Stochastic Simulation

Jan-Pieter Dorsman¹ & Michel Mandjes^{1,2,3}

 $^1{\rm Korteweg\text{-}de}$ Vries Institute for Mathematics, University of Amsterdam $$^2{\rm CWI}$, Amsterdam <math display="inline">$^3{\rm Eurandom}$, Eindhoven$

University of Amsterdam, Fall, 2018

Chapter VII Derivative Estimation

The idea behind derivative estimation

We have seen right now how to go about simulating a value $z = \mathbb{E}[Z(\theta)]$, where Z is a random variable which depends on the parameters $\theta_1, \theta_2, \ldots$

For purposes of sensitivity analysis, we are interested in the gradient

$$\nabla z = \left(\frac{\partial}{\partial \theta_1} z \ \frac{\partial}{\partial \theta_2} z \ \cdots \right).$$

We now address the problem of how to estimate this gradient by simulation, i.e. derivative estimation.

Why?

There are numerous reasons why we'd be interested in estimating the gradient:

- To identify the most important system parameter.
- ▶ To assess the effect of a small parameter change.
- In optimization, to find the best system parameter θ requires evaluation of the gradient (think of Newton-Raphson).
- ► To find gradients that are of intrinsic interest, such as the Greeks in option pricing.

Why?

There are numerous reasons why we'd be interested in estimating the gradient:

- To identify the most important system parameter.
- ▶ To assess the effect of a small parameter change.
- In optimization, to find the best system parameter θ requires evaluation of the gradient (think of Newton-Raphson).
- ► To find gradients that are of intrinsic interest, such as the Greeks in option pricing.

From a theoretical point of view, there is hardly any difference between the one-dimensional and the multi-dimensional case, as gradients and Hessians are computed componentwise. Therefore, we focus on the one-dimensional setting.

Derivative estimation

We discuss three methods.

- 1. Finite differences (FD)
- 2. Infinitesimal perturbation analysis (IPA)
- 3. Likelihood ratio method (LR)

Let's say that Z = h(X). Important differences:

- ▶ For FD and IPA, we only assume the function h to depend on θ (structural dependence).
- ▶ For LR, we only assume the distribution of X to depend on θ (distributional dependence).

Derivative estimation

Our goal: find a random variable $D(\theta)$ such that

in case dependence is structural,

$$\mathbb{E}\left[D(\theta)\right] = z'(\theta) = \frac{d}{d\theta}\mathbb{E}\left[h_{\theta}(X)\right].$$

in case dependence is distributional,

$$\mathbb{E}\left[D(\theta)\right] = z'(\theta) = \frac{d}{d\theta}\mathbb{E}_{\theta}\left[h(X)\right].$$

Then, if we have found an unbiased estimator, we could e.g. use crude Monte Carlo (or other methods) to estimate $z'(\theta)$:

- **1.** Generate R copies $D_1(\theta), \ldots, D_R(\theta)$.
- **2.** Compute $\frac{1}{R} \sum_{i=1}^{R} D_i(\theta)$.

Chapter VII.1 The finite differences method

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta+h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta+\frac{h}{2}) - f(\theta-\frac{h}{2})}{h}$$

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta+h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta+\frac{h}{2}) - f(\theta-\frac{h}{2})}{h}$$

This suggests two possible derivative estimators:

$$\tilde{D}(\theta) = \frac{Z(\theta+h) - Z(\theta)}{h}$$

or

$$D(\theta) = \frac{Z(\theta + \frac{h}{2}) - Z(\theta - \frac{h}{2})}{h}.$$

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta+h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta+\frac{h}{2}) - f(\theta-\frac{h}{2})}{h}$$

This suggests two possible derivative estimators:

$$\tilde{D}(\theta) = \frac{Z(\theta+h) - Z(\theta)}{h}$$

or

$$D(\theta) = \frac{Z(\theta + \frac{h}{2}) - Z(\theta - \frac{h}{2})}{h}.$$

Q: Should we use the forward difference estimator $\tilde{D}(\theta)$ or the central difference estimator $D(\theta)$?

Suppose that for each θ , we can generate an r.v. $Z(\theta)$ with expectation $z(\theta)$.

Starting point is the definition of a derivative:

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta+h) - f(\theta)}{h} = \lim_{h \to 0} \frac{f(\theta+\frac{h}{2}) - f(\theta-\frac{h}{2})}{h}$$

This suggests two possible derivative estimators:

$$\tilde{D}(\theta) = \frac{Z(\theta+h) - Z(\theta)}{h}$$

or

$$D(\theta) = \frac{Z(\theta + \frac{h}{2}) - Z(\theta - \frac{h}{2})}{h}.$$

Q: Should we use the forward difference estimator $\tilde{D}(\theta)$ or the central difference estimator $D(\theta)$?

A: As always, check biasedness first.

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h) - z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h + z''(\theta)\frac{h^2}{2} + z'''(\theta)\frac{h^3}{6} + \ldots\right)$$

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h) - z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h + z''(\theta)\frac{h^2}{2} + z'''(\theta)\frac{h^3}{6} + \ldots\right)$$

and

$$\mathbb{E}\left[D(\theta)\right] = \frac{z(\theta + \frac{h}{2}) - z(\theta - \frac{h}{2})}{h}$$
$$= \frac{1}{h} \left(z'(\theta)h + z'''(\theta)\frac{h^3}{24} + \dots\right)$$

Conclusion?

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h)-z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h+z''(\theta)\frac{h^2}{2}+z'''(\theta)\frac{h^3}{6}+\ldots\right)$$

and

$$\mathbb{E}\left[D(\theta)\right] = \frac{z(\theta + \frac{h}{2}) - z(\theta - \frac{h}{2})}{h}$$
$$= \frac{1}{h} \left(z'(\theta)h + z'''(\theta)\frac{h^3}{24} + \dots\right)$$

Conclusion? The bias of $D(\theta)$ is an order of magnitude lower, so let's go with that estimator.

Q: How to choose *h*?

To check biasedness, apply Taylor series about θ .

$$\mathbb{E}\left[\tilde{D}(\theta)\right] = \frac{z(\theta+h)-z(\theta)}{h}$$
$$= \frac{1}{h}\left(z'(\theta)h+z''(\theta)\frac{h^2}{2}+z'''(\theta)\frac{h^3}{6}+\ldots\right)$$

and

$$\mathbb{E}\left[D(\theta)\right] = \frac{z(\theta + \frac{h}{2}) - z(\theta - \frac{h}{2})}{h}$$
$$= \frac{1}{h} \left(z'(\theta)h + z'''(\theta)\frac{h^3}{24} + \dots\right)$$

Conclusion? The bias of $D(\theta)$ is an order of magnitude lower, so let's go with that estimator.

Q: How to choose *h*?

A: That's a good question!

How to choose *h*?

- ▶ On one hand, don't pick h too large, because it induces bias. The bias will vanish as $h \rightarrow 0$.
- ► On other hand, don't pick *h* too small, because it increases variance.

How to choose *h*?

- ▶ On one hand, don't pick h too large, because it induces bias. The bias will vanish as $h \rightarrow 0$.
- ► On other hand, don't pick *h* too small, because it increases variance.

When estimating $z(\theta + \frac{h}{2})$ and $z(\theta - \frac{h}{2})$, each independently with R samples, then the mean squared error of the estimator is optimised when choosing

$$h = \frac{1}{R^{1/6}} \frac{(576 Var(Z(\theta)))^{1/6}}{|z'''(\theta)|^{1/3}},$$

in which case the root of the mean squared error is of order $R^{-1/3}$. See book for the proof.

Of course, this result is rather academic. When estimating $z'(\theta)$, one probably doesn't know $z'''(\theta)$, but dependence on R is interesting.

Tips and tricks:

- ▶ One can use common random numbers to reduce variance!
- For instance, suppose that the dependence is distributional: Z = g(X), where θ is a parameter of the pdf of X.
- Generate independent uniform samples U_1, \ldots, U_R .
- Compute

$$Z_i^{(+)} = g\left(F_{\theta+\frac{h}{2}}^{\leftarrow}(U_i)\right); \qquad Z_i^{(-)} = g\left(F_{\theta-\frac{h}{2}}^{\leftarrow}(U_i)\right);$$

for all $i = 1, \ldots, R$.

Tips and tricks:

- ▶ One can use common random numbers to reduce variance!
- For instance, suppose that the dependence is distributional: Z = g(X), where θ is a parameter of the pdf of X.
- Generate independent uniform samples U_1, \ldots, U_R .
- Compute

$$Z_i^{(+)} = g\left(F_{\theta+\frac{h}{2}}^{\leftarrow}(U_i)\right); \qquad Z_i^{(-)} = g\left(F_{\theta-\frac{h}{2}}^{\leftarrow}(U_i)\right);$$

for all $i = 1, \ldots, R$.

▶ Finite difference estimator for $z'(\theta)$ now is

$$\frac{1}{hR}\sum_{i=1}^{R}(Z_{i}^{(+)}-Z_{i}^{(-)}).$$

Example.

- ▶ Suppose that Z = h(X), where X is $\exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- Note that $z(\theta) = \mathbb{E}[X^p]$ is the p-th moment of the $\exp(\theta)$ distribution, i.e. $z(\theta) = p! \left(\frac{1}{\theta}\right)^p$, but let's suppose we unknowingly wish to estimate $z'(\theta)$.

Example.

- ▶ Suppose that Z = h(X), where X is $\exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- Note that $z(\theta) = \mathbb{E}[X^p]$ is the *p*-th moment of the $\exp(\theta)$ distribution, i.e. $z(\theta) = p! \left(\frac{1}{\theta}\right)^p$, but let's suppose we unknowingly wish to estimate $z'(\theta)$.
- ► Recall that the quantile function of X is given by $F^{\leftarrow}(x) = \frac{-\log(1-x)}{\alpha}$.
- This leads to

$$D(\theta) = \frac{1}{h} \left(\left(\frac{1}{\theta + \frac{h}{2}} \right)^p - \left(\frac{1}{\theta - \frac{h}{2}} \right)^p \right) (-\log(U))^p,$$

where U is standard uniformly distributed.

Common random variables versus independent sampling.

It can be seen that using this estimator,

$$\operatorname{Var}\left[D(\theta)\right] = \frac{1}{h^2} \left(\left(\frac{1}{\theta + \frac{h}{2}}\right)^p - \left(\frac{1}{\theta - \frac{h}{2}}\right)^p \right)^2 \left((2p)! - (p!)^2\right).$$

However, in case we wouldn't have used common random numbers but sampled independently, we would have faced

$$\operatorname{Var}\left[D(\theta)\right] = \frac{1}{h^2} \left(\left(\frac{1}{\theta + \frac{h}{2}}\right)^{2p} + \left(\frac{1}{\theta - \frac{h}{2}}\right)^{2p} \right) \left((2p)! - (p!)^2\right),$$

which is larger!

The book also discusses higher-order finite-difference approximations, such as the second-order approximation

$$\frac{-Z(\theta+2h)+4Z(\theta+h)-3Z(\theta)}{2h}$$

and much higher order. These k-order estimators typically have a smaller bias (roughly of order h^k), but

- ▶ these estimators require approximations at k+1 points of $z(\cdot)$,
- ▶ the weights involved grow larger in absolute value as *k* gets high, doing the variance of the estimator no good.

The book also discusses higher-order finite-difference approximations, such as the second-order approximation

$$\frac{-Z(\theta+2h)+4Z(\theta+h)-3Z(\theta)}{2h}$$

and much higher order. These k-order estimators typically have a smaller bias (roughly of order h^k), but

- ▶ these estimators require approximations at k+1 points of $z(\cdot)$,
- ▶ the weights involved grow larger in absolute value as *k* gets high, doing the variance of the estimator no good.

Therefore, higher-order approximations are hardly used in practice.

Chapter VII.2 Infinitesimal Perturbation Analysis

Suppose that $Z = h_{\theta}(X)$ (structural dependence), and that we want to know $\frac{d}{d\theta}\mathbb{E}[Z]$.

Let $D(\theta) := \frac{d}{d\theta} h_{\theta}(X)$. Then, IPA is based on the following assumption:

$$\frac{d}{d\theta}\mathbb{E}\left[h_{\theta}(X)\right] = \mathbb{E}\left[\frac{d}{d\theta}h_{\theta}(X)\right] = \mathbb{E}\left[D(\theta)\right].$$

Suppose that $Z = h_{\theta}(X)$ (structural dependence), and that we want to know $\frac{d}{d\theta}\mathbb{E}[Z]$.

Let $D(\theta) := \frac{d}{d\theta} h_{\theta}(X)$. Then, IPA is based on the following assumption:

$$rac{d}{d heta}\mathbb{E}\left[h_{ heta}(X)
ight]=\mathbb{E}\left[rac{d}{d heta}h_{ heta}(X)
ight]=\mathbb{E}\left[D(heta)
ight].$$

The IPA-method simply implies the crude Monte Carlo simulation of $D(\theta)$:

- **1.** Sample R copies of $D(\theta)$.
- 2. Create confidence intervals based on these copies using regular methods and techniques.

Same example as before:

- ▶ Suppose that Z = g(X), where X is $\exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- ▶ Z has same distribution as $h_{\theta}(U)$, where $h_{\theta}(x) = (-\frac{\log(x)}{\theta})^p$, and U is standard uniform.

Same example as before:

- Suppose that Z = g(X), where X is $\exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- ▶ Z has same distribution as $h_{\theta}(U)$, where $h_{\theta}(x) = (-\frac{\log(x)}{\theta})^p$, and U is standard uniform.
- We have

$$\frac{d}{d\theta}h_{\theta}(x) = -(-\log(x))^{p} p\left(\frac{1}{\theta}\right)^{p-1} \frac{1}{\theta^{2}} = \frac{-ph_{\theta}(x)}{\theta}.$$

▶ This results in

$$D(\theta) = \frac{-ph_{\theta}(U)}{\theta}$$

▶ Thus: create replicates of $h_{\theta}(U)$ using known methods, and then multiply each with $\frac{-p}{\theta}$. These are the resulting replicates for $D(\theta)$.

Same example as before:

- ▶ Suppose that Z = g(X), where X is $\exp(\theta)$ distributed and $g(x) = x^p$ with $p \in \mathbb{N}$.
- ▶ Z has same distribution as $h_{\theta}(U)$, where $h_{\theta}(x) = (-\frac{\log(x)}{\theta})^p$, and U is standard uniform.
- We have

$$\frac{d}{d\theta}h_{\theta}(x) = -(-\log(x))^{p} p\left(\frac{1}{\theta}\right)^{p-1} \frac{1}{\theta^{2}} = \frac{-ph_{\theta}(x)}{\theta}.$$

▶ This results in

$$D(\theta) = \frac{-ph_{\theta}(U)}{\theta}$$

▶ Thus: create replicates of $h_{\theta}(U)$ using known methods, and then multiply each with $\frac{-p}{\theta}$. These are the resulting replicates for $D(\theta)$.

We can get estimates for different values of θ with negligible additional effort.

Q: Are we done now?

Q: Are we done now?

A: No, who says we can interchange expectation and derivative like that?

Q: Are we done now?

A: No, who says we can interchange expectation and derivative like that?

Proposition: Assume that $Z(\theta)$ is a.s. differentiable at θ_0 and that a.s. $Z(\theta)$ satisfies the Lipschitz condition

$$|Z(\theta_1) - Z(\theta_2)| \le |\theta_1 - \theta_2|M$$

for θ_1, θ_2 in a nonrandom neighborhood of θ_0 , where $\mathbb{E}[M] < \infty$. Then,

$$\frac{d}{d\theta} \mathbb{E}\left[Z(\theta)\right]\Big|_{\theta=\theta_0} = \mathbb{E}\left[\frac{d}{d\theta}Z(\theta)\right]\Big|_{\theta=\theta_0}.$$

Q: Are we done now?

A: No, who says we can interchange expectation and derivative like that?

Proposition: Assume that $Z(\theta)$ is a.s. differentiable at θ_0 and that a.s. $Z(\theta)$ satisfies the Lipschitz condition

$$|Z(\theta_1) - Z(\theta_2)| \le |\theta_1 - \theta_2|M$$

for θ_1,θ_2 in a nonrandom neighborhood of θ_0 , where $\mathbb{E}\left[M\right]<\infty.$ Then,

$$\left. \frac{d}{d\theta} \mathbb{E}\left[Z(\theta) \right] \right|_{\theta = \theta_0} = \left. \mathbb{E}\left[\frac{d}{d\theta} Z(\theta) \right] \right|_{\theta = \theta_0}.$$

Proof: Use of dominated convergence theorem.

Example of when the interchangeability assumption fails.

- Let X_1, X_2 be two independent r.v.s, and let $z = \mathbb{P}(X_1 < \theta X_2)$ be the expectation of $Z = \mathbb{1}_{\{X_1 < \theta X_2\}}$.
- Now, $D(\theta) = \frac{d}{d\theta}Z = 0$ a.s. for any value of θ . But $\frac{d}{d\theta}z$ surely is not zero in general for any value of θ .

The proposition indeed does not apply. Let's say that we want to know $\frac{d}{d\theta}z$ in the point $\theta_0=1$.

Then, we have for $\theta \in [1, 1 + \epsilon)$ that

$$Z(\theta) - Z(\theta_0) = \mathbb{1}_{\{\theta > X_1/X_2\}} - \mathbb{1}_{\{1 > X_1/X_2\}} = \mathbb{1}_{\{1 \le X_1/X_2 < \theta\}}.$$

Infinitesimal Perturbation Analysis

$$Z(\theta) - Z(\theta_0) = \mathbb{1}_{\{\theta > X_1/X_2\}} - \mathbb{1}_{\{1 > X_1/X_2\}} = \mathbb{1}_{\{1 \le X_1/X_2 < \theta\}}.$$

Let's say that the density of X_1/X_2 is at least A>0 in the interval $[1,1+\epsilon)$. Then, this equals one with probability at least $A(\theta-1)$. Now, in order for

$$|Z(\theta) - Z(1)| \le (\theta - 1)M$$

to hold, it must thus hold that $\mathbb{P}((\theta-1)M \geq 1) \geq A(\theta-1)$ for $\theta \in [1, 1+\epsilon)$.

Infinitesimal Perturbation Analysis

$$Z(\theta) - Z(\theta_0) = \mathbb{1}_{\{\theta > X_1/X_2\}} - \mathbb{1}_{\{1 > X_1/X_2\}} = \mathbb{1}_{\{1 \le X_1/X_2 < \theta\}}.$$

Let's say that the density of X_1/X_2 is at least A>0 in the interval $[1,1+\epsilon)$. Then, this equals one with probability at least $A(\theta-1)$. Now, in order for

$$|Z(\theta) - Z(1)| \le (\theta - 1)M$$

to hold, it must thus hold that $\mathbb{P}\left((\theta-1)M\geq 1\right)\geq A(\theta-1)$ for $\theta\in[1,1+\epsilon)$. Or, $\mathbb{P}\left(M\geq x\right)\geq\frac{A}{x}$ for all $x\in(\epsilon^{-1},\infty)$, so that

$$\mathbb{E}[M] = \int_{x=0}^{\infty} \mathbb{P}(M > x) dx \ge \int_{x=\epsilon^{-1}}^{\infty} \mathbb{P}(M > x) dx$$
$$\ge A \int_{x=\epsilon^{-1}}^{\infty} \frac{1}{x} dx = \infty.$$

Violation of assumption!

Infinitesimal Perturbation Analysis

This effect also occurs often when step functions are involved. Example of when it does work:

- Let $Z = \max(X_1, \theta X_2)$, where Z_1 and Z_2 are two independent r.v.s.
- ▶ Then, $D(\theta) = X_2 \mathbb{1}_{\{X_1 < \theta X_2\}}$ is a valid estimator for $\frac{d}{d\theta} \mathbb{E}[Z(\theta)]$.

Justification:

$$|Z(\theta_1) - Z(\theta_2)| \le |\theta_1 - \theta_2||X_2|.$$

Hence, take $|X_2| = M$. The interchange of derivative and expectation is now justified, unless $\mathbb{E}[|X_2|] = \infty$.

Chapter VII.3

The likelihood ratio method

For this method to work, we assume the dependence on $\boldsymbol{\theta}$ to be distributional, i.e.

$$Z(\theta) = h(X), \qquad z(\theta) = \mathbb{E}_{\theta} [h(X)]$$

where X has a density $f_{\theta}(x)$, and we wish to estimate $z'(\theta)$ in the point θ_0 . The likelihood ratio method is reminiscent of importance

sampling. Let
$$L(\theta, x) = \frac{f_{\theta}(x)}{f_{\theta_0}(x)}$$
.

For this method to work, we assume the dependence on θ to be distributional, i.e.

$$Z(\theta) = h(X), \qquad z(\theta) = \mathbb{E}_{\theta} [h(X)]$$

where X has a density $f_{\theta}(x)$, and we wish to estimate $z'(\theta)$ in the point θ_0 . The likelihood ratio method is reminiscent of importance sampling. Let $L(\theta, x) = \frac{f_{\theta}(x)}{f_{\theta}(x)}$. Then,

$$z(\theta) = \int h(x)f_{\theta}(x)dx = \int h(x)L(\theta, x)f_{\theta_0}(x)dx$$
$$= \mathbb{E}_{\theta_0} [h(X)L(\theta, X)],$$

where $\mathbb{E}_{\theta_0}\left[\cdot\right]$ indicates expectation with respect to the density $f_{\theta_0}.$

We have

$$z(\theta) = \mathbb{E}_{\theta_0} [h(X)L(\theta, X)].$$

We have

$$z(\theta) = \mathbb{E}_{\theta_0} [h(X)L(\theta, X)].$$

This suggests that

$$z'(\theta) = \mathbb{E}_{\theta_0} [h(X)L'(\theta, X)],$$

where $L'(\theta, x) = \frac{d}{d\theta}L(\theta, X)$. We can write

$$z'(\theta_0) = \mathbb{E}_{\theta_0} \left[h(X) S_{\theta_0}(X) \right],$$

where

$$S_{\theta_0}(x) = \frac{f_{\theta}'(x)}{f_{\theta}(x)}\Big|_{\theta=\theta_0}$$
.

We will refer to $S_{\theta_0}(x)$ as the score function evaluated at $\theta = \theta_0$.

All this suggests the unbiased estimator for $z'(\theta_0)$:

$$D(\theta_0) = h(X)S_{\theta_0}(X)$$

Hence, we have the following estimation method:

- **1.** Generate R i.i.d samples of X, where X has density f_{θ_0} .
- **2.** Compute $\frac{1}{R} \sum_{i=1}^{R} h(X_i) S_{\theta_0}(X_i)$.

Confidence intervals can be computed by the known techniques.

This discussion was for a single random variable X. In this case,

$$S_{\theta}(x) = \frac{f'_{\theta}(x)}{f_{\theta}(x)} = \frac{d}{d\theta} \log f_{\theta}(x).$$

When $Z = h(X_1, ..., X_n)$, where $X_1, ..., X_n$ have a joint density $f(\mathbf{x})$, the same procedure can be used. The only difference is that

$$S_{\theta}(\mathbf{x}) = \frac{d}{d\theta} \log f_{\theta}(\mathbf{x}).$$

When the X_i are independent, this leads to

$$S_{\theta}(\mathbf{x}) = \frac{d}{d\theta} \log f_{\theta}(\mathbf{x}) = \frac{d}{d\theta} \log f_{\theta}^{(1)}(x_1) \cdots f_{\theta}^{(n)}(x_n)$$
$$= \sum_{i=1}^{n} \frac{d}{d\theta} \log f_{\theta}^{(i)}(x_i) = \sum_{i=1}^{n} S_{\theta}^{(i)}(x_i).$$

This is the additive property of the score function.

Example: Z = h(X), where $h(x) = x^p$ and X is exponentially(θ) distributed.

▶ The corresponding score function is

$$S_{\theta}(x) = \frac{d}{d\theta} \log f_{\theta}(x) = \frac{d}{d\theta} \log(\theta) - \theta x = \frac{1}{\theta} - x$$

Example: Z = h(X), where $h(x) = x^p$ and X is exponentially(θ) distributed.

▶ The corresponding score function is

$$S_{\theta}(x) = \frac{d}{d\theta} \log f_{\theta}(x) = \frac{d}{d\theta} \log(\theta) - \theta x = \frac{1}{\theta} - x$$

Hence,

$$h(x)S_{\theta}(x) = \frac{x^{p}}{\theta} - x^{p+1}.$$

Example: Z = h(X), where $h(x) = x^p$ and X is exponentially(θ) distributed.

▶ The corresponding score function is

$$S_{\theta}(x) = \frac{d}{d\theta} \log f_{\theta}(x) = \frac{d}{d\theta} \log(\theta) - \theta x = \frac{1}{\theta} - x$$

Hence,

$$h(x)S_{\theta}(x) = \frac{x^{p}}{\theta} - x^{p+1}.$$

▶ So, to sample the derivative of z at $\theta = \theta_0$, we generate X_1, \ldots, X_R from the $\exp(\theta_0)$ distribution, and compute

$$\frac{1}{R} \sum_{i=1}^{R} \left(\frac{X_i^p}{\theta_0} - X_i^{p+1} \right)$$

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E}\left[\mathbb{1}_{\{C > x\}}\right]$.

▶ When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = \frac{d}{d\lambda} \log(e^{-\lambda} \frac{\lambda^n}{n!}) = \frac{n}{\lambda} - 1.$$

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E}\left[\mathbb{1}_{\{C > x\}}\right]$.

▶ When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = \frac{d}{d\lambda} \log(e^{-\lambda} \frac{\lambda^n}{n!}) = \frac{n}{\lambda} - 1.$$

Thus, the LR estimator is $\mathbb{1}_{\{\sum_{i=1}^N V_i > x\}} \left(\frac{N}{\lambda_0} - 1\right)$, where N is Poisson (λ_0) distributed and the V_i are i.i.d. with density f_θ .

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E}\left[\mathbb{1}_{\{C > x\}}\right]$.

▶ When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = \frac{d}{d\lambda} \log(e^{-\lambda} \frac{\lambda^n}{n!}) = \frac{n}{\lambda} - 1.$$

Thus, the LR estimator is $\mathbb{1}_{\{\sum_{i=1}^N V_i > x\}} \left(\frac{N}{\lambda_0} - 1\right)$, where N is Poisson (λ_0) distributed and the V_i are i.i.d. with density f_{θ} .

▶ When estimating $\frac{d}{d\theta}z|_{\theta=\theta_0}$, the appropriate score function is

$$S_{\theta}(v_1,\ldots,v_n) = \sum_{i=1}^n \frac{d}{d\theta} \log f_{\theta}(v_i).$$

Example: $C = \sum_{i=1}^{N} V_i$, where N is Poisson(λ) and the V_i are i.i.d. with density $f_{\theta}(x)$. Assume that we are interested in $z = \mathbb{P}(C > x) = \mathbb{E}\left[\mathbb{1}_{\{C > x\}}\right]$.

▶ When estimating $\frac{d}{d\lambda}z|_{\lambda=\lambda_0}$, the appropriate score function is

$$S_{\lambda}(n) = \frac{d}{d\lambda} \log(e^{-\lambda} \frac{\lambda^n}{n!}) = \frac{n}{\lambda} - 1.$$

Thus, the LR estimator is $\mathbb{1}_{\{\sum_{i=1}^N V_i > x\}} \left(\frac{N}{\lambda_0} - 1\right)$, where N is Poisson (λ_0) distributed and the V_i are i.i.d. with density f_{θ} .

▶ When estimating $\frac{d}{d\theta}z|_{\theta=\theta_0}$, the appropriate score function is

$$S_{\theta}(v_1,\ldots,v_n) = \sum_{i=1}^n \frac{d}{d\theta} \log f_{\theta}(v_i).$$

Then, an estimator would be $\mathbb{1}_{\{\sum_{i=1}^N V_i > x\}} S_{\theta_0}(V_1, \dots, V_N)$, where N is Poisson(λ) distributed and the V_i are i.i.d. with density f_{θ_0} .

We forgot a minor detail in this discussion....

We forgot a minor detail in this discussion....

Who says derivative and expectation can be interchanged when moving from

$$z(\theta) = \mathbb{E}_{\theta_0} \left[h(X) L(\theta, X) \right]$$

to

$$z'(\theta) = \mathbb{E}_{\theta_0} [h(X)L'(\theta, X)]$$
?

This again uses a dominated convergence argument (see Proposition VII.3.5), but generally, it often works out when $L(\theta, X)$ has no discontinuities depending on θ .

The LR method is often done in conjunction with importance sampling, so that we can estimate $z'(\theta) = \frac{d}{d\theta} \mathbb{E}[Z] = \frac{d}{d\theta} \mathbb{E}[h(X)]$ in multiple points of θ in one go.

Suppose that X has density f_{θ_0} . We then have that

$$\begin{split} \mathbb{E}_{\theta_0}\left[h(X)S_{\theta_0}(X)\right] &= \int h(x)S_{\theta_0}(x)f_{\theta_0}(x)dx \\ &= \int h(x)S_{\theta_0}(x)\frac{f_{\theta_0}(x)}{f_{\tau}(x)}f_{\tau}(x)dx \\ &= \mathbb{E}_{\tau}\left[h(X)S_{\theta_0}(X)\frac{f_{\theta_0}(X)}{f_{\tau}(X)}\right]. \end{split}$$

Conclusion: we can also sample X_1, \ldots, X_R as if they have density $f_\tau(x)$, and then estimate $z'(\theta_0)$ by computing

$$\frac{1}{R}\sum_{i=1}^R h(X_i)S_{\theta_0}(X_i)\frac{f_{\theta_0}(X_i)}{f_{\tau}(X_i)}.$$

We only have to sample the X_i -values once!

Discussion on the three different methods

Each of its methods has its drawbacks and advantages.

- ► FD is easiest to grasp, and virtually always works, but yields biased estimators. IPA and LR are unbiased.
- ▶ IPA often yields the smallest variance, but cannot always be applied.
- LR has a broader scope than IPA.