
ar
X

iv
:c

s.
A

I/
06

12
03

0 
v1

   
5 

D
ec

 2
00

6
Loop corrections for approximate inference

Loop corrections for approximate inference

Joris Mooij j.mooij@science.ru.nl
Department of Biophysics
Radboud University Nijmegen
6525 EZ Nijmegen, The Netherlands

Bert Kappen b.kappen@science.ru.nl

Department of Biophysics

Radboud University Nijmegen

6525 EZ Nijmegen, The Netherlands

Editor:

Abstract

We propose a method for improving approximate inference methods that corrects for the
influence of loops in the graphical model. The method is applicable to arbitrary factor
graphs, provided that the size of the Markov blankets is not too large. It is an alternative
implementation of an idea introduced recently by Montanari and Rizzo (2005). In its
simplest form, which amounts to the assumption that no loops are present, the method
reduces to the minimal Cluster Variation Method approximation (which uses maximal
factors as outer clusters). On the other hand, using estimates of the effect of loops (obtained
by some approximate inference algorithm) and applying the Loop Correcting (LC) method
usually gives significantly better results than applying the approximate inference algorithm
directly without loop corrections. Indeed, we often observe that the loop corrected error
is approximately the square of the error of the approximate inference method used to
estimate the effect of loops. We compare different variants of the Loop Correcting method
with other approximate inference methods on a variety of graphical models, including “real
world” networks, and conclude that the LC approach generally obtains the most accurate
results.

Keywords: Loop Corrections, Approximate Inference, Graphical Models, Factor Graphs

1. Introduction

In recent years, much research has been done in the field of approximate inference on graph-
ical models. One of the goals is to obtain accurate approximations of marginal probabilities
of complex probability distributions defined over many variables, using limited computation
time and memory. This research has led to a large number of approximate inference meth-
ods. Apart from sampling (“Monte Carlo”) methods, the most well-known methods and
algorithms are variational approximations such as Mean Field (MF), which originates in
statistical physics (Parisi, 1988); Belief Propagation (BP), also known as the Sum-Product
Algorithm and as Loopy Belief Propagation (Pearl, 1988; Kschischang et al., 2001), which is
directly related to the Bethe approximation used in statistical physics (Bethe, 1935; Yedidia
et al., 2005); the Cluster Variation Method (CVM) (Pelizzola, 2005) and other region-based
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approximation methods (Yedidia et al., 2005), which are related to the Kikuchi approxi-
mation (Kikuchi, 1951), a generalization of the Bethe approximation using larger clusters;
Expectation Propagation (EP) (Minka, 2001), which includes TreeEP (Minka and Qi, 2004)
as a special case. To calculate the results of CVM and other region based approximation
methods, one can use the Generalized Belief Propagation (GBP) algorithm (Yedidia et al.,
2005) or double-loop algorithms that have guaranteed convergence (Yuille, 2002; Heskes
et al., 2003).

It is well-known that Belief Propagation yields exact results if the graphical model is
a tree, or, more generally, if each connected component is a tree. If the graphical model
does contain loops, BP can still yield surprisingly accurate results using little computation
time. However, if the influence of loops is large, the approximate marginals calculated
by BP can have large errors and the quality of the BP results may not be satisfactory.
One way to correct for the influence of short loops is to increase the cluster size of the
approximation, using CVM (GBP) with clusters that subsume as many loops as possible.
However, choosing a good set of clusters is highly nontrivial (Welling et al., 2005), and in
general this method will only work if the clusters do not have many intersections, or in
other words, if the loops do not have many intersections. Another method that corrects for
loops to a certain extent is TreeEP, which does exact inference on the base tree, a subgraph
of the graphical model which has no loops, and approximates the other interactions. This
corrects for the loops that consist of part of the base tree and exactly one additional factor
and yields good results if the graphical model is dominated by the base tree, which is the
case in very sparse models. However, loops that consist of two or more interactions that
are not part of the base tree are approximated in a similar way as in BP. Hence, for denser
models, the improvement of TreeEP over BP usually diminishes.

In this article we propose a method that takes into account all the loops in the graphical
model in an approximate way and therefore obtains more accurate results in many cases.
Our method is a variation on the theme introduced by Montanari and Rizzo (2005). The
basic idea is to first estimate the cavity distributions of all variables and subsequently
improve these estimates by cancelling out errors using certain consistency constraints. A
cavity distribution of some variable is the probability distribution on its Markov blanket (all
its neighbouring variables) of a modified graphical model, in which all factors involving that
variable have been removed. The removal of the factors breaks all the loops in which that
variable takes part. This allows an approximate inference algorithm to estimate the strength
of these loops in terms of effective interactions or correlations between the variables of the
Markov blanket. Then, the influence of the removed factors is taken into account, which
yields accurate approximations to the probability distributions of the original graphical
model. Even more accuracy is obtained by imposing certain consistency relations between
the cavity distributions, which results in a cancellation of errors to some extent. This
error cancellation is done by a message passing algorithm which can be interpreted as
a generalization of BP in the pairwise case and of the minimal CVM approximation in
general. Indeed, the assumption that no loops are present, or equivalently, that the cavity
distributions factorize, yields the BP / minimal CVM results. On the other hand, using
better estimates of the effective interactions in the cavity distributions yields accurate loop
corrected results.

2



Loop corrections for approximate inference

Although the basic idea underlying our method is very similar to that described in
(Montanari and Rizzo, 2005), the alternative implementation that we propose here offers two
advantages. Most importantly, it is directly applicable to arbitrary factor graphs, whereas
the original method has only been formulated for the rather special case of graphical models
with binary variables and pairwise factors, which excludes e.g. many interesting Bayesian
networks. Furthermore, our implementation appears to be more robust and also gives
improved results for relatively strong interactions, as will be shown numerically.

This article is organised as follows. First we explain the theory behind our proposed
method and discuss the differences with the original method by Montanari and Rizzo (2005).
Then we report extensive numerical experiments regarding the quality of the approximation
and the computation time, where we compare with other approximate inference methods.
Finally, we discuss the results and state conclusions.

2. Theory

In this work, we consider graphical models such as Markov random fields and Bayesian
networks. We use the general factor graph representation since it allows for formulating
approximate inference algorithms in a unified way (Kschischang et al., 2001). In the next
subsection, we introduce our notation and basic definitions.

2.1 Graphical models and factor graphs

Consider N discrete random variables {xi}i∈V with V := {1, . . . , N}. Each variable xi takes
values in a discrete domain Xi. We will use the following multi-index notation: for any
subset I ⊆ V, we write xI := (xi1 , xi2 , . . . , xim) if I = {i1, i2, . . . , im} and i1 < i2 < . . . im.
We consider a probability distribution over x = (x1, . . . , xN ) that can be written as a
product of factors ψI :

P (x) =
1

Z

∏

I∈F

ψI(xI), Z =
∑

x

∏

I∈F

ψI(xI). (1)

The factors (which we will also call “interactions”) are indexed by (small) subsets of V, i.e.
F ⊆ P(V) := {I : I ⊆ V}. Each factor is a non-negative function ψI :

∏

i∈I Xi → [0,∞).
For a Bayesian network, the factors are conditional probability tables. In case of Markov
random fields, the factors are often called potentials (not to be confused with statistical
physics terminology, where “potential” refers to minus the logarithm of the factor instead).
Henceforth, we will refer to a triple (V,F , {ψI}I∈F ) that satisfies the description above as
a discrete graphical model (or network).

In general, the normalizing constant Z is not known and exact computation of Z is
infeasible, due to the fact that the number of terms to be summed is exponential in N .
Similarly, computing marginal distributions P (xJ) of P for subsets of variables J ⊆ V is
intractable in general. In this article, we focus on the task of accurately approximating
single node marginals P (xi) =

∑

xV\i
P (x).

We can represent the structure of the probability distribution (1) using a factor graph.
This is a bipartite graph, consisting of variable nodes i ∈ V and factor nodes I ∈ F , with
an edge between i and I if and only if i ∈ I, i.e. if xi participates in the factor ψI . We
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(b) Cavity graph of i

Figure 1: (a) Original factor graph, corresponding to the probability distribution P (x) =
1

Z
ψL(xj , xn, xo)ψI(xi, xj)ψM (xj , xk)ψN (xm)ψK(xi, xm, xn)ψJ(xi, xk, xl)ψO(xl, xm); (b)

Factor graph corresponding to the cavity network of variable i, obtained by removing
variable i and the factor nodes that contain i (i.e. I,J and K). The Markov blanket of
i is ∂i = {j, k, l,m, n}. The cavity distribution Z\i(x∂i) is the (unnormalized) marginal
on x∂i of the probability distribution corresponding to the cavity graph (b).

will represent factor nodes visually as rectangles and variable nodes as circles. See Figure
1(a) for an example of a factor graph. We denote the neighbouring nodes of a variable
node i by Ni := {I ∈ F : i ∈ I} and the neighbouring nodes of a factor node I simply
by I = {i ∈ V : i ∈ I}. Further, we define for each variable i ∈ V the set ∆i :=

⋃

Ni

consisting of all variables that appear in some factor in which variable i participates, and
the set ∂i := ∆i \ {i}, the Markov blanket of i.

In the following, we will often abbreviate the set theoretical notation X \ Y (i.e. all
elements in X that are not in Y ) by \Y if it is obvious from the context what the set X
is. Further, we will use lowercase for variable indices and uppercase for factor indices. For
convenience, we will define for any subset I ⊂ F the product of the corresponding factors:

ΨI(xS

I) :=
∏

I∈I

ψI(xI).

2.2 Cavity networks and loop corrections

The notion of a cavity stems from statistical physics, where it was used originally to calculate
properties of random ensembles of certain graphical models (Mézard et al., 1987). A cavity
is obtained by removing one variable from the graphical model, together with all the factors
in which that variable participates.

In our context, we define cavity networks as follows (see also Figure 1):

Definition 2.1 Given a graphical model (V,F , {ψI}I∈F ) and a variable i ∈ V, the cavity
network of variable i is the graphical model (V \ i,F \Ni, {ψI}I∈F\Ni

).
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The probability distribution corresponding to the cavity network of variable i is thus pro-
portional to:

Ψ\Ni
(x\i) =

∏

I∈F
i6∈I

ψI(xI).

Summing out all the variables, except for the neighbours ∂i of i, gives what we will call the
cavity distribution:

Definition 2.2 Given a graphical model (V,F , {ψI}I∈F ) and a variable i ∈ V, the cavity
distribution of i is

Z\i(x∂i) :=
∑

x\∆i

Ψ\Ni
(x\i). (2)

Thus the cavity distribution of i is proportional to the marginal of the cavity network of i
on the Markov blanket ∂i. The cavity distribution describes the effective interactions (or
correlations) induced by the cavity network on the neighbours ∂i of variable i. Indeed, from
equations (1) and (2) and the trivial observation that ΨF = ΨNi

Ψ\Ni
we conclude:

P (x∆i) ∝ Z\i(x∂i)ΨNi
(x∆i). (3)

Thus given the cavity distribution Z\i(x∂i), one can calculate the marginal distribution of
the original graphical model P on x∆i, provided that the cardinality of X∆i is not too large.

In practice, exact cavity distributions are not known, and the only way to proceed is
to use approximate cavity distributions. Given some approximate inference method (e.g.
BP), there are two ways to calculate P (x∆i): either use the method to approximate P (x∆i)
directly, or use the method to approximate Z\i(x∂i) and use relation (3) to obtain an
approximation to P (x∆i). The latter method generally gives more accurate results, since
the complexity of the cavity network is less than that of the original network. In particular,
the cavity network of variable i contains no loops involving that variable, since all factors
in which i participates have been removed (e.g. the loop i− J − l −O −m−K − i in the
original network, Figure 1(a), is not present in the cavity network, Figure 1(b)). Thus the
latter method of calculating P (x∆i) takes into account loops involving variable i, although
in an approximate way. It does not, however, take into account the other loops in the
original graphical model. The basic idea of the loop correction approach of Montanari and
Rizzo (2005) is to use the latter method for all variables in the network, but to adjust the
approximate cavity distributions in order to cancel out approximation errors before (3) is
used to obtain the final approximate marginals. This approach takes into account all the
loops in the original network, in an approximate way.

This basic idea can be implemented in several ways. Here we propose an implementation
which we will show to have certain advantages over the original implementation proposed
in (Montanari and Rizzo, 2005). In particular, it is directly applicable to arbitrary factor
graphs with variables taking an arbitrary (discrete) number of values and factors that may
contain zeroes and consist of an arbitrary number of variables. In the remaining subsections,
we will first discuss our proposed implementation in detail. In section 2.6 we will discuss
differences with the original approach.
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2.3 Combining approximate cavity distributions to cancel out errors

Suppose that we have obtained an initial approximation ζ
\i
0 (x∂i) of the (exact) cavity dis-

tribution Z\i(x∂i), for each i ∈ V. Let i ∈ V and consider the approximation error of the
cavity distribution of i, i.e. the exact cavity distribution of i divided by its approximation:

Z\i(x∂i)

ζ
\i
0 (x∂i)

.

In general, this is an arbitrary function of the variables x∂i. However, for our purposes,
we can approximate the error as a product of factors defined on small subsets of ∂i in the
following way:

Z\i(x∂i)

ζ
\i
0 (x∂i)

≈
∏

I∈Ni

φ
\i
I (xI\i).

Thus we assume that the approximation error lies near a submanifold parameterized by

the error factors {φ\iI (xI\i)}I∈Ni
. If we were able to calculate these error factors, we could

improve our initial approximation ζ
\i
0 (x∂i) by replacing it with the product

ζ\i(x∂i) := ζ
\i
0 (x∂i)

∏

I∈Ni

φ
\i
I (xI\i) ≈ Z\i(x∂i). (4)

Using (3), this would then yield an improved approximation of P (x∆i).

It turns out that the error factors can indeed be calculated by exploiting the redundancy

of the information in the initial cavity approximations {ζ\i0 }i∈V . The fact that all ζ\i provide
approximations to marginals of the same probability distribution P (x) via (3) can be used
to obtain consistency constraints. The number of constraints obtained in this way is enough

to solve for the unknown error factors {φ\iI (xI\i)}i∈V ,I∈Ni
.

Here we propose the following consistency constraints. Let Y ∈ F , i ∈ Y and j ∈ Y
with i 6= j (see also Figure 2). Consider the graphical model (V,F \ Y, {ψI}I∈F\Y ) that
is obtained from the original graphical model by removing factor ψY . The product of all
factors (except ψY ) obviously satisfies:

Ψ\Y = ΨNi\Y Ψ\Ni
= ΨNj\Y Ψ\Nj

.

Using (2) and summing over all xk for k 6∈ Y \ i, we obtain the following equation, which
holds for the exact cavity distributions Z\i and Z\j:

∑

xi

∑

x∆i\Y

ΨNi\Y Z
\i =

∑

xi

∑

x∆j\Y

ΨNj\Y Z
\j .

Substituting our basic assumption (4) on both sides and pulling the factor φ
\i
Y (xY \i) in the

l.h.s. through the summation, we obtain:

φ
\i
Y

∑

xi

∑

x∆i\Y

ΨNi\Y ζ
\i
0

∏

I∈Ni\Y

φ
\i
I =

∑

xi

∑

x∆j\Y

ΨNj\Y ζ
\j
0

∏

J∈Nj

φ
\j
J (5)
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I0
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I2

J0

J1

J2
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Figure 2: Part of the factor graph, illustrating the derivation of (6). The two grey variable
nodes correspond to Y \ i = {j, k}.

This should hold for each j ∈ Y \ i. We can thus take the geometrical average of the r.h.s.
over all j ∈ Y \ i. After rearranging, this yields:

φ
\i
Y =





∏

j∈Y \i

∑

xi

∑

x∆j\Y

ΨNj\Y ζ
\j
0

∏

J∈Nj

φ
\j
J





1/|Y \i|

∑

xi

∑

x∆i\Y

ΨNi\Y ζ
\i
0

∏

I∈Ni\Y

φ
\i
I

for all i ∈ V, Y ∈ Ni. (6)

Note that the numerator is an approximation of the joint marginal P \Y (xY \i) of the modified
graphical model (V,F \ Y, {ψI}I∈F\Y ) on the variables Y \ i.

Solving the consistency equations (6) simultaneously for the error factors {φ\iI }i∈V ,I∈Ni

can be done using a simple fixed point iteration algorithm, e.g. Algorithm 1. The input

consists of the initial approximations {ζ\i0 }i∈V to the cavity distributions. It calculates the
error factors that satisfy (6) by fixed point iteration and from the fixed point, it calculates
improved approximations of the cavity distributions {ζ\i}i∈V using relation (4). 1 From
the improved cavity distributions, we can calculate the loop corrected approximations to
the single variable marginals of the original probability distribution (1) as follows:

bi(xi) ∝
∑

x∂i

ΨNi
(x∆i)ζ

\i(x∂i) (7)

where the factor ψY is now included. Algorithm 1 uses a sequential update scheme, but
other update schemes are possible (e.g. random sequential or parallel). In practice, the fixed
sequential update scheme often converges without the need for damping.

1. Alternatively, one could formulate the updates directly in terms of the cavity distributions {ζ\i}.
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Algorithm 1 Loop Correcting algorithm

Input: initial approximate cavity distributions {ζ\i0 }i∈V
Output: improved approximate cavity distributions {ζ\i}i∈V
1: repeat
2: for all i ∈ V do
3: for all Y ∈ Ni do

4: φ
\i
Y (xY \i)←





∏

j∈Y \i

∑

xi

∑

x∆j\Y

ΨNj\Y ζ
\j
0

∏

J∈Nj

φ
\j
J





1/|Y \i|

∑

xi

∑

x∆i\Y

ΨNi\Y ζ
\i
0

∏

I∈Ni\Y

φ
\i
I

5: end for
6: end for
7: until convergence
8: for all i ∈ V do
9: ζ\i(x∂i)← ζ

\i
0 (x∂i)

∏

I∈Ni
φ
\i
I (xI\i)

10: end for

Alternatively, one can formulate Algorithm 1 in terms of the “beliefs”

Qi(x∆i) ∝ ΨNi
(x∆i)ζ

\i
0 (x∂i)

∏

I∈Ni

φ
\i
I (xI\i) = ΨNi

(x∆i)ζ
\i(x∂i). (8)

As one easily verifies, the following update equation

Qi ← Qi

∏

j∈Y \i





∑

x∆j\(Y \i)

Qj ψ
−1
Y





1/|Y \i|

∑

x∆i\(Y \i)

Qi ψ
−1
Y

is equivalent to line 1 of Algorithm 1. Intuitively, the update improves the approximate
distribution Qi on ∆i by replacing its marginal on Y \ i (in the absence of Y ) by a more
accurate approximation of this marginal, namely the numerator. Written in this form, the
algorithm is reminiscent of Iterative Proportional Fitting (IPF). However, contrary to IPF,
the desired marginals are also updated each iteration. Note that after convergence, the large
beliefs Qi(x∆i) need not be consistent, i.e. in general

∑

x∆i\J
Qi 6=

∑

x∆j\J
Qj for i, j ∈ V,

J ⊆ ∆i ∩∆j.

2.4 A special case: factorized cavity distributions

In the previous subsection we have discussed how to improve approximations of cavity
distributions. We now discuss what happens when we use the simplest possible initial

approximations {ζ\i0 }i∈V , namely constant functions, in Algorithm 1. This amounts to the
assumption that no loops are present. We will show that if the factor graph does not contain
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short loops consisting of four nodes, fixed points of the standard BP algorithm are also fixed
points of Algorithm 1. In this sense, Algorithm 1 can be considered to be a generalization
of the BP algorithm. In fact, this holds even if the initial approximations factorize in a
certain way, as we will show below.

If all factors involve at most two variables, one can easily arrange for the factor graph to
have no loops of four nodes. See figure 1(a) for an example of a factor graph which has no
loops of four nodes. The factor graph depicted in Figure 2 does have a loop of four nodes:
k − Y − j − J2 − k.
Theorem 2.1 If the factor graph corresponding to (1) has no loops of exactly four nodes,
and all initial approximate cavity distributions factorize in the following way:

ζ
\i
0 (x∂i) =

∏

I∈Ni

ξ
\i
I (xI\i) ∀i ∈ V, (9)

then fixed points of the BP algorithm can be mapped to fixed points of Algorithm 1. Fur-
thermore, the corresponding variable and factor marginals obtained from (8) are identical
to the BP beliefs.

Proof Note that replacing the initial cavity approximations by

ζ
\i
0 (x∂i) 7→ ζ

\i
0 (x∂i)

∏

I∈Ni

ǫ
\i
I (xI\i) (10)

for arbitrary positive functions ǫ
\i
I (xI\i) does not change the beliefs (8) corresponding to

the fixed points of (6). Thus, without loss of generality, we can assume ζ
\i
0 (x∂i) = 1 for all

i ∈ V. The BP update equations are:

µj→I(xj) ∝
∏

J∈Nj\I

µJ→j(xj) j ∈ V, I ∈ Nj

µI→i(xi) ∝
∑

xI\i

ψI(xI)
∏

j∈I\i

µj→I(xj) I ∈ F , i ∈ I
(11)

in terms of messages {µJ→j(xj)}j∈V ,J∈Nj
and {µj→J(xj)}j∈V ,J∈Nj

. Assume that the mes-
sages µ are a fixed point of (11) and take the Ansatz

φ
\i
I (xI\i) =

∏

k∈I\i

µk→I(xk) for i ∈ V, I ∈ Ni.

Then, for i ∈ V, Y ∈ Ni, j ∈ Y \ i, we can write out part of the numerator of (6) as follows:
∑

xi

∑

x∆j\Y

ΨNj\Y ζ
\j
0

∏

J∈Nj

φ
\j
J =

∑

xi

∑

x∆j\Y

φ
\j
Y

∏

J∈Nj\Y

ψJφ
\j
J

=
∑

xi





∏

k∈Y \j

µk→Y





∏

J∈Nj\Y

∑

xJ\j

ψJ

∏

k∈J\j

µk→J

=
∑

xi





∏

k∈Y \j

µk→Y



µj→Y =
∑

xi

∏

k∈Y

µk→Y ∝
∏

k∈Y \i

µk→Y

= φ
\i
Y ,

9
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where we used the BP update equations (11) and rearranged the summations and products
using the assumption that the factor graph has no loops of four nodes. Thus, the numerator

of the r.h.s. of (6) is simply φ
\i
Y . Using a similar calculation, one can derive that the

denominator of the r.h.s. of (6) is constant, and hence equation (6) is valid (up to an
irrelevant constant).

For Y ∈ F , i ∈ Y , the marginal on xY of the belief (8) can be written in a similar way:

∑

x∆i\Y

Qi ∝
∑

x∆i\Y

ΨNi

∏

I∈Ni

φ
\i
I =

∑

x∆i\Y

∏

I∈Ni

ψI

∏

k∈I\i

µk→I

= ψY





∏

k∈Y \i

µk→Y





∏

I∈Ni\Y

∑

xI\i

ψI

∏

k∈I\i

µk→I

= ψY





∏

k∈Y \i

µk→Y





∏

I∈Ni\Y

µI→i = ψY





∏

k∈Y \i

µk→Y



µi→Y

= ψY

∏

k∈Y

µk→Y .

which is proportional to the BP belief bY (xY ) on xY . Hence, also the single variable marginal
bi defined in (7) corresponds to the BP single variable belief, since both are marginalizations
of bY for Y ∈ Ni.

If the factor graph does contain loops of four nodes, we find empirically that the fixed
point of Algorithm 1, when using factorized initial cavity approximations as in (9), cor-
responds to the “minimal” CVM approximation, i.e. the CVM approximation that uses
all (maximal) factors as outer clusters (Kikuchi, 1951; Pelizzola, 2005).2 In that case, the
factor beliefs found by Algorithm 1 are consistent, i.e.

∑

x∆i\Y
Qi =

∑

x∆j\Y
Qj for i, j ∈ Y ,

and are identical to the minimal CVM factor beliefs. Thus it appears that Algorithm 1 can
be considered as a generalization of the minimal CVM approximation (which can e.g. be
calculated using the GBP algorithm (Yedidia et al., 2005) or a double-loop implementation
(Heskes et al., 2003)).

We have not yet been able to prove this, so currently this claim stands as a conjecture,
which we have empirically verified to be true for all the graphical models used for numerical
experiments in section 3. Note that in case the factor graph has no loops of length four, the
minimal CVM approximation reduces to the Bethe approximation, which yields a proof for
this case. The proof in the general case is expected to be more involved, since one needs to
keep track of various overlapping sets and it requires a translation of the structure of (6)
(where the basic sets of variables involved are of three types, namely i, Y \ i, and ∆i) and
the GBP equations or Lagrange multiplier equations corresponding to the minimal CVM
approximation (where the basic variable sets are those that can be written as an intersection
of a finite number of factors).

2. Provided that the factor graph is connected.
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2.5 Obtaining initial approximate cavity distributions

There is no principled way to obtain the initial cavity approximations ζ
\i
0 (x∂i). In the

previous subsection, we saw that factorized cavity approximations result in the minimal
CVM approximation, which does not yet take into account the effect of loops in the cavity
network. More sophisticated approximations that do take into account the effect of loops
can significantly enhance the accuracy of the final result. In principle, there are many pos-
sibilities to obtain the initial cavity approximations. Here, we will describe one method,
which uses BP on clamped cavity networks. This method captures all interactions in the
cavity distribution of i in an approximate way and can lead to very accurate results. In-
stead of BP, any other approximate inference method that gives an approximation of the
normalizing constant Z in (1) can be used, such as Mean Field, TreeEP (Minka and Qi,
2004), a double-loop version of BP (Heskes et al., 2003) which has guaranteed convergence
towards a minimum of the Bethe free energy, or some variant of GBP (Yedidia et al., 2005).
One could also choose the method for each cavity separately, trading accuracy versus com-
putation time. We focus here on BP because it is a very fast and often relatively accurate
algorithm.

Let i ∈ V and consider the cavity network of i. For each possible state of x∂i, run BP
on the cavity network clamped to that state x∂i and calculate the corresponding Bethe free

energy F
\i
Bethe(x∂i) (Yedidia et al., 2005). Take as initial approximate cavity distribution:

ζ
\i
0 (x∂i) ∝ e−F

\i

Bethe
(x∂i).

This procedure is exponential in the size of ∂i: it uses
∏

j∈∂i |Xj | BP runs. However, many
networks encountered in applications are relatively sparse and have limited cavity size and
the computational cost may be acceptable.

This particular way of obtaining initial cavity distributions has the following interesting
property: in case the factor graph contains only a single loop, the final beliefs (8) resulting
from Algorithm 1 are exact. This can be shown using an argument similar to that given in
(Montanari and Rizzo, 2005). Suppose that the graphical model contains exactly one loop
and let i ∈ V. Consider first the case that i is part of the loop; removing i will break the
loop and the remaining cavity network will be singly connected. The cavity distribution
approximated by BP will thus be exact. Now if i is not part of the loop, removing i will
divide the network into several connected components, one for each neighbour of i. This
implies that the cavity distribution calculated by BP contains no higher order interactions,

i.e. ζ
\i
0 is exact modulo single variable interactions. Because the final beliefs (8) are invariant

under perturbation of the ζ
\i
0 by single variable interactions, the final beliefs calculated by

Algorithm 1 are exact.

If all interactions are pairwise and each variable is binary and has exactly |∂i| = d

neighbours, the time complexity of the resulting “Loop Corrected BP” (LCBP) algorithm
is given by N2dTBP + Nd2d+1NLC , where TBP is the average time of one BP run on a
clamped cavity network and NLC is the number of iterations needed to obtain convergence
in Algorithm 1.
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2.6 Differences with Montanari and Rizzo (2005)

As mentioned before, the idea of estinating the cavity distributions and imposing certain
consistency relations amongst them has been first presented in Montanari and Rizzo (2005).
In its simplest form (i.e. the so-called first order correction), the implementation of that basic
idea as proposed by Montanari and Rizzo (2005) differs from our proposed implementation
in the following aspects.

First, the original method described by Montanari and Rizzo (2005) is only formulated
for the rather special case of binary variables and pairwise interactions. In contrast, our
method is formulated in a general way that makes it applicable to factor graphs with
variables having more than two possible values and factors consisting of more than two
variables. Also, factors may contain zeroes. The generality that our implementation offers
is important for many practical applications.3 In the rest of this section, we will assume
that the graphical model (1) belongs to the special class of binary variables with pairwise
interactions, allowing further comparison of both implementations.

An important difference is that Montanari and Rizzo (2005) suggest to deform the ini-
tial approximate cavity distributions by altering certain cumulants (also called “connected
correlations”), instead of altering certain interactions. In general, for a set A of ±1-valued
random variables {xi}i∈A, one can define for any subset B ⊆ A the moment

MB :=
∑

xA

P (xA)
∏

j∈B

xj.

The moments {MB}B⊆A are a parameterization of the probability distribution P (xA). An
alternative parameterization is given in terms of the cumulants. The (joint) cumulants
{CE}E⊆A are certain polynomials of the moments, defined implicitly by the following rela-
tions:

MB =
∑

C∈Part(B)

∏

E∈C

CE

where Part(B) is the set of partitions of B.4 In particular, Ci = Mi and Cij = Mij −MiMj

for all i, j ∈ A with i 6= j. Montanari and Rizzo (2005) propose to approximate the cavity
distributions by estimating the pair cumulants and assuming higher order cumulants to be
zero. Then, the singleton cumulants (i.e. the single node marginals) are altered, keeping
higher order cumulants fixed, in such a way as to impose consistency of the single node
marginals, in the absence of interactions shared by two neighbouring cavities. We refer the
reader to the appendix for a more detailed description of the implementation in terms of
cumulants suggested by Montanari and Rizzo (2005).

A minor difference lies in the method to obtain initial approximations to the cavity
distributions. Montanari and Rizzo (2005) propose to use BP in combination with linear
response theory to obtain the initial pairwise cumulants. This difference is not very impor-
tant, since one could also use BP on clamped cavity networks instead, which turns out to
give almost identical results.

3. The method by Montanari and Rizzo (2005) could probably be generalized in a way that stays closer to
the original one than our proposal, but it is not so obvious how to do this.

4. For a set X, a partition of X is a nonempty set Y such that each Z ∈ Y is a nonempty subset of X and
S

Y = X.
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As we will show in section 3, our method of altering interactions appears to be more
robust and still works in regimes with strong interactions, whereas the cumulant implemen-
tation suffers from convergence problems for strong interactions.

An advantage of the cumulant based scheme is that it allows for a linearized version
(by expanding up to first order in terms of the pairwise cumulants, see appendix) which is
quadratic in the size of the cavity. This means that this linearized, cumulant based version is
currently the only one that can be applied to networks with large Markov blankets (cavities),
i.e. where the maximum number of states maxi∈V |X∆i| is large (provided that all variables
are binary and interactions are pairwise).

3. Numerical experiments

We have performed various numerical experiments to compare the quality of the results and
the computation time of the following approximate inference methods:

MF Mean Field, with a random sequential update scheme and no damping.

BP Belief Propagation. We have used the recently proposed update scheme Elidan et al.
(2006), which converges also for difficult problems without the need for damping.

TreeEP TreeEP (Minka and Qi, 2004), without damping. We generalized the method of
choosing the base tree described in Minka and Qi (2004) to multiple variable factors
as follows: when estimating the mutual information between xi and xj , we take the
product of the marginals on {i, j} of all the factors that involve xi and/or xj. Other
generalizations of TreeEP to higher order factors are possible (e.g. by clustering vari-
ables), but it is not clear how to do this in general in an optimal way.

LCBP (“Loop Corrected Belief Propagation”) Algorithm 1, where the approximate cavi-
ties are initialized according to the description in section 2.5.

LCBP-Cum The original cumulant based loop correction scheme by Montanari and Rizzo
(2005), using response propagation (also known as linear response; see (Welling and
Teh, 2004)) to approximate the initial pairwise cavity cumulants. The full update
equations (18) are used and higher order cumulants are assumed to vanish.

LCBP-Cum-Lin Similar to LCBP-Cum, but instead of the full update equations (18),
the linearized update equations (19) are used.

CVM-Min A double-loop implementation (Heskes et al., 2003) of the minimal CVM ap-
proximation, which uses (maximal) factors as outer clusters.

CVM-∆ A double-loop implementation of CVM using the sets {∆i}i∈V as outer clusters.
These are the same sets of variables as used by LCBP (c.f. (8)) and therefore it is
interesting to compare both algorithms.

CVM-Loopk A double-loop implementation of CVM, using as outer clusters all (maximal)
factors together with all loops in the factor graph that consist of up to k different
variables (for k = 3, 4, 5, 6, 8).

13
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We have used a double-loop implementation of CVM instead of GBP because the former
is guaranteed to converge to a local minimum of the Kikuchi free energy (Heskes et al.,
2003) without damping, whereas the latter often only converges with strong damping. The
difficulty with damping is that the optimal damping constant is not known a priori, which
necessitates multiple trial runs with different damping constants, until a suitable one is
found. Using too much damping slows down convergence, whereas a certain amount of
damping is required to obtain convergence in the first place. Therefore, in general we
expect that GBP is not much faster than a double-loop implementation because of the
computational cost of finding the optimal damping constant.

To be able to assess the errors of the various approximate methods, we have only con-
sidered problems for which exact inference (using a standard JunctionTree method) was
still feasible.

For each approximate inference method, we report the maximum ℓ∞ error of the ap-
proximate single node marginals bi, calculated as follows:

Error := max
i∈V

max
xi∈Xi

|bi(xi)− P (xi)| (12)

where P (xi) is the exact marginal calculated using the JunctionTree method.

The computation time was measured as CPU time in seconds on a 2.4 GHz AMD
Opteron 64bits processor with 4 GB memory. The timings should be seen as indicative
because we have not spent equal amounts of effort optimizing each method.5

We consider an iterative method to be “converged” after T timesteps if for each variable
i ∈ V, the ℓ∞ distance between the approximate probability distributions of that variable
at timestep T and T + 1 is less than ǫ = 10−9.

We have studied four different model classes: (i) random graphs of uniform degree with
pairwise interactions and binary variables; (ii) random factor graphs with binary variables
and factor nodes of uniform degree k = 3; (iii) the ALARM network, which has variables
taking on more than two possible values and factors consisting of more than two variables;
(iv) PROMEDAS networks, which have binary variables but factors consisting of more than
two variables.

3.1 Random regular graphs with binary variables

We have compared various approximate inference methods on random graphs, consisting of
N binary (±1-valued) variables, having only pairwise interactions, where each variable has
the same degree |∂i| = d. In this case, the probability distribution (1) can be written in the
following way:

P (x) =
1

Z
exp





∑

i∈V

θixi +
1

2

∑

i∈V

∑

j∈∂i

Jijxixj



 ,

where the parameters {θi}i∈V are called the local fields and the parameters {Jij = Jji}i∈V ,j∈∂i

are called the couplings. The graph structure and the parameters θ and J were drawn ran-
domly for each instance.

5. Our C++ implementation of various approximate inference algorithms is free/open source software and
can be downloaded from http://www.mbfys.ru.nl/∼jorism/libDAI
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The local fields {θi} were drawn independently from a N (0, βΘ) distribution (i.e. a
normal distribution with mean 0 and standard deviation βΘ). For the couplings {Jij},
we distinguished two different cases: mixed (“spin-glass”) and attractive (“ferromagnetic”)
couplings. The couplings were drawn independently from the following distributions:

Jij ∼ N
(

0, β tanh−1 1√
d− 1

)

mixed couplings

Jij =
∣

∣J ′
ij

∣

∣ , J ′
ij ∼ N

(

0, β tanh−1 1

d− 1

)

attractive couplings

The constant β (called “inverse temperature” in statistical physics) controls the overall in-
teraction strength and thereby the difficulty of the inference problem, larger β corresponding
usually to more difficult problems. The constant Θ controls the relative strength of the local
fields, where larger Θ result in easier inference problems. The particular d-dependent scal-
ing of the couplings is used in order to obtain roughly d-independent behaviour. In case of
mixed couplings, for Θ = 0 and for β ≈ 1 a phase transition occurs in the limit of N →∞,
going from an easy “paramagnetic” phase for β < 1 to a complicated “spin-glass” phase
for β > 1. In the case of attractive couplings and Θ = 0, a phase transition also occurs
at β = 1, now going from the easy “paramagnetic” phase for β < 1 to a “ferromagnetic”
phase for β > 1.6

3.1.1 N = 100, d = 3, mixed couplings, strong local fields (Θ = 2)

In this section we study regular random graphs of low degree d = 3, consisting of N = 100
variables, with mixed couplings and relatively strong local fields of strength Θ = 2. We
considered various overall interaction strengths β between 0.01 and 10. For each value of
β, we used 16 random instances. On each instance, we ran various approximate inference
algorithms. Figures 3 and 4 show selected results.7

Both figures consist of two parts; the first row in both figures shows averages (in the
logarithmic domain) of errors and computation time as a function of β for various methods.
In addition, Figure 3 shows the fraction of instances on which each method converged; for
Figure 4, all methods converged for all values of β. The averages of errors and computation
time were calculated from the converged instances only. The other rows in the figures
contain scatter plots that compare errors of various methods one-to-one. The solid red lines
in the scatter plots indicate equality; the dotted red lines indicate that the error of the
method on the vertical axis is the square of the error on the horizontal axis. Saturation of
errors around 10−9 is an artefact due to the convergence criterion. The CVM methods are
often seen to saturate around 10−8, which indicates that single iterations are less effective
than for other methods.

We conclude from both figures that BP is the fastest but also the least accurate method
and that LCBP is the most accurate method and that it converges for all β. Furthermore,
the error of LCBP is approximately the square of the BP error.

6. More precisely, in case of zero local fields (Θ = 0), the PA-SG phase transition occurs at (d − 1) =
˙

tanh2(βJij)
¸

, where 〈·〉 is the average over all Jij , and the PA-FE phase transition occurs at (d− 1) =
〈tanh(βJij)〉 (Mooij and Kappen, 2005). What happens for Θ > 0 is not known, to the best of our
knowledge.

7. We apologize to readers for the use of colours; we saw no viable alternative for creating clear plots.
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Figure 3: Results for (N = 100, d = 3) regular random graphs with mixed couplings and
strong local fields Θ = 2. First row, from left to right: error, computation
time and fraction of converged instances, as a function of β for various methods,
averaged over 16 randomly generated instances (where results are only included
if the method has converged). For the same instances, scatter plots of errors
are shown in the next rows for various pairs of methods. The solid red lines
correspond with y = x, the dotted red lines with y = x2. Only points have been
plotted for which both approximate inference methods converged.
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Figure 4: Additional results for (N = 100, d = 3) regular random graphs with mixed cou-
plings and strong local fields Θ = 2, for the same instances as in Figure 3. All
methods converged on all instances.

17



Mooij and Kappen

Figure 3 shows further that TreeEP is able to obtain a significant improvement over
BP using little computation time. For small values of β, LCBP-Cum and LCBP-Cum-Lin
both converge and yield high quality results and the error introduced by the linearization
is relatively small. However, for larger values of β, both methods get more and more
convergence problems, although for the few cases where they do converge, they still yield
accurate results. At β ≈ 10, both methods have completely stopped converging. The error
introduced by the linearization increases for larger values of β. The computation times of
LCBP-Cum, LCBP-Cum-Lin and LCBP do not differ substantially in the regime where all
methods converge. The difference in quality between LCBP and LCBP-Cum is mainly due
to the fact that LCBP does take into account triple interactions in the cavity (however,
extending LCBP-Cum in order to take into account triple interactions is easy for this case
of low d).

The break-down of the cumulant based LCBP methods for high β is probably due
to the choice of cumulants for parameterizing cavity distributions, which seem to be less
robust than interactions. Indeed, consider two random variables x1 and x2 with fixed pair
interaction exp(Jx1x2). By altering the singleton interactions exp(θ1x1) and exp(θ2x2),
one can obtain any desired marginals of x1 and x2. However, a fixed pair cumulant C12 =
〈x1x2〉 − 〈x1〉 〈x2〉 imposes a constraint on the range of possible expectation values 〈x1〉
and 〈x2〉 (hence on the single node marginals of x1 and x2); the freedom of choice in these
marginals becomes less as the pair cumulant becomes stronger. We believe that something
similar happens for LCBP-Cum: for strong interactions, the approximate pair cumulants
in the cavity are strong, and even tiny errors can lead to inconsistencies.8

The results of the CVM approach to loop correcting is shown in 4. The CVM-Loop
methods, with clusters reflecting the short loops present in the factor graph, do improve
on BP. The use of larger clusters that subsume longer loops improves the results, but
computation time quickly increases. CVM-Loop3 does not obtain any improvement over
BP, simply because there are (almost) no loops of 3 variables present. The most accurate
CVM method, CVM-Loop8, needs more computation time than LCBP, whereas the quality
of its results is not as good. Surprisingly, although CVM-∆ uses larger cluster than BP, its
quality is similar to that of BP and its computation time is enormous. This is remarkable,
since one would expect that CVM-∆ should improve on BP because it uses larger clusters.
In any case, we conclude that although LCBP and CVM-∆ use identical clusters, the nature
of both approximations is very different.

We have also done experiments for weak local fields (Θ = 0.2). The behaviour is similar
to that of strong local fields, apart from the following differences. First, the influence of
the phase transition is more pronounced; many methods have severe convergence problems
around β = 1. Further, the negative effect of linearization on the error (LCBP-Cum-Lin
compared to LCBP-Cum) is smaller.

8. Indeed, for strong interactions, the update equations (18) often yield values for the M
\i

j outside of the
valid interval [−1, 1]. In this case, we project these values back into the valid interval in the hope that
the method will converge to a valid result, which it sometimes does. This phenomenon also indicates
the lack of robustness of a cumulant parameterization in the regime of strong interactions.
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3.1.2 Fixed β and varying relative local field strength Θ

In addition, we have done experiments for fixed β = 1.0 for various values of the relative
local field strength Θ between 0.01 and 10. The results are shown in Figures 5 and 6.

Computation time is seen to decrease with increasing local field strength Θ. The errors
on the other hand first increase slowly, and then suddenly decrease rapidly. Again, LCBP-
Cum and LCBP-Cum-Lin are the only methods that have convergence problems. The
ranking in terms of accuracy of various methods does not depend on the local field strength,
nor does the ranking in terms of computation time.

3.1.3 Larger degree (d = 6)

To study the influence of the degree d = |∂i|, we have done additional experiments for
d = 6. We had to reduce the number of variables to N = 50, because exact inference was
infeasible for larger values of N due to quickly increasing treewidth. The results are shown
in Figure 7.

As in the previous experiments, BP is the fastest and least accurate method, whereas
LCBP yields the most accurate results, even for high β.

The differences with the case of low degree (d = 3) are the following. The relative
improvement of TreeEP over BP has decreased. This could have been expected, because
in denser networks, the effect of taking out a tree becomes less. Further, the relative
improvement of CVM-Loop4 over BP has increased, probably because there are more short
loops present. On the other hand, computation time of CVM-Loop4 has also increased and
it is the slowest of all methods. We decided to abort the calculations for CVM-Loop6 and
CVM-Loop8, because computation time was prohibitive due to the enormous amount of
short loops present. We conclude that the CVM-Loop approach to loop correcting is not
very efficient. Surprisingly, the results of LCBP-Cum-Lin are now very similar in quality to
the results of LCBP-Cum, except for a few isolated cases (presumably on the edge of the
convergence region). LCBP now clearly needs more computation time than LCBP-Cum
and LCBP-Cum-Lin, but also obtains significantly better results due to the fact that it
takes into account higher order cavity interactions.

3.1.4 Influence of the coupling type

To study the influence of coupling type, we have done additional experiments for (N =
50, d = 6) random regular graphs with attractive couplings and strong local fields (Θ = 2).
The results are shown in 8.

By comparing Figures 7 and 8, it becomes clear that the influence of the coupling type
is rather small. Differences might be more pronounced in case of weak local fields (for which
we have not done additional experiments).

3.1.5 Scaling with N

We have investigated how computation time scales with the number of variables N , for fixed
β = 0.1, Θ = 2 and d = 6 for mixed couplings. We used a machine with more memory (16
GB) to be able to do exact inference without swapping also for N = 60. The results can be
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Figure 5: Results for (N = 100, d = 3) regular random graphs with mixed couplings and
β = 1.0. First row, from left to right: error, computation time and fraction of
converged instances, as a function of relative local field strength Θ for various
methods, averaged over 16 randomly generated instances (where results are only
included if the method has converged). For the same instances, scatter plots of
errors are shown in the next rows for various pairs of methods.
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Figure 6: Additional results for (N = 100, d = 3) regular random graphs with mixed cou-
plings and β = 1.0, for the same instances as in Figure 5. All methods converged
on all instances.
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Figure 7: Results for (N = 50, d = 6) regular random graphs with mixed couplings and
strong local fields Θ = 2.
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Figure 8: Results for (N = 50, d = 6) regular random graphs with attractive couplings and
strong local fields Θ = 2.
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Figure 9: Error (left) and computation time (right) as a function of N (the number of
variables), for random graphs with uniform degree d = 6, mixed couplings, β =
0.1 and Θ = 2. Points are averages over 16 randomly generated instances. Each
method converged on all instances.

found in Figure 9. For larger values of N , the computation time for exact inference would
increase exponentially with N .

The error of all methods is approximately constant. BP should scale approximately
linearly in N . LCBP variants are expected to scale quadratic in N (since d is fixed) which
indeed appears to be the case. The computation time of the exact JunctionTree method
quickly increases due to increasing treewidth; for N = 60 it is already ten times larger than
the computation time of the slowest approximate inference method. The computation time
of CVM-Loop3 and CVM-Loop4 seems to be approximately constant, probably because the
large number of overlaps of short loops for small values of N causes difficulties.

We conclude that for large N , exact inference is infeasible, whereas LCBP still yields
very accurate results using moderate computation time.

3.2 Scaling with d

It is also interesting to see how various methods scale with d, the variable degree, which
is directly related to the cavity size. We have done experiments for random graphs of size
N = 24 with fixed β = 0.1 and Θ = 2 for mixed couplings for different values of d between
3 and 23. The results can be found in Figure 10. We aborted the calculations of the slower
methods (LCBP, LCBP-Cum, CVM-Loop3) at d = 15.

Due to the particular dependence of the interaction strength on d, the errors of most
methods depend only slightly on d. TreeEP is an exception: for larger d, the relative
improvement of TreeEP over BP diminishes, and the TreeEP error approaches the BP
error. CVM-Loop3 gives better quality, but needs relatively much computation time and
becomes very slow for large d due to the large increase in the number of loops of 3 variables.
LCBP is the most accurate method, but becomes very slow for large d. LCBP-Cum is less
accurate and becomes slower than LCBP for large d, because of the additional overhead
of the combinatorics needed to perform the update equations. The accuracy of LCBP-
Cum-Lin is indistinguishable from that of LCBP-Cum, although it needs significantly less
computation time.
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Figure 10: Error (left) and computation time (right) as a function of variable degree d for
regular random graphs of N = 24 variables with mixed couplings for β = 0.1
and Θ = 2. Points are averages over 16 randomly generated instances. Each
method converged on all instances.

3.3 Alternative methods to obtain initial approximate cavity distributions

Until now we have used BP to estimate initial cavity approximations. We now show that
other approximate inference methods can be used as well and that a similar relative im-
provement in accuracy is obtained. Figure 11 shows the results of Algorithm 1 for cavity
approximations initialized using the method described in Section 2.5 with MF and TreeEP
instead of BP. For reference, also the BP results are plotted. In all cases, the loop corrected
error is approximately the square of the error of the uncorrected approximate inference
method. Because BP is very fast yet relatively accurate, we focus on LCBP in this article.

3.4 Multi-variable factors

We now go beyond pairwise interactions and study a class of random factor graphs with
binary variables and uniform factor degree |I| = k (for all I ∈ F) with k > 2. The number of
variables is N and the number of factors isM . The factor graphs are constructed by starting
from an empty graphical model (V, ∅, ∅) and adding M random factors, where each factor
is obtained in the following way: a subset I = {I1, . . . , Ik} ⊆ V of k different variables is
drawn; a vector of 2k independent random numbers {JI(xI)}xI∈XI

is drawn from a N (0, β)
distribution; the factor ψI(xI) := exp JI(xi) is added to the graphical model. We only use
those constructed factor graphs that are connected.9 The parameter β again controls the
interaction strength.

We have done experiments for (N = 50,M = 50, k = 3) for various values of β between
0.01 and 2. For each value of β, we have used 16 random instances. For higher values of
β, computation times increased and convergence became problematic for some methods,
which can probably be explained as the effects of a phase transition. The results are shown
in Figure 12.

9. The reason that we require the factor graph to be connected is that not all our approximate infer-
ence method implementations currently support connected factor graphs that consist of more than one
connected component.
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Figure 11: Results for different methods of obtaining initial estimates of cavity distribu-
tions, for (N = 100, d = 3) regular random graphs with mixed couplings and
strong local fields Θ = 2.

Looking at the error and the computation time in Figure 12, the following ranking can
be made, where accuracy and computation time both increase: BP, TreeEP, CVM-Min,
CVM-Loop3, LCBP. CVM-Loop4 uses more computation time than LCBP but gives worse
results. LCBP-Cum and LCBP-Cum-Lin are not available due to the fact that the factors
involve more than two variables. The improvement of TreeEP over BP is rather small.

3.5 ALARM network

The ALARM network10 is a well-known Bayesian network consisting of 37 variables (some
of which can take on more than two possible values) and 37 factors (many of which involve
more than two variables). In addition to the usual approximate inference methods, we have
compared with GBP-Min, a GBP implementation of the minimal CVM approximation that
uses maximal factors as outer clusters. The results are reported in Table 1.

The accuracy of GBP-Min (and CVM-Min) is almost identical to that of BP for this
graphical model; GBP-Min converges without damping and is faster than CVM-Min. TreeEP
on the other hand significantly improves the BP result in roughly the same time as GBP-
Min needs. Simply enlarging the cluster size (CVM-∆) slightly deteriorates the quality

10. The ALARM network can be downloaded from http://compbio.cs.huji.ac.il/Repository/

Datasets/alarm/alarm.dsc
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Figure 12: Results for (N = 50,M = 50, k = 3) random factor graphs.
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of the results and also causes an enormous increase of computation time. The quality of
the CVM-Loop results is roughly comparable to that of TreeEP. Suprisingly, increasing the
loop depth beyond 4 deteriorates the quality of the results and results in an explosion of
computation time. We conclude that the CVM-Loop method is not a very good approach to
correcting loops in this case. LCBP uses considerable computation time, but yields errors
that are approximately 104 times smaller than BP errors. The cumulant based loop LCBP
methods are not available, due to the presence of factors involving more than two variables
and variables that can take more than two values.

3.6 PROMEDAS networks

In this subsection, we study the performance of LCBP on another “real-world” example, the
PROMEDAS medical diagnostic network (Wiegerinck et al., 1999). The diagnostic model
in PROMEDAS is based on a Bayesian network. The global architecture of this network is
similar to QMR-DT (Shwe et al., 1991). It consists of a diagnosis-layer that is connected
to a layer with findings11. Diagnoses (diseases) are modeled as a priori independent binary
variables causing a set of symptoms (findings), which constitute the bottom layer. The
PROMEDAS network currently consists of approximately 2000 diagnoses and 1000 findings.

The interaction between diagnoses and findings is modeled with a noisy-OR structure.
The conditional probability of the finding given the parents is modeled by m+ 1 numbers,
m of which represent the probabilities that the finding is caused by one of the diseases and
one that the finding is not caused by any of the parents.

The noisy-OR conditional probability tables with m parents can be naively stored in a
table of size 2m. This is problematic for the PROMEDAS networks since findings that are
affected by more than 30 diseases are not uncommon in the PROMEDAS network. We use
an efficient implementation of noisy-OR relations as proposed by Takikawa and D’Ambrosio
(1999) to reduce the size of these tables. The trick is to introduce dummy variables s and

11. In addition, there is a layer of variables, such as age and gender, that may affect the prior probabilities
of the diagnoses. Since these variables are always clamped for each patient case, they merely change the
prior disease probabilities and are irrelevant for our current considerations.

Table 1: Results for the ALARM network

Method Time (s) Error

BP 0.00 2.026 · 10−01

TreeEP 0.21 3.931 · 10−02

GBP-Min 0.18 2.031 · 10−01

CVM-Min 1.13 2.031 · 10−01

CVM-∆ 280.67 2.233 · 10−01

CVM-Loop3 1.19 4.547 · 10−02

CVM-Loop4 154.97 3.515 · 10−02

CVM-Loop5 1802.83 5.316 · 10−02

CVM-Loop6 84912.70 5.752 · 10−02

LCBP 23.67 3.412 · 10−05
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to make use of the property

OR(x|y1, y2, y3) =
∑

s

OR(x|y1, s)OR(s|y2, y3) (13)

The factors on the right hand side involve at most 3 variables instead of the initial 4 (left).
Repeated application of this formula reduces all factors to triple interactions or smaller.

When a patient case is presented to PROMEDAS, a subset of the findings will be
clamped and the rest will be unclamped. If our goal is to compute the marginal probabilities
of the diagnostic variables only, the unclamped findings and the diagnoses that are not
related to any of the clamped findings can be summed out of the network as a preprocessing
step. The clamped findings cause an effective interaction between their parents. However,
the noisy-OR structure is such that when the finding is clamped to a negative value, the
effective interaction factorizes over its parents. Thus, findings can be clamped to negative
values without additional computation cost (Jaakkola and Jordan, 1999).

The complexity of the problem now depends on the set of findings that is given as
input. The more findings are clamped to a positive value, the larger the remaining network
of disease variables and the more complex the inference task. Especially in cases where
findings share more than one common possible diagnosis, and consequently loops occur, the
model can become complex.

We use the PROMEDAS model to generate virtual patient data by first clamping one
of the disease variables to be positive and then clamping each finding to its positive value
with probability equal to the conditional distribution of the finding, given the positive
disease. The union of all positive findings thus obtained constitute one patient case. For
each patient case, the corresponding truncated graphical model is generated. The number
of disease nodes in this truncated graph is typically quite large.

The results can be found in Figures 13 and 14. Surprisingly, neither TreeEP nor any of
the CVM methods gives substantial improvements over BP. TreeEP even gives worse results
compared to BP. The CVM-Min and CVM-Loop3 results appear to be almost identical to
the BP results. CVM-Loop4 manages to improve over BP in a few cases. Increased loop
depth (k = 5, 6) results in worse quality in many cases and also in an enormous increase in
computation time.

LCBP, on the other hand, is the only method that gives a significant improvement over
BP, in each case. Considering all patient cases, LCBP corrects the BP error with more
than one order of magnitude in half of the cases for which BP was not already exact. The
improvement obtained by LCBP has its price: the computation time of LCBP is rather
large compared to that of BP, as shown in Figure 14. The deviation from the quadratic
scaling t ∝ N2 is due to the fact that the size of the Markov blankets varies over instances
and instances with large N often also have larger Markov blankets. The cumulant based
loop LCBP methods are not available, due to the presence of factors involving more than
two variables and variables that can take more than two values.

4. Discussion and conclusion

We have proposed a method to improve the quality of an approximate inference method (e.g.
BP) by correcting for the influence of loops in the factor graph. We found empirically that
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if one applies this Loop Correcting method, assuming that no loops are present (by taking
factorized initial approximate cavity distributions), the method reduces to the minimal
CVM approximation. We have proved this for the case of factor graphs that do not have
short loops of exactly four nodes. If, on the other hand, the loop correction method is applied
in combination with BP estimates of the effective cavity interactions, we have seen that the
loop corrected error is approximately the square of the uncorrected BP error. Similar
observations have been made for loop corrected MF and TreeEP. For practical purposes, we
suggest to apply loop corrections to BP (“LCBP”), because the loop correction approach
requires many runs of the approximate inference method and BP is well suited for this job
because of its speed. We have compared the performance of LCBP with other approximate
inference methods that (partially) correct for the presence of loops. We have shown that
LCBP is the most accurate method and that it even works for relatively strong interactions.

On sparse factor graphs, TreeEP obtains improvements over BP by correcting for loops
that consist of part of the base tree and one additional interaction, using little computation
time. However, for denser graphs, the difference between the quality of TreeEP and BP
marginals diminishes. LCBP almost always obtained more accurate results. However,
LCBP also needs more computation time than TreeEP.

The CVM-Loop approximation, which uses small loops as outer clusters, can also provide
accurate results if the number of short loops is not too large and the number of intersections
of clusters is limited. However, the computation time becomes prohibitive in many cases.
In order to obtain the same accuracy as LCBP, the CVM-Loop approach usually needs
significantly more computation time. This behaviour is also seen on “real world” instances
such as the ALARM network and PROMEDAS test cases. There may exist other cluster
choices that give better results for the CVM approximation, but no general method for
obtaining “good” cluster choices seems to be known (see also (Welling et al., 2005) for a
discussion of what constitutes a “good” CVM cluster choice).

We have also compared the performance of LCBP with the original implementation
proposed by Montanari and Rizzo (2005). This implementation works with cumulants
instead of interactions and we believe that this is the reason that it has more difficulties
in the regime of strong interactions. Although the differences were rather small in some
cases, LCBP obtained better results than LCBP-Cum using approximately similar amounts
of computation time. The linearized version LCBP-Cum-Lin, which is applicable to factor
graphs with large Markov blankets, performed surprisingly well, often obtaining similar
accuracy as LCBP-Cum. For random graphs with high degree d (i.e. large Markov blankets),
it turned out to be the most accurate of the applicable approximate inference methods. It
is rather fortunate that the negative effect of the linearization error on the accuracy of the
result becomes smaller as the degree increases, since it is precisely for high degree where
one needs the linearization because of performance issues.

In the experiments reported here, the standard JunctionTree method was almost al-
ways faster than LCBP. The reason is that we have intentionally selected experiments for
which exact inference is still feasible, in order to be able to compare the quality of various
approximate inference methods. However, as implied by Figure 9, there is no reason to
expect that LCBP will suddenly give inaccurate results when exact inference is no longer
feasible. Thus we suggest that LCBP may be used to obtain accurate marginal estimates
in cases where exact inference is impossible because of high treewidth. As illustrated in
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Figure 9, the computation time of LCBP scales very different from that of the JunctionTree
method: whereas the latter is exponential in treewidth, LCBP is exponential in the size of
the Markov blankets.

The fact that computation time of LCBP (in its current form) scales exponentially
with the size of the Markov blankets can be a severe limitation in practice. Many real
world Bayesian networks have large Markov blankets, prohibiting application of LCBP.
The linear cumulant based implementation LCBP-Cum-Lin proposed by Montanari and
Rizzo (2005) does not suffer from this problem, as it is quadratic in the size of the Markov
blankets. Unfortunately, this particular implementation can in its current form only be
applied to graphical models that consist of binary variables and factors that involve at most
two variables (which excludes any interesting Bayesian network, for example). Furthermore,
problems may arise if some factors contain zeroes. For general application of loop correcting
methods, it will be of paramount importance to derive an implementation that combines
the generality of LCBP with the speed of LCBP-Cum-Lin. At this point, it is not obvious
whether it would be better to use cumulants or interactions as the parameterization of
the cavity distribution. This topic will be left for future research. The work presented
here provides some intuition that may be helpful for constructing a general and fast loop
correcting method that is applicable to arbitrary factor graphs that can have large Markov
blankets.

Another important direction for future research would be to find an extension of the loop
correcting framework that also gives a loop corrected approximation of the normalization
constant Z in (1). Additionally, (and possibly related to that), it would be desirable to find
an approximate “free energy”, a function of the beliefs, whose stationary points coincide
with the fixed points of the Algorithm 1. This can be done for many approximate inference
methods (MF, BP, CVM, EP) so it is natural to expect that the Loop Correction algorithm
can also be seen as a minimization procedure of a certain approximate free energy. Despite
some efforts, we have not yet been able to find such a free energy.

Recently, other loop correcting approaches (to the Bethe approximation) have been
proposed in the statistical physics community (Parisi and Slanina, 2005; Chertkov and
Chernyak, 2006). In particular, Chertkov and Chernyak (2006) have derived a series ex-
pansion of the exact normalizing constant Z in terms of the BP solution. The first term of
the series is precisely the Bethe free energy evaluated at the BP fixed point. The number
of terms in the series is finite, but can be very large, even larger than the number of total
states of the graphical model. Each term is associated with a “generalized loop”, which
is a subgraph of the factor graph for which each node has at least connectivity two. By
truncating the series, it is possible to obtain approximate solutions that improve on BP by
taking into account a subset of all generalized loops (Gómez et al., 2006). Summarizing,
this approach to loop corrections takes a subset of loops into account in an exact way,
whereas the loop correcting approach presented in this article takes all loops into account
in an approximate way. More experiments should be done to compare both approaches.

Concluding, we have proposed a method to correct approximate inference methods for
the influence of loops in the factor graph. We have shown that it can obtain very accurate
results, also on real world graphical models, outperforming existing approximate inference
methods in terms of quality, robustness or applicability. We have shown that it can be
applied to problems for which exact inference is infeasible. The rather large computation
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time required is an issue which deserves further consideration; it may be possible to use
additional approximations on top of the loop correcting framework that trade quality for
computation time.
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Appendix: Original approach proposed by Montanari and Rizzo (2005)

For completeness, we describe the implementation based on cumulants as originally pro-
posed by Montanari and Rizzo (2005). The approach can be applied in recursive fashion.
Here we will only discuss the first recursion level.

Consider a graphical model which has only binary (±1-valued) variables and factors
that involve at most two variables. The corresponding probability distribution can be
parameterized in terms of the local fields {θi}i∈V and the couplings {Jij = Jji}i∈V ,j∈∂i:

P (x) =
1

Z
exp





∑

i∈V

θixi +
1

2

∑

i∈V

∑

j∈∂i

Jijxixj



 .

Let i ∈ V and consider the corresponding cavity network of i. For A ⊆ ∂i, the cavity

moment M\i
A is defined as the following expectation value under the cavity distribution:

M\i
A :=

∑

x∂i

Z\i(x∂i)
∏

j∈A

xj,

where we will not explicitly distinguish between approximate and exact quantities, following

the physicists’ tradition.12 The cavity cumulants (also called “connected correlations”) C\iA
are related to the moments in the following way:

M\i
A =

∑

B∈Part(A)

∏

E∈B

C\iE

where Part(A) is the set of partitions of A.
We introduce some notation: we define for A ⊆ ∂i:

tiA :=
∏

k∈A

tanh Jik.

Further, for a set X, we denote the even subsets of X as P+(X) := {Y ⊆ X : |Y | is even}
and the odd subsets of X as P−(X) := {Y ⊆ X : |Y | is odd}.

Using standard algebraic manipulations, one can show that for j ∈ ∂i, the expectation
value of xj in the absence of the interaction ψij = exp(Jijxixj) can be expressed in terms
of cavity moments of i as follows:

∑

A∈P+(∂i\j)

tiAM\i
A∪j + tanh θi

∑

A∈P−(∂i\j)

tiAM\i
A∪j

∑

A∈P+(∂i\j)

tiAM\i
A + tanh θi

∑

A∈P−(∂i\j)

tiAM\i
A

. (14)

On the other hand, the same expectation value can also be expressed in terms of cavity
moments of j as follows:

tanh θj

∑

A∈P+(∂j\i)

tjBM\j
B +

∑

A∈P−(∂j\i)

tjBM\j
B

∑

A∈P+(∂j\i)

tjBM\j
B + tanh θj

∑

A∈P−(∂j\i)

tjBM\j
B

. (15)

12. In (Montanari and Rizzo, 2005), the notation C̃
(i)
A is used for the cavity moment M

\i

A .
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The consistency equations are now given by equating (14) to (15) for all i ∈ V, j ∈ ∂i.
The expectation value of xi (in the presence of all interactions) can be similarly expressed

in terms of cavity moments of i:

Mi :=
∑

xi=±1

P (xi)xi =

tanh θi

∑

A∈P+(∂i)

tiAM\i
A +

∑

A∈P−(∂i)

tiAM\i
A

∑

A∈P+(∂i)

tiAM\i
A + tanh θi

∑

A∈P−(∂i)

tiAM\i
A

. (16)

Neglecting higher order cumulants

Montanari and Rizzo proceed by neglecting cavity cumulants C\iA with |A| > 2. Denote by
Part2(A) the set of all partitions of A into subsets which have cardinality 2 at most. Thus,
neglecting higher order cavity cumulants amounts to the following approximation:

M\i
A ≈

∑

B∈Part2(A)

∏

E∈B

C\iE . (17)

By some algebraic manupulations, one can express the consistency equations (14) = (15) in
this approximation as follows:

M\i
j =

tanh θj

∑

A∈P+(∂j\i)

tjBM\j
B +

∑

A∈P−(∂j\i)

tjBM\j
B

∑

A∈P+(∂j\i)

tjBM\j
B + tanh θj

∑

A∈P−(∂j\i)

tjBM\j
B

−
∑

k∈∂i\j

tikC\ijk

tanh θi

∑

A∈P+(∂i\{j,k})

tiAM\i
A +

∑

A∈P−(∂i\{j,k})

tiAM\i
A

∑

A∈P+(∂i\j)

tiAM\i
A + tanh θi

∑

A∈P−(∂i\j)

tiAM\i
A

(18)

One can use (17) to write (18) in terms of the singleton cumulants {M\i
j }i∈V ,j∈∂i and the

pair cumulants {C\ijk}i∈V ,j∈∂i,k∈∂i\j. Given (estimates of) the pair cumulants, the consistency
equations (18) are thus fixed point equations in the singleton cumulants.

The procedure is now:

• Estimate the pair cumulants {C\ijk}i∈V ,j∈∂i,k∈∂i\j using BP in combination with linear
response (called “response propagation” in Montanari and Rizzo (2005)).

• Calculate the fixed point {M\i
j }i∈V ,j∈∂i of (18) using the estimated the pair cumulants.

• Use (16) in combination with (17) to calculate the final expectation values {Mj}j∈V
using the estimated pair cumulants and the fixed point of (18).
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Linearized version

The update equations can be linearized by expanding up to first order in the pair cumulants

C\ijk. This yields the following linearized consistency equation (Montanari and Rizzo, 2005):

M
(i)
j = T

\j
i −

∑

l∈∂i\j

Ω
(i)
j,l tilC

(i)
jl +

∑

{l1,l2}:l1,l2∈∂j\i

Γ
\j
i,l1l2

tjl1tjl2C
(j)
l1l2

(19)

where

T
\i
A := tanh



θi +
∑

k∈∂i\A

tanh−1 (tikM
(i)
k )





Ω
\i
jl :=

T
\i
jl

1 + tilM
\i
l T

\i
jl

Γ
\j
i,l1l2

:=
T
\j
il1l2
− T \j

i

1 + tjl1tjl2M
(j)
l1
M

(j)
l2

+ tjl1M
(j)
l1
T
\j
il1l2

+ tjl2M
(j)
l2
T
\j
il1l2

.

The final magnetizations (16) are, up to first order in the pair cumulants:

Mj = T \j +
∑

{l1,l2}:l1,l2∈∂j2

Γ
\j
l1l2
tjl1tjl2C

(j)
l1l2

+O(C2)

where

Γ
\j
l1l2

:=
T
\j
l1l2
− T \j

1 + tjl1tjl2M
\j
l1
M

(j)
l2

+ tjl1M
(j)
l1
T
\j
l1l2

+ tjl2M
(j)
l2
T
\j
l1l2

.
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Figure 13: Scatter plots of errors for PROMEDAS instances.
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Figure 14: Computation time (in seconds) of LCBP for PROMEDAS instances vs. N , the
number of variables in the preprocessed graphical model. The solid line corre-
sponds to t ∝ N2.
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