
Stochastic Simulation

Jan-Pieter Dorsman & Michel Mandjes

Korteweg-de Vries Institute for Mathematics, University of Amsterdam

University of Amsterdam,
Fall, 2018

This course

◦ There will be 12 classes.

◦ The book that will be used is Stochastic Simulation, by
S. Asmussen and P. Glynn (Springer, 2007). In addition, we
have lecture notes on discrete-event simulation, based on a
manuscript by H. Tijms.

◦ Homework (40%): see
https://staff.fnwi.uva.nl/j.l.dorsman/stochSim1819.html

◦ Exam (60%): written or oral, depending on number of
students.

This course

◦ There will be 12 classes.

◦ The book that will be used is Stochastic Simulation, by
S. Asmussen and P. Glynn (Springer, 2007). In addition, we
have lecture notes on discrete-event simulation, based on a
manuscript by H. Tijms.

◦ Homework (40%): see
https://staff.fnwi.uva.nl/j.l.dorsman/stochSim1819.html

◦ Exam (60%): written or oral, depending on number of
students.

This course

◦ There will be 12 classes.

◦ The book that will be used is Stochastic Simulation, by
S. Asmussen and P. Glynn (Springer, 2007). In addition, we
have lecture notes on discrete-event simulation, based on a
manuscript by H. Tijms.

◦ Homework (40%): see
https://staff.fnwi.uva.nl/j.l.dorsman/stochSim1819.html

◦ Exam (60%): written or oral, depending on number of
students.

This course

◦ There will be 12 classes.

◦ The book that will be used is Stochastic Simulation, by
S. Asmussen and P. Glynn (Springer, 2007). In addition, we
have lecture notes on discrete-event simulation, based on a
manuscript by H. Tijms.

◦ Homework (40%): see
https://staff.fnwi.uva.nl/j.l.dorsman/stochSim1819.html

◦ Exam (60%): written or oral, depending on number of
students.

Chapter I
WHAT THIS COURSE IS ABOUT

What is this course about?

◦ Complex stochastic dynamical systems

of the discrete event
type.

◦ Focus on systems in which no explicit results for performance
measure are available.

◦ System is simulated. After repeating this experiment (to
obtain the output of multiple runs), statistical claims can be
made about value of performance measure.

◦ I start with two motivating examples.

What is this course about?

◦ Complex stochastic dynamical systems of the discrete event
type.

◦ Focus on systems in which no explicit results for performance
measure are available.

◦ System is simulated. After repeating this experiment (to
obtain the output of multiple runs), statistical claims can be
made about value of performance measure.

◦ I start with two motivating examples.

What is this course about?

◦ Complex stochastic dynamical systems of the discrete event
type.

◦ Focus on systems in which no explicit results for performance
measure are available.

◦ System is simulated. After repeating this experiment (to
obtain the output of multiple runs), statistical claims can be
made about value of performance measure.

◦ I start with two motivating examples.

What is this course about?

◦ Complex stochastic dynamical systems of the discrete event
type.

◦ Focus on systems in which no explicit results for performance
measure are available.

◦ System is simulated. After repeating this experiment (to
obtain the output of multiple runs), statistical claims can be
made about value of performance measure.

◦ I start with two motivating examples.

What is this course about?

◦ Complex stochastic dynamical systems of the discrete event
type.

◦ Focus on systems in which no explicit results for performance
measure are available.

◦ System is simulated. After repeating this experiment (to
obtain the output of multiple runs), statistical claims can be
made about value of performance measure.

◦ I start with two motivating examples.

What is this course about?

Two motivating examples:

◦ (Networks of) queueing systems.

◦ (Multivariate) ruin models.

(Networks of) queueing systems

(Networks of) queueing systems

Complication: link failures

(Networks of) queueing systems

Complication: link failures

(Networks of) queueing systems

Complication: link failures

(Networks of) queueing systems

Complication: link failures

(Networks of) queueing systems

◦ particles (‘customers’ in queueing lingo) move through a
network;

◦ arrival rates and service rates are affected by an external
process (‘background process’) — for instance to model link
failures, or other ‘irregularities’;

◦ queues are ‘coupled’ because they fact to common
background process.

◦ resulting processes applicable to communication networks,
road traffic networks, chemistry, economics.

◦ in full generality, network way too complex to allow explicit
analysis — simulation comes in handy!

(Multivariate) ruin models

Classical ruin model: reserve of insurance company given by

Xt := X0 + ct −
Nt∑
n=0

Bn,

with c premium rate, Nt a Poisson process (rate λ), Bn i.i.d. claim
sizes.

Lots is known about this model. Goal:

P (∃t 6 T : Xt < 0) .

(Multivariate) ruin models

Classical ruin model: reserve of insurance company given by

Xt := X0 + ct −
Nt∑
n=0

Bn,

with c premium rate, Nt a Poisson process (rate λ), Bn i.i.d. claim
sizes.

Lots is known about this model. Goal:

P (∃t 6 T : Xt < 0) .

(Multivariate) ruin models

Less is known if there are multiple insurance companies with
correlated claims:

Xt := X0 + cX t −
N

(X)
t∑

n=0

B
(X)
n ,

Yt := Y0 + cY t −
N

(Y)
t∑

n=0

B
(Y)
n .

Here:

◦ correlated claim size sequences B
(X)
n and B

(Y)
n (can be

achieved by e.g., letting the claims depend on a common
background process),

◦ N
(X)
t : Poisson process with rate λ(X), and N

(Y)
t Poisson

process with rate λ(Y).

(Multivariate) ruin models

Less is known if there are multiple insurance companies with
correlated claims:

Xt := X0 + cX t −
N

(X)
t∑

n=0

B
(X)
n ,

Yt := Y0 + cY t −
N

(Y)
t∑

n=0

B
(Y)
n .

Here:

◦ correlated claim size sequences B
(X)
n and B

(Y)
n (can be

achieved by e.g., letting the claims depend on a common
background process),

◦ N
(X)
t : Poisson process with rate λ(X), and N

(Y)
t Poisson

process with rate λ(Y).

(Multivariate) ruin models

Goal is to compute (both go bankrupt before time T):

P (∃s, t 6 T : {Xs < 0} ∩ {Yt < 0}) .

Or (one of them goes bankrupt before time T):

P (∃s, t 6 T : {Xs < 0} ∪ {Yt < 0}) .

Not known how to analyze this. Again: simulation comes in handy!

(Multivariate) ruin models

Goal is to compute (both go bankrupt before time T):

P (∃s, t 6 T : {Xs < 0} ∩ {Yt < 0}) .

Or (one of them goes bankrupt before time T):

P (∃s, t 6 T : {Xs < 0} ∪ {Yt < 0}) .

Not known how to analyze this. Again: simulation comes in handy!

(Multivariate) ruin models

Goal is to compute (both go bankrupt before time T):

P (∃s, t 6 T : {Xs < 0} ∩ {Yt < 0}) .

Or (one of them goes bankrupt before time T):

P (∃s, t 6 T : {Xs < 0} ∪ {Yt < 0}) .

Not known how to analyze this. Again: simulation comes in handy!

When is simulation a viable approach?

◦ In situations in which neither explicit results are known, nor
alternative numerical approaches are viable. ‘Monte Carlo’ (≈
stochastic simulation) is often used in financial industry and in
engineering.

◦ In research, to validate conjectures of exact or asymptotic
results, or to assess the accuracy of approximations.

Issues to be dealt with

[§I.4 of A & G]

To set up a simulation in a concrete context, various (conceptual,
practical) issues have to be dealt with.

I elaborate on the issues mentioned by A & G, and I’ll add a few.

Issue 1: proper generation of random objects

How do we generate the needed input random variables?
Optimally: we generate an exact sample of the random object
(variable, process) under study.

Issue 2: number of runs needed

One replicates a simulation experiment N times, and based on the
output the performance metric under consideration is estimated.
How large should N be to obtain an estimate with a given
precision?

Issue 3: estimation of stationary performance measures

This is about estimation of stationary performance measures.
Typically one starts the process at an initial state, and after a while
the process tends to equilibrium.
But how do we know when we ‘are’ in equilibrium? Or are there
other (clever) ways to estimate stationary performance measures?

Issue 4: exploitation of problem structure

In many situations one could follow the näıve approach of
simulating the stochastic process at hand at a fine time grid, but
often it suffices to consider a certain embedded process.

Issue 5: rare-event probabilities

In many applications extremely small probabilities are relevant. For
instance: probability of ruin of an insurance firm; probability of an
excessively high number of customers in a queue. Direct simulation
is time consuming (as one does not ‘see’ rare event under
consideration). Specific rare-event-oriented techniques are needed.

Issue 6: parameter sensitivity

A standard simulation experiment provides an estimate of a
performance measure for a given set of parameters. Often one is
interested in the sensitivity of the performance with respect to
changes of those parameters. Can simulation methods be designed
that are capable of this?

Issue 7: simulation-based optimization

A standard simulation experiment provides an estimate of a
performance measure for a given set of parameters. Can simulation
be used (and if yes, how) to optimize a given objective function?

Issue 8: continuous-time systems

This course is primarily on the simulation of dynamic stochastic
systems that allow a discrete-event setup. What can be done if
processes in continuous-time are to be simulated?

Issue 9: programming environment

Various packages are available, some really intended to do
simulations with, others have a more general purpose.
Which packages are good for which purposes?

Issue 10: data structure

For a given simulation experiment, what is the best data structure
to store the system’s key quantities?

Chapter II
GENERATING RANDOM OBJECTS

Generating random objects

◦ Generating uniformly distributed random variables

◦ Generating generally distributed random variables

◦ Generating random vectors

◦ Generating elementary stochastic processes

Generating random objects

◦ Generating uniformly distributed random variables

◦ Generating generally distributed random variables

◦ Generating random vectors

◦ Generating elementary stochastic processes

Generating random objects

◦ Generating uniformly distributed random variables

◦ Generating generally distributed random variables

◦ Generating random vectors

◦ Generating elementary stochastic processes

Generating random objects

◦ Generating uniformly distributed random variables

◦ Generating generally distributed random variables

◦ Generating random vectors

◦ Generating elementary stochastic processes

Generating random objects

◦ Generating uniformly distributed random variables

◦ Generating generally distributed random variables

◦ Generating random vectors

◦ Generating elementary stochastic processes

Generating uniform numbers

[§II.1 of A & G]

We want to develop machine to generate i.i.d. numbers U1,U2, . . .
that are uniformly distributed on [0, 1].

As we will see: building block for nearly any simulation experiment.

Generating uniform numbers

[§II.1 of A & G]

We want to develop machine to generate i.i.d. numbers U1,U2, . . .
that are uniformly distributed on [0, 1].

As we will see: building block for nearly any simulation experiment.

Generating uniform numbers

Physical devices:

Classical approach: time between emission of particles by
radioactive source is essentially exponential. Say the mean of this
exponential time T is λ−1, then e−λT has a Uniform distribution
on the interval [0, 1].

[Check!]

Generating uniform numbers

Physical devices:

Classical approach: time between emission of particles by
radioactive source is essentially exponential. Say the mean of this
exponential time T is λ−1, then e−λT has a Uniform distribution
on the interval [0, 1].

[Check!]

Generating uniform numbers

Physical devices:

Classical approach: time between emission of particles by
radioactive source is essentially exponential. Say the mean of this
exponential time T is λ−1, then e−λT has a Uniform distribution
on the interval [0, 1].

[Check!]

Generating uniform numbers

Physical devices:

Generating uniform numbers

Alternative: deterministic recursive algorithms (also known as:
pseudo-random number generators).

Typical form: with A,C ,M ∈ N,

un :=
sn
M
, where sn+1 := (Asn + C) mod M.

It is the art to make the period of the recursion as long as possible.
Early random number generators work with M = 231 − 1, A = 75,
and C = 0.

By now, way more sophisticated algorithms have been
implemented. In all standard software packages (Matlab,
Mathematica, R) implementations are used that yield nearly i.i.d.
uniform numbers.

Generating uniform numbers

Alternative: deterministic recursive algorithms (also known as:
pseudo-random number generators).

Typical form: with A,C ,M ∈ N,

un :=
sn
M
, where sn+1 := (Asn + C) mod M.

It is the art to make the period of the recursion as long as possible.
Early random number generators work with M = 231 − 1, A = 75,
and C = 0.

By now, way more sophisticated algorithms have been
implemented. In all standard software packages (Matlab,
Mathematica, R) implementations are used that yield nearly i.i.d.
uniform numbers.

Generating uniform numbers

Alternative: deterministic recursive algorithms (also known as:
pseudo-random number generators).

Typical form: with A,C ,M ∈ N,

un :=
sn
M
, where sn+1 := (Asn + C) mod M.

It is the art to make the period of the recursion as long as possible.
Early random number generators work with M = 231 − 1, A = 75,
and C = 0.

By now, way more sophisticated algorithms have been
implemented. In all standard software packages (Matlab,
Mathematica, R) implementations are used that yield nearly i.i.d.
uniform numbers.

Generating uniform numbers

Alternative: deterministic recursive algorithms (also known as:
pseudo-random number generators).

Typical form: with A,C ,M ∈ N,

un :=
sn
M
, where sn+1 := (Asn + C) mod M.

It is the art to make the period of the recursion as long as possible.
Early random number generators work with M = 231 − 1, A = 75,
and C = 0.

By now, way more sophisticated algorithms have been
implemented. In all standard software packages (Matlab,
Mathematica, R) implementations are used that yield nearly i.i.d.
uniform numbers.

Generating uniform numbers

All kinds of tests have been proposed to test a random number
generator’s performance.

Clearly not sufficient to show that the samples stem from a uniform
distribution on [0, 1],

as also the independence is important.

Test of uniformity can be done by bunch of standard tests: χ2,
Kolmogorov-Smirnov, etc. Test on independence by run test.

Generating uniform numbers

All kinds of tests have been proposed to test a random number
generator’s performance.

Clearly not sufficient to show that the samples stem from a uniform
distribution on [0, 1], as also the independence is important.

Test of uniformity can be done by bunch of standard tests: χ2,
Kolmogorov-Smirnov, etc. Test on independence by run test.

Generating generally distributed numbers

[§II.2 of A & G]

What is the game?

Suppose I provide you with a machine that can
spit out i.i.d. uniform numbers (on [0, 1], that is). Can you give me
a sample from a general one-dimensional distribution?

Generating generally distributed numbers

[§II.2 of A & G]

What is the game? Suppose I provide you with a machine that can
spit out i.i.d. uniform numbers (on [0, 1], that is).

Can you give me
a sample from a general one-dimensional distribution?

Generating generally distributed numbers

[§II.2 of A & G]

What is the game? Suppose I provide you with a machine that can
spit out i.i.d. uniform numbers (on [0, 1], that is). Can you give me
a sample from a general one-dimensional distribution?

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial Normal, Lognormal
Geometric Exponential
Neg. binomial Gamma (and Erlang)
Poisson Weibull, Pareto

Generating generally distributed numbers

Two simple examples:

◦ Let X be binomial with parameters n and p. Let Xi := 1 if
Ui < p and 0 else. Then

∑n
i=1 Xi has desired distribution.

◦ Let X be geometric with parameter p. Sample Ui until
Ui < p; let us say this happens at the N-th attempt. Then N
has desired distribution.

The negative binomial distributed distribution can be sampled
similarly. [How?]

Generating generally distributed numbers

Two simple examples:

◦ Let X be binomial with parameters n and p. Let Xi := 1 if
Ui < p and 0 else. Then

∑n
i=1 Xi has desired distribution.

◦ Let X be geometric with parameter p. Sample Ui until
Ui < p; let us say this happens at the N-th attempt. Then N
has desired distribution.

The negative binomial distributed distribution can be sampled
similarly. [How?]

Generating generally distributed numbers

Two simple examples:

◦ Let X be binomial with parameters n and p. Let Xi := 1 if
Ui < p and 0 else. Then

∑n
i=1 Xi has desired distribution.

◦ Let X be geometric with parameter p. Sample Ui until
Ui < p; let us say this happens at the N-th attempt. Then N
has desired distribution.

The negative binomial distributed distribution can be sampled
similarly. [How?]

Generating generally distributed numbers

Two simple examples:

◦ Let X be binomial with parameters n and p. Let Xi := 1 if
Ui < p and 0 else. Then

∑n
i=1 Xi has desired distribution.

◦ Let X be geometric with parameter p. Sample Ui until
Ui < p; let us say this happens at the N-th attempt. Then N
has desired distribution.

The negative binomial distributed distribution can be sampled
similarly. [How?]

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial X Normal, Lognormal
Geometric X Exponential
Neg. binomial X Gamma (and Erlang)
Poisson Weibull, Pareto

Generating generally distributed numbers

Easiest case: random variables with finite support (say X).

Say, it
lives on {i1, . . . , iN} (ordered), with respective probabilities
p1, . . . , pN that sum to 1.

Define p̄i :=
∑i

j=1 pj (with p̄0 := 0); observe that p̄N = 1.
Let U be uniform on [0, 1]. Then

X := ij if U ∈ [p̄j−1, p̄j).

Proof:
P(X = ij) = p̄j − p̄j−1 = pj ,

as desired. Procedure easily extended to case of countable support.

Generating generally distributed numbers

Easiest case: random variables with finite support (say X). Say, it
lives on {i1, . . . , iN} (ordered), with respective probabilities
p1, . . . , pN that sum to 1.

Define p̄i :=
∑i

j=1 pj (with p̄0 := 0); observe that p̄N = 1.
Let U be uniform on [0, 1]. Then

X := ij if U ∈ [p̄j−1, p̄j).

Proof:
P(X = ij) = p̄j − p̄j−1 = pj ,

as desired. Procedure easily extended to case of countable support.

Generating generally distributed numbers

Easiest case: random variables with finite support (say X). Say, it
lives on {i1, . . . , iN} (ordered), with respective probabilities
p1, . . . , pN that sum to 1.

Define p̄i :=
∑i

j=1 pj (with p̄0 := 0); observe that p̄N = 1.
Let U be uniform on [0, 1]. Then

X := ij if U ∈ [p̄j−1, p̄j).

Proof:
P(X = ij) = p̄j − p̄j−1 = pj ,

as desired.

Procedure easily extended to case of countable support.

Generating generally distributed numbers

Easiest case: random variables with finite support (say X). Say, it
lives on {i1, . . . , iN} (ordered), with respective probabilities
p1, . . . , pN that sum to 1.

Define p̄i :=
∑i

j=1 pj (with p̄0 := 0); observe that p̄N = 1.
Let U be uniform on [0, 1]. Then

X := ij if U ∈ [p̄j−1, p̄j).

Proof:
P(X = ij) = p̄j − p̄j−1 = pj ,

as desired. Procedure easily extended to case of countable support.

Generating generally distributed numbers

This algorithm is a simple form of inversion. Relies on the
left-continuous version of the inverse distribution function: with
F (·) the distribution function of the random variable X ,

F←(u) := min{x : F (x) > u}.

F←(u) known as quantile function.

Generating generally distributed numbers

This algorithm is a simple form of inversion. Relies on the
left-continuous version of the inverse distribution function: with
F (·) the distribution function of the random variable X ,

F←(u) := min{x : F (x) > u}.

F←(u) known as quantile function.

Generating generally distributed numbers

This algorithm is a simple form of inversion. Relies on the
left-continuous version of the inverse distribution function: with
F (·) the distribution function of the random variable X ,

F←(u) := min{x : F (x) > u}.

F←(u) known as quantile function.

Generating generally distributed numbers

Proposition Let U be uniform on [0, 1].
(a) u 6 F (x) ⇔ F←(u) 6 x .

(b) F←(U) has CDF F .
(c) if F is continuous, then F (X) ∼ U.

Proof: Part (a) follows from definitions. Part (b) follows from (a):

P(F←(U) 6 x) = P(U 6 F (x)) = F (x).

Part (c) follows from (a) and continuity of F :

P(F (X) > u) = P(X > F←(u)) = P(X > F←(u)) = 1−F (F←(u)),

which equals (as desired) 1− u. This is because F (F←(u)) > u
from (a); also, by considering sequence yn such that yn ↑ F←(u),
such that F (yn) < u, and by continuity F (F←(u)) 6 u.

Generating generally distributed numbers

Proposition Let U be uniform on [0, 1].
(a) u 6 F (x) ⇔ F←(u) 6 x .
(b) F←(U) has CDF F .

(c) if F is continuous, then F (X) ∼ U.

Proof: Part (a) follows from definitions. Part (b) follows from (a):

P(F←(U) 6 x) = P(U 6 F (x)) = F (x).

Part (c) follows from (a) and continuity of F :

P(F (X) > u) = P(X > F←(u)) = P(X > F←(u)) = 1−F (F←(u)),

which equals (as desired) 1− u. This is because F (F←(u)) > u
from (a); also, by considering sequence yn such that yn ↑ F←(u),
such that F (yn) < u, and by continuity F (F←(u)) 6 u.

Generating generally distributed numbers

Proposition Let U be uniform on [0, 1].
(a) u 6 F (x) ⇔ F←(u) 6 x .
(b) F←(U) has CDF F .
(c) if F is continuous, then F (X) ∼ U.

Proof: Part (a) follows from definitions. Part (b) follows from (a):

P(F←(U) 6 x) = P(U 6 F (x)) = F (x).

Part (c) follows from (a) and continuity of F :

P(F (X) > u) = P(X > F←(u)) = P(X > F←(u)) = 1−F (F←(u)),

which equals (as desired) 1− u. This is because F (F←(u)) > u
from (a); also, by considering sequence yn such that yn ↑ F←(u),
such that F (yn) < u, and by continuity F (F←(u)) 6 u.

Generating generally distributed numbers

Proposition Let U be uniform on [0, 1].
(a) u 6 F (x) ⇔ F←(u) 6 x .
(b) F←(U) has CDF F .
(c) if F is continuous, then F (X) ∼ U.

Proof:

Part (a) follows from definitions. Part (b) follows from (a):

P(F←(U) 6 x) = P(U 6 F (x)) = F (x).

Part (c) follows from (a) and continuity of F :

P(F (X) > u) = P(X > F←(u)) = P(X > F←(u)) = 1−F (F←(u)),

which equals (as desired) 1− u. This is because F (F←(u)) > u
from (a); also, by considering sequence yn such that yn ↑ F←(u),
such that F (yn) < u, and by continuity F (F←(u)) 6 u.

Generating generally distributed numbers

Proposition Let U be uniform on [0, 1].
(a) u 6 F (x) ⇔ F←(u) 6 x .
(b) F←(U) has CDF F .
(c) if F is continuous, then F (X) ∼ U.

Proof: Part (a) follows from definitions.

Part (b) follows from (a):

P(F←(U) 6 x) = P(U 6 F (x)) = F (x).

Part (c) follows from (a) and continuity of F :

P(F (X) > u) = P(X > F←(u)) = P(X > F←(u)) = 1−F (F←(u)),

which equals (as desired) 1− u. This is because F (F←(u)) > u
from (a); also, by considering sequence yn such that yn ↑ F←(u),
such that F (yn) < u, and by continuity F (F←(u)) 6 u.

Generating generally distributed numbers

Proposition Let U be uniform on [0, 1].
(a) u 6 F (x) ⇔ F←(u) 6 x .
(b) F←(U) has CDF F .
(c) if F is continuous, then F (X) ∼ U.

Proof: Part (a) follows from definitions. Part (b) follows from (a):

P(F←(U) 6 x) = P(U 6 F (x)) = F (x).

Part (c) follows from (a) and continuity of F :

P(F (X) > u) = P(X > F←(u)) = P(X > F←(u)) = 1−F (F←(u)),

which equals (as desired) 1− u. This is because F (F←(u)) > u
from (a); also, by considering sequence yn such that yn ↑ F←(u),
such that F (yn) < u, and by continuity F (F←(u)) 6 u.

Generating generally distributed numbers

Example: how to generate exponentially distributed numbers (with
mean λ−1) from U?

F (x) = 1− e−λx ⇔ F←(u) = − log(1− u)

λ
.

Proposition yields: − log(1− U)/λ has an exp(λ) distribution.

We may as well use − logU/λ. [Check!]

Erlang(k, λ) now follows directly as well. [How?]

Generating generally distributed numbers

Example: how to generate exponentially distributed numbers (with
mean λ−1) from U?

F (x) = 1− e−λx ⇔ F←(u) = − log(1− u)

λ
.

Proposition yields: − log(1− U)/λ has an exp(λ) distribution.

We may as well use − logU/λ. [Check!]

Erlang(k, λ) now follows directly as well. [How?]

Generating generally distributed numbers

Example: how to generate exponentially distributed numbers (with
mean λ−1) from U?

F (x) = 1− e−λx ⇔ F←(u) = − log(1− u)

λ
.

Proposition yields: − log(1− U)/λ has an exp(λ) distribution.

We may as well use − logU/λ. [Check!]

Erlang(k, λ) now follows directly as well. [How?]

Generating generally distributed numbers

Example: how to generate exponentially distributed numbers (with
mean λ−1) from U?

F (x) = 1− e−λx ⇔ F←(u) = − log(1− u)

λ
.

Proposition yields: − log(1− U)/λ has an exp(λ) distribution.

We may as well use − logU/λ. [Check!]

Erlang(k, λ) now follows directly as well. [How?]

Generating generally distributed numbers

Example: how to generate exponentially distributed numbers (with
mean λ−1) from U?

F (x) = 1− e−λx ⇔ F←(u) = − log(1− u)

λ
.

Proposition yields: − log(1− U)/λ has an exp(λ) distribution.

We may as well use − logU/λ. [Check!]

Erlang(k, λ) now follows directly as well. [How?]

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial X Normal, Lognormal
Geometric X Exponential X
Neg. binomial X Gamma (and Erlang X)
Poisson Weibull, Pareto

Generating generally distributed numbers

Now we also have a fast way to sample a geometric random
variable:

X :=

⌈
logU

log p

⌉
.

Justification:

P
(⌈

logU

log p

⌉
> k

)
= P

(
logU

log p
> k − 1

)
,

which equals

P(logU 6 (k − 1) log p) = P(U 6 pk−1) = pk−1.

Advantage: requires just one random number. Disadvantage: log
is slow operator.

Generating generally distributed numbers

Now we also have a fast way to sample a geometric random
variable:

X :=

⌈
logU

log p

⌉
.

Justification:

P
(⌈

logU

log p

⌉
> k

)
= P

(
logU

log p
> k − 1

)

,

which equals

P(logU 6 (k − 1) log p) = P(U 6 pk−1) = pk−1.

Advantage: requires just one random number. Disadvantage: log
is slow operator.

Generating generally distributed numbers

Now we also have a fast way to sample a geometric random
variable:

X :=

⌈
logU

log p

⌉
.

Justification:

P
(⌈

logU

log p

⌉
> k

)
= P

(
logU

log p
> k − 1

)
,

which equals

P(logU 6 (k − 1) log p) = P(U 6 pk−1) = pk−1.

Advantage: requires just one random number. Disadvantage: log
is slow operator.

Generating generally distributed numbers

Now we also have a fast way to sample a geometric random
variable:

X :=

⌈
logU

log p

⌉
.

Justification:

P
(⌈

logU

log p

⌉
> k

)
= P

(
logU

log p
> k − 1

)
,

which equals

P(logU 6 (k − 1) log p) = P(U 6 pk−1) = pk−1.

Advantage: requires just one random number. Disadvantage: log
is slow operator.

Generating generally distributed numbers

Now that we can sample exponential random variable, we can also
sample from Poisson distribution.

Let S0 := 0 and Xi i.i.d. exponentials.

Sn :=
n∑

i=1

Xi .

Define:
N := max{n ∈ N : Sn 6 1}.

Observe: Sn is the number of arrivals of a Poisson process at time
1, which has a Poisson distribution with mean λ · 1 = λ.

To avoid the log operation, we can also use

N := max

{
n ∈ N :

n∏
i=1

Ui > e−λ

}
.

Generating generally distributed numbers

Now that we can sample exponential random variable, we can also
sample from Poisson distribution.
Let S0 := 0 and Xi i.i.d. exponentials.

Sn :=
n∑

i=1

Xi .

Define:
N := max{n ∈ N : Sn 6 1}.

Observe: Sn is the number of arrivals of a Poisson process at time
1, which has a Poisson distribution with mean λ · 1 = λ.

To avoid the log operation, we can also use

N := max

{
n ∈ N :

n∏
i=1

Ui > e−λ

}
.

Generating generally distributed numbers

Now that we can sample exponential random variable, we can also
sample from Poisson distribution.
Let S0 := 0 and Xi i.i.d. exponentials.

Sn :=
n∑

i=1

Xi .

Define:
N := max{n ∈ N : Sn 6 1}.

Observe: Sn is the number of arrivals of a Poisson process at time
1, which has a Poisson distribution with mean λ · 1 = λ.

To avoid the log operation, we can also use

N := max

{
n ∈ N :

n∏
i=1

Ui > e−λ

}
.

Generating generally distributed numbers

Now that we can sample exponential random variable, we can also
sample from Poisson distribution.
Let S0 := 0 and Xi i.i.d. exponentials.

Sn :=
n∑

i=1

Xi .

Define:
N := max{n ∈ N : Sn 6 1}.

Observe: Sn is the number of arrivals of a Poisson process at time
1, which has a Poisson distribution with mean λ · 1 = λ.

To avoid the log operation, we can also use

N := max

{
n ∈ N :

n∏
i=1

Ui > e−λ

}
.

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial X Normal, Lognormal
Geometric X Exponential X
Neg. binomial X Gamma (and Erlang X)
Poisson X Weibull, Pareto

Generating generally distributed numbers

Weibull distribution: for some α > 0 and λ > 0,

F (x) = P(X 6 x) = 1− e−λx
α
.

Pareto distribution: for some α > 0,

F (x) = P(X 6 x) = 1− (x + 1)−α.

Both can be done with inverse-CDF technique.

Generating generally distributed numbers

Weibull distribution: for some α > 0 and λ > 0,

F (x) = P(X 6 x) = 1− e−λx
α
.

Pareto distribution: for some α > 0,

F (x) = P(X 6 x) = 1− (x + 1)−α.

Both can be done with inverse-CDF technique.

Generating generally distributed numbers

Weibull distribution: for some α > 0 and λ > 0,

F (x) = P(X 6 x) = 1− e−λx
α
.

Pareto distribution: for some α > 0,

F (x) = P(X 6 x) = 1− (x + 1)−α.

Both can be done with inverse-CDF technique.

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial X Normal, Lognormal
Geometric X Exponential X
Neg. binomial X Gamma (and Erlang X)
Poisson X Weibull, Pareto X

Generating generally distributed numbers

Acceptance-rejection: to be used when (i) no explicit expression for
CDF is available, or

(ii) the CDF does not allow explicit inversion.

Setup:

◦ X has PDF f (x), and Y has PDF g(x) such that, for some
finite constant C and all x ,

f (x) 6 Cg(x).

◦ We know how to sample Y (but we don’t know how to
sample X).

Generating generally distributed numbers

Acceptance-rejection: to be used when (i) no explicit expression for
CDF is available, or (ii) the CDF does not allow explicit inversion.

Setup:

◦ X has PDF f (x), and Y has PDF g(x) such that, for some
finite constant C and all x ,

f (x) 6 Cg(x).

◦ We know how to sample Y (but we don’t know how to
sample X).

Generating generally distributed numbers

Acceptance-rejection: to be used when (i) no explicit expression for
CDF is available, or (ii) the CDF does not allow explicit inversion.

Setup:

◦ X has PDF f (x), and Y has PDF g(x) such that, for some
finite constant C and all x ,

f (x) 6 Cg(x).

◦ We know how to sample Y (but we don’t know how to
sample X).

Generating generally distributed numbers

Acceptance-rejection: to be used when (i) no explicit expression for
CDF is available, or (ii) the CDF does not allow explicit inversion.

Setup:

◦ X has PDF f (x), and Y has PDF g(x) such that, for some
finite constant C and all x ,

f (x) 6 Cg(x).

◦ We know how to sample Y (but we don’t know how to
sample X).

Generating generally distributed numbers

Algorithm:

◦ Sample Y , and in addition U that is uniform on [0, 1].

◦ If

U 6
f (Y)

Cg(Y)
,

then X := Y , and otherwise you try again.

Define the event of acceptance by

A :=

{
U 6

f (Y)

Cg(Y)

}
.

Generating generally distributed numbers

Algorithm:

◦ Sample Y , and in addition U that is uniform on [0, 1].

◦ If

U 6
f (Y)

Cg(Y)
,

then X := Y , and otherwise you try again.

Define the event of acceptance by

A :=

{
U 6

f (Y)

Cg(Y)

}
.

Generating generally distributed numbers

Algorithm:

◦ Sample Y , and in addition U that is uniform on [0, 1].

◦ If

U 6
f (Y)

Cg(Y)
,

then X := Y , and otherwise you try again.

Define the event of acceptance by

A :=

{
U 6

f (Y)

Cg(Y)

}
.

Generating generally distributed numbers

Algorithm:

◦ Sample Y , and in addition U that is uniform on [0, 1].

◦ If

U 6
f (Y)

Cg(Y)
,

then X := Y , and otherwise you try again.

Define the event of acceptance by

A :=

{
U 6

f (Y)

Cg(Y)

}
.

Generating generally distributed numbers

Proof:

P(X 6 x) = P(Y 6 x |A) =
P(Y 6 x , A)

P(A)

Denominator:

P(A) = P
(
U 6

f (Y)

Cg(Y)

)
= E

(
f (Y)

Cg(Y)

)
=

∫ ∞
−∞

f (y)

Cg(y)
g(y)dy =

∫ ∞
−∞

f (y)

C
dy =

1

C
.

Here we use that

P(U 6 X) =

∫
P(U 6 x)P(X ∈ dx) =

∫
xP(X ∈ dx) = EX .

Generating generally distributed numbers

Proof:

P(X 6 x) = P(Y 6 x |A) =
P(Y 6 x , A)

P(A)

Denominator:

P(A) = P
(
U 6

f (Y)

Cg(Y)

)
= E

(
f (Y)

Cg(Y)

)
=

∫ ∞
−∞

f (y)

Cg(y)
g(y)dy =

∫ ∞
−∞

f (y)

C
dy =

1

C
.

Here we use that

P(U 6 X) =

∫
P(U 6 x)P(X ∈ dx) =

∫
xP(X ∈ dx) = EX .

Generating generally distributed numbers

Proof, continued: Numerator can be dealt with similarly.

P(Y 6 x , A) = P
(
U 6

f (Y)

Cg(Y)
;Y 6 x

)
= E

(
f (Y)

Cg(Y)
1 {Y 6 x}

)
=

∫ x

−∞

f (y)

Cg(y)
g(y)dy =

∫ x

−∞

f (y)

C
dy =

F (x)

C
.

Ratio: F (x), as desired.

Generating generally distributed numbers

Proof, continued: Numerator can be dealt with similarly.

P(Y 6 x , A) = P
(
U 6

f (Y)

Cg(Y)
;Y 6 x

)
= E

(
f (Y)

Cg(Y)
1 {Y 6 x}

)
=

∫ x

−∞

f (y)

Cg(y)
g(y)dy =

∫ x

−∞

f (y)

C
dy =

F (x)

C
.

Ratio: F (x), as desired.

Generating generally distributed numbers

Can be used to sample from Normal distribution. Without loss of
generality [Why?] we show how to sample from Normal
distribution conditioned on being positive.

Has density

f (x) =

√
2

π
e−x

2/2.

We now find a C such that, with g(x) = e−x (exp. distr. with
mean 1!),

f (x) 6 Cg(x).

Observe that we may pick C :=
√

2e/π, because

f (x)

g(x)
=

√
2

π
e−x

2/2+x =

√
2

π
e−(x−1)

2/2e1/2 6

√
2e

π
.

Generating generally distributed numbers

Can be used to sample from Normal distribution. Without loss of
generality [Why?] we show how to sample from Normal
distribution conditioned on being positive.

Has density

f (x) =

√
2

π
e−x

2/2.

We now find a C such that, with g(x) = e−x (exp. distr. with
mean 1!),

f (x) 6 Cg(x).

Observe that we may pick C :=
√

2e/π, because

f (x)

g(x)
=

√
2

π
e−x

2/2+x =

√
2

π
e−(x−1)

2/2e1/2 6

√
2e

π
.

Generating generally distributed numbers

Can be used to sample from Normal distribution. Without loss of
generality [Why?] we show how to sample from Normal
distribution conditioned on being positive.

Has density

f (x) =

√
2

π
e−x

2/2.

We now find a C such that, with g(x) = e−x (exp. distr. with
mean 1!),

f (x) 6 Cg(x).

Observe that we may pick C :=
√

2e/π, because

f (x)

g(x)
=

√
2

π
e−x

2/2+x =

√
2

π
e−(x−1)

2/2e1/2 6

√
2e

π
.

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial X Normal, Lognormal X
Geometric X Exponential X
Neg. binomial X Gamma (and Erlang X)
Poisson X Weibull, Pareto X

Generating generally distributed numbers

On the efficiency of acceptance-rejection: probability of acceptance
is 1/C . More precisely: the number of attempts before a sample
can be accepted is geometrically distributed with success
probability 1/C .

As a consequence you want to pick C as small as possible.

Generating generally distributed numbers

On the efficiency of acceptance-rejection: probability of acceptance
is 1/C . More precisely: the number of attempts before a sample
can be accepted is geometrically distributed with success
probability 1/C .

As a consequence you want to pick C as small as possible.

Generating generally distributed numbers

Gamma distribution can be done with acceptance rejection;
Example 2.8 in A & G.
‘Dominating density’ (i.e., the density of Y) is ‘empirically found’.

Generating generally distributed numbers

Discrete random variables Continuous random variables

Binomial X Normal, Lognormal X
Geometric X Exponential X
Neg. binomial X Gamma X (and Erlang X)
Poisson X Weibull, Pareto X

Generating generally distributed numbers

A cool specific algorithm for the Normal distribution (Box &
Muller):
With U1 and U2 independent uniforms on [0, 1],

Y1 :=
√
−2 logU1 sin(2πU2), Y2 :=

√
−2 logU1 cos(2πU2)

yields two independent standard Normal random variables.

Generating generally distributed numbers

Proof: first observe

U1 ≡ U1(Y1,Y2) = e−(Y
2
1 +Y 2

2)/2,

U2 ≡ U2(Y1,Y2) =
1

2π
arctan

(
Y2

Y1

)
.

Hence, with J(y1, y2) the determinant of the Jacobian,

fY1,Y2(y1, y2) = J(y1, y2) · fU1,U2(u1(y1, y2), u2(y1, y2))

= J(y1, y2).

Generating generally distributed numbers

Proof: first observe

U1 ≡ U1(Y1,Y2) = e−(Y
2
1 +Y 2

2)/2,

U2 ≡ U2(Y1,Y2) =
1

2π
arctan

(
Y2

Y1

)
.

Hence, with J(y1, y2) the determinant of the Jacobian,

fY1,Y2(y1, y2) = J(y1, y2) · fU1,U2(u1(y1, y2), u2(y1, y2))

= J(y1, y2).

Generating generally distributed numbers

du1
dy1

= −y1u1,
du2
dy1

=
1

2π
· 1

1 + y22 /y
2
1

· − y2
y21

=
1

2π
· −y2
y21 + y22

du1
dy2

= −y2u1,
du2
dy2

=
1

2π
· 1

1 + y22 /y
2
1

· 1

y1
=

1

2π
· y1
y21 + y22

.

Determinant is (2π)−1u1 = (2π)−1 e−(y
2
1+y2

2)/2.
Hence, as desired,

fY1,Y2(y1, y2) =
1

2π
e−(y

2
1+y2

2)/2.

Generating generally distributed numbers

du1
dy1

= −y1u1,
du2
dy1

=
1

2π
· 1

1 + y22 /y
2
1

· − y2
y21

=
1

2π
· −y2
y21 + y22

du1
dy2

= −y2u1,
du2
dy2

=
1

2π
· 1

1 + y22 /y
2
1

· 1

y1
=

1

2π
· y1
y21 + y22

.

Determinant is (2π)−1u1 = (2π)−1 e−(y
2
1+y2

2)/2.

Hence, as desired,

fY1,Y2(y1, y2) =
1

2π
e−(y

2
1+y2

2)/2.

Generating generally distributed numbers

du1
dy1

= −y1u1,
du2
dy1

=
1

2π
· 1

1 + y22 /y
2
1

· − y2
y21

=
1

2π
· −y2
y21 + y22

du1
dy2

= −y2u1,
du2
dy2

=
1

2π
· 1

1 + y22 /y
2
1

· 1

y1
=

1

2π
· y1
y21 + y22

.

Determinant is (2π)−1u1 = (2π)−1 e−(y
2
1+y2

2)/2.
Hence, as desired,

fY1,Y2(y1, y2) =
1

2π
e−(y

2
1+y2

2)/2.

Generating generally distributed numbers

Apart from inversion-CDF (uses CDF) and acceptance-rejection
(uses PDF) there are quite a few alternative techniques.

In some cases, CDF or PDF is not available, but the transform

F̂ [s] :=

∫
esxP(X ∈ dx)

is. Then algorithms of following type may work.

Other techniques

Inversion formula, with ψ(s) := F̂ [is]:

f (x) =
1

2π

∫ ∞
−∞

ψ(s)e−isxds.

Algorithm:

◦ Fix n. Evaluate f (xi) for x1, . . . , xn using inversion formula.

◦ Construct approximate distribution with probability mass

pi :=
f (xi)∑n
j=1 f (xj)

in xi .

◦ Sample from this approximate distribution function.

Other techniques

Inversion formula, with ψ(s) := F̂ [is]:

f (x) =
1

2π

∫ ∞
−∞

ψ(s)e−isxds.

Algorithm:

◦ Fix n. Evaluate f (xi) for x1, . . . , xn using inversion formula.

◦ Construct approximate distribution with probability mass

pi :=
f (xi)∑n
j=1 f (xj)

in xi .

◦ Sample from this approximate distribution function.

Other techniques

Inversion formula, with ψ(s) := F̂ [is]:

f (x) =
1

2π

∫ ∞
−∞

ψ(s)e−isxds.

Algorithm:

◦ Fix n. Evaluate f (xi) for x1, . . . , xn using inversion formula.

◦ Construct approximate distribution with probability mass

pi :=
f (xi)∑n
j=1 f (xj)

in xi .

◦ Sample from this approximate distribution function.

Other techniques

Inversion formula, with ψ(s) := F̂ [is]:

f (x) =
1

2π

∫ ∞
−∞

ψ(s)e−isxds.

Algorithm:

◦ Fix n. Evaluate f (xi) for x1, . . . , xn using inversion formula.

◦ Construct approximate distribution with probability mass

pi :=
f (xi)∑n
j=1 f (xj)

in xi .

◦ Sample from this approximate distribution function.

Generating random vectors

[§II.3 of A & G]

The most relevant example is: how to draw a sample from a
multivariate Normal distribution? Make us of Cholesky
decomposition.

Multivariate Normal distribution characterized through mean
vector µ (of length p) and covariance matrix Σ (of dimension
p × p). Without loss of generality: µ = 0 [Why?]

Σ is positive definite, hence can be written as CCT, for a lower
triangular matrix C .

Generating random vectors

[§II.3 of A & G]

The most relevant example is: how to draw a sample from a
multivariate Normal distribution? Make us of Cholesky
decomposition.

Multivariate Normal distribution characterized through mean
vector µ (of length p) and covariance matrix Σ (of dimension
p × p). Without loss of generality: µ = 0 [Why?]

Σ is positive definite, hence can be written as CCT, for a lower
triangular matrix C .

Generating random vectors

[§II.3 of A & G]

The most relevant example is: how to draw a sample from a
multivariate Normal distribution? Make us of Cholesky
decomposition.

Multivariate Normal distribution characterized through mean
vector µ (of length p) and covariance matrix Σ (of dimension
p × p). Without loss of generality: µ = 0 [Why?]

Σ is positive definite, hence can be written as CCT, for a lower
triangular matrix C .

Generating random vectors

Now the Xi (for i = 1, . . . , p) can be sampled as follows.
Let Y a p-dimensional Normal vector with independent standard
Normal components (i.e., with covariance matrix I). Let
X := CY .

Then X has the right covariance matrix CCT = Σ (use standard
rules for multivariate Normal distributions).

Generating random vectors

Now the Xi (for i = 1, . . . , p) can be sampled as follows.
Let Y a p-dimensional Normal vector with independent standard
Normal components (i.e., with covariance matrix I). Let
X := CY .

Then X has the right covariance matrix CCT = Σ (use standard
rules for multivariate Normal distributions).

Generating elementary stochastic processes

[§II.4 of A & G]

I. Discrete-time Markov chains. Characterized by transition matrix
P = (pij)i ,j∈E , with E the state space.

For ease we take E = {1, 2, . . .}. Trivially simulated, relying
procedure that uses p̄ij :=

∑j
k=1 pik .

II. Continuous-time Markov chains. Characterized by transition
rate matrix Q = (qij)i ,j∈E , with E the state space. Sample times
spent in each of states from exponential distribution, and then use
procedure above to sample next state.

Generating elementary stochastic processes

[§II.4 of A & G]

I. Discrete-time Markov chains. Characterized by transition matrix
P = (pij)i ,j∈E , with E the state space.

For ease we take E = {1, 2, . . .}. Trivially simulated, relying
procedure that uses p̄ij :=

∑j
k=1 pik .

II. Continuous-time Markov chains. Characterized by transition
rate matrix Q = (qij)i ,j∈E , with E the state space. Sample times
spent in each of states from exponential distribution, and then use
procedure above to sample next state.

Generating elementary stochastic processes

III. Poisson process (with rate λ). Interarrival times are exponential
(with mean λ−1).

IV. Inhomogeneous Poisson process (with rate λ(t) at time t).
Assume λ(t) 6 λ across all values of t. Un: i.i.d. uniform numbers
on [0, 1].

Algorithm: (where n corresponds to a homogeneous Poisson
process with rate β, and n? to the inhomogeneous Poisson process)

◦ Step 1: n := 0, n? := 0, σ := 0.

◦ Step 2: n := n + 1, Tn ∼ exp(λ) (i.e., Tn := − logUn/λ),
σ := σ + Tn.

◦ Step 3: If U ′n 6 λ(σ)/λ, then n? := n? + 1.

◦ Step 4: Go to Step 2.

Generating elementary stochastic processes

III. Poisson process (with rate λ). Interarrival times are exponential
(with mean λ−1).

IV. Inhomogeneous Poisson process (with rate λ(t) at time t).
Assume λ(t) 6 λ across all values of t. Un: i.i.d. uniform numbers
on [0, 1].

Algorithm: (where n corresponds to a homogeneous Poisson
process with rate β, and n? to the inhomogeneous Poisson process)

◦ Step 1: n := 0, n? := 0, σ := 0.

◦ Step 2: n := n + 1, Tn ∼ exp(λ) (i.e., Tn := − logUn/λ),
σ := σ + Tn.

◦ Step 3: If U ′n 6 λ(σ)/λ, then n? := n? + 1.

◦ Step 4: Go to Step 2.

Intermezzo
DISCRETE-EVENT SIMULATION

Chapter III
OUTPUT ANALYSIS

Simulation as a computational tool

[§III.1 of A & G]

Idea: we want to estimate the performance measure z := EZ .
Perform independent samples Z1, . . . ,ZR of Z .
Estimate:

ẑR :=
1

R

R∑
r=1

Zr .

Question: what is the performance of this estimator?

Two issues play a role: bias (is expectation equal to parameter of
interest?) and accuracy (what is variance of estimator?).
When unbiased, we would like to have a minimal variance. Often
the objective is to approximate its distribution (e.g. asymptotic
Normality).

Simulation as a computational tool

[§III.1 of A & G]

Idea: we want to estimate the performance measure z := EZ .
Perform independent samples Z1, . . . ,ZR of Z .
Estimate:

ẑR :=
1

R

R∑
r=1

Zr .

Question: what is the performance of this estimator?

Two issues play a role: bias (is expectation equal to parameter of
interest?) and accuracy (what is variance of estimator?).
When unbiased, we would like to have a minimal variance. Often
the objective is to approximate its distribution (e.g. asymptotic
Normality).

Simulation as a computational tool

[§III.1 of A & G]

Idea: we want to estimate the performance measure z := EZ .
Perform independent samples Z1, . . . ,ZR of Z .
Estimate:

ẑR :=
1

R

R∑
r=1

Zr .

Question: what is the performance of this estimator?

Two issues play a role: bias (is expectation equal to parameter of
interest?) and accuracy (what is variance of estimator?).
When unbiased, we would like to have a minimal variance. Often
the objective is to approximate its distribution (e.g. asymptotic
Normality).

Simulation as a computational tool

Standard approach: if σ2 := VarZ <∞, then the central limit
theorem provided us with: as R →∞,

√
R
(
ẑR − z

)
→ N (0, σ2).

This suggests for finite R the approximation, with V ∼ N (0, 1),

ẑR
d
≈ z +

σV√
R
.

Simulation as a computational tool

Standard approach: if σ2 := VarZ <∞, then the central limit
theorem provided us with: as R →∞,

√
R
(
ẑR − z

)
→ N (0, σ2).

This suggests for finite R the approximation, with V ∼ N (0, 1),

ẑR
d
≈ z +

σV√
R
.

Simulation as a computational tool

Based on this convergence in distribution, one could use confidence
intervals if the type(

ẑR − qα
σ√
R
, ẑR + qα

σ√
R

)
,

with qα reflecting the α/2-quantile of N (0, 1), in the sense that

1− Φ(qα) = P(N (0, 1) > qα) =
1− α

2

(for example confidence level α equalling 0.95 leads to qα = 1.96).

Are we done now? NO! We don’t know σ2.

Simulation as a computational tool

Based on this convergence in distribution, one could use confidence
intervals if the type(

ẑR − qα
σ√
R
, ẑR + qα

σ√
R

)
,

with qα reflecting the α/2-quantile of N (0, 1), in the sense that

1− Φ(qα) = P(N (0, 1) > qα) =
1− α

2

(for example confidence level α equalling 0.95 leads to qα = 1.96).

Are we done now?

NO! We don’t know σ2.

Simulation as a computational tool

Based on this convergence in distribution, one could use confidence
intervals if the type(

ẑR − qα
σ√
R
, ẑR + qα

σ√
R

)
,

with qα reflecting the α/2-quantile of N (0, 1), in the sense that

1− Φ(qα) = P(N (0, 1) > qα) =
1− α

2

(for example confidence level α equalling 0.95 leads to qα = 1.96).

Are we done now? NO! We don’t know σ2.

Simulation as a computational tool

Idea: estimate σ2.

Traditional estimator:

s2 :=
1

R − 1

R∑
r=1

(Zr − ẑR)2 =
1

R − 1

(
R∑

r=1

Z 2
r − Rẑ2R

)
.

This is an unbiased estimator. [Check!]

Simulation as a computational tool

Idea: estimate σ2.

Traditional estimator:

s2 :=
1

R − 1

R∑
r=1

(Zr − ẑR)2 =
1

R − 1

(
R∑

r=1

Z 2
r − Rẑ2R

)
.

This is an unbiased estimator. [Check!]

Computing smooth functions of expectations

[§III.3 of A & G]

Example: estimation of standard deviation of random variable W .

Then: z = (z1, z2)T, with zi = EZ (i), where

Z (1) = W 2, Z (2) = W .

Standard deviation σ = f (z), with

f (z) =
√
z1 − z22 .

Here our aim to estimate a smooth function of the expectations
EW 2 and EW .

Computing smooth functions of expectations

[§III.3 of A & G]

Example: estimation of standard deviation of random variable W .

Then: z = (z1, z2)T, with zi = EZ (i), where

Z (1) = W 2, Z (2) = W .

Standard deviation σ = f (z), with

f (z) =
√
z1 − z22 .

Here our aim to estimate a smooth function of the expectations
EW 2 and EW .

Computing smooth functions of expectations

[§III.3 of A & G]

Example: estimation of standard deviation of random variable W .

Then: z = (z1, z2)T, with zi = EZ (i), where

Z (1) = W 2, Z (2) = W .

Standard deviation σ = f (z), with

f (z) =
√
z1 − z22 .

Here our aim to estimate a smooth function of the expectations
EW 2 and EW .

Computing smooth functions of expectations

Another example: Let An and Bn be independent sequences of
i.i.d. random variables.
Perpetuity is:

Y =
∞∑
n=0

Bn

n∏
m=1

Am

(think of Bn as amounts put on an account in slot n, and An the
interest in slot n).

Then

EY =
EB

1− EA
.

Computing smooth functions of expectations

Another example: Let An and Bn be independent sequences of
i.i.d. random variables.
Perpetuity is:

Y =
∞∑
n=0

Bn

n∏
m=1

Am

(think of Bn as amounts put on an account in slot n, and An the
interest in slot n). Then

EY =
EB

1− EA
.

Computing smooth functions of expectations

We wish to estimate

% := EY =
EB

1− EA
.

Then: z = (z1, z2)T, with zi = EZ (i), where

Z (1) = B, Z (2) = A.

Goal is to estimate % = f (z), with

f (z) =
z1

1− z2
.

Again, our aim to estimate a smooth function of expectations, in
this case EB and EA.

Computing smooth functions of expectations

We wish to estimate

% := EY =
EB

1− EA
.

Then: z = (z1, z2)T, with zi = EZ (i), where

Z (1) = B, Z (2) = A.

Goal is to estimate % = f (z), with

f (z) =
z1

1− z2
.

Again, our aim to estimate a smooth function of expectations, in
this case EB and EA.

Computing smooth functions of expectations

How to to estimate a smooth function of expectations?

Näıve idea: estimate f (z) by f (ẑR), with

ẑR :=
1

R

R∑
r=1

Z r .

Computing smooth functions of expectations

First example: recall Zr (1) = W 2
r and Zr (2) = Wr , and

f (z) =
√

z1 − z22 .

So estimator is

σ̂ =

√√√√ 1

R

R∑
r=1

Zr (1)−

(
1

R

R∑
r=1

Zr (2)

)2

.

Computing smooth functions of expectations

Second example: recall Zr (1) = Br and Zr (2) = Ar , and

f (z) =
z1

1− z2
.

So estimator is

%̂ =

(
1

R

R∑
r=1

Zr (1)

)/(
1− 1

R

R∑
r=1

Zr (2)

)
.

Computing smooth functions of expectations

Question: is this procedure any good?

Evident: consistent as R →∞ — at least, in case f (z) is
continuous at z .

Can we again quantify the rate of convergence? Is there
approximate Normality? This can be assessed by applying the
so-called delta-method.

Computing smooth functions of expectations

Question: is this procedure any good?

Evident: consistent as R →∞

— at least, in case f (z) is
continuous at z .

Can we again quantify the rate of convergence? Is there
approximate Normality? This can be assessed by applying the
so-called delta-method.

Computing smooth functions of expectations

Question: is this procedure any good?

Evident: consistent as R →∞ — at least, in case f (z) is
continuous at z .

Can we again quantify the rate of convergence? Is there
approximate Normality? This can be assessed by applying the
so-called delta-method.

Computing smooth functions of expectations

Question: is this procedure any good?

Evident: consistent as R →∞ — at least, in case f (z) is
continuous at z .

Can we again quantify the rate of convergence? Is there
approximate Normality?

This can be assessed by applying the
so-called delta-method.

Computing smooth functions of expectations

Question: is this procedure any good?

Evident: consistent as R →∞ — at least, in case f (z) is
continuous at z .

Can we again quantify the rate of convergence? Is there
approximate Normality? This can be assessed by applying the
so-called delta-method.

Computing smooth functions of expectations

Using the usual Taylor arguments, with ∇f (z) the row vector of
partial derivatives,

f (ẑR)− f (z) = ∇f (z) · (ẑR − z) + o(||ẑR − z ||)

=
1

R

R∑
r=1

Vr + o(||ẑR − z ||),

where Vr denotes ∇f (z) · (Z r − z). Is there again a central limit
theorem?

Computing smooth functions of expectations

Yes! √
R
(
f (ẑR)− f (z)

)
→ N (0, σ2),

with σ2 := VarV1.

How to evaluate σ2? Define Σij := Cov(Zi ,Zj). Then

σ2 = ∇f (z) · Σ · ∇f (z)T.

(Later we’ll see an application of this technique: regenerative
method to compute steady-state quantities.)

For d = 1 (where d is dimension of vector Z r) , we just get
σ2 = (f ′(z))2VarZ ; for f (z) = z this gives us back our earlier
procedure. But there are two differences as well.

Computing smooth functions of expectations

Yes! √
R
(
f (ẑR)− f (z)

)
→ N (0, σ2),

with σ2 := VarV1.

How to evaluate σ2? Define Σij := Cov(Zi ,Zj). Then

σ2 = ∇f (z) · Σ · ∇f (z)T.

(Later we’ll see an application of this technique: regenerative
method to compute steady-state quantities.)

For d = 1 (where d is dimension of vector Z r) , we just get
σ2 = (f ′(z))2VarZ ; for f (z) = z this gives us back our earlier
procedure. But there are two differences as well.

Computing smooth functions of expectations

Yes! √
R
(
f (ẑR)− f (z)

)
→ N (0, σ2),

with σ2 := VarV1.

How to evaluate σ2? Define Σij := Cov(Zi ,Zj). Then

σ2 = ∇f (z) · Σ · ∇f (z)T.

(Later we’ll see an application of this technique: regenerative
method to compute steady-state quantities.)

For d = 1 (where d is dimension of vector Z r) , we just get
σ2 = (f ′(z))2VarZ ; for f (z) = z this gives us back our earlier
procedure. But there are two differences as well.

Computing smooth functions of expectations

Yes! √
R
(
f (ẑR)− f (z)

)
→ N (0, σ2),

with σ2 := VarV1.

How to evaluate σ2? Define Σij := Cov(Zi ,Zj). Then

σ2 = ∇f (z) · Σ · ∇f (z)T.

(Later we’ll see an application of this technique: regenerative
method to compute steady-state quantities.)

For d = 1 (where d is dimension of vector Z r) , we just get
σ2 = (f ′(z))2VarZ ; for f (z) = z this gives us back our earlier
procedure. But there are two differences as well.

Computing smooth functions of expectations

Difference 1: estimator f (ẑR) is generally biased.

Effect can be
quantified (include one more term in expansion): with H(z) the
Hessian in z ,

f (ẑR)− f (z) = ∇f (z) · (ẑR − z)

+
1

2
(ẑR − z)TH(z)(ẑR − z) + o(||ẑR − z ||2).

Now take means, to obtain the bias, as R →∞,

E
(
f (ẑR)− f (z)

)
=

1

2R

∑
i ,j

ΣijHij(z) + o(R−1),

with as before Σij := Cov(Zi ,Zj).

Remedy: adapted estimator (with Σ̂ij the obvious estimator of Σij)

f (ẑR)− 1

2R

∑
i ,j

Σ̂ijHij(ẑR).

Computing smooth functions of expectations

Difference 1: estimator f (ẑR) is generally biased. Effect can be
quantified (include one more term in expansion): with H(z) the
Hessian in z ,

f (ẑR)− f (z) = ∇f (z) · (ẑR − z)

+
1

2
(ẑR − z)TH(z)(ẑR − z) + o(||ẑR − z ||2).

Now take means, to obtain the bias, as R →∞,

E
(
f (ẑR)− f (z)

)
=

1

2R

∑
i ,j

ΣijHij(z) + o(R−1),

with as before Σij := Cov(Zi ,Zj).

Remedy: adapted estimator (with Σ̂ij the obvious estimator of Σij)

f (ẑR)− 1

2R

∑
i ,j

Σ̂ijHij(ẑR).

Computing smooth functions of expectations

Difference 1: estimator f (ẑR) is generally biased. Effect can be
quantified (include one more term in expansion): with H(z) the
Hessian in z ,

f (ẑR)− f (z) = ∇f (z) · (ẑR − z)

+
1

2
(ẑR − z)TH(z)(ẑR − z) + o(||ẑR − z ||2).

Now take means, to obtain the bias, as R →∞,

E
(
f (ẑR)− f (z)

)
=

1

2R

∑
i ,j

ΣijHij(z) + o(R−1),

with as before Σij := Cov(Zi ,Zj).

Remedy: adapted estimator (with Σ̂ij the obvious estimator of Σij)

f (ẑR)− 1

2R

∑
i ,j

Σ̂ijHij(ẑR).

Computing smooth functions of expectations

Difference 2: σ2 harder to estimate.

Evident candidate:

σ̂2 :=
1

R − 1

R∑
r=1

(
∇f (ẑR) (Z r − ẑR)

)2
.

This requires computation of the gradient of f (if this is explicitly
available, then there is obviously no problem).

Computing smooth functions of expectations

Difference 2: σ2 harder to estimate. Evident candidate:

σ̂2 :=
1

R − 1

R∑
r=1

(
∇f (ẑR) (Z r − ẑR)

)2
.

This requires computation of the gradient of f (if this is explicitly
available, then there is obviously no problem).

Computing roots of equations defined by expectations

[§III.4 of A & G]

Let f : Rd+1 7→ R be known, z := EZ ∈ Rd . Then we want to
find the (a?) θ such that

f (z , θ) = 0;

call the root θ?.

If an explicit ζ : Rd 7→ R is known such that θ? = ζ(z), then we’re
in the framework of the previous section. So focus on case ζ is not
known.

Computing roots of equations defined by expectations

[§III.4 of A & G]

Let f : Rd+1 7→ R be known, z := EZ ∈ Rd . Then we want to
find the (a?) θ such that

f (z , θ) = 0;

call the root θ?.

If an explicit ζ : Rd 7→ R is known such that θ? = ζ(z), then we’re
in the framework of the previous section. So focus on case ζ is not
known.

Computing roots of equations defined by expectations

Procedure: (i) estimate z by ẑR , and (ii) find θ̂R by solving

f (ẑR , θ̂R) = 0.

How to get confidence intervals?

Trivial:

0 = f (ẑR , θ̂R)− f (z , θ?)

= f (ẑR , θ̂R)− f (z , θ̂R) + f (z , θ̂R)− f (z , θ?).

Apply delta-method again: in usual notation,

∇fz(z , θ?)
(
ẑR − z

)
+ fθ(z , θ?)(θ̂R − θ?) + O(||ẑR − z ||2) = 0.

Computing roots of equations defined by expectations

Procedure: (i) estimate z by ẑR , and (ii) find θ̂R by solving

f (ẑR , θ̂R) = 0.

How to get confidence intervals?

Trivial:

0 = f (ẑR , θ̂R)− f (z , θ?)

= f (ẑR , θ̂R)− f (z , θ̂R) + f (z , θ̂R)− f (z , θ?).

Apply delta-method again: in usual notation,

∇fz(z , θ?)
(
ẑR − z

)
+ fθ(z , θ?)(θ̂R − θ?) + O(||ẑR − z ||2) = 0.

Computing roots of equations defined by expectations

From

∇fz(z , θ?)
(
ẑR − z

)
+ fθ(z , θ?)(θ̂R − θ?) + O(||ẑR − z ||2) = 0

we obtain √
R
(
θ̂R − θ?

)
→ N (0, σ2),

with (recalling ∇fz(z , θ?) is d-dimensional row vector)

σ2 =
Var

(
∇fz(z , θ?) · Z

)(
fθ(z , θ?)

)2 .

As before σ2 can be estimated by

σ̂2 =

1

R − 1

R∑
r=1

(
∇fz(ẑR , θ̂R) · (Z r − z)

)2
(
fθ(ẑR , θ̂R)

)2 .

Chapter IV
STEADY-STATE SIMULATION

Complications arising when estimating steady-state quantities

[§IV.1 of A & G]

We now focus on ergodic stochastic processes Y (·). This means
that a limiting time-average limit Y exists — think a stable queue.

Our objective is to estimate

z := lim
t→∞

1

t

∫ t

0
Y (s)ds.

How to do this?

Complications arising when estimating steady-state quantities

[§IV.1 of A & G]

We now focus on ergodic stochastic processes Y (·). This means
that a limiting time-average limit Y exists — think a stable queue.

Our objective is to estimate

z := lim
t→∞

1

t

∫ t

0
Y (s)ds.

How to do this?

Complications arising when estimating steady-state quantities

Näıve approach: let t grow large, and simulate process Y (·) for
long time:

ẑT :=
1

T

∫ T

0
Y (s)ds,

for T ‘large’.

Inherent problems:

◦ how large should T be? (Depends on speed of convergence.)

◦ how to construct confidence intervals? (Observe that there
are now no i.i.d. observations.)

Complications arising when estimating steady-state quantities

Näıve approach: let t grow large, and simulate process Y (·) for
long time:

ẑT :=
1

T

∫ T

0
Y (s)ds,

for T ‘large’.

Inherent problems:

◦ how large should T be? (Depends on speed of convergence.)

◦ how to construct confidence intervals? (Observe that there
are now no i.i.d. observations.)

Complications arising when estimating steady-state quantities

Näıve approach: let t grow large, and simulate process Y (·) for
long time:

ẑT :=
1

T

∫ T

0
Y (s)ds,

for T ‘large’.

Inherent problems:

◦ how large should T be? (Depends on speed of convergence.)

◦ how to construct confidence intervals? (Observe that there
are now no i.i.d. observations.)

Complications arising when estimating steady-state quantities

Näıve approach: let t grow large, and simulate process Y (·) for
long time:

ẑT :=
1

T

∫ T

0
Y (s)ds,

for T ‘large’.

Inherent problems:

◦ how large should T be? (Depends on speed of convergence.)

◦ how to construct confidence intervals? (Observe that there
are now no i.i.d. observations.)

Complications arising when estimating steady-state quantities

Under ‘rather general conditions’, as T grows large,

√
T
(
ẑT − z)→ N (0, σ2),

for a σ2 characterized below.

This means that we can approximate, with V ∼ N (0, 1),

ẑT
d
= z +

σV√
T
.

Complications arising when estimating steady-state quantities

Under ‘rather general conditions’, as T grows large,

√
T
(
ẑT − z)→ N (0, σ2),

for a σ2 characterized below.

This means that we can approximate, with V ∼ N (0, 1),

ẑT
d
= z +

σV√
T
.

Complications arising when estimating steady-state quantities

Essentially for the CLT to hold, we should have that

Var
(∫ T

0
Y (s)ds

)
scales linearly in T as T grows large, with σ2 being the
proportionality constant.

Let’s compute this constant

σ2 := lim
T→∞

1

T
Var

(∫ T

0
Y (s)ds

)
.

Define
c(s) := Covπ(Y (0),Y (s)),

with subscript π denoting the system was in stationarity at time 0.
In addition, [Why?]

c(s, v) := Covπ(Y (s),Y (v)) = c(|s − v |).

Complications arising when estimating steady-state quantities

Essentially for the CLT to hold, we should have that

Var
(∫ T

0
Y (s)ds

)
scales linearly in T as T grows large, with σ2 being the
proportionality constant.
Let’s compute this constant

σ2 := lim
T→∞

1

T
Var

(∫ T

0
Y (s)ds

)
.

Define
c(s) := Covπ(Y (0),Y (s)),

with subscript π denoting the system was in stationarity at time 0.
In addition, [Why?]

c(s, v) := Covπ(Y (s),Y (v)) = c(|s − v |).

Complications arising when estimating steady-state quantities

Essentially for the CLT to hold, we should have that

Var
(∫ T

0
Y (s)ds

)
scales linearly in T as T grows large, with σ2 being the
proportionality constant.
Let’s compute this constant

σ2 := lim
T→∞

1

T
Var

(∫ T

0
Y (s)ds

)
.

Define
c(s) := Covπ(Y (0),Y (s)),

with subscript π denoting the system was in stationarity at time 0.
In addition, [Why?]

c(s, v) := Covπ(Y (s),Y (v)) = c(|s − v |).

Complications arising when estimating steady-state quantities

Using in the first step a standard rule for variance of integrals,

1

T
Varπ

(∫ T

0
Y (s)ds

)
=

1

T

∫ T

0

∫ T

0
Covπ(Y (s),Y (v))ds dv

=
2

T

∫ T

0

∫ s

0
Covπ(Y (s),Y (v))dv ds

=
2

T

∫ T

0

∫ s

0
c(s − v)dv ds

=
2

T

∫ T

0

∫ s

0
c(v)dv ds =

2

T

∫ T

0

∫ T

v
c(v)ds dv

= 2

∫ T

0

(
1− v

T

)
c(v)dv → 2

∫ ∞
0

c(v)dv ,

as T →∞. (Last step: dominated convergence.)

Complications arising when estimating steady-state quantities

[Notice an inconsistency in A & G: proof is for initial distribution
π, whereas claim is stated for general initial distribution.]

Result:

σ2 = 2

∫ ∞
0

c(v)dv .

Apparently, for the claim to hold, one should have that the
covariances of Y (0) and Y (t) (and hence the autocorrelation
function) has a finite integral. We sometimes call this: the process
Y (·) is short-range dependent.

Complications arising when estimating steady-state quantities

[Notice an inconsistency in A & G: proof is for initial distribution
π, whereas claim is stated for general initial distribution.]

Result:

σ2 = 2

∫ ∞
0

c(v)dv .

Apparently, for the claim to hold, one should have that the
covariances of Y (0) and Y (t) (and hence the autocorrelation
function) has a finite integral. We sometimes call this: the process
Y (·) is short-range dependent.

Complications arising when estimating steady-state quantities

[Notice an inconsistency in A & G: proof is for initial distribution
π, whereas claim is stated for general initial distribution.]

Result:

σ2 = 2

∫ ∞
0

c(v)dv .

Apparently, for the claim to hold, one should have that the
covariances of Y (0) and Y (t) (and hence the autocorrelation
function) has a finite integral. We sometimes call this: the process
Y (·) is short-range dependent.

Finite-state continuous-time Markov chain

[§IV.2 of A & G]

(X (t))t>0 irreducible Markov chain on {1, . . . , d}, with transition
rate matrix Q.
Define Y (t) = f (X (t)). To be computed:

σ2 = 2

∫ ∞
0

Covπ(Y (0),Y (s))ds.

First rewrite expression to, with pij(t) := P(X (t) = j |X (0) = i),

2

∫ ∞
0

d∑
i=1

d∑
j=1

(
πipij(s)− πiπj)f (i)f (j)ds.

Call

Dij :=

∫ ∞
0

(
pij(s)− πj)ds.

Finite-state continuous-time Markov chain

[§IV.2 of A & G]

(X (t))t>0 irreducible Markov chain on {1, . . . , d}, with transition
rate matrix Q.
Define Y (t) = f (X (t)). To be computed:

σ2 = 2

∫ ∞
0

Covπ(Y (0),Y (s))ds.

First rewrite expression to, with pij(t) := P(X (t) = j |X (0) = i),

2

∫ ∞
0

d∑
i=1

d∑
j=1

(
πipij(s)− πiπj)f (i)f (j)ds.

Call

Dij :=

∫ ∞
0

(
pij(s)− πj)ds.

Finite-state continuous-time Markov chain

We obtain that, with ‘•’ denoting the componentwise product,

σ2 = 2 (f •π)TDf .

The matrix D is referred to as the deviation matrix, and essentially
measures the speed of convergence to the invariant distribution.

D can be alternatively evaluated as F − Π, with Π := 1πT

(rank-one matrix), and

F := (Π− Q)−1.

Finite-state continuous-time Markov chain

We obtain that, with ‘•’ denoting the componentwise product,

σ2 = 2 (f •π)TDf .

The matrix D is referred to as the deviation matrix, and essentially
measures the speed of convergence to the invariant distribution.

D can be alternatively evaluated as F − Π, with Π := 1πT

(rank-one matrix), and

F := (Π− Q)−1.

Finite-state continuous-time Markov chain

We obtain that, with ‘•’ denoting the componentwise product,

σ2 = 2 (f •π)TDf .

The matrix D is referred to as the deviation matrix, and essentially
measures the speed of convergence to the invariant distribution.

D can be alternatively evaluated as F − Π, with Π := 1πT

(rank-one matrix), and

F := (Π− Q)−1.

Regenerative method

[§IV.4 of A & G]

Recall: our objective is to estimate

z := lim
t→∞

1

t

∫ t

0
Y (s)ds.

Let T be a regenerative point. Then (regeneration ratio formula):

z =
EI (T)

ET
, I (T) :=

∫ T

0
Y (s)ds.

Regenerative method

For discrete-state-space irreducible ergodic Markov process X (t),
one could define a ‘return state’ i?. Suppose X (0) = i?. Then the
r -th return time is defined recursively: τ0 := 0 and

τr := inf {t > 0 : X (t + τr−1) = i?} ,

and

Ir :=

∫ τr

τr−1

Y (s)ds.

Regenerative method

Consequence for simulation: we need to estimate EI (τ) and Eτ
(and find confidence intervals for the resulting estimator).

Idea: simulate R regenerative cycles, providing observations
I1, . . . , IR and τ1, . . . , τR .

Estimator: estimating numerator and denominator separately,

ẑR =
1

R

R∑
r=1

Ir

/
1

R

R∑
r=1

τr =
R∑

r=1

Ir

/
R∑

r=1

τr .

Confidence intervals?

[Many typos in A & G: τr and Ỹr need to be swapped. I chose
slightly different, and more transparent, notation.]

Regenerative method

Consequence for simulation: we need to estimate EI (τ) and Eτ
(and find confidence intervals for the resulting estimator).

Idea: simulate R regenerative cycles, providing observations
I1, . . . , IR and τ1, . . . , τR .

Estimator: estimating numerator and denominator separately,

ẑR =
1

R

R∑
r=1

Ir

/
1

R

R∑
r=1

τr =
R∑

r=1

Ir

/
R∑

r=1

τr .

Confidence intervals?

[Many typos in A & G: τr and Ỹr need to be swapped. I chose
slightly different, and more transparent, notation.]

Regenerative method

Define Zr := Ir − zτr , and Z
d
= Zr , I

d
= Ir , τ

d
= τr ,

η2 :=
EZ 2

(Eτ)2
.

Then, as R →∞,

√
R
(
ẑR − z

)
→ N (0, η2).

Confidence intervals can be constructed as before, after estimating
η2 by

η̂2R :=

(
1

R − 1

R∑
r=1

(
Ir − ẑRτr

)2)/(
1

R

R∑
r=1

τr

)2

.

Regenerative method

Proof: an application of the delta-method. Let z1 := EI and
z2 := Eτ . Define f (z1, z2) = z1/z2.
As we have seen, variance of estimator:

σ2 = ∇f (z) · Σ · ∇f (z)T.

Can be rewritten to(
1

Eτ
,− EI

(Eτ)2

)(
VarI Cov(I , τ)

Cov(I , τ) Varτ

)(
1

Eτ
,− EI

(Eτ)2

)T

,

or(
Eτ

(Eτ)2
,− EI

(Eτ)2

)(
VarI Cov(I , τ)

Cov(I , τ) Varτ

)(
Eτ

(Eτ)2
,− EI

(Eτ)2

)T

.

Regenerative method

Going through the computations, we obtain

1

(Eτ)4
·
(
(Eτ)2Var I − 2EI Eτ Cov(I , τ) + (EI)2Var τ

)
,

or equivalently,

1

(Eτ)2
·
(
Var I − 2z Cov(I , τ) + z2Var τ

)
=

VarZ
(Eτ)2

=
EZ 2

(Eτ)2
.

Second claim (estimator for η2) is obvious.

Regenerative method

Going through the computations, we obtain

1

(Eτ)4
·
(
(Eτ)2Var I − 2EI Eτ Cov(I , τ) + (EI)2Var τ

)
,

or equivalently,

1

(Eτ)2
·
(
Var I − 2z Cov(I , τ) + z2Var τ

)
=

VarZ
(Eτ)2

=
EZ 2

(Eτ)2
.

Second claim (estimator for η2) is obvious.

Regenerative method

Actually, a CLT for the related estimator

ẑT :=
1

T

∫ T

0
Y (s)ds,

for T deterministic, can be found along the same lines.

Batch-means method

[§IV.5 of A & G]

Recall: our objective is to estimate

z := lim
t→∞

1

t

∫ t

0
Y (s)ds.

Prerequisite is weak convergence to BM:(√
nt ·

(
1

nt

∫ nt

0
Y (s)ds − z

))
t>0

→ (σ B(t))t>0.

[First factor is not
√
n t, as in A & G!]

Such a functional central
limit theorem typically holds when there is weak dependence in the
Y (·) process.

Batch-means method

[§IV.5 of A & G]

Recall: our objective is to estimate

z := lim
t→∞

1

t

∫ t

0
Y (s)ds.

Prerequisite is weak convergence to BM:(√
nt ·

(
1

nt

∫ nt

0
Y (s)ds − z

))
t>0

→ (σ B(t))t>0.

[First factor is not
√
n t, as in A & G!] Such a functional central

limit theorem typically holds when there is weak dependence in the
Y (·) process.

Batch-means method

Define contributions of intervals of length t/R:

Ȳr (t) =
1

t/R

∫ rt/R

(r−1)t/R
Y (s)ds;

there are R of these.

Estimator:

ẑR :=
1

R

R∑
r=1

Ȳr (t).

Batch-means method

Define contributions of intervals of length t/R:

Ȳr (t) =
1

t/R

∫ rt/R

(r−1)t/R
Y (s)ds;

there are R of these.

Estimator:

ẑR :=
1

R

R∑
r=1

Ȳr (t).

Batch-means method

How to construct confidence intervals?
For any R,

√
R

(
1

t

∫ t

0
Y (s)ds − z

)/
sR(t)→ TR−1

as t →∞. Here TR is a Student-t distribution with R degrees of
freedom, and

SR(t) :=
1

R − 1

R∑
r=1

(
1

t/R

∫ rt/R

(r−1)t/R
Y (s)ds − 1

t

∫ t

0
Y (s)ds

)2

.

(And when R is large as well, this behaves as N (0, 1).)

Batch-means method

How to construct confidence intervals?
For any R,

√
R

(
1

t

∫ t

0
Y (s)ds − z

)/
sR(t)→ TR−1

as t →∞. Here TR is a Student-t distribution with R degrees of
freedom, and

SR(t) :=
1

R − 1

R∑
r=1

(
1

t/R

∫ rt/R

(r−1)t/R
Y (s)ds − 1

t

∫ t

0
Y (s)ds

)2

.

(And when R is large as well, this behaves as N (0, 1).)

Chapter V
VARIANCE REDUCTION

