Epa(i) → Xi.

We already encountered a canonical SCM in Example 2.2.3. The next
example illustrates that not all SCMs are canonical:

Example 2.3.2 Consider the SCM M = 〈1,2,R,R2, f,PR2〉 with the
causal mechanism f(x, e) = −x+ e1+ e2 and PR2 an arbitrary product
probability distribution over R2. The augmented functional graph is
depicted in Figure 2 and hence this SCM is not canonical.

Proposition 2.3.3 Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM, then
there exists an equivalent SCM M̃ = 〈I,J ,X ,E, f̃ ,PE〉 such that each
component fi has an equivalent representation f̃i : X pa(i) × Epa(i) →
Xi.

Proof. For i ∈ I, let {ℓ1, . . . , ℓn} be the n := |I \ pa(i)| different
elements in I \ pa(i) and let {k1, . . . , km} be the m := |J \ pa(i)|
different elements in J \ pa(i) (pick any arbitrary order). Then by
Definition 2.2.1 there exists mappings gpi : X I\{ℓ1,...,ℓp} × E → Xi and
hq
i : X pa(i)×EJ\{k1,...,kq} → Xi for p = 1, . . . , n and q = 1, . . . ,m such

that
fi ≡ g1i ≡ · · · ≡ gni ≡ h1

i · · · ≡ hm
i =: f̃i .

�

That is, for every SCM there exists an equivalent canonical SCM.

Example 2.3.2 (Continued) Let M̃ be the SCM M but with the
causal mechanism f̃(x, e) = 1

2 (e1 + e2). Then M̃ is a canonical SCM
which is equivalent to M.
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For a causal mechanism f : X × E → X and a subset U ⊆ I, we
will write fU : X ×E → XU for the U components of f . The canoincal
representation is the most sparse representation that is compatible with
the (augmented) functional graph, in the sense that for any U ⊆ I one
can construct the mapping f̃U : X pa(U) × Epa(U) → XU such that

f̃U ≡ fU . Moreover, one has for each ancestral component fan(U) an

equivalent representation f̂an(U) : X an(U) × Ean(U) → X an(U). For a

mapping fU : X Ĩ × E J̃ → XU for some sets Ĩ, J̃ and U and for some
subset V ⊆ U we will write fV instead of (fU )V for the V components
of fU .

2.4 Interventions

To define the causal semantics of SCMs, we consider here an idealized
class of interventions introduced by Pearl (2009). Other types of inter-
ventions, like probabilistic interventions, mechanism changes, activity
interventions, fat-hand interventions, etc. are at least as interesting,
but we will not consider those here.

Definition 2.4.1 Given an SCMM = 〈I,J ,X ,E,f ,PE〉 and a sub-
set I ⊆ I of endogenous variables and a value ξI ∈ X I , the perfect
intervention do(I, ξI) maps M to the intervened model Mdo(I,ξI) =

〈I,J ,X ,E, f̃ ,PE〉 where the intervened causal mechanism f̃ is defined
by:

f̃i(x, e) :=

{
ξi i ∈ I

fi(x, e) i ∈ I \ I .

This operation do(I, ξI) preserves the equivalence relation (see Defini-
tion 2.1.6) on the set of all SCMs and hence this mapping descends to
the set of equivalence classes of SCMs.

We can define an operation do(I) that operates on directed graphs:

Definition 2.4.2 Given a directed mixed graph G = (V , E ,B) and a
subset I ⊆ V, we define the intervened graph do(I)(G) = (V , Ẽ , B̃)
where Ẽ := E \ (V × I) and B̃ := B \ [(V × I) ∪ (I × V)].

It simply removes all incoming edges on the nodes in I. The two
notions of intervention are compatible:

Proposition 2.4.3 Given an SCM M = 〈I,J ,X ,E,f ,PE〉 and a
subset I ⊆ I of endogenous variables and a value ξI ∈ X I , then

(
Ga ◦

do(I, ξI)
)
(M) =

(
do(I) ◦ Ga

)
(M) and

(
G ◦ do(I, ξI)

)
(M) =

(
do(I) ◦

G
)
(M)

Proof. The do(I, ξI) operation on M completely removes the func-
tional dependence on x and e from the fj components for j ∈ I and
hence the corresponding directed edges. �

We have the following elementary properties:

Lemma 2.4.4 For any SCM:
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Figure 3: The augmented functional graph of the SCM of Example 2.4.5 (left), after the first
intervention do({3}, 1) (middle), and after the second intervention do({2}, 1) (right).

1. Perfect interventions on disjoint subsets of endogenous variables
commute.

2. Acyclicity is preserved under perfect intervention.

Proof. The first statement follows directly from the definitions. For
the second statement, note that a perfect intervention can only remove
functional parental relations, and therefore will never introduce a cycle.
�

The reason why we separated the SCM from their solutions was
that interventions can be defined independently of their solutions. It
may for example happen that an SCM with a solution may have no
solution anymore after performing a perfect intervention on the SCM.
Or, it may happen that intervening on an SCM without any solution
gives an SCM with a solution, as the following example illustrates.

Example 2.4.5 Consider the SCM M = 〈3,3,R3,R3,f ,PR3〉 with
the following causal mechanism:

f1(x, e) = x2 + e1

f2(x, e) = x1 + x3 + e2

f3(x, e) = −x1 + e3

and take for PR3 the standard-normal measure on R3. It is easy to
see that M has a solution. The augmented functional graph Ga(M)
is depicted in Figure 3. The perfect intervention do({3}, 1) gives the
intervened causal mechanism

f̃1(x, e) = x2 + e1

f̃2(x, e) = x1 + x3 + e2

f̃3(x, e) = 1

which does not have a solution anymore. The reverse is also possible:
doing another perfect intervention do({2}, 1) onMdo({3},1) gives again
an SCM with a solution.

Remember that for each solution X of an SCM M we called the
distribution PX an observational distribution of M associated to X.
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In the literature, the observational distribution is usually considered to
be unique, as is for example the case for acyclic SCMs. However, as we
will see in Section 2.6, an cyclic SCM may have different observational
distributions. Whenever the intervened SCMMdo(I,ξI) has a solution
X we call the distribution PX the interventional distribution of M
associated to X under the perfect intervention do(I, ξI).

7

2.5 Counterfactuals

The causal semantics of an SCM are described by the interventions on
the SCM. Similarly, one can describe the counterfactual semantics of an
SCM by the interventions on the so-called twin-SCM. This twin-SCM
was first introduced in the “twin network” method by Balke and Pearl
(1994).

Definition 2.5.1 Given an SCM M = 〈I,J ,X ,E,f ,PE〉, we define
the twin structural causal model (twin-SCM) as the SCM

Mtwin := 〈I ∪ I ′,J ,X ×X ,E, f̃ ,PE〉 ,

where I ′ is a copy of I and the causal mechanism f̃ : X×X×E → X×
X is the measurable function defined by f̃ (x,x′, e) =

(
f(x, e),f(x′, e)

)
.

By definition, the twin-operation on SCMs is preserves the equivalence
relation ≡ on SCMs.

A typical counterfactual query has the form “What is p(XL′ =
xL′ | do(XI′ = ξI′), do(XJ = ηJ ),XK = xK)?”, to be read as “Given
that in the factual world, we performed a perfect intervention do(XJ =
ηJ) and then observed XK = xK , what would be the probability of
the observation XL′ = xL′ in that counterfactual world in which we
would instead have done the perfect intervention do(XI′ = ξI′)?”.

Consider the following example borrowed from Dawid (2002):

Example 2.5.2 Consider the SCM Mρ = 〈2,3, {0, 1} × R, {0, 1} ×
R2,f ,P{0,1}×R2〉 with the causal mechanism:

f1(x, e) = e1

f2(x, e) = ex1+2

where E1 ∼ Bernoulli(1/2),
(
E2

E3

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

and E1 is independent of (E2, E3). In an epidemiological setting, this
SCM could be used to model whether a patient was treated or not (X1)
and the corresponding outcome for that patient (X2).

Suppose in the actual world we did not assign treatment X1 = 0
to a unit and the outcome was X2 = c. Consider the counterfac-
tual query “What would the outcome have been, if we had assigned

7In the literature, one often finds the notation p(x) and p(x |do(XI = xI)) for the
densities of the observational and interventional distribution, respectively, in case these
are uniquely defined by the SCM.
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Figure 4: The augmented functional graph of the original SCM Mρ (left) and the twin-SCM
Mtwin

ρ (right).

treatment to this unit?”. We can answer this question by introduc-
ing a parallel counterfactual world that is modelled by the twin-SCM
Mtwin

ρ , as depicted in Figure 4. The counterfactual query then asks
for p(X2′ | do(X1′ = 1), do(X1 = 0), X2 = c). One can calculate that

p

((
X2′

X2

)
| do(X1′ = 1), do(X1 = 0)

)
= N

((
0
0

)
,

(
1 ρ
ρ 1

))

and hence p(X2′ | do(X1′ = 1), do(X1 = 0), X2 = c) = N (−ρc, 1− ρ2).
Note that the counterfactual query depends on a quantity ρ that we
cannot know from the observational density p(X1, X2) and the inter-
ventional densities p(X2 | do(X1 = 0)) and p(X2 | do(X1 = 1)) (for
example from randomized controlled trials).

Whenever the intervened twin-SCM Mtwin
do(Ĩ,ξĨ)

, where Ĩ ⊆ I ∪ I ′

and ξĨ ∈ X Ĩ has a solution (X,X ′) we call the distribution P(X,X′)

the counterfactual distribution of M associated to (X,X ′) under the
perfect intervention do(Ĩ , ξĨ).

2.6 Solvability

In this section we will describe the notion of solvability and show that
it is a sufficient and necessary condition for the existence of a solution
of an SCM. Moreover, we will show that there exists a sufficient and
necessary condition for solvability. We will give several properties of
solvability and show that all solutions of a uniquely solvable SCM
induce the same observational distribution.

The notion of solvability with respect to a certain subset of the
endogenous variables captures the existence of a solution of the struc-
tural equations with respect to this subset of variables given the input
variables.
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E1 X1 X2 X3

E1 X1 X2 X3

Figure 5: The augmented functional graph of the acyclic SCM from Example 2.6.1 that is solvable
w.r.t. {1, 2} (top) and of the cyclic SCM from Example 2.6.1 that can be either solvable, or not
solvable, w.r.t. {1, 2} (bottom).

Example 2.6.1 A simple acyclic SCM is given byM = 〈3,1,R3,R,f ,PR〉,where

f1(x, e1) = e21

f2(x, e1) = x1

f3(x, e1) = x2 ,

PR is the standard-normal measure on R. Consider the subset of en-
dogenous variables {1, 2} which is depicted by the box around the nodes
in the augmented functional graph in Figure 5. For each input value
e1 ∈ R of this box, the structural equations for the variables {1, 2}
have a unique output for x1 and x2, which is given by the mapping
g : R → R2 defined by g(e1) := (e21, e

2
1). The existence of such a

mapping means that M is solvable w.r.t. {1, 2}. Changing the causal
mechanim f to

f1(x, e1) = x2 − x2
2 + e21

f2(x, e1) = x1

f3(x, e1) = x2

gives an example of an cyclic SCM as depicted in Figure 5. Here there
exists two mappings g, g̃ : R → R2 defined by g(e1) := (|e1|, |e1|) and
g̃(e1) := (−|e1|,−|e1|) that make M solvable w.r.t. {1, 2}. Taking the
causal mechanism f instead to be

f1(x, e1) = x2 + e21

f2(x, e1) = x1

f3(x, e1) = x2

gives an cyclic SCM that is not solvable w.r.t. {1, 2}, since the struc-
tural equations for {1, 2} do not have any solution for x1 and x2 for
e1 6= R.

More precisely, we define solvability with respect to a certain subset
as follows:

Definition 2.6.2 We will call an SCMM = 〈I,J ,X ,E,f ,PE〉 solv-
able w.r.t. O ⊆ I if there exists a measurable mapping gO : X pa(O)\O×
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Epa(O) → XO such that for PE-almost every e for all x ∈ X :

xO = gO(xpa(O)\O, epa(O)) =⇒ xO = fO(x, e) .

We will call M solvable if it is solvable w.r.t. I.
By definition, solvability w.r.t. a subset respects the equivalence rela-
tion ≡ on SCMs.

Intuitively, the definition of solvability w.r.t. O means that there
exists a specific assignment on the variables O given the input vari-
ables pa(O) \O. Note thatM is solvable iff there exists a measurable
mapping g : Epa(I) → X such that for PE-almost every e for all x ∈ X :

x = g(epa(I)) =⇒ x = f(x, e) .

Next we will show that there exists a sufficient and necessary con-
dition for the existence of a mapping that makes M solvable w.r.t. a
certain subset. We consider here two cases: the case whereM is solv-
able w.r.t. I (see Section 2.6.1) and where it is solvable w.r.t. a strict
subset O ⊂ I (see Section 2.6.2).

2.6.1 Solvability w.r.t. I
We start by considering the case whereM is solvable w.r.t. I.
Lemma 2.6.3 If M is solvable, then there exists a solution.

Proof. Suppose the mapping g : Epa(I) → X makes M solvable,
then the measurable mappings E : E → E and X : E → X , defined by
E(e) = e and X(e) = g(epa(I)) respectively, define a pair of random
variables (E,X) such that X = f(X,E) holds a.s. and hence X is a
solution. �

Before we prove the converse, in Proposition 2.6.8, we will give a
sufficient and necessary condition in terms of the solution space S(M)
of M, where:

S(M) := {(e,x) ∈ E ×X : x = f(x, e)} .

Lemma 2.6.4 This solution space S(M) of an SCMM is a measur-
able set.

Proof. Consider the measurable mapping h : E×X → X×X defined
by h(e,x) = (x,f(x, e)) and let ∆ := {(x,x) : x ∈ X}. Then ∆
is measurable since X is Hausdorff and hence h−1(∆) = S(M) is
measurable. �

There is a close relation between the solution space S(M) together
with the probability distribution PE and the existence of a solution of
an SCM M, as the following example illustrates.
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Example 2.6.5 Consider an SCM M = 〈1,1,R,R, f,PR〉 with the
following causal mechanism:

f(x, e) = x · (1− 1{0}(e)) + 1

where 1{0} denotes the indicator function and we take for PR the
standard-normal measure on R. The solution space S(M) consists
only of one point (e, x) = (0, 1). If we project this point down on E,
then this point has a probability of zero and hence we cannot find ran-
dom variables (E,X) such that X = f(X,E) holds a.s.. However, if
we change the standard-normal measure PR to the Dirac measure δ0,
then it has on e = 0 a probability mass equal to 1, and hence one can
find such pair of random variables.

More generally, we have the following lemma:

Lemma 2.6.6 Given an SCM M = 〈I,J ,X ,E,f ,PE〉. Then M is
solvable iff E \ prE(S(M)) is a PE-null set, where prE : E ×X → E
is the projection mapping on E.

Proof. By Proposition 2.3.3 there exists an equivalent canonical SCM
M̃ with causal mechanism f̃ : X pa(I) × Epa(I) → X . By definition

prE(S(M)) and prE(S(M̃)) differ by a PE-null set and hence E \
prE(S(M)) is a PE-null set iff E \prE(S(M̃)) is a PE -null set. Writing
S(M̃) = E\pa(I) × S̃, where

S̃ := {(epa(I),x) ∈ Epa(I) ×X : x = f̃(xpa(I), epa(I))} ,

gives that prE(S(M̃)) = E\pa(I)×prEpa(I)
(S̃) and hence E\prE(S(M̃)) =

E\pa(I)× (Epa(I) \ prEpa(I)
(S̃)). Thus E \ prE(S(M)) is a PE-null set

iff Epa(I) \ prEpa(I)
(S̃) is a PEpa(I)

-null set.
Now suppose that E \ prE(S) is a PE-null set, then M is solvable

by application of the measurable selection Theorem 6.0.2.
Conversely, let

T := {epa(I) ∈ Epa(I) : g(epa(I)) = f̃ (gpa(I)(epa(I)), epa(I))} .

By assumption Epa(I)\T is a PEpa(I)
-null set and since T ⊆ prEpa(I)

(S̃)

we have Epa(I) \ prEpa(I)
(S̃) ⊆ Epa(I) \ T , hence E \ prE(S(M)) is a

PE -null set. �

Note that the projection mapping does not map measurable sets to
measurable sets perse and hence prE(S(M)) may not be measurable
at all.

Corollary 2.6.7 The SCM M is solvable iff for PE-almost every e

the structural equations
x = f(x, e)

have a solution x ∈ X .
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Proof. This follows directly from Lemma 2.6.6. Note that

prE(S(M)) = {e ∈ E : ∃x ∈ X (x = f(x, e))} .
�

The condition that E \ prE(S(M)) is a PE-null set is a sufficient
and a necessary condition for M to be solvable and this equivalence
allows us to prove the following proposition:

Proposition 2.6.8 For an SCM M, there exists a solution iff M is
solvable.

Proof. One direction follows from Lemma 2.6.3. Now suppose we
have a solution, then there exists a pair of random variables (E,X) :
Ω→ E×X such that X = f(X,E) a.s.. Let the measurable mapping
h : E ×X → X ×X be defined by h(e,x) = (x,f(x, e)) and consider
the measurable set:

Λ : = (h ◦ (E,X))−1(∆)

= {ω ∈ Ω : X(ω) = f(X(ω),E(ω))} .
Then E(Λ) ⊆ prE(S(M)) and thus E \ prE(S(M)) ⊆ E \ E(Λ),
moreover since PE(E(Λ)) = 1 it follows that E \prE(S(M)) lies in the
PE -null set E \E(Λ). The result follows by applying Lemma 2.6.6. �

This proposition implies that for a solution X : Ω → X , there
necessarily exists a random variable E : Ω → E and a mapping g :
Epa(I) → X such that g(Epa(I)) is a solution. However, it does not
imply that there necessarily exists a random variable E : Ω → E and
a mapping g : Epa(I) → X such that X = g(Epa(I)) holds a.s..

Example 2.6.9 Consider an SCM M = 〈1, ∅,R, 1, f,P1〉 with the
causal mechanism f : X × E → X defined by f(x, e) = x − x2 + 1,
where P1 is the trivial probability measure on a point. There exists
only two mappings g± : E → X , defined by g±(e) = ±1 that makes M
solvable. Any random variable X such that X ∈ {±1} is a solution of
M, however it is only almost surely equal to g±(E) if P(X = ±1) = 1.

2.6.2 Solvability w.r.t. a subset

We have seen that for solvability there exists a sufficient and neces-
sary condition in terms of the solution space of the SCM. However,
in general there does not exist a similar necessary condition for solv-
ability w.r.t. a strict subset O ⊂ I. This is due to the fact that in
general there does not exist a measurable section of a measurable set
(see chapter 18 of Kechris (1995)). Consider the measurable set:

SO(M) = {(e,x) ∈ E ×X : xO = fO(x, e))} .
Then in general there does not exist a measurable mapping gO :
X pa(O)\O × Epa(O) → XO such that for PE -almost every e for all
x\O ∈ X \O we have (e,x\O, gO(xpa(O)\O, epa(O))) ∈ SO(M). How-
ever, this mapping exists under the following sufficient condition:
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Proposition 2.6.10 Given an SCM M = 〈I,J ,X ,E,f ,PE〉 and a
subset O ⊆ I. If for PE-almost every e for all x\O ∈ X \O the fiber
SO(M)(e,x\O) over (e,x\O) given by

SO(M)(e,x\O) := {xO ∈ XO : xO = fO(x, e))}

is non-empty and σ-compact, then M is solvable w.r.t. O.

Proof. Consider the equivalent canonical SCM M̃ with the canonical
causal mechanism f̃ as given in Proposition 2.3.3. Then SO(M̃) =
E\pa(O) × S̃ ×X \(O∪pa(O)), where

S̃ := {(epa(O),xpa(O)\O,xO) ∈ Epa(O) ×X pa(O)\O ×XO :

xO = f̃O(xpa(O), epa(O))}

is a measurable set. Because prE(SO(M)) and prE(SO(M̃)) differ
by a PE-null set, we have in particular that for PEpa(O)

-almost every
epa(O) for all xpa(O)\O ∈ X pa(O)\O the fiber

S̃(epa(O),xpa(O)\O) = {xO ∈ XO : xO = f̃O(xpa(O), epa(O))}

is non-empty and σ-compact. In other words, we have that Epa(O)\Kσ

is a PEpa(O)
-null set, where

Kσ :={epa(O) ∈ Epa(O) : ∀xpa(O)\O ∈ X pa(O)\O

(S̃(epa(O),xpa(O)\O) is non-empty and σ-compact)} ,

The result follows now directly from the second measurable selection
Theorem 6.0.3. �

For many purposes, this condition of σ-compactness suffices since
it contains for example all countable discrete spaces, any interval of
the real line, and moreover all the Euclidean spaces. For larger fibers
SO(M)(e,x\O) we refer the reader to (Kechris, 1995).

Note that for the case O = I the condition in the proof of Propo-
sition 2.6.10 that Epa(I) \Kσ is a PEpa(I)

-null set implies in particular
that E \ prE(S(M)) is a PE -null set (see also Lemma 2.6.6), however
the converse does not hold in general.

Example 2.6.11 Consider an SCM M = 〈2,2,C2,R2,f ,PE〉 with
the causal mechanism:

f1(x, e) = x1 − xn
1 + x2 + e1

f2(x, e) = e2

where n ∈ N and PE = PE with E ∼ N (0, I). For n ≥ 1, this SCM is
solvable w.r.t. the subset {1}, since for each (x2, e1) ∈ X 2×E1 the fiber
S{1}(M)(x2,e1) consists of at most n elements. This gives n mappings
g1 : X 2 × E1 → X 1, which each map the value (x2, e1) to one of the n
distinct nth roots of x2 + e1.
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2.6.3 Several solvability properties

In general, solvability w.r.t. O ⊆ I does not imply solvability w.r.t.
a superset V ⊃ O nor w.r.t. a subset W ⊂ O as can be seen in the
following example:

Example 2.6.12 Consider the SCM M = 〈3, ∅,R3, 1,f ,P1〉 with the
causal mechanism:

f1(x) = x1 · (1− 1{1}(x2)) + 1

f2(x) = x2

f3(x) = x3 · (1− 1{−1}(x2)) + 1 .

This SCM is solvable w.r.t. {1, 2}, {2, 3} and {2}, however it is not
solvable w.r.t. {1}, {3} and {1, 2, 3}.

However, solvability w.r.t. O ⊆ I does imply solvability w.r.t. an-
cestral subsets V ⊆ O:

Proposition 2.6.13 Given an SCM M = 〈I,J ,X ,E,f ,PE〉 that is
solvable w.r.t. O ⊆ I. ThenM is solvable w.r.t. ãnG(M)O (V) for every
V ⊆ O, where ãnG(M)O (V) are the ancestors of V according to the
induced subgraph G(M)O of the augmented functional graph Ga(M)
on O.

Proof. Solvability ofM w.r.t. O implies that there exists a mapping
gO : X pa(O)\O × Epa(O) → XO such that for PE-almost every e for all
x ∈ X :

xO = gO(xpa(O)\O, epa(O)) =⇒ xO = fO(x, e) .

Let P := ãnG(M)O (V) for some V ⊆ O, then by choosing an equivalent

causal mechanism f̃P and f̃O\P that only depend on their parents we
have that for PE -almost every e for all x ∈ X :

{
xP = gP(xpa(O)\O, epa(O))

xO\P = gO\P(xpa(O)\O, epa(O))
=⇒

{
xP = f̃P (xpa(P), epa(P))

xO\P = f̃O\P(xpa(O\P), epa(O\P)) .

Since for the endogenous variables pa(P) ⊆ P ∪ (pa(O) \ O), we have
that in particular for PEpa(O)

-almost every epa(O) for all xP∪(pa(O)\O) ∈
XP∪(pa(O)\O):

xP = gP (xpa(O)\O, epa(O)) =⇒ xP = f̃P(xpa(P), epa(P)) .

This implies that the mapping gP cannot depend on elements different
from pa(P), because if it does, it leads to a contradiction. Moreover,
it follows from the definition of P that (pa(O) \O) ∩ pa(P) = pa(P) \
P . Hence, we have for PEpa(P)

-almost every epa(P) for all xP∪pa(P) ∈
XP∪pa(P):

xP = gP(xpa(P)\P , epa(P)) =⇒ xP = f̃P(xpa(P), epa(P)) .
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which is equivalent to the statement thatM is solvable w.r.t. ãnG(M)O (V).
�

In general, solvability is not preserved under union and intersection.
Example 2.6.12 gives an example where solvability is not preserved
under union. Even for the union of disjoint subsets, solvability is not
preserved (see Example 2.7.2 with α = β = 1). The next example il-
lustrates that solvability is in general not preserved under intersection.

Example 2.6.14 Consider the SCM M = 〈3, ∅,R3, 1,f ,P1〉 with the
causal mechanism:

f1(x) = 0

f2(x) = x2 · (1− 1{0}(x1 · x3)) + 1

f3(x) = 0 .

Then M is solvable w.r.t. {1, 2} and {2, 3}, however it is not solvable
w.r.t. their intersection.

2.6.4 Unique Solvability

Definition 2.6.15 We will call an SCMM = 〈I,J ,X ,E ,f ,PE〉 uniquely
solvable w.r.t. O ⊆ I, if there exists a measurable mapping gO :
X pa(O)\O × Epa(O) → XO such that for PE-almost every e for all
x ∈ X :

xO = gO(xpa(O)\O, epa(O)) ⇐⇒ xO = fO(x, e) .

We will call M uniquely solvable if it is uniquely solvable w.r.t. I.

Note that ifM≡ M̃ andM is uniquely solvable w.r.t. O, then M̃
is as well, and the same mapping gO makes both M and M̃ uniquely
solvable w.r.t. O.

In Section 2.6.1 we gave a sufficient and necessary condition for solv-
ability w.r.t. I in terms of the solution space. We saw in Section 2.6.2
that in general there does not exist a similar necessary condition for
solvability w.r.t. a strict subset O ⊂ I. The next proposition shows
that under the additional uniqueness assumption there does exist a suf-
ficient and necessary condition for unique solvability w.r.t. any subset.

Proposition 2.6.16 Given an SCM M = 〈I,J ,X ,E,f ,PE〉 and a
subset O ⊆ I. Then for PE-almost every e for all x\O ∈ X \O, the
fiber SO(M)(e,x\O) over (e,x\O) given by

SO(M)(e,x\O) := {xO ∈ XO : xO = fO(x, e))} .

is a singleton iff M is uniquely solvable w.r.t. O.

Proof. Suppose the mapping gO makes M uniquely solvable w.r.t.
O. Let M̃ be the equivalent canonical SCM with the canonical causal
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mechanism f̃ as given in Proposition 2.3.3. Then, for PE -almost every
e for all x\O ∈ X \O we have that

SO(M̃)(e,x\O) = {xO ∈ XO : xO = gO(xpa(O)\O, epa(O))}

is a singleton. Moreover, for PE-almost every e for all x\O ∈ X \O

xO ∈ SO(M)(e,x\O) ⇐⇒ xO ∈ SO(M̃)(e,x\O) ,

hence SO(M)(e,x\O) is a singleton. Conversely, by Proposition 2.6.10
there exists a mapping gO : X pa(O)\O × Epa(O) → XO that makes
M solvable w.r.t. O. Suppose we have two such mappings gO and
g̃O, then for PE-almost every e, for all x\O ∈ X \O we have that
both gO(xpa(O)\O, epa(O)) and g̃O(xpa(O)\O, epa(O)) lie in the fiber
SO(M)(e,x\O). Since SO(M)(e,x\O) is a singleton, the mappings gO
and g̃O have to be equivalent. Hence M has to be uniquely solvable
w.r.t. O. �

Analogous to Corollary 2.6.7 we have:

Corollary 2.6.17 The SCMM = 〈I,J ,X ,E,f ,PE〉 is uniquely solv-
able w.r.t. O ⊆ I iff for PE-almost every e for all x\O ∈ X \O the
structural equations

xO = fO(x, e)

have a unique solution xO ∈ XO.

Proof. This result follows directly from Proposition 2.6.16. �

Unique solvability w.r.t. O implies in particular solvability w.r.t. O.
Hence unique solvability in turn implies the existence of a solution. In
fact, if an SCMM is uniquely solvable, then the solution space S(M)
can be PE-uniquely parametrized by the mapping g : Epa(I) → X
and we will show in Lemma 2.6.19 that this always leads to a unique
observational distribution. This is already known for acyclic SCMs
(Pearl, 2009), and follows also from the fact that:

Proposition 2.6.18 Every acyclic SCM M = 〈I,J ,X ,E,f ,PE〉 is
uniquely solvable w.r.t. any subset O ⊆ I.

Proof. For the equivalent canonical SCM M̃ consider the structural
equations for the variables O. Then the acyclicity of the augmented
functional graph implies the existence of a topological ordening on the
nodes O. Following this topological ordering, we can substitute the
components of the causal mechanism into each other. This gives the
mapping gO : X pa(O)\O×Ean(O) → XO which makes M̃ and henceM
uniquely solvable w.r.t. O. Note that this mapping gO is independent
of the choice of the topological ordering. �

Lemma 2.6.19 Consider an SCM M that is uniquely solvable, then
there exists a solution, and all solutions have the same observational
distribution.
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Proof. The existence of a solution follows directly from Proposition 2.6.8.
Let the random variable E be such that PE = PE , then g(Epa(I)) is a
solution of M, where g is the mapping that makes M uniquely solv-
able. For any other solution X of M we have by unique solvability
that X = g(Epa(I)) a.s.. That is, for any solution X we have that the
observational distribution PX is the push-forward of PEpa(I)

under g.
�

This property that all solutions of uniquely solvable SCMs induce
the same observational distribution is why they form a convenient class
of SCMs. However, we would like to stress that this does not mean that
all solutions of a uniquely solvable SCMM are almost surely equal to
each other, as the following example illustrates:

Example 2.6.20 Consider the uniquely solvable SCMM = 〈1,1,X , E , f,PE〉,
where we take X = E = {−1, 1} with the discrete σ-algebra 2E , the
causal mechanism f(x, e) = e and PE(e = 1) = 1

2 . If we take as
background probability space (Ω,F ,P) = (E , 2E ,PE), then the pair of
random variables (E,X) = (IdΩ, IdΩ) and (Ẽ, X̃) = (−IdΩ,−IdΩ)
define both a solution of M for which PX = PX̃ . However, X and X̃
are not almost surely equal.

Some of the solvability properties discussed in Section 2.6.3 also
hold for unique solvability. We first have that in general unique solv-
ability w.r.t. O ⊆ I does not imply unique solvability w.r.t. a superset
nor a subset of O (see Example 2.6.12). Next, we have that in gen-
eral unique solvability is not preserved under union and intersection
(see Examples 2.6.12 and 2.6.14). However, we do not have a similar
property to the one stated in Proposition 2.6.13, if we restrict it to the
case of unique solvability. That is, in general, unique solvability w.r.t.
a subset O ⊆ I does not imply unique solvability w.r.t. an ancestral
subset V ⊆ O, as the following example illustrates:

Example 2.6.21 Consider the SCMM = 〈3,1,R3,R,f ,PR〉 with the
causal mechanism:

f1(x, e) = x1 · (1− 1{0}(x2 − x3)) + 1

f2(x, e) = x2

f3(x, e) = e ,

where PR the standard-normal measure on R. This SCM is uniquely
solvable w.r.t. the set {1, 2}, and thus solvable w.r.t. this set. However,
although it is solvable w.r.t. the ancestral subset {2} of {1, 2} it is not
uniquely solvable w.r.t. this subset.

Linear SCMs Linear SCMs form a special class that has seen much
attention in the literature (see e.g. Bollen, 1989).

Definition 2.6.22 We callM = 〈I,J ,RI ,RJ ,f ,PRJ 〉 linear, if each
causal mechanism is a linear combination of its endogenous and exoge-
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nous variables:

fi(x, e) =
∑

j∈I

Bijxj +
∑

k∈J

Γikek ,

where i ∈ I, and B ∈ RI×I and Γ ∈ RI×J are matrices, and where
PRJ can be any product probability measure8 on RJ .

For a subset O ⊆ I we will also use the shorthand vector-notation:

fO(x, e) = BOIx+ ΓOJ e .

In the literature, the coefficient Bij is often referred to as the “causal
effect” of xj to xi. See Section 2.8 for a discussion about the direct
causal interpretation of cyclic SCMs.

We have the following result:

Lemma 2.6.23 Given a linear SCMM, a subset O ⊆ I and let L :=
I \ O. Then M is uniquely solvable w.r.t. O if and only if the matrix
IOO−BOO is invertible. Moreover, ifM is uniquely solvable w.r.t. O,
then the mapping gO : RL × RJ → RO given by

gO(xL, e) = (IOO −BOO)
−1BOLxL + (IOO −BOO)

−1ΓOJ e ,

makes M uniquely solvable w.r.t. O.

Proof. M is uniquely solvable w.r.t. O iff for PRJ -almost every e for
all xL ∈ XL:

xO = fO(x, e)

⇐⇒ xO = BOOxO +BOLxL + ΓOJ e

⇐⇒ (IOO −BOO)xO = BOLxL + ΓOJe

has a unique solution xO ∈ XO. Hence M is uniquely solvable w.r.t.
O iff IOO −BOO is invertible. �

2.6.5 The obstruction to a self-loop

The obstruction to the existence of a self-loop at an endogenous vari-
able is unique solvability w.r.t. that variable.

Proposition 2.6.24 The SCM M = 〈I,J ,X ,E,f ,PE〉 is uniquely
solvable w.r.t. {i} for i ∈ I iff Ga(M) (or G(M)) has no self-loop at
i ∈ I.
Proof. By unique solvability w.r.t. {i} we have for PE-almost every e

for all x ∈ X :

xi = gi(xpa(i)\{i}, epa(i)) ⇐⇒ xi = fi(x, e) ,

from which the result follows. �

The obstruction to the existence of any self-loop, can be described
by the following notion:

8Note that we do not assume that the probability measure PRJ is Gaussian.
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Definition 2.6.25 We call an SCM M structurally uniquely solv-
able,9 if for all i ∈ I the SCM M is uniquely solvable w.r.t. {i}.
That is, a structurally uniquely solvable SCM M does not have any
self-loops. In particular, every acyclic SCM is structurally uniquely
solvable.

2.6.6 Interventions

We saw already in Example 2.4.5 that (unique) solvability is not pre-
served under perfect intervention. Moreover, a uniquely solvable SCM
can lead to a not uniquely solvable SCM after intervention, which ei-
ther has no solution at all or has multiple solutions.

Example 2.6.26 Consider the SCM M = 〈2, ∅,R2,f ,P1〉 with the
following causal mechanism:

f1(x) = x1 + x2
1 − x2 + 1

f2(x) = x2(1− 1{0}(x1)) + 1 .

This SCM is uniquely solvable, however doing a perfect intervention
do({1}, ξ) for some ξ 6= 0, leads to an intervened model Mdo({1},ξ)

without any solution. Doing instead the perfect intervention do({2}, ξ)
for some ξ > 1 leads also to a not uniquely solvable SCM Mdo({2},ξ).
However, this intervened modelMdo({2},ξ) has two solutions (X1, X2) =
(±√ξ − 1, ξ).

We see that unique solvability is not preserved under intervention in
general, however it is known to be preserved for the class of acyclic
SCMs, which follows directly from the fact that acyclicity is preserved
under intervention (see Lemma 2.4.4). The fact that acyclic SCMs
are closed under perfect intervention makes acyclic SCMs a convenient
class of SCMs. By closer inspection, we saw in Proposition 2.6.18 that
acyclic SCMs are in particular uniquely solvable w.r.t. every subset and
it is this weaker property that is preserved under perfect intervention,
as is shown in the next proposition.

Proposition 2.6.27 Consider an SCM M = 〈I,J ,X ,E ,f ,PE〉 that
is (uniquely) solvable w.r.t. every subset. Let I ⊆ I and ξI ∈ X I , then
Mdo(I,ξI) is (uniquely) solvable w.r.t. every subset.

Proof. Let O ⊆ I and define O1 := O\I and O2 := O∩I, that is O =
O1 ∪ O2. Consider the mapping gO1 : X pa(O1)\O1

× Epa(O1) → XO1

that makesM (uniquely) solvable w.r.t. O1 by assumption. Then the
mapping g̃O : X pa(O)\O × Epa(O) → XO defined by

g̃O1(xpa(O)\O, epa(O)) := gO1(xpa(O1)\O, ξpa(O1)∩O2
, epa(O1))

g̃O2(xpa(O)\O, epa(O)) := ξO2

makesMdo(I,ξI) (uniquely) solvable w.r.t. O. �

9Note structural unique solvability is called structural solvability in Mooij et al. (2013)
via Propoposition 2.6.28.
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This proposition tells us that the class of SCMs that are (uniquely)
solvable w.r.t. every subset is closed under perfect intervention. This
class extends the interventionally robust class of acyclic SCMs to cer-
tain cyclic SCMs.

More generally, one can also intuitively think of the (unique) solv-
ability w.r.t. a certain subset O ⊆ I as a (unique) solvability property
of all intervened modelsMdo(I\O,ξI\O) for ξI\O ∈ X I\O.

Proposition 2.6.28 Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM and
let O ⊆ I. If M is (uniquely) solvable w.r.t. O, then for every
ξpa(O)\O ∈ X pa(O)\O the intervened SCM Mdo(pa(O)\O,ξpa(O)\O) is
(uniquely) solvable w.r.t. pa(O)∪O. Moreover, for every ξI\O ∈ X I\O

the intervened SCM Mdo(I\O,ξI\O) is (uniquely) solvable.

Proof. Let gO : X pa(O)\O × Epa(O) → XO be the mapping that
makes M (uniquely) solvable w.r.t. O. Then the mapping g̃pa(O)∪O :
Epa(O) → X pa(O)∪O defined by g̃pa(O)∪O(epa(O)) := (ξpa(O)\O, gO(ξpa(O)\O, epa(O)))
makesMdo(pa(O)\O,ξpa(O)\O) (uniquely) solvable w.r.t. pa(O)∪O. More-
over, the mapping ĝ : Epa(I) → X defined by ĝ(epa(I)) := (ξI\O, gO(ξpa(O)\O, epa(O)))
makesMdo(I\O,ξI\O) (uniquely) solvable. �

2.7 Equivalences

In Section 2 we already encountered an equivalence relation on the class
of SCMs (see Definition 2.1.6). The (augmented) functional graph is
preserved under this equivalence relation as well as their solutions and
their observational, interventional and counterfactual distributions. In
this section we will give several coarser equivalence relations on the
class of SCMs.

2.7.1 Observational equivalence

Observational equivalence is the property that two or more SCMs are
indistinguishable on the basis of their observational distributions.

Definition 2.7.1 Two SCMs M and M̃ are observationally equiva-
lent with respect to O ⊆ I∩Ĩ, denoted byM≡obs(O) M̃, if XO = X̃O

and for all solutions X there exists a solution X̃ such that PXO = PX̃O

and for all solutions X̃ there exists a solution X such that PXO =

PX̃O . They are simply called observationally equivalent if they are
observationally equivalent with respect to I = Ĩ.

Consider the following well-known example:

Example 2.7.2 Consider the uniquely solvable SCMM = 〈2,2,R2,R2,f ,PE〉
with causal mechanism

f1(x, e) = αx2 + e1

f2(x, e) = βx1 + e2 ,
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X1 X2

E1 E2

X1 X2

E1 E2

X1 X2

E1 E2

Figure 6: The augmented functional graph of the SCMs M (left), M̃ (middle) and M̄ (right) of
Example 2.7.2. They are observationally equivalent, but not interventionally equivalent.

where α, β 6= 1 and PE = PE with

E1 ∼ N (µ1, σ
2
1)

E2 ∼ N (µ2, σ
2
2)

E1⊥⊥E2 .

The augmented functional graph is depicted in Figure 6. Consider
also the uniquely solvable SCM M̃ = 〈2,2,R2,R2, f̃ ,P

Ẽ
〉 with causal

mechanism
f1(x, ẽ) = ẽ1

f2(x, ẽ) = γx2 + ẽ2,

where

γ =
βσ2

1 + ασ2
2

σ2
1 + α2σ2

2

,

and PE = PE with
Ẽ1 ∼ N (µ̃1, σ̃

2
1)

Ẽ2 ∼ N (µ̃2, σ̃
2
2)

Ẽ1⊥⊥ Ẽ2 ,

where

µ̃1 = c[µ1 + αµ2], σ̃2
1 = c2[σ2

1 + α2σ2
2 ],

µ̃2 = c[(β − γ)µ1 + (1− αγ)µ2], σ̃2
2 = c2[(β − γ)2σ2

1 + (1− αγ)2σ2
2 ]

with
c = (1 − αβ)−1 .

Then M̃ and M are observationally equivalent. Similarly, one can
define an SCM M̄ with augmented functional graph as depicted in
Figure 6 that is observationally equivalent to both M̃ and M.

Although the SCMs of this example are observationally equivalent,
they are not interventionally equivalent, as we will see in the next
section.

Proposition 2.7.3 If two SCMsM and M̃ are observationally equiv-
alent w.r.t. O, then they are observationally equivalent w.r.t. every
subset V ⊂ O.
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Proof. Let V ⊂ O and assume without loss of generality that for all

solutions X there exists a solution X̃ such that PXO = PX̃O , then in

particular PXV = PX̃V . �

Proposition 2.7.4 LetM and M̃ be observationally equivalent w.r.t.
O ⊆ I ∩ Ĩ. If M is solvable, then M̃ is solvable.

Proof. This follows directly from Proposition 2.6.8. �

If two SCMs M and M̃ are observationally equivalent, then their
associated augmented functional graphs Ga(M) and Ga(M̃) are not
necessarily equal to each other, as we already saw in Example 2.7.2.

2.7.2 Interventional equivalence

We consider two SCMs to be interventionally equivalent if they induce
the same interventional distributions under any perfect intervention:

Definition 2.7.5 Two SCMs M and M̃ are interventionally equiva-
lent with respect to O ⊆ I ∩ Ĩ, denoted by M ≡int(O) M̃, if for any
I ⊆ O and any value ξI ∈ X I their intervened models Mdo(I,ξI) and

M̃do(I,ξI) are observationally equivalent with respect to O. They are
called interventionally equivalent if they are interventionally equivalent
with resepct to I = Ĩ.

Example 2.7.2 shows clearly the difference between observational
and interventional equivalence (see Figure 6). The following example
shows that more complicated behavior is also possible:

Example 2.7.6 Consider the SCMM from Example 2.6.26 and con-
sider the SCM M̃ = 〈2, ∅,R2,f ,P1〉 with the following causal mecha-
nism:

f̃1(x) = x1(1− 1{1}(x2))− x2 + 1

f̃2(x) = x2(1− 1{0}(x1)) + 1.

Both SCMs are uniquely solvable and they are observationally equiv-
alent. For every perfect intervention do({1}, ξ) with ξ ∈ R their in-
tervened models are observationally equivalent, and hence M and M̃
are interventionally equivalent w.r.t. {1}. Doing a perfect intervention
do({2}, 1) on both models also yields observationally equivalent SCMs.
However, doing a perfect intervention do({2}, ξ) for some ξ ≥ 1 leads
for both to a not uniquely solvable SCM, for which Mdo({2},ξ) is solv-

able and M̃do({2},ξ) is non-solvable. Hence M and M̃ are not inter-
ventionally equivalent.

On the other hand:

Proposition 2.7.7 If two SCMsM and M̃ are interventionally equiv-
alent w.r.t. O ⊆ I ∩ Ĩ, then they are interventionally equivalent w.r.t.
every subset V ⊂ O.
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Proof. This follows directly from Proposition 2.7.3. �

Interventional equivalence implies in particular observational equiv-
alence, as the empty perfect intervention (I = ∅) is a special case of
a perfect intervention. We saw already in Examples 2.7.2 and 2.7.6
that interventional equivalence is a strictly stronger notion than ob-
servational equivalence. Even for this stronger notion of interventional
equivalence, we have that if two SCMsM and M̃ are interventionally
equivalent, then their associated augmented functional graphs Ga(M)
and Ga(M̃) are not necessarily equal to each other, as is shown in the
following example:

Example 2.7.8 Consider the SCMM = 〈2,2, {−1, 1}2, {−1, 1}2,f ,PE〉
with the causal mechanism

f1(x, e) = e1

f2(x, e) = x1e2

where PE = PE with E1, E2 ∼ U({−1, 1}) and E1⊥⊥E2. In addition,
consider the SCM M̃ that differs only by the causal mechanism

f̃1(x, e) = e1

f̃2(x, e) = e2 .

ThenM and M̃ are interventionally equivalent although Ga(M) is not
equal to Ga(M̃). However, as we will see in Proposition 2.8.5, if M
and M̃ have no self-loops, their direct causal graphs are identical.

2.7.3 Counterfactual equivalence

We consider two SCMs to be counterfactually equivalent if their twin-
SCMs induce the same counterfactual distributions under any perfect
intervention:

Definition 2.7.9 Two SCMs M and M̃ are counterfactually equiva-
lent with respect to O ⊆ I ∩Ĩ, denoted byM≡cf(O) M̃, ifMtwin and

M̃twin are interventionally equivalent with respect to O∪O′, where O′

corresponds to the copy of O in I ′. They are called counterfactually
equivalent if they are counterfactually equivalent with respect to I = Ĩ.

Proposition 2.7.10 If two SCMs M and M̃ are counterfactually
equivalent w.r.t. O ⊆ I ∩ Ĩ, then they are counterfactually equivalent
w.r.t. every subset V ⊂ O.

Proof. This follows directly from Proposition 2.7.7. �

Lemma 2.7.11 An SCM M is observationally equivalent w.r.t. O ⊆
I to Mtwin.

Proof. Let X be a solution ofM, then (X,X) is a solution ofMtwin.
Conversely, let (X,X ′) be a solution of Mtwin, then X is a solution
of M. �
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Proposition 2.7.12 If two SCMs M and M̃ are counterfactually
equivalent w.r.t. O ⊆ I∩Ĩ, thenM and M̃ are interventionally equiv-
alent w.r.t. O.

Proof. Let M and M̃ be counterfactually equivalent w.r.t. O, then
Mtwin and M̃twin are interventionally equivalent w.r.t. O ∪ O′. In
particular Mtwin

do(I∪I′,ξI∪I′ )
and M̃twin

do(I∪I′,ξI∪I′ )
for I ′ a copy of I and

ξI′ = ξI ∈ X I are observationally equivalent w.r.t. O, where we
used here Proposition 2.7.3. Since Mtwin

do(I∪I′,ξI∪I′ )
= (Mdo(I,ξI))

twin

and M̃twin
do(I∪I′,ξI∪I′ )

= (M̃do(I,ξI))
twin we have by Lemma 2.7.11 that

Mdo(I,ξI) and M̃do(I,ξI) are observationally equivalent w.r.t. O. �

However, the converse is in general not true:

Example 2.7.13 Consider the same SCMs as in Example 2.7.8. We
saw in that example that they are interventionally equivalent. However,
they are not counterfactually equivalent, as Mtwin

do({1′,1},(1,−1)) is not

observationally equivalent to M̃twin
do({1′,1},(1,−1)). To see this, consider

the counterfactual query p(X2′ = 1|do(X1′ = 1), do(X1 = −1), X2 =
1). Both SCMs will give a different answer and hence M and M̃
cannot be counterfactually equivalent.

Even interventional equivalent SCMs with the same causal mechanism
may not be counterfactually equivalent. Take for example the SCMs
Mρ and Mρ′ with ρ 6= ρ′ in Example 2.5.2, then they are interven-
tionally but not counterfactually equivalent.

If two SCMsM and M̃ are counterfactually equivalent, then their
associated augmented functional graphs Ga(M) and Ga(M̃) are not
necessarily equal to each other, as is shown in the following example:

Example 2.7.14 Consider the SCMM = 〈1,1,R,R, f,PR〉 with causal
mechanism f(e) = e and where PR = PE with E ∼ N (0, 2) and
consider the SCM M̃ = 〈1,2,R,R2, f̃ ,PR2〉 with causal mechanism
f̃(e) = e1 + e2 and where PR2 = PE with E1, E2 ∼ N (0, 1) and
E1⊥⊥E2. Then M and M̃ are counterfactually equivalent but their
augmented functional graphs Ga(M) and Ga(M̃) differ.

2.7.4 Relations between equivalences

The definitions of observational, interventional and counterfactual equiv-
alence define equivalence relations on the set of all SCMs. Note that
two SCMs are observationally, interventionally and counterfactually
equivalent if they are so with respect to the set of endogenous vari-
ables. This means that between those SCMs the index set of exogenous
variables, the space of exogenous variables, the exogenous probability
distribution and the causal mechanism may all differ. The set of obser-
vational, interventional and counterfactual equivalence classes of SCMs
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are related in the following way:

M and M̃ are equivalent

=⇒M and M̃ are counterfactually equivalent

=⇒M and M̃ are interventionally equivalent

=⇒M and M̃ are observationally equivalent.

Example 2.7.15 Consider the SCM M and M̃ from Example 2.7.8
(or from Example 2.7.13). In addition, consider the SCM M̂ that
differs only by its causal mechanism in the following way:

f1(x, e) = e1, f̃1(x, e) = e1, f̂1(x, e) = e2

f2(x, e) = x1e2, f̃2(x, e) = e2, f̂2(x, e) = −e1

where PE = PE with E1, E2 ∼ U({−1, 1}) and E1⊥⊥E2. Then M, M̃
and M̂ are all interventionally equivalent and thus in particular they
are all observationally equivalent. Moreover, the only two SCMs that
are counterfactually equivalent are the SCMs M̃ and M̂. Nevertheless,
the associated augmented functional graphs ofM, M̃ and M̂ all differ.

In general, counterfactually, interventionally and observationally
equivalent SCMs may not have the same associated augmented func-
tional graphs, as we have shown in Examples 2.7.2, 2.7.8, 2.7.14 and
2.7.15.

2.8 The direct causal graph

For acyclic SCMs it is known that the induced subgraph of the aug-
mented functional graph on the endogenous variables has a direct
causal interpretation. For cyclic SCMs such an interpretation does
not hold in general. In the acyclic setting, an endogenous variable xi

is a direct cause of xj with respect to the endogenous variables I, if
two different interventions on xi will lead to a change in (the proba-
bility distribution of) xj when all the other variables in I besides xi

and xj are held fixed at some value by intervention. For cyclic SCMs
there is the obstruction that the possible effect xj may have a self-loop,
and hence, by Proposition 2.6.24, is not uniquely solvable w.r.t. that
variable. In this section we will investigate how the existence of self-
loops can obstruct a direct causal interpration of the induced subgraph
of augmented functional graph on the endogenous variables and show
that a structurally uniquely solvable SCM leads to a well-defined direct
causal graph for cyclic SCMs.

2.8.1 Self-loops obstruct the causal semantics

Consider an SCM M and let xi and xj be different endogenous vari-
ables. Suppose that xj has a self-loop, i.e.M is not uniquely solvable
w.r.t. {j}, then M is either one of the following two cases, it is either
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X1 X2

Figure 7: The augmented functional graph Ga(M) of the SCM M which is not solvable w.r.t. {1}
(see Example 2.8.1).

solvable w.r.t. {j} or it is not solvable w.r.t. {j}. Performing an in-
tervention do(\j, ξ\j), for ξ\j ∈ X \j , on all other variables yields an
intervened model Mdo(\j,ξ\j) that has a self-loop at the endogenous
variable j and that is either solvable or not solvable, depending on if
M is either solvable w.r.t. {j} or not solvable w.r.t. {j} respectively
(see Proposition 2.6.28). Hence, the intervened model has either sev-
eral solutions (with different induced probability distributrions) or no
solution. We illustrate the direct causal interpretation of these two
cases by the next two examples and show that in both cases perform-
ing two different interventions on xi could obstruct of having a direct
effect on xj . We first consider the case where the SCM is not solvable
w.r.t. {j}.
Example 2.8.1 Consider the SCM M = 〈2, ∅,R2, 1f ,P1〉 with the
causal mechanism:

f1(x) = x1 · (1− 1{0}(x2)) + 1

f2(x) = 0 .

This SCM is not solvable w.r.t. {1}. Performing a perfect intervention
on x2 by setting it to a value different from 0 leads to an SCM that is
not solvable and hence to an SCM without any solution. Although the
augmented functional graph in Figure 7 depicts a directed edge from x2

to x1, this edge cannot be detected from a distributional change on x1

due to a perfect intervention on x2, and hence cannot be interpreted as
a direct causal relation.

The next example illustrates the case where the SCM is solvable
w.r.t. {j}.
Example 2.8.2 Consider the SCMM = 〈2, ∅,R2, 1,f ,P1〉 with causal
mechanism:

f1(x) = 0

f2(x) = x1 .

Consider also the SCM M̃ with causal mechanism:

f1(x) = 0

f2(x) = x2 .

Note both M and M̃ are solvable w.r.t. {2}, but only M is uniquely
solvable w.r.t. {2}. The SCM M̃ has for every interventions do(I, ξI),
with I ⊆ 2 and ξI ∈ X I , all the solutions of Mdo(I,ξI). Perform-
ing for example the perfect intervention do({1},−1) and do({1}, 1) on
the SCM M gives rise to different distributions of x2. We might see
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Figure 8: The augmented functional graph of the SCM M (left) and M̃ (right) of Example 2.8.2.

the same distributional change in x2 after performing these interven-
tions on the SCM M̃, if nature picks corresponding solutions in the
intervened models of M̃. That solutions with different interventional
distributions exist is due to the fact that the SCM M̃ is solvable w.r.t.
{2}, but not uniquely solvable w.r.t. {2}. This means that the causal re-
lations of the SCM M̃ are underdetermined, since the model supports
more possible causal relations than are described by the (augmented)
functional graph (see Figure 8 on the right).

The fact that in these examples we can for an endogenous variable j
under intervention on \j, pick no solution or solutions with different
distributions, is due to the property that the original SCM has a self-
loop at the endogenous variable j and is either not solvable w.r.t. {j}
or solvable w.r.t. {j} respectively (see Proposition 2.6.28 and 2.6.8).
Both solvability and non-solvability w.r.t. an endogenous variables with
a self-loop obstructs a direct causal interpretation of the (augmented)
functional graph of the SCM. We conclude that every self-loop in an
SCM obstructs a direct causal interpretation.

2.8.2 The direct causal graph

For SCMs that are structurally uniquely solvable (see Definition 2.6.25),
and thus have no self-loops (see Proposition 2.6.24), we can define the
notion of “direct cause” formally:

Definition 2.8.3 Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM that is
structurally uniquely solvable. Then we say that i ∈ I is a direct
cause of j ∈ I \ {i} if and only if there exist two different ξ\{j} and

ξ̃\{j} in X \{j} such that ξ\{i,j} = ξ̃\{i,j}, and Mdo(\{j},ξ\{j}) and
Mdo(\{j},ξ̃\{j})

are not observationally equivalent w.r.t. {j}.

Note that this definition of direct cause is invariant under the equiva-
lence relation ≡ on SCMs.

This leads to the definition of the “direct causal graph”:

Definition 2.8.4 Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM that is
structurally uniquely solvable. We define the direct causal graph as
the directed graph Gdc(M) with nodes I and directed edges i → j if
and only if i is a direct cause of j.

The direct causal graph of such an SCM represents the direct causal
relations that are described by the SCM. Note that latent confounders
are not part of the direct causal graph, since the direct causal graph
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describes only the direct causal relations among the endogenous vari-
ables and not among the endogenous and exogenous variables together.
See Section 3.4 for a discussion about latent confounders.

Interventionally equivalent SCMs describe the same set of interven-
tional distributions and hence we have the following result:

Proposition 2.8.5 Let M and M̃ be interventionally equivalent. If
both M and M̃ are structurally uniquely solvable, then Gdc(M) =
Gdc(M̃).

Proof. Suppose i is a direct cause of j inM, then for any two different
ξ\j and ξ̃\j in X \j such that ξ\{i,j} = ξ̃\{i,j} we have thatMdo(\j,ξ\j)

and Mdo(\j,ξ̃\j)
are not observationally equivalent. From the inter-

ventional equivalence of M and M̃ it follows that M̃do(\j,ξ\j) and

M̃do(\j,ξ̃\j)
are also not observationally equivalent and hence i is a di-

rect cause of j in M̃. By symmetry it follows that Gdc(M) = Gdc(M̃).
�

The direct causal graph is a subgraph of the (augmented) functional
graph.

Proposition 2.8.6 Let M = 〈I,J ,X ,E ,f ,PE〉 be an SCM that is
structurally uniquely solvable. Then Gdc(M) ⊆ G(M) and Gdc(M) ⊆
Ga(M).

Proof. We need to prove that i ∈ pa(j) if i is a direct cause of j.
Suppose i /∈ pa(j), that is there exists a measurable mapping f̃j :

X pa(j)\{i}×Epa(j) → X j such that f̃j ≡ fj . Pick any different ξ\j and

ξ̃\j in X \j such that ξ\{i,j} = ξ̃\{i,j}. Then for PE-almost all e for all

x ∈ X the structural equation for the jth variable of the intervened
model Mdo(\j,ξ\j) (or similar forMdo(\j,ξ̃\j)

) holds iff we have that

xj = f̃j(ξpa(j)\{i,j}, xj , epa(j))

holds. Without loss of generality, a solution Xj of Mdo(\j,ξ\j) is also
a solution of Mdo(\j,ξ̃\j)

. Hence i cannot be a direct cause of j w.r.t.

I. �

The following example shows that Ga(M)I ⊆ Gdc(M) does not
hold in general:

Example 2.8.7 Consider the SCM M of Example 2.7.8. There, x1

is a parent of x2, but x1 is not a direct cause of x2, since

PX2

Mdo({1},−1)
= PX̃2

Mdo({1},1)

for all solutions X2 and X̃2 ofMdo({1},−1) andMdo({1},1) respectively.
This is a consequence of the symmetric distribution of E2. Changing
the distribution of E2 to any non-symmetric distribution will lead to a
direct causal effect of x1 on x2.
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2.9 Markov properties

In this section we will give a short overview of some Markov properties
for SCMs, including cyclic SCMs, as derived in Forré and Mooij (2017).
We show that under certain assumptions the general directed global
Markov property, which associates a set of conditional independence
relations to the functional graph of the SCM, holds for its observational
distribution. This Markov property is defined in terms of σ-separation,
which is a general extension of d-separation. In particular, σ-separation
implies d-separation, and for the acyclic case, σ-separation is equiva-
lent to d-separation. We show that under the assumption of unique
solvability w.r.t. each strongly connected component, the observational
distribution satisfies the general directed global Markov property rel-
ative to the functional graph. Moreover, we mention several special
cases for which the stronger directed global Markov property holds.
These assumptions are in general not preserved under intervention. We
show that under the stronger assumption of unique solvability w.r.t.
every subset, every interventional distribution satisfies the general di-
rected global Markov property relative to the functional graph of the
intervened model. For an extensive study of the different Markov prop-
erties that can be associated to SCMs we refer the reader to the work
of Forré and Mooij (2017).

Definition 2.9.1 Let G = (V , E ,B) be a directed mixed graph and let
A,B,S ⊆ V be subsets of nodes. A path10 (i = i0, i1, . . . , in−1, in = j)
in G is called S-σ-blocked or σ-blocked by S if:

1. i ∈ S or j ∈ S, or

2. there exists a node ik /∈ anG(S) with two adjacent edges that form
a collider at ik, i.e.

ik−1 → ik ← ik+1 , ik−1 ↔ ik ← ik+1 ,

ik−1 → ik ↔ ik+1 , ik−1 ↔ ik ↔ ik+1 ,

or

3. there exists a node ik ∈ S with two adjacent edges that form a
non-collider at ik, i.e.

ik−1 → ik → ik+1 , ik−1 ↔ ik → ik+1 , ik−1 ← ik → ik+1 ,

ik−1 ← ik ← ik+1 , ik−1 ← ik ↔ ik+1 ,

where at least one child (ik−1 or ik+1) of ik is not in scG(ik).

We call a path S-σ-open or S-σ-active if it is not S-σ-blocked. We say
that A is σ-separated from B given S if every path (i, . . . , j) in G with
i ∈ A and j ∈ B is σ-blocked by S, and write:

A
σ

⊥⊥
G
B .

10Alternatively, one may look at walks.
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X1 X2

X3X4

Figure 9: A directed graph G for which d-separation does not imply σ-separation (see Exam-
ple 2.9.2).

In other words, a path in G is S-σ-blocked iff it has an endnode in S,
or it contains a collider not in anG(S), or it contains a non-collider in
S that points to a node in a different strongly connected component.
It is shown in Forré and Mooij (2017) that σ-separation implies d-
separation. The other way around does not hold in general, as can be
seen in the following example:

Example 2.9.2 Consider the directed graph G as depicted in Figure 9.
Here X1 is d-separated from X3 given {X2, X4}, but X1 is not σ-
separated from X3 given {X2, X4}.
In particular, σ-Separation is equivalent to d-separation for DAGs and
ADMGs.

Definition 2.9.3 Let G = (V , E ,B) be a directed mixed graph and PV a
probability distribution on XV =

∏
i∈V Xi. The probability distribution

PV obeys the general directed global Markov property relative to G, if
for all subsets A,B,S ⊆ V we have:

A
σ

⊥⊥
G
B|S =⇒ A ⊥⊥

PV

B|S

Here we have used the notation A ⊥⊥ PV B|S as short for (Xi)i∈A

and (Xi)i∈B are conditionally independent given (Xi)i∈S under PV ,
where we take for Xi : XV → Xi the canonical projections as random
variables.

Theorem 2.9.4 (Forré and Mooij, 2017) Consider an SCM M that
is uniquely solvable w.r.t. each strongly connected component of G(M),
then its observational distribution PX exists and is unique, and it obeys
the general directed global Markov property relative to G(M).

Proof. An SCMM that is uniquely solvable w.r.t. each strongly con-
nected component is uniquely solvable and hence, by Lemma 2.6.19,
all its solutions have the same observational distribution. The last
statement follows from Theorem 3.8.2, 3.8.11, Lemma 3.7.7 and Re-
mark 3.7.2 in Forré and Mooij (2017). �

The fact that σ-separation implies d-separation means that the
directed global Markov property implies the general directed global
Markov property. The other way around does not hold in general.
Under stronger conditions we do have the following results:



2 STRUCTURAL CAUSAL MODELS 38

Theorem 2.9.5 (Forré and Mooij, 2017) Consider an SCM M that
is uniquely solvable w.r.t. each strongly connected component of G(M)
and moreover satisfies at least one of the following three conditions:

1. M is linear and PE has a density w.r.t. the Lebesgue measure;

2. M has discrete-valued endogenous variables;

3. M is acyclic;

then its observational distribution PX obeys the directed global Markov
property relative to G(M).

Proof. The linear case is proven by Theorem 3.8.17, the discrete case
is proven by Theorem 3.8.2, 3.8.12, Remark 3.7.2, Theorem 3.6.6 and
3.5.2 and the acyclic case is proven by Remark 3.3.4 in Forré and Mooij
(2017). �

For the linear case, one can relax the condition of unique solvability
w.r.t. each strongly connected component to the condition of unique
solvability w.r.t. I. For the discrete case one can relax the condition
of unique solvability w.r.t. each strongly connected component to the
condition of unique solvability w.r.t. each ancestral subgraph of G(M)
(Forré and Mooij, 2017).

The results in Theorems 2.9.4 and 2.9.5 are not preserved under
intervention, because intervening on a strongly connected component
could split it into several strongly connected components. The stronger
condition that the SCM is uniquely solvable w.r.t. each strongly con-
nected induced subgraph is preserved under intervention.

Definition 2.9.6 A loop in a directed mixed graph G = (V , E ,B) is a
subset O ⊆ V that is strongly connected in the induced subgraph GO of
G on O.

A cycle is a directed path i → · · · → j plus an edge j → i, a loop can
have many more edges between the nodes. For an SCMM we denote
the set of loops of the functional graph G(M) by L(M).

Proposition 2.9.7 An SCM M is uniquely solvable w.r.t. every sub-
set in L(M) iff it is uniquely solvable w.r.t. every subset of I.
Proof. Suppose M is uniquely solvable w.r.t. every subset in L(M)
and consider a subset O ⊆ I. Consider the induced subgraph Ga(M)O
of Ga(M) on the nodes O. Then every strongly connected component
of Ga(M)O is an element of L(M). Let C be a strongly connected
component in Ga(M)O, and gC : X pa(C)\C×Epa(C) → X C the mapping
that makes M uniquely solvable w.r.t. C. Since Ga(M)O partitions
into strongly connected components, we can recursively (by following
a topological ordening) insert these mappings into each other to obtain
a mapping gO : X pa(O)\O × Epa(O) → XO that makes M uniquely
solvable w.r.t. O. �

Note that we already proved in Proposition 2.6.27 that the property
that an SCM is uniquely solvable w.r.t. every subset is preserved under
intervention.
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Corollary 2.9.8 Consider an SCMM that is uniquely solvable w.r.t.
every subset of I. Then, for every I ⊆ I and ξI ∈ X I the interven-
tional distribution PX of Mdo(I,ξI) obeys the general directed global
Markov property relative to G(Mdo(I,ξI)).

Proof. This follows from Proposition 2.9.7 (or Proposition 2.6.27) and
Theorem 2.9.4. �

Under this assumption that the SCM is uniquely solvable w.r.t.
every subset, we know that the direct causal graph is defined under all
interventions. Moreover, this assumption is, as we will see in the next
section, also closed under marginalization and hence the direct causal
graph is also defined under any marginalization. Therefore, such SCMs
form a particularly convenient subclass of SCMs that include cycles.

3 Marginalizations

In this section we will show how we can marginalize an SCM over a
subset L ⊂ I of endogenous variables to another SCM on the margin
I \ L such that it preserves the causal semantics on this margin. In
particular, this could be seen as marginalizing all observational and
interventional distributions associated to the SCM down to their cor-
responding distributions on the margin.

Intuitively, the idea is that we would like to treat the subsystem L
as a “black box”, and only describe how the rest of the system inter-
acts with it. Thereby we completely remove the representation of the
internals of the subsystem, preserving only its essential input-output
characteristics. We will show that if part of the causal mechanism that
describes the causal relations in the subsystem L (i.e., the restriction
of the causal mechanism to L) satisfies the unique solvability w.r.t. L
condition (intuitively: it gives a unique output for any possible input),
then we can effectively remove this subsystem of endogenous variables
from the model, treating it as a black box. An important property
of this marginalization operation is that it preserves the causal se-
mantics, meaning that the interventional distributions induced by the
SCM are on the margin identical to those induced by its marginaliza-
tion. Moreover, we show that this marginalization operation preserves
the counterfactual semantics.

Similarly to the marginalization of an SCM we will define the
marginalization of a directed graph, which is called the latent pro-
jection. We show that in general the marginalization of an SCM does
not obey the latent projection of its associated augmented functional
graph, i.e. that the augmented functional graph of the marginal SCM
is not always a subgraph of the latent projection of the augmented
functional graph of the original SCM. However, as we will see, this
does hold given a sufficient condition. This leads to the result that
SCMs that are uniquely solvable w.r.t. every subset are closed under
intervention and marginalization, for which the acyclic SCMs form a
particular subclass.
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Next, we will define the direct causal graph w.r.t. a context set,
which leads to the notion of indirect cause. We will show that in general
the marginalization of an SCM does not obey the latent projection of
its corresponding direct causal graph. In the end, we will discuss latent
confounders, i.e. latent common causes.

3.1 Marginal structural causal models

Before we show how we can marginalize an SCM over a subset of
endogenous variables, we will first like to mention that in general it is
not always possible to find an SCM on the margin that preserves the
causal semantics, i.e. that they are interventionally equivalent on the
margin, as the following example ilustrates.

Example 3.1.1 Consider the SCM M = 〈3, ∅,R3, 1,f ,P1〉 with the
causal mechanism:

f1(x) = x1 + x2 + x3

f2(x) = x2

f3(x) = 0 .

Then there exists no SCM M̃ on the variables {2, 3} that is interven-
tionally equivalent toM w.r.t. {2, 3}. To see this, suppose there exists
such an M̃, then for any ξ2, ξ3 ∈ X {2,3} such that ξ2 + ξ3 6= 0 the

intervened model M̃do({2,3},(ξ2,ξ3)) has a solution but Mdo({2,3},(ξ2,ξ3))

does not.

More generally, for an SCM M that is not solvable w.r.t. a subset
L ⊂ I one can never find an SCM M̃ on the endogenous variables
I \ L that is interventionally equivalent w.r.t. I \ L.

One may wonder, if instead for an SCM M that is solvable w.r.t.
the subset L, one can find an SCM on the margin I \ L such that it is
interventionally equivalent w.r.t. I \ L. The next example shows that
this is in general not possible either:

Example 3.1.2 Consider the SCM M = 〈3,1,R3,R,f ,PR〉 with the
causal mechanism:

f1(x) = e1

f2(x) = x2 − x2
2 + x2

1

f3(x) = x2 .

and PR the standard-normal measure on R. This SCM is solvable w.r.t.
{2}. Then for an intervention do({1}, ξ1), with ξ1 ∈ R, on M, the
solution on x3 is either equal to −|ξ1| or to |ξ1|. There exist no SCM
M̃ on {1, 3} such that Mdo({1},ξ) and M̃do({1},ξ) are observationally

equivalent w.r.t. {1, 3}, since the causal mechanism of f̃3 of M̃do({1},ξ)

could never map x1 to more than one value.

As we will show next, the stronger condition of unique solvability
w.r.t. a subset, is a sufficient condition for the existence of an SCM on
the margin that preserves the causal semantics. Consider the following
example:
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Figure 10: The augmented functional graphs of the SCM M (left) and M̃ (right) of Example 3.1.3,
where the SCM M̃ defines a marginalization of M w.r.t. L.

Example 3.1.3 Consider the SCM M = 〈5,4,R5,R4,f ,PR4〉 with
the following causal mechanism:

f1(x, e) = e2 + e3

f2(x, e) = x1 + x5 + e4

f3(x, e) = x5 + e2

f4(x, e) = x1 + x5 + e1

f5(x, e) =
1
2x3

and take for PR4 the standard-normal measure on R4. This SCM,
depicted in Figure 10, is uniquely solvable w.r.t. L := {3, 4, 5} by the
mapping g{3,4,5} : X1 × E{1,2} → X {3,4,5} given by:

g3(x, e) = 2e2

g4(x, e) = x1 + e1 + e2

g5(x, e) = e2

The structural equations for the variables L can be seen as a subsystem,
that is for every input (xpa(L)\L, epa(L)) ∈ X pa(L)\L × Epa(L) these
mappings give rise to a unique output xL ∈ XL. Substituting these
mappings into the causal mechanism of the variables {1, 2} gives a
"marginal" causal mechanism:

f̃1(x, e) := e2 + e3

f̃2(x, e) := x1 + e2 + e4 .

These mappings define an SCM M̃ := 〈2,4,R2,R4, f̃ ,PR4〉 on the mar-
gin. This constructed SCM M̃ is interventionally equivalent w.r.t. L,
which can be checked manually or by applying Theorem 3.1.10.
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In general, for an SCMM and a given subset L ⊂ I of endogenous
variables and its complement O := I \ L, the structural equations
xL = fL(xL,xO, e) define a “subsystem”. In Example 3.1.3 this is
depicted as a gray box in Figure 10. IfM is uniquely solvable w.r.t. L
by some mapping gL : X pa(L)\L × Epa(L) → XL, then for each input
(xpa(L)\L, epa(L)) ∈ X pa(L)\L × Epa(L) of the subsystem, there exists
a PEpa(L)

-unique11 output xL ∈ XL. We can effectively remove this
subystem of endogenous variables from the model by substitution. This
will lead to a marginal SCM that is interventionally equivalent to the
original SCM w.r.t. the margin, which we will prove in Theorem 3.1.10.

Definition 3.1.4 Consider an SCM M = 〈I,J ,X ,E,f ,PE〉 and a
subset L ⊂ I, and let O = I \ L. If M is uniquely solvable w.r.t. L,
then we define a marginalization of M w.r.t. L, denoted by marg(L),
as the SCM Mmarg(L) := 〈O,J ,XO,E, f̃ ,PE〉 with “marginal” causal

mechanism f̃ : XO × E → XO defined by

f̃(xO, e) := fO(gL(xpa(L)\L, epa(L)),xO, e) .

where gL : X pa(L)\L×Epa(L) → L is a mapping that makesM uniquely
solvable w.r.t. L.

Note that for a specific L ⊂ I there may exist more than one marginal-
ization marg(L)(M), depending on the choice of the mapping gL that
makes M uniquely solvable w.r.t. L. However, all marginalizations
map M to a representative of the same equivalence class of SCMs.
Moreover, marginalizing two equivalent SCMs over L yields two equiv-
alent marginal SCMs. Thus, the relation marg(L) between SCMs in-
duces a mapping between the equivalences classes of SCMs.

With this definition at hand, we recover the known result that we
can always construct a marginal SCM over a subset of endogenous
variables from an acyclic SCM by merely substitution (see Proposi-
tion 2.6.18). Moreover, it extends to cyclic SCMs, namely to those
that are uniquely solvable w.r.t. a certain subset, as we already saw in
Example 3.1.3. We will prove in Theorem 3.1.10 the important prop-
erty that for those SCMs, the SCM and its corresponding marginal
SCM are interventionally equivalent w.r.t. the margin. We would like
to stress that for an SCMM, unique solvability w.r.t. a certain subset
L ⊆ I, is a sufficient, but not a necessary condition, for the existence
of an SCM M̃ on the margin I \ L such that M and M̃ are inter-
ventionally equivalent w.r.t. I \ L. This is illustrated by the following
example:

Example 3.1.5 Consider the SCM M = 〈4,1,R4,R,f ,PR〉 with the
causal mechanism:

f1(x, e) = e

f2(x, e) = x1

f3(x, e) = x2

f4(x, e) = x4 .

11A mapping is P-unique if it is unique up to P-null set.
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and PR the standard-normal measure on R. This SCM is solvable w.r.t.
L = {2, 4}, but not uniquely solvable w.r.t. L, and hence we cannot
apply Definition 3.1.4 to L. However, the SCM M̃ on the endogenous
variables {1, 3} with the causal mechanism f̃ given by:

f̃1(x, e) = e

f̃3(x, e) = x1 .

is interventionally equivalent w.r.t. {1, 3}, which can be checked man-
ually.

Hence, in certain cases it is possible to relax the uniqueness condition.
Classifying all these cases is beyond the scope of this paper.

The definition of marginalization is well-defined, in the sense that,
if we can marginalize over two disjoint subsets after each other, then
we can also marginalize over the union of those subsets at once.

Lemma 3.1.6 Given an SCM M = 〈I,J ,X ,E,f ,PE〉 and two dis-
joint subsets L1,L2 ⊂ I. Assume M is uniquely solvable w.r.t. L1
andMmarg(L1) is uniquely solvable w.r.t. L2, thenM is uniquely solv-
able w.r.t. L1 ∪ L2. Moreover marg(L2) ◦marg(L1)(M) ≡ marg(L1 ∪
L2)(M).

Proof. From unique solvability of M w.r.t. L1 it follows that there
exists a mapping gL1 such that for PE -almost every e for all x ∈ X :

xL1 = gL1(xpa(L1)\L1
, epa(L1)) ⇐⇒ xL1 = fL1(x, e) .

IfMmarg(L1) is uniquely solvable w.r.t. L2, then there exists a mapping
gL2 such that for PE-almost every e for all xI\L1

∈ X I\L1
:

xL2 = gL2(xp̂a(L2)\L2
, ep̂a(L2))

⇐⇒ xL2 = fL2(gL1(xpa(L1)\L1
, epa(L1)),xI\L1

, e) ,

where p̂a(L2) denotes the parents of L2 w.r.t. the graph Ga(Mmarg(L1)).
Note that for the endogenous parents p̂a(L2)\L2 ⊆ pa(L1∪L2)\(L1∪
L2) and for the exogenous parents p̂a(L2) ⊆ pa(L1 ∪ L2). Take the
Ansatz for the mapping g̃L1∪L2 : X pa(L1∪L2)\(L1∪L2) × Epa(L1∪L2) →
XL1∪L2 :

(g̃L1 , g̃L2)(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2)) :=

(gL1(gpa(L1)∩L2
(xp̂a(L2)\L2

, ep̂a(L2)),xpa(L1)\(L1∪L2), epa(L1)), gL2(xp̂a(L2)\L2
, ep̂a(L2))) .
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Then for PE-almost every e for all x ∈ X :
{
xL1 = fL1(x, e)

xL2 = fL2(x, e)

⇐⇒
{
xL1 = gL1(xpa(L1)\L1

, epa(L1))

xL2 = fL2(x, e)

⇐⇒
{
xL1 = gL1(xpa(L1)\L1

, epa(L1))

xL2 = fL2(gL1(xpa(L1)\L1
, epa(L1)),xI\L1

, e)

⇐⇒
{
xL1 = gL1(xpa(L1)\L1

, epa(L1))

xL2 = gL2(xp̂a(L2)\L2
, ep̂a(L2))

⇐⇒
{
xL1 = gL1(gpa(L1)∩L2

(xp̂a(L2)\L2
, ep̂a(L2)),xpa(L1)\(L1∪L2), epa(L1))

xL2 = gL2(xp̂a(L2)\L2
, ep̂a(L2))

⇐⇒
{
xL1 = g̃L1(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

xL2 = g̃L2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2)) ,

where in the first equivalence we used solvability w.r.t. L1 of M, in
the second we used substitution, in the third we used solvability w.r.t.
L2 of Mmarg(L1), in the fourth we used again substitution and in the
last equivalence we used the Ansatz. From this we conclude that M
is uniquely solvable w.r.t. L1 ∪L2. Hence, by definition it follows that
marg(L2) ◦marg(L1)(M) ≡ marg(L1 ∪ L2)(M). �

Note that in the previous lemma L1 and L2 have to be disjoint, since
marginalizing first over L1 gives a maginal SCM Mmarg(L1) with en-
dogenous variables I \ L1.

This leads to the following commutativity result for marginaliza-
tion:

Proposition 3.1.7 Given an SCM M and disjoint subsets L1,L2 ⊂
I. If M is uniquely solvable w.r.t. L1 and L2, Mmarg(L1) is uniquely
solvable w.r.t. L2 and Mmarg(L2) is uniquely solvable w.r.t. L1, then
marginalizing subsequently over L1 and L2 commutes, i.e. marg(L2) ◦
marg(L1)(M) = marg(L1) ◦marg(L2)(M) = marg(L1 ∪ L2)(M).

Proof. This follows from Lemma 3.1.6. �

In general, marginalization is not always defined for all subsets as
can be seen from Example 2.6.21. There we cannot marginalize M
over the variable x2, but we can marginalize it over the variables x1

and x2 together. The fact that we cannot marginalize over the single
variable x2 over there is due to the existence of a self-loop at x2. It
follows from Proposition 2.6.24 that we can only marginalize over a
single variable if that variable has no self-loop. Note that we may
introduce new self-loops if we marginalize over a subset of variables,
as can be seen, for example, from the last two SCMs in Example 2.6.1.
These SCMs have no self-loops, however marginalizing over x2 yield a
marginal SCM with a self-loop at the variable x1.
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Before we show the important property that marginalization pre-
serves the causal semantics, we first show, as an intermediate result,
that the marginalization operation does not change the solution space
of the observed variables:

Lemma 3.1.8 Given an SCM M and a subset L ⊂ I such that M
is uniquely solvable w.r.t. L. Then M and marg(L)(M) are observa-
tionally equivalent w.r.t. I \ L.
Proof. Let (X,E) be random variables such that PE = PE and X =
f(X,E) holds a.s.. By unique solvability w.r.t. L it follows that for
PE -almost every e for all x ∈ X :

{
xL = fL(x, e)

xO = fO(x, e)

⇐⇒
{
xL = gL(xpa(L)\L, epa(L))

xO = fO(gL(xpa(L)\L, epa(L)),xO, e)

⇐⇒
{
xL = gL(xpa(L)\L, epa(L))

xO = f̃O(xO, e) ,

where O = I \ L. Thus XO = f̃(XO,E) holds a.s.. Conversely,
suppose (XO,E) are random variables such that PE = PE and XO =
f̃ (XO,E) holds a.s., where f̃ is the marginal causal mechanism of
marg(L)(M). Let gL : X pa(L)\L × Epa(L) → XL be a mapping that
makesM uniquely solvable w.r.t. L, then the random variable XL :=
gL(Xpa(L)\L,Epa(L)) makes X := (XO,XL) a solution ofM. �

Next we show that the interventional distributions of a marginal
SCM are identical to the marginal interventional distributions induced
by the original SCM. A simple proof of this result proceeds by showing
that the operations of intervening and marginalizing commute.

Lemma 3.1.9 Given an SCM M, a subset L ⊂ I such that M is
uniquely solvable w.r.t. L, a subset I ⊆ I \ L and a value ξI ∈ X I .
Marginalization marg(L) commutes with perfect intervention do(I, ξI),
i.e. (marg(L) ◦ do(I, ξI))(M) ≡ (do(I, ξ) ◦marg(L))(M).

Proof. This follows straightforwardly from the definitions of perfect
intervention and marginalization and the fact that if M is uniquely
solvable w.r.t. L, then Mdo(I,ξI) is also uniquely solvable w.r.t. L,
since the structural equations for L are the same forM andMdo(I,ξI).
�

With Lemmas 3.1.8 and 3.1.9 at hand we can prove the main the-
orem:

Theorem 3.1.10 Given an SCM M and a subset L ⊂ I such that
M is uniquely solvable w.r.t. L. Then M and marg(L)(M) are inter-
ventionally equivalent w.r.t. I \ L.
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Proof. From Lemma 3.1.9 we know that for a subset I ⊆ I \ L and
a value ξI ∈ X I , (marg(L) ◦ do(I, ξI))(M) exists. By Lemma 3.1.8
we know that do(I, ξI)(M) and (marg(L)◦do(I, ξI))(M) are observa-
tionally equivalent w.r.t. O and hence by applying again Lemma 3.1.9,
do(I, ξI)(M) and (do(I, ξ) ◦marg(L))(M) are observationally equiva-
lent w.r.t. O. This implies thatM and marg(L)(M) are intervention-
ally equivalent. �

This shows that our definition of a marginal SCM is indeed an SCM
that is interventionally equivalent w.r.t. the margin. As we saw in
Example 2.7.13 it is generally not true that interventional equivalence
implies counterfactual equivalence. However, for our definition of a
marginal SCM we have, in addition, the following interesting corollary:

Corollary 3.1.11 Given an SCM M and a subset L ⊂ I such that
M is uniquely solvable w.r.t. L. Then M and marg(L)(M) are coun-
terfactually equivalent w.r.t. I \ L.

Proof. We need to show thatMtwin and (Mmarg(L))
twin are interven-

tionally equivalent w.r.t. (I ∪ I ′) \ (L∪L′), where L′ is a copy of L in
I ′. IfM is uniquely solvable w.r.t. L, thenMtwin is uniquely solvable
w.r.t. L∪L′. Moreover, (Mmarg(L))

twin is equivalent to (Mtwin)marg(L∪L′).
From Theorem 3.1.10 it follows that (Mtwin)marg(L∪L′) andMtwin are
interventionally equivalent w.r.t. (I ∪ I ′) \ (L ∪ L′), from which the
result follows. �

3.2 Latent projections

We define a marginalization operation for directed graphs, which we
will call the “latent projection”, as follows:

Definition 3.2.1 Given a directed graph G = (V , E) and a subset of
nodes L ⊆ V, we define the latent projection of G w.r.t. L as the graph
marg(L)(G) := (V \ L, Ẽ) where

Ẽ := {i→ j : i, j ∈ V\L, i→ ℓ1 → · · · → ℓn → j ∈ G for n ≥ 0, ℓ1, . . . , ℓn ∈ L}

The name “latent projection” is inspired from a similar construction on
mixed graphs in Verma (1993). However, the latent projection defined
there does not provide a mapping between SCMs, but only a mapping
between mixed graphs that is shown to preserve conditional indepen-
dence properties (see also Tian, 2002). Here, we provide a sufficient
condition for the marginalization of an SCM to obey the latent projec-
tion, i.e. that the augmented functional graph of the marginal SCM is
a subgraph of the latent projection of the augmented functional graph
of the original SCM.

In Example 3.1.3 we already saw an example of a marginalization
that obeys the latent projection. However, not all marginalizations give
rise to a latent projection, as is illustrated in the following example:
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X1 X2

X3 X4E

Ga(M)

X3 X4E

Ga(Mmarg(L))

Figure 11: The augmented functional graph of the SCM M (left) and of Mmarg(L) (right) as in
Example 3.2.2.

Example 3.2.2 Consider the SCM M = 〈4,1,R4,R,f ,PR〉 with the
causal mechanism:

f1(x, e) = x1 · (1− 1{0}(x2 − x3)) + 1

f2(x, e) = x2

f3(x, e) = e

f4(x, e) = x2 ,

where PR the standard-normal measure on R. Although M and its
marginalization Mmarg(L) with L = {1, 2} are interventionally equiv-
alent w.r.t. L, the augmented functional graph Ga(Mmarg(L)) is not a
subgraph of the latent projection of Ga(M) w.r.t. L, as can be verified
from the augmented functional graphs depicted in Figure 11.

The next lemma shows that under certain unique solvability condi-
tions one can restrict the components of the mappings that makes the
SCM uniquely solvable w.r.t. a certain subset L to the parents of its
ancestral components within the induced subgraph of the augmented
functional graph on L.

Lemma 3.2.3 Given an SCM M and a subset L ⊂ I such that M is

(i) uniquely solvable w.r.t. L, and

(ii) uniquely solvable w.r.t. ãnGa(M)L(ℓ) for every ℓ ∈ L, where ãnGa(M)L(ℓ)
are the ancestors of ℓ according to the induced subgraph Ga(M)L
of the augmented functional graph Ga(M) on L.

Let gL : X pa(L)\L × Epa(L) → XL be the mapping that makes M
uniquely solvable w.r.t. L, then for every subset K ⊆ L the components
gK of gL is a mapping of the form gK : X pa(AK)\AK

×Epa(AK) → XK,
where AK := ãnGa(M)L(K) are the ancestors of K according to the
induced subgraph Ga(M)L of the augmented functional graph Ga(M)
on L.

Proof. The mapping gL satisfies for PE -almost every e for all x ∈ X :

xL = gL(xpa(L)\L, epa(L)) =⇒ xL = fL(x, e) .
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Define Aℓ := ãnGa(M)L(ℓ) for some ℓ ∈ L and let g̃Aℓ
be the mapping

that makesM uniquely solvable w.r.t. Aℓ. Then, for PE -almost every
e for all x ∈ X :
{
xAℓ

= gAℓ
(xpa(L)\L, epa(L))

xL\Aℓ
= gL\Aℓ

(xpa(L)\L, epa(L))
=⇒

{
xAℓ

= g̃Aℓ
(xpa(Aℓ)\Aℓ

, epa(Aℓ))

xL\Aℓ
= fL\Aℓ

(x, e)

Since for the endogenous variables pa(Aℓ) \ Aℓ ⊆ pa(L) \ L, we have
that in particular for PEpa(L)

-almost every epa(L) for all xAℓ∪(pa(L)\L) ∈
XAℓ∪(pa(L)\L):

xAℓ
= gAℓ

(xpa(L)\L, epa(L)) =⇒ xAℓ
= g̃Aℓ

(xpa(Aℓ)\Aℓ
, epa(Aℓ)) .

This implies that that the mapping gAℓ
cannot depend on variables

different from xpa(Aℓ)\Aℓ
and epa(Aℓ), because if it does, it leads to a

contradiction. In particular, the component gℓ can only depend on the
endogenous variables pa(Aℓ)\Aℓ and exogenous variables pa(Aℓ). We
conclude that for any subset K ⊆ I, the components gK is a mapping
of the form gK : X pa(AK)\AK

× Epa(AK) → XK. �

Note that in general condition (ii) in Lemma 3.2.3 does not follow from
condition (i) (see Section 2.6.4), this holds only when one drops the
uniqueness condition, as was proven in Proposition 2.6.13.

With Lemma 3.2.3 at hand we can prove that the marginalization
of an SCM under additional conditions does obey the latent projection.

Proposition 3.2.4 Given an SCM M and a subset L ⊂ I such that
M is

(i) uniquely solvable w.r.t. L, and

(ii) uniquely solvable w.r.t. ãnGa(M)L(ℓ) for every ℓ ∈ L, where ãnGa(M)L(ℓ)
are the ancestors of ℓ according to the induced subgraph Ga(M)L
of the augmented functional graph Ga(M) on L,

then
(
Ga ◦marg(L)

)
(M) ⊆

(
marg(L) ◦ Ga

)
(M).

Proof. Let gL be the mapping that makesM uniquely solvable w.r.t.
L, then by Lemma 3.2.3 the component gℓ for every ℓ ∈ L can only de-
pend on the endogenous variables pa(Aℓ)\Aℓ and exogenous variables
pa(Aℓ). Hence, every component f̃j of the marginal causal mechanism

f̃ of marg(L)(M) for j ∈ I \ L depends on no other variables than
those i ∈ I \ L such that there exists a path i→ ℓ1 → · · · → ℓn → j ∈
Ga(M) for n ≥ 0 and ℓ1, . . . , ℓn ∈ L. Therefore, the augmented func-
tional graph Ga

(
marg(L)(M)

)
is a subgraph of the latent projection

marg(L)
(
Ga(M)

)
. �

The following example illustrates why the augmented functional
graph of a marginalized SCM can be a strict subgraph of the corre-
sponding latent projection:
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E1 X1

X3

X2

Ga(M)

E1 X1 X2

(Ga ◦marg(L))(M)

E1 X1 X2

(marg(L) ◦ Ga)(M)

Figure 12: Example of a marginalization of M w.r.t. L = {3} for which the augmented functional
graph is a strict subgraph of the latent projection of Ga(M) w.r.t. L, as described in Example 3.2.5.

Example 3.2.5 Consider the SCM given byM = 〈3,1,R3,R,f ,PR〉,
where

f1(x, e) = e1

f2(x, e) = x1 − x3

f3(x, e) = x1 ,

and take for PR the standard-normal measure on R. Marginalizing over
{3} gives us the marginal causal mechanism

f̃1(x, e) = e1

f̃2(x, e) = 0 .

Here we see that the causal mechanism f2 does not not depend on x1,
as one would expect from the latent projection (see Figure 12).

Under the stronger conditions of Proposition 3.2.4 we can also prove
the converse of Lemma 3.1.6, this gives:

Lemma 3.2.6 Given an SCMM and two disjoint subsets L1,L2 ⊂ I
such thatM is uniquely solvable w.r.t. L1. ThenMmarg(L1) is uniquely
solvable w.r.t. L2 if and only if M is

(i) uniquely solvable w.r.t. L1 ∪ L2, and

(ii) uniquely solvable w.r.t. ãnGa(M)L1∪L2
(ℓ) for every ℓ ∈ L1 ∪ L2,

where ãnGa(M)L1∪L2
(ℓ) are the ancestors of ℓ according to the

induced subgraph Ga(M)L1∪L2 of the augmented functional graph
Ga(M) on L1 ∪ L2.

Moreover marg(L2) ◦marg(L1)(M) ≡ marg(L1 ∪ L2)(M).

Proof. By Lemma 3.1.6 it suffices to show thatMmarg(L1) is uniquely
solvable w.r.t. L2. IfM is uniquely solvable w.r.t. L1 ∪L2, then there
exists a mapping hL1∪L2 such that for PE -almost every e for all x ∈ X :

{
xL1 = hL1(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

xL2 = hL2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))
⇐⇒

{
xL1 = fL1(x, e)

xL2 = fL2(x, e)
,
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By Lemma 3.2.3 each component hℓ for ℓ ∈ L2 can only depend on
the endogenous variables pa(Aℓ) \ Aℓ and exogenous variables pa(Aℓ)
where Aℓ := ãnGa(M)L1∪L2

(ℓ). Moreover, we have for the endoge-
nous variables pa(Aℓ) \ Aℓ ⊆ p̂a(L2) \ L2 and for the exogenous vari-
ables pa(Aℓ) ⊆ p̂a(L2). Take now the Ansatz for the mapping h̃L2 :
X p̂a(L2)\L2

×E p̂a(L2) → XL2 given by h̃L2 := hL2 . Then, for PE -almost
every e for all x ∈ X :

{
xL1 = hL1(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

xL2 = hL2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2)) ,

⇐⇒
{
xL1 = fL1(x, e)

xL2 = fL2(x, e)

⇐⇒
{
xL1 = gL1(xpa(L1)\L1

, epa(L1))

xL2 = fL2(x, e)

⇐⇒
{
xL1 = gL1(xpa(L1)\L1

, epa(L1))

xL2 = fL2(gL1(xpa(L1)\L1
, epa(L1)),xI\L1

, e)

This gives for PE -almost every e for all xI\L1
∈ X I\L1

:

xL2 = hL2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

⇐⇒ xL2 = fL2(gL1 (xpa(L1)\L1
, epa(L1)),xI\L1

, e) ,

And hence for PE-almost every e for all xI\L1
∈ X I\L1

:

xL2 = h̃L2(xp̂a(L2)\L2
, ep̂a(L2))

⇐⇒ xL2 = fL2(gL1 (xpa(L1)\L1
, epa(L1)),xI\L1

, e) .

and thusMmarg(L1) is uniquely solvable w.r.t. L2. �

This leads to the following result:

Proposition 3.2.7 Any marginalization of an SCM that is uniquely
solvable w.r.t. every subset is uniquely solvable w.r.t. every subset.

Proof. Take two disjoint subsets L1 and L2 in I. Then, it suffices to
show that Mmarg(L1) is uniquely solvable w.r.t. L2. But, this follows
directly from Lemma 3.2.6. �

That is, one can perform on an SCM that is uniquely solvable w.r.t.
every subset any number of marginalizations in any order. More-
over, all these marginalizations obey the latent projection (see Propo-
sition 3.2.4) and each resulting marginal SCM has no self-loops (See
Proposition 2.6.24).

From Lemma 2.4.4 and Proposition 2.6.18 and 3.2.4 together we
recover the known result that the class of acyclic SCMs is closed un-
der both intervention and marginalization. Similarly, from Proposi-
tion 2.6.27 and 3.2.7 it follows that the class of SCMs that are uniquely
solvable w.r.t. every subset is also closed under both intervention and
marginalization. This makes these classes convenient to work with.
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Linear SCMs In Lemma 2.6.23 we saw that a linear SCM M is
uniquely solvable w.r.t. L ⊆ I if and only if the matrix ILL − BLL is
invertible. This leads to the following result:

Proposition 3.2.8 Given a linear SCM M and a subset L ⊂ I of
endogenous variables such that ILL−BLL is invertible. Then there ex-
ists a marginalizationMmarg(L) that is linear and with marginal causal

mechanism f̃ : RO × RJ → RO given by

f̃ (xO, e) =[BOO +BOL(ILL −BLL)
−1BLO]xO

+ [BOL(ILL −BLL)
−1ΓLJ + ΓOJ ]e .

Proof. By the definition of marginalization and Lemma 2.6.23 we get
for PRJ -almost every e, for all xO ∈ XO:

f̃(xO, e) =fO(xO, gL(xO, e), e)

=BOOxO +BOLgL(xO, e) + ΓOJ e

=[BOO +BOL(ILL −BLL)
−1BLO]xO

+ [BOL(ILL −BLL)
−1ΓLJ + ΓOJ ]e

�

Hence the class of linear SCMs is closed under marginalization. From
Theorem 3.1.10 we know that M and its marginalization Mmarg(L)

over L are interventionally equivalent. These results can also be found
in Hyttinen et al. (2012).

Remark: In the latent projection w.r.t. L we had to replace every
directed edge k→ j for j ∈ O, k ∈ L by the set of directed edges i→ j
with i ∈ O∪J whenever there is a directed path i→ ℓ→ · · · → k → j
where the subpath ℓ → · · · → k is a sequence of directed edges be-
tween the nodes in L. This substitution of the set of sequences of
directed edges in L is precisely described by the weighted adjacency
matrix (ILL − BLL)

−1. In particular, if the spectral radius of BLL

is less than one, then (ILL − BLL)
−1 =

∑∞
n=0(BLL)

n, i.e. the substi-
tution of the set of sequences is described by the matrix that sums
all the weighted adjacency matrices representing paths through latent
variables of length n.

3.3 The direct causal graph w.r.t. a context

In Section 2.8 we discussed the direct causal graph for SCMs where
we implicitly assumed the endogenous variables I as the context vari-
able set. Suppose we want to define the direct causal graph w.r.t. a
different context variable set, for example we only observe part of the
endogenous variables, then fixing variables that are lying outside this
context variable set is not possible and hence defining a direct cause
between variables w.r.t. this context using Definition 2.8.3 is not a
sensible thing to do.
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X1

X2 X3

Gdc(M)

X1

X3

Gdc{1,3}(M)

Figure 13: The direct causal graph of the SCM M w.r.t. I (left) and w.r.t. {1, 3} (right) as in
Example 3.3.1.

Example 3.3.1 Consider the SCMM = 〈3, ∅,R3, 1,f ,P1〉 with causal
mechanism

f1(x) = 0

f2(x) = x1

f3(x) = x2 .

The direct causal graph w.r.t. I is shown in Figure 13 on the left.
If we cannot observe variable x2 then we can only intervene on x1

and x3. Performing different perfect interventions on x1 will lead to
a distributional change in x3, however there is not a directed edge in
Gdc(M) pointing from x1 to x3. As we will see below, the direct causal
graph w.r.t. {1, 3} is depicted as in Figure 13 on the right.

We can define the direct causal graph of an SCM w.r.t. a context
variable set by using marginalization:

Definition 3.3.2 LetM = 〈I,J ,X ,E,f ,PE〉 be an SCM and O ⊆ I.
Assume that M is uniquely solvable w.r.t. I \ O and Mmarg(I\O) is
structurally uniquely solvable, then the direct causal graph w.r.t. O is
the directed graph GdcO (M) := Gdc(Mmarg(I\O)).

Note that this definition is invariant under the equivalence relation ≡
on SCMs. In Example 3.3.1 this yields the direct causal graph w.r.t.
{1, 3} as depicted in Figure 13 on the right. Moreover, from the graph
on the right we can exactly read the indirect causes between the two
variables x1 and x3 of the original SCM.

Definition 3.3.3 Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM and con-
sider two different i and j in I. Assume that M is uniquely solvable
w.r.t. I\{i, j} and thatMmarg(I\{i,j}) is structurally uniquely solvable,
then i is an indirect cause of j, if there exists a directed edge i→ j in
Gdc{i,j}(M).

Similarly to the property that, in general, the marginalization of an
SCM does not obey the latent projection w.r.t. its corresponding aug-
mented functional graph, we have that, in general, the marginalization
of an SCM does not obey the latent projection of its corresponding
direct causal graph, as is illustrated by the following example:
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X1 X2

X3

X5 X6

X4

Gdc(M)

X3 X4

Gdc(Mmarg(L))

Figure 14: The direct causal graph of the SCM M (left) and Mmarg(L) (right) as in Example 3.3.4.

Example 3.3.4 Consider the SCM M = 〈6,1,R4,R,f ,PR〉 with the
causal mechanism:

f1(x, e) = x2

f2(x, e) = x1 · (1− 1{0}(x3 − x5)) + 1

f3(x, e) = e

f4(x, e) = x5

f5(x, e) = x6

f6(x, e) = x5 ,

where PR the standard-normal measure on R. Note that M is struc-
turally uniquely solvable and hence the direct causal graph with respect
to the context variable set I is given in Figure 14 on the left. The
marginal SCM Mmarg(L) = 〈{3, 4},1,R2,Rf̃ ,PR〉 for L = {1, 2, 5, 6}
has as causal mechanism:

f̃3(x) = e

f̃4(x) = x3 .

The direct causal graph of Mmarg(L) is depicted in Figure 14 on the
right. Hence, x3 is an indirect cause of x4, although x4 is not an
ancestor of x3 in the direct causal graph of M.

One may wonder if, under the unique solvability w.r.t. L condition,
there exists an additional condition such that the identity Gdc(M) ⊆
marg(L) ◦ Gdc(M) does hold in general. We know that under the
additional conditions of Proposition 3.2.4 we have that the marginal-
ization of an SCM does obey the latent projection of its corresponding
augmented functional graph, and together with the result of Proposi-
tion 2.8.6 we have

marg(L) ◦ Gdc(M) ⊆ marg(L) ◦ Ga(M)I

⊆

Gdc(Mmarg(L)) ⊆ Ga(Mmarg(L))I\L .

In the special case of Gdc(M) = Ga(M)I this gives Gdc(Mmarg(L)) ⊆
marg(L) ◦ Gdc(M) and hence behavior as in Example 3.3.4 would
in this case not occur. However, in general, we do not have that
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Gdc(Mmarg(L))

X1 X3

E1 E2
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Figure 15: The augmented functional graphs (left) and direct causal graphs (right) of the SCM
M (top) and Mmarg(L) (bottom) as in Example 3.3.5.

Gdc(M) = Ga(M)I and one may wonder if, in general, under the addi-
tional assumptions of Proposition 3.2.4 the identity Gdc(Mmarg(L)) ⊆
marg(L)◦Gdc(M) still holds. The next example shows that this is also
not the case:

Example 3.3.5 Consider the acyclic SCM M = 〈3,2, {−1, 1}2 ×
R, {−1, 1}2,f ,PE〉 with the causal mechanism:

f1(x, e) = e1

f2(x, e) = x1e2

f3(x, e) = x2 + e2 ,

where PE = PE with E1, E2 ∼ U({−1, 1}) and E1⊥⊥E2. Its aug-
mented functional graph and direct causal graph are depicted in Fig-
ure 15 at the top. The marginal SCMMmarg(L) = 〈{1, 3},2, {−1, 1}×
R, {−1, 1}2, f̃ ,PE〉 for L = {2} has as causal mechanism:

f̃1(x, e) = e1

f̃3(x, e) = (1 + x1)e2 .

Its corresponding augmented functional graph and direct causal graph
are depicted in Figure 15 at the bottom. From the figures one can read
that Gdc(Mmarg(L)) * marg(L) ◦ Gdc(M).

This shows that, even under the very strong assumption of acyclicity,
the marginalization of an SCM does, in general, not obey the latent
projection of its corresponding direct causal graph. This implies, that
even for acyclic SCMs, an indirect cause does not necessarily have to
come from a single direct cause or a concatenation of several direct
causes.
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3.4 Latent confounders

Latent confounders were not part of the direct causal graph of the
SCM, because the direct causal graph describes only the direct causal
relations among the endogenous variables and not among the endoge-
nous and exogenous variables together. If we would like to treat ex-
ogenous variables as possible latent confounders, i.e. latent common
causes, we should treat them instead as possible endogenous variables.

Definition 3.4.1 Given an SCM M = 〈I,J ,X ,E,f ,PE〉, we define
the extended Structural Causal Model as the SCM

M̂ := 〈I ∪ Ĵ ,J ,X × Ê,E , f̂ ,PE〉 ,

where Ĵ is a copy of J and the causal mechanism f̂ : X × E × E →
X ×E is the measurable function defined by f̂(x,x′, e) = (f(x,x′), e).

This definition preserves the equivalence relation ≡ on SCMs.

Example 3.4.2 Consider the SCM M = 〈2,1,R2,R,f ,PR〉 with the
causal mechanism:

f1(x) = e1

f2(x) = x1 + e1 ,

where we take for PR the standard-normal measure on R. The func-
tional graph of M has a bidirected edge which could model a latent
confounder, as one can see in the functional graph of the extended
SCM M̂ of M, see Figure 16. Note that the direct causal graph of M̂
equals the functional graph of M̂ in this case. Moreover, both M and
M̂ have the same direct causal graph w.r.t. 2.

Proposition 3.4.3 Consider an SCM M = 〈I,J ,X ,E,f ,PE〉, then
there always exists an SCM M̂ with additional endogenous variables
Ĵ such that

1. G(M̂) has no bidirected edges, and

2. M̂marg(Ĵ ) ≡M, and

3. GdcI (M̂) = Gdc(M).

Proof. Take for M̂ the extended SCM of M. Then from the def-
inition of M̂ it follows that G(M̂) has no bidirected edges. More-
over, note that M̂ is always uniquely solvable w.r.t. Ĵ and hence we
can marginalize over Ĵ by substituting e into x′ which gives us the
causal mechanism of M. From this the last statement follows, that is
GdcI (M̂) = Gdc(M̂marg(Ĵ )) = Gdc(M). �

We can interpret a bidirected edge i↔ j in the functional graph ofM
as representing latent confounders of i and j, i.e. one or more latent
common causes k of i and j such that each such k is a direct cause of
i and j.
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Figure 16: Comparison of the (augmented) functional and direct causal graph of the SCM M

(left) and the extended SCM M̂ (right) of Example 3.4.2.

4 Discussion

To the best of our knowledge, this work provides the first rigorous
treatment of cyclic SCMs that deals with measure-theoretic and various
other complications that arise due to cycles. We have given a formal
definition of SCMs, their solutions, various equivalence classes, their
causal interpretation, various graphical representations, discussed their
Markov properties and we have defined several operations that can be
performed on SCMs.

The central topic of investigation was how to arrive at a parsimo-
nious representation of an SCM on a subset of endogenous variables of
interest. Under the condition that the SCM is uniquely solvable w.r.t.
the subsystem, we can treat the subsystem effectively as a “black box”
with a unique output for every possible input. This allows us to ef-
fectively remove this subsystem from the model, obtaining a marginal
SCM which preserves the probabilistic, causal and counterfactual se-
mantics on the subsystem. We would like to stress that this particular
sufficient condition for the existence of a marginal SCM is not a neces-
sary condition. It is possible to relax this condition further, but doing
so is beyond the scope of this paper.

Regarding the use of measure theory in this work, the reader may
wonder whether it was really necessary to invoke some of the more
advanced results of measure theory here, while in most treatments of
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SCMs measure-theoretical aspects are not discussed at all. That this
seems necessary indeed is a somewhat unexpected consequence of our
decision to develop a general theory that also incorporates cyclic SCMs.
That measurability of solutions is not guaranteed in general is just one
out of many technical complications that do not occur in the acyclic
case. Another complication we encountered is that unique solvability
is no longer guaranteed, nor is it preserved under interventions: solu-
tions may either be ill-defined or allow for multiple different probability
distributions which leads to ambiguity. On a more conceptual level,
the causal interpretation of cyclic SCMs can be counter-intuitive, as
we have seen, for example in the cyclic case, where the causal rela-
tions between variables need no longer coincide with their functional
relations.

All these technical and conceptual complications may explain why
in most of the SCM literature so far (except possibly for the linear
SEM literature), acyclicity has been assumed, even though there is a
real need for a theory of cyclic SCMs given that many causal systems
in nature involve cycles. Actually, one may wonder why many systems
appear to be acyclic at a macroscopic level, even though on a micro-
scopic level, all particles interact with each other, leading to a fully
connected causal graph with cycles on that microscopic level of detail.
With this work, we hope to have provided a solid foundation to the
theory of cyclic SCMs that will enable such models to be used for the
purposes of causal discovery and prediction.

Future work consists of developing an analogue to marginalization
for exogenous variables in order to obtain a “minimal” exogenous space
that preserves the causal semantics of the model. This allows one to
obtain more parsimonious representations of SCMs by reducing the
space of latent variables whenever possible. Furthermore, we will in-
vestigate how one could extend the class of SCMs to causal models
that can deal with constraints.

5 Acknowledgments

We thank Patrick Forré and Robin Evans for helpful discussions and
Tineke Blom and Alexander Ly for providing helpful comments on
earlier drafts. Stephan Bongers and Joris Mooij were supported by
NWO, the Netherlands Organization for Scientific Research (VIDI
grant 639.072.410 and VENI grant 639.031.036). Joris Mooij was also
supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant
agreement no 639466).

6 Appendix

Measurable selection theorems

Consider a measure space (X ,Σ,µ). A set E ⊆ X is called a µ-null
set if there exists a A ∈ Σ with E ⊆ A and µ(A) = 0. We denote the
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class of µ-null sets by N , and we denote the σ-algebra generated by
Σ ∪N by Σ̄, and its members are called the µ-measurable sets. Note
that each member of Σ̄ is of the form A ∪ E with A ∈ Σ and E ∈N .
The measure µ is extended to a measure µ̄ on Σ̄, by µ̄(A∪E) = µ(A)
for any A ∈ Σ and E ∈ N , and is called its completion. A mapping
f : X → Y between measurable spaces is called µ-measurable if the
inverse image f−1(C) of any measurable set C ⊆ Y is µ-measurable.

Lemma 6.0.1 Consider a µ-measurable mapping f : X → Y. If Y is
countably generated, then there exists a measurable mapping g : X →
Y such that f(x) = g(x) holds µ-a.e..

Proof. Let the σ-algebra of Y be generated by the countably generat-
ing set {Cn}n∈N. The µ-measurable set f−1(Cn) = An ∪ En for some
An ∈ Σ and some En ∈N and hence there is some En ⊆ Bn ∈ Σ such
that µ(Bn) = 0. Let B̂ = ∪n∈NBn, Ân = An \ B̂ and Â = ∪n∈NÂn,

then µ(B̂) = 0, Â and B̂ are disjoint and X = Â∪ B̂. Now define the
mapping g : X → Y by:

g(x) :=

{
f(x) if x ∈ Â,

y0 otherwise,

where for y0 we can take an arbitrary point in Y . This mapping g is
measurable since for each generator Cn we have

g−1(Cn) =

{
Ân if y0 /∈ Cn,

Ân ∪ B̂ otherwise.

is in Σ. Moreover, f(x) = g(x) µ-almost everywhere. �

With this result at hand we can now prove a first measurable se-
lection theorem:

Theorem 6.0.2 Given a standard probability space E with probability
measure PE , a standard measurable space X and a measurable set S ⊆
E×X such that E\prE(S) is a PE-null set, where prE is the projection
mapping on E . Then there exists a measurable mapping g : E → X
such that (e, g(e)) ∈ S for PE-almost every e.

Proof. Take the subset Ê := E \ B, for some B ⊇ E \ prE(S) and

PE(B) = 0, and note that Ê is a standard measurable space (see Corol-

lary 13.4 in Kechris (1995)) and Ê ⊆ prE(S). Let Ŝ = S ∩ Ê × X .

Because the set Ŝ is measurable, it is in particular analytic (see The-
orem 13.7 in Kechris (1995)). It follows by the Jankov-von Neu-
mann Theorem (Theorem 29.9 in Kechris (1995)) that Ŝ has a uni-
versally measurable uniformizing function, that is, there exists a uni-
versally measurable mapping ĝ : Ê → X such that for all e ∈ Ê,
(e, ĝ(e)) ∈ Ŝ. Universal measurability of the mapping ĝ means that it

is µ-measurable for any σ-finite measure µ on Ê. Hence, in particular,
it is PE

∣∣
Ê
-measurable, where PE

∣∣
Ê

is the restriction of PE to Ê.
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Now define the mapping g∗ : E → X by

g∗(e) :=

{
ĝ(e) if e ∈ Ê

x0 otherwise,

where for x0 we can take an arbitrary point in X . Then this mapping
g∗ is PE -measurable. To see this, take any measurable set C ⊆ X , then

g∗−1(C) =

{
ĝ−1(C) if x0 /∈ C

ĝ−1(C) ∪ B otherwise.

Because ĝ−1(C) is PE

∣∣
Ê
-measurable it is also PE-measurable and thus

g∗−1(C) is PE -measurable.
By Lemma 6.0.1 and the fact that standard measurable spaces are

countably generated, we prove the existence of a measurable mapping
g : E → X such that g∗ = g PE -a.e. and thus it satisfies (e, g(e)) ∈ S
for PE -almost every e. �

This theorem rests on the assumption that the measurable space E
has a probability measure PE . If this space becomes the product space
Y × Ẽ for which only the space Ẽ has a probability measure, then in
general this theorem does not hold anymore. However, if we assume in
addition that the fibers of S in Y at every point (x, ẽ) are σ-compact,
then we have the following measurable selection theorem:

Theorem 6.0.3 Given a standard probability space E with probability
measure PE , standard measurable spaces X and Y and a measurable
set S ⊆ X × E ×Y such that E \Kσ is a PE-null set, where

Kσ := {e ∈ E : ∀x ∈ X (S(x,e) is non-empty and σ-compact)} ,

with S(x,e) denoting the fiber over (x, e), that is

S(x,e) := {y ∈ Y : (x, e,y) ∈ S} .

Then there exists a measurable mapping g : X × E → Y such that for
PE-almost every e for all x ∈ X we have (x, e, g(x, e)) ∈ S.

Proof. Take the subset Ê := E \B, for some B ⊇ E \Kσ and PE(B) =

0, and note that Ê is a standard measurable space, Ê ⊆ Kσ and Ŝ =
S ∩ X × Ê × Y is measurable. By assumption, for each (x, e) ∈ Ŝ

the fiber Ŝ(x,e) is non-empty and σ-compact and hence by applying
the Theorem of Arsenin-Kunugui (Theorem 35.46 in Kechris (1995))
it follows that the set Ŝ has a measurable uniformizing function, that
is, there exists a measurable mapping ĝ : X × Ê → Y such that for all
(x, e) ∈ X × Ê , (x, e, ĝ(x, e)) ∈ Ŝ.

Now define the mapping g : X × E → Y by

g(x, e) :=

{
ĝ(x, e) if e ∈ Ê

y0 otherwise,
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where for y0 we can take an arbitrary point in Y . This mapping g

inherits the measurability from ĝ and it satisfies for PE-almost every
e for all x ∈ X , (x, e, g(x, e)) ∈ S. �

A topological space is σ-compact, if it is the union of countably
many compact subspaces. For example, all countable discrete spaces,
any interval of the real line, and moreover all the Euclidean spaces are
σ-compact spaces.
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