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Chapter VI
Rare-Event Simulation



Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a
rare event A. I.e., think of z := P (A) as being in the order of 10−3

or less.

Q: How to estimate these probabilities efficiently?

A: Naive thought: just do a crude Monte Carlo simulation using
Z = 1{A}, and let it last very long?

A: Let’s see an example to see whether this is a valid answer.
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Rare-Event Simulation

Let’s see whether this works... Let Z = 1{A}, so that indeed
z = E [Z ] = P (A). Z is then Bernoulli distributed with parameter
z .

We know that Var [Z ] = z(1− z). This means that

σZ
z

=

√
1− z

z

which behaves like z−
1
2 for small z .
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Recall the 95%-confidence interval for ẑR :

(
ẑR − 1.96

σZ√
R
, ẑR + 1.96

σZ√
R

)

Suppose that we want to acquire a precision such that the width of
our confidence interval is about 20% of the value of z . In other
words:

0.1 = 1.96
σZ

z
√
R

or

R =
100 · 1.962z(1− z)

z2
.

(1)

This number increases like z−1 towards ∞ as z ↓ 0. Thus..

A: No, when z becomes small enough, there is always a point at
which crude Monte Carlo will fail as R gets too large.

We will need other machinery in this setting. Importance sampling
will turn out to be a useful tool.
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Formal setup:

I Let A(x) be a family of rare events, with e.g. x ∈ R+ or
x ∈ N.

I z(x) := P (A(x))→ 0 as x →∞
I Let Z (x) be an unbiased estimator for z(x): E [Z (x)] = z(x).
I An algorithm is defined as a family Z (x) of such estimators.

Quest: find well-performing algorithms such that the required R
does not explode. What does this mean?

Recall the expression we just had:

R =
100 · 1.962Var [Z (x)]

z(x)2

We wish R to stay finite as z(x) ↓ 0. This happens, when Z (x)
has a bounded relative error :

lim sup
x→∞

Var [Z (x)]

z(x)2
<∞.
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Bounded relative error:

lim sup
x→∞

Var [Z (x)]

z(x)2
<∞.

In practice, we often check whether a variant of this condition
holds, logarithmic efficiency :

lim sup
x→∞

Var [Z (x)]

z(x)2−ε
= 0.

for any ε > 0.
This condition is slightly weaker.

Example: if z(x) ∼ Ce−γx and
Var [Z (x)] ∼ xpe−2γx , then we have logarithmic efficiency, but no
bounded relative error.

Why logarithmic efficiency?

I The difference is minor from a practical point of view.

I Logarithmic efficiency is often easier to verify.

Hence, our quest: find logarithmically efficient estimators.
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Example. Let N be a geometric r.v. with success parameter π, i.e.
P (N = n) = π(1− π)n−1, and consider
z := P (N ≤ m) = 1− (1− π)m.

Now, let π = π(x) depend on a parameter x such that π(x) ↓ 0 as
x →∞ so that z = z(x) ↓ 0.
For simulating z , we consider importance sampling such that N is
instead simulated from a geometric distribution with a success
parameter π̃, which does not depend on x .

A family {Z (x)} of estimators is now given by

Z (x) =
1

R

R∑

i=1

1{Ni≤m}
π(x)(1− π(x))Ni−1

π̃(1− π̃)Ni−1
,

The book shows that

lim sup
x→∞

Var [Z (x)]

z(x)2
≤ lim sup

x→∞

E
[
Z (x)2

]

z(x)2
= e − 1.

Hence, logarithmically efficient and bounded relative error!
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We now proceed to the study of sums of light-tailed random
variables (i.e. the relevant tails decay at least at an exponential
rate).

Recall the idea of exponential tilting: suppose that X1, . . . ,Xn are
i.i.d with common density f (x). The importance distribution then
preserves the i.i.d. property but changes f (x) to

gθ(x) = eθx

E[eθX ]
f (x). Then,

Ln,θ =
n∏

i=1

f (Xi )

gθ(Xi )
= e−θSn F̂ [θ]n = e−θSn+nκ(θ),

where Sn =
∑n

i=1 Xi , F̂ [θ] = E
[
eθX
]
, κ(θ) = log F̂ [θ].

Moreover,

E [h(X1, . . . ,Xn)] = Eθ [h(X1, . . . ,Xn)Ln,θ]

= Eθ
[
h(X1, . . . ,Xn)e−θSn+nκ(θ)

]
.

What do F̂ [θ] and κ(θ) typically look like?
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These are F̂ [θ] and κ(θ) for a distribution F with negative mean
and F (0) < 1:

�

�

�

�

γ0 γ

γ0 γ

F̂ [θ] κ(θ)

θmax θmax

I For θ ≥ θmax , F̂ (θ) =∞.
I γ0 is the solution of F̂ ′[θ] = κ′(θ) = 0.
I γ is the solution to F̂ [γ] = 1− κ(γ) = 1.

We also define the notion of changed drift:

µθ = Eθ [X ] = E

[
XeθX

F̂ [θ]

]
=

F̂ ′[θ]

F̂ [θ]
= κ′(θ).

Thus, µθ < 0 when θ < γ0, µγ0 = 0 and µθ > 0 when θ > γ0.
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Suppose that the support of X is not contained in (−∞, 0], but
that still, E [X ] < 0.

Now: Siegmund’s algorithm to consider the problem of
estimating, for large x ,

z(x) = P (τ(x) <∞) , where τ(x) := inf{n : Sn > x}.

Idea: use exponential tilting to obtain

z(x) = E
[
1{τ(x)<∞}

]
= Eθ

[
1{τ(x)<∞}Lτ(x),θ

]

= Eθ
[
1{τ(x)<∞}e

−θSτ(x)+τ(x)κ(θ)
]
.

Q: How to choose θ?

A: Well, should have at the very least that Pθ (τ(x) <∞) = 1,
which happens when Eθ [X ] > 0, or θ > γ0. Then, we have
that

z(x) = Eθ
[
e−θSτ(x)+τ(x)κ(θ)

]
.
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Actually, when a positive solution γ to F̂ [γ] = 1− κ(θ) = 1 exists,
θ = γ turns out to be optimal. Then, we have that

z(x) = Eθ
[
e−θSτ(x)+τ(x)κ(θ)

]
= Eγ

[
e−γSτ(x)

]
= e−γxEγ

[
e−γξ(x)

]
,

where ξ(x) = Sτ(x) − x is the overshoot.

Theorem: Siegmund’s algorithm given by

Z (x) = e−γxe−γξ(x)

(simulated in a setting where the distribution of the X ’s are
exponentially tilted at rate γ) has bounded relative error.
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Example of this particular change of measure: let X = U − T ,
where U,T are independent exponentially distributed with rate
δ, β, where β < δ. Then, γ is found by solving

1 = F̂ [γ] = E
[
eγU

]
E
[
e−γT

]
=

δ

δ − γ
β

β + γ
.

This leads to γ = δ − β.

Note that

E
[
esX
]

= Eγ
[
esXL1,γ

]
= Eγ

[
esX e−γX

]
= Eγ

[
e(s−γ)X

]
.

This implies that

Eγ
[
esX
]

= E
[
e(s+γ)X

]
= E

[
e(s+γ)U

]
E
[
e−(s+γ)V

]
=

β

β − s

δ

δ + s
.

This represents the distribution of the difference between two
exponential random variables with rates β and δ!
Conclusion: z(x) can be computed be estimated by interchanging
parameters. Applications in M/M/1 queue (see book).
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exponential random variables with rates β and δ!
Conclusion: z(x) can be computed be estimated by interchanging
parameters. Applications in M/M/1 queue (see book).
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Theorem: Siegmund’s algorithm given by

Z (x) = e−γxe−γξ(x)

(simulated in a setting where the X ’s are exponentially tilted at
rate γ) has bounded relative error.

Sketch of proof:

I One can reason that under the exponentially tilted measure,
ξ(x) is a regenerative process, regenerating each time Sτ(x)
has a partial maximum.

I From this, we can derive that {ξ(x), x ≥ 0} has a stationary
distribution, i.e.

lim
x→∞

Eγ
[
e−γξ(x)

]
= Eγ

[
e−γξ(∞)

]
=: C

so that
z(x) = P (τ(x) <∞) ∼ Ce−γx ,

which is called the Cramér-Lundberg approximation.
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Proof cntd.: We furthermore have that

Eγ
[
Z 2(x)

]
= e−2γxEγ

[
e−2γξ(x)

]
∼ C1e

−2γx ,

where C1 = Eγ
[
e−2γξ(x)

]
. Thus,

Varγ [Z (x)] ∼ C1e
−2γx − C 2(e−2γx) = C2e

−2γx

with C2 = C1 − C 2. Thus, we have that the relative error satisfies

Varγ [Z (x)]

z(x)
∼ C2e

−2γx

C 2e−2γx
= C3 <∞.
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Q: Is gγ(x) the only importance sampling density which admits a
bounded relative error in Siegmund’s algorithm?

A: Yes, actually, it’s the only one that even admits logarithmic
efficiency!

To see this, suppose that we regard another importance sampling
density h̃(x) such that Eh̃ [X ] > 0 (why?). Then, we would have

that z(x) = E
[
1{τ(x)<∞}

]
= Eh̃

[
Lτ(x)(f |h̃)

]
, so that

Z (x) := Lτ(x)(f |h̃) =

τ(x)∏

i=1

f (Xi )

h̃(Xi )
.

Theorem: This importance sampling algorithm is logarithmically
efficient if and only if h̃(x) = gγ(x).
Proof: We have already shown sufficiency. So we assume now that
h̃(x) 6= gγ(x) and show that the algorithm can not be
logarithmically efficient in that case.
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Suppose h̃(x) 6= gγ(x). Then,

Eh̃

[
Z 2(x)

]
= Eh̃

[
L2τ(x)(f |h̃)

]
= Eh̃

[
L2τ(x)(f |gγ)L2τ(x)(gγ |h̃)

]

= Eγ
[
L2τ(x)(f |gγ)Lτ(x)(gγ |h̃)

]
= Eγ

[
e
∑τ(x)

i=1 Ki

]
,

where

Ki = log

((
f (Xi )

gγ(Xi )

)2 gγ(Xi )

h̃(Xi )

)
= −2γXi − log

(
h̃(Xi )

gγ(Xi )

)
.

Further,
Eγ [Ki ] = −2γEγ [Xi ] + ε′,

where Eγ [Xi ] > 0 and ε′ = −Eγ
[
log
(

h̃(X1)
gγ(X1)

)]
. Further, we can

prove that ε′ > 0.
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Further, due to Jensen’s inequality and Wald’s equality,

Eh̃

[
Z 2(x)

]
= Eγ

[
e
∑τ(x)

i=1 Ki

]

≥ e
Eγ

[∑τ(x)
i=1 Ki

]
= eEγ [τ(x)](ε′−2γEγ [Xi ])

Note that Eγ
[
τ(x)
x

]
→ 1

Eγ [X1]
a.s. as x →∞. Thus, using

z(x) ∼ Ce−γx , we have that for 0 < ε < ε′

γEγ [X1]
,

lim inf
x→∞

Eh̃

[
Z 2(x)

]

z(x)2−ε
= lim inf

x→∞

Eh̃

[
Z 2(x)

]

C 2−εe−2γx+εγx
= lim inf

x→∞

e
x( ε′

Eγ [X1]
−2γ)

C 2−εe−2γx+εγx

= lim inf
x→∞

1

C 2−ε
e

ε′x
Eγ [x1]

eεγx
=∞.

Conclusion: when h̃ 6= gγ , we will have no logarithmic efficiency...
theorem proved!
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Well, not entirely just yet. In passing, we assumed that

ε′ = −Eγ
[
log
(

h̃(X1)
gγ(X1)

)]
> 0.

To see this, note that, again due to Jensen’s inequality

Eγ

[
log

(
h̃(X1)

gγ(X1)

)]
< logEγ

[
h̃(X1)

gγ(X1)

]

= log

∫

x :gγ(x)>0

h̃(x)

gγ(x)
gγ(x)dx

= log

∫

x :gγ(x)>0
h̃(x)dx

≤ log 1 = 0.
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Another problem. Consider again a random walk Sn :=
∑n

i=1 Xn,
where the summands are independently distributed with common
distribution F and mean µ (sign unimportant this time).

We are now interested in the family of rare events

A(n) = {Sn > n(µ+ δ)},

where δ > 0.

Due to the weak law of large numbers we have that

z(n) = P (A(n))→ 0

The main question: how to simulate the value of z(n) efficiently as
n gets large?



Rare-Event Simulation

Another problem. Consider again a random walk Sn :=
∑n

i=1 Xn,
where the summands are independently distributed with common
distribution F and mean µ (sign unimportant this time).

We are now interested in the family of rare events

A(n) = {Sn > n(µ+ δ)},

where δ > 0.

Due to the weak law of large numbers we have that

z(n) = P (A(n))→ 0

The main question: how to simulate the value of z(n) efficiently as
n gets large?



Rare-Event Simulation

Another problem. Consider again a random walk Sn :=
∑n

i=1 Xn,
where the summands are independently distributed with common
distribution F and mean µ (sign unimportant this time).

We are now interested in the family of rare events

A(n) = {Sn > n(µ+ δ)},

where δ > 0.

Due to the weak law of large numbers we have that

z(n) = P (A(n))→ 0

The main question: how to simulate the value of z(n) efficiently as
n gets large?



Rare-Event Simulation

To efficiently estimate z(n) = P (A(n)), we again employ
exponential change of measure, so that our algorithm becomes

Z (n) = e−θSn+nκ(θ)1{Sn>n(µ+δ)},

where the Xi are sampled from the tilted distribution.

It turns out that θ should be chosen such that

Eθ [X ] = κ′(θ) = µ+ δ.
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Eθ [X ] = κ′(θ) = µ+ δ.

Under this constraint, θ > 0, since κ′(0) = µ and κ is a convex
function. Furthermore, we have that I = θ(µ+ δ)− κ(θ) > 0.

Theorem: The algorithm using the exponentially (θ) tilted
measure is logarithmically efficient, and this measure is the only
one to make the algorithm logarithmically efficient.
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Proof: Structure similar to Siegmund’s algorithm.

First, note that, since θ > 0

z(n) = P (A(n)) = Eθ
[
e−θSn+nκ(θ)1{Sn>n(µ+δ)}

]

= e−nIEθ
[
e−θ(Sn−n(µ+δ))1{Sn>n(µ+δ)}

]

≤ e−nI

Furthermore,

Varθ [Z (n)] ≤ Eθ
[
Z 2(n)

]
= Eθ

[
e−2θSn+2nκ(θ)1{Sn>n(µ+δ)}

]

= e−2nIEθ
[
e−2θ(Sn−n(µ+δ))1{Sn>n(µ+δ)}

]

≤ e−2nI .
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Thus, to establish logarithmic efficiency, we will require a lower
bound of some sort on the z(n).

Note that, when the density of Xn is exponentially tilted with
parameter θ,

Sn − n(µ+ δ)√
n

→ N (0, σ2θ) and

lim
n→∞

Pθ
(
Sn − n(µ+ δ)√

n
∈ (0, 1)

)
= Φ(

1

σθ
)− Φ(0) =: c > 0.

Thus,

lim inf
n→∞

(enI+θ
√
nz(n)) = lim inf

n→∞
eθ
√
nEθ

[
e−θ(Sn−n(µ+δ))1{Sn>n(µ+δ)}

]

≥ lim inf
n→∞

eθ
√
nEθ

[
e−θ(Sn−n(µ+δ))1{ Sn−n(µ+δ)√

n
∈(0,1)}

]

≥ lim inf
n→∞

eθ
√
ne−θ

√
nPθ

(
1{ Sn−n(µ+δ)√

n
∈(0,1)}

)
= c > 0.



Rare-Event Simulation

Thus, to establish logarithmic efficiency, we will require a lower
bound of some sort on the z(n).

Note that, when the density of Xn is exponentially tilted with
parameter θ,

Sn − n(µ+ δ)√
n

→ N (0, σ2θ) and

lim
n→∞

Pθ
(
Sn − n(µ+ δ)√

n
∈ (0, 1)

)
= Φ(

1

σθ
)− Φ(0) =: c > 0.

Thus,

lim inf
n→∞

(enI+θ
√
nz(n)) = lim inf

n→∞
eθ
√
nEθ

[
e−θ(Sn−n(µ+δ))1{Sn>n(µ+δ)}

]

≥ lim inf
n→∞

eθ
√
nEθ

[
e−θ(Sn−n(µ+δ))1{ Sn−n(µ+δ)√

n
∈(0,1)}

]

≥ lim inf
n→∞

eθ
√
ne−θ

√
nPθ

(
1{ Sn−n(µ+δ)√

n
∈(0,1)}

)
= c > 0.



Rare-Event Simulation

Thus, to establish logarithmic efficiency, we will require a lower
bound of some sort on the z(n).

Note that, when the density of Xn is exponentially tilted with
parameter θ,

Sn − n(µ+ δ)√
n

→ N (0, σ2θ) and

lim
n→∞

Pθ
(
Sn − n(µ+ δ)√

n
∈ (0, 1)

)
= Φ(

1

σθ
)− Φ(0) =: c > 0.

Thus,

lim inf
n→∞

(enI+θ
√
nz(n)) = lim inf

n→∞
eθ
√
nEθ

[
e−θ(Sn−n(µ+δ))1{Sn>n(µ+δ)}

]

≥ lim inf
n→∞

eθ
√
nEθ

[
e−θ(Sn−n(µ+δ))1{ Sn−n(µ+δ)√

n
∈(0,1)}

]

≥ lim inf
n→∞

eθ
√
ne−θ

√
nPθ

(
1{ Sn−n(µ+δ)√

n
∈(0,1)}

)
= c > 0.



Rare-Event Simulation

Thus, to show logarithmic efficiency, note that

lim sup
n→∞

Varθ [Z (n)]

z(n)2−ε
= lim sup

n→∞

Varθ [Z (n)] e(2−ε)(nI+θ
√
n)

z(n)2−εe(2−ε)(nI+θ
√
n)

≤ lim supn→∞ e−εnI+(2−ε)θ
√
n

c2−ε
= 0.

To show that there is no other density which allows logarithmic
efficiency, a proof using similar arguments as the one for
Siegmund’s algorithm can be given.


