
Stochastic Simulation

Jan-Pieter Dorsman1 & Michel Mandjes1,2,3

1Korteweg-de Vries Institute for Mathematics, University of Amsterdam
2CWI, Amsterdam

3Eurandom, Eindhoven

University of Amsterdam,
Fall, 2017



Intermezzo
DISCRETE-EVENT SIMULATION



This course so far

By now, you have (hopefully!) seen

◦ why simulation encompasses a necessary set of techniques in
applied probability.

◦ how your computer draws uniform random numbers... and
why you should not try to come up with your own random
number generator.

◦ several cool techniques to transform these to obtain random
numbers for other distributions.



So, we are pretty much done right now?

Negative, we just got started! Recall all of the issues Michel
pointed out in the first lecture.

Today we mainly focus on the issue what programming techniques
to use to create simulation programs.

Let’s see what happens when, for example, we try to simulate a
check-out queue at a small super market (G/G/1 queue).



So, we are pretty much done right now?

Negative, we just got started! Recall all of the issues Michel
pointed out in the first lecture.

Today we mainly focus on the issue what programming techniques
to use to create simulation programs.

Let’s see what happens when, for example, we try to simulate a
check-out queue at a small super market (G/G/1 queue).



Simulation of a G/G/1 queue

The G/G/1 super market queue:

I G: Customers arrive at the check-out counter according to an
arbitrary renewal process.

I G: The service times all customer require are independent and
identically generally distributed.

I 1: Just one check-out counter available.

To date, hardly anything is known about performance measures of
this model.

Let’s suppose we want to estimate E[W ], the average waiting time
of customers in a stationary system.



Simulation of a G/G/1 queue

The G/G/1 super market queue:

I G: Customers arrive at the check-out counter according to an
arbitrary renewal process.

I G: The service times all customer require are independent and
identically generally distributed.

I 1: Just one check-out counter available.

To date, hardly anything is known about performance measures of
this model.

Let’s suppose we want to estimate E[W ], the average waiting time
of customers in a stationary system.



Simulation of a G/G/1 queue

The G/G/1 super market queue:

I G: Customers arrive at the check-out counter according to an
arbitrary renewal process.

I G: The service times all customer require are independent and
identically generally distributed.

I 1: Just one check-out counter available.

To date, hardly anything is known about performance measures of
this model.

Let’s suppose we want to estimate E[W ], the average waiting time
of customers in a stationary system.



Simulation of a G/G/1 queue

The G/G/1 super market queue:

I G: Customers arrive at the check-out counter according to an
arbitrary renewal process.

I G: The service times all customer require are independent and
identically generally distributed.

I 1: Just one check-out counter available.

To date, hardly anything is known about performance measures of
this model.

Let’s suppose we want to estimate E[W ], the average waiting time
of customers in a stationary system.



Lindley’s recurrence relation

Some notation:

I Aj : the interarrival time between the j-th and the j + 1-st
customer

I Bj : the service time that the j-th customer requires

I Wj : the waiting time incurred by the j-th customer

Lindley’s recurrence relation (see the board):

Wj+1 = (Wj + Bj − Aj)
+

with W1 = 0.



Lindley’s recurrence relation

Some notation:

I Aj : the interarrival time between the j-th and the j + 1-st
customer

I Bj : the service time that the j-th customer requires

I Wj : the waiting time incurred by the j-th customer

Lindley’s recurrence relation (see the board):

Wj+1 = (Wj + Bj − Aj)
+

with W1 = 0.



Simulation method for a G/G/1 queue

Lindley’s recurrence relation:

Wj+1 = (Wj + Bj − Aj)
+

with W1 = 0.

So, apparently, using the methods we learned, we can

1. sample a whole bunch of An’s and Bn’s

2. compute the Wn’s using the recurrence relation,

3. compute 1
n

∑n
j=1Wj for large n, which is an estimate of E[W ].



Simulation of a G/G/1 queue

Suppose

1. interarrival-times are i.i.d. standard uniformly distributed, and

2. service times are i.i.d. uniformly distributed on [0,0.5].

Then the Mathematica code for n = 1.000.000 would look
something like this:

SeedRandom[123]; n = 1000000;

A = Table[RandomReal[], {n}];

B = Table[RandomReal[]/2, {n}];

W[1] = 0;

W[j_] := W[j] = Max[W[j - 1] + B[[j - 1]] - A[[j - 1]] , 0];

Sum[W[j], {j, 1, n}]/n

Mathematica spits out the estimate of an expected 0.0748002
units of waiting time in no time.



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Lindley’s recurrence relations are nice, but think of all the
follow-up questions you could ask me:

Q: What if we want to simulate P(W < t) instead of E[W ]?

A: Compute
∑n

j=1
1{Wn<t}

n .

Q: What if we want to know E[L], the average number of
customers in the system?

A: We can use Little’s law: E[W ] = E[L]E[A].

Q: What if we introduce additional servers?

A: Beats me! Well actually, Kiefer & Wolfowitz (1959) extended
Lindley’s recurrence relation to multiple servers, but it’s
computationally demanding.

Q: What if for the some reason the customers are served LIFO
instead of FIFO?

A: Okay, you got me.

Q: What if we want to know Var[L]?

A: Alright, alright, I yield...



Today’s topic

Sometimes, we can immediately map our uniform samples directly
to performance measures. For the G/G/1 case this was possible
using Lindley’s recurrence relation.

What if we don’t have such a device?

Answer: we use discrete-event simulation to get from uniform
samples to performance measures.

I’ll be basing myself on a hand-out stemmed on Chapter 10 of the
Dutch book ’Operationale analyse’ by Prof. dr. H. C. Tijms.



Today’s topic

Sometimes, we can immediately map our uniform samples directly
to performance measures. For the G/G/1 case this was possible
using Lindley’s recurrence relation.

What if we don’t have such a device?

Answer: we use discrete-event simulation to get from uniform
samples to performance measures.

I’ll be basing myself on a hand-out stemmed on Chapter 10 of the
Dutch book ’Operationale analyse’ by Prof. dr. H. C. Tijms.



Key ingredients

Discrete event simulation is a general technique, built around the
idea of ‘discrete events’ that has been developed to help one follow
a model over time and determine the relevant quantities of interest.

It generally consists of a number of important components:

1. A simulation ’clock’ t: this is a variable that keeps track of
how much time has elapsed since the start of the system.

2. System state variable: a variable that keeps information on
the current state of the system. In G/G/1 example: the
number of customers in the system, let’s call it l .

3. Statistical counter variables: these are variables that are kept
to compute quantities of interest later on. In G/G/1 example:
e.g. number of served customers n and their total waiting
time w .

4. Events: these are the things that can occur to the system over
time. Every time an event occurs, the above three variables
are updated. In earlier example: arrivals and departures of
customers



Key ingredients

Discrete event simulation is a general technique, built around the
idea of ‘discrete events’ that has been developed to help one follow
a model over time and determine the relevant quantities of interest.

It generally consists of a number of important components:

1. A simulation ’clock’ t: this is a variable that keeps track of
how much time has elapsed since the start of the system.

2. System state variable: a variable that keeps information on
the current state of the system. In G/G/1 example: the
number of customers in the system, let’s call it l .

3. Statistical counter variables: these are variables that are kept
to compute quantities of interest later on. In G/G/1 example:
e.g. number of served customers n and their total waiting
time w .

4. Events: these are the things that can occur to the system over
time. Every time an event occurs, the above three variables
are updated. In earlier example: arrivals and departures of
customers



Key ingredients

Discrete event simulation is a general technique, built around the
idea of ‘discrete events’ that has been developed to help one follow
a model over time and determine the relevant quantities of interest.

It generally consists of a number of important components:

1. A simulation ’clock’ t: this is a variable that keeps track of
how much time has elapsed since the start of the system.

2. System state variable: a variable that keeps information on
the current state of the system. In G/G/1 example: the
number of customers in the system, let’s call it l .

3. Statistical counter variables: these are variables that are kept
to compute quantities of interest later on. In G/G/1 example:
e.g. number of served customers n and their total waiting
time w .

4. Events: these are the things that can occur to the system over
time. Every time an event occurs, the above three variables
are updated. In earlier example: arrivals and departures of
customers



Key ingredients

Discrete event simulation is a general technique, built around the
idea of ‘discrete events’ that has been developed to help one follow
a model over time and determine the relevant quantities of interest.

It generally consists of a number of important components:

1. A simulation ’clock’ t: this is a variable that keeps track of
how much time has elapsed since the start of the system.

2. System state variable: a variable that keeps information on
the current state of the system. In G/G/1 example: the
number of customers in the system, let’s call it l .

3. Statistical counter variables: these are variables that are kept
to compute quantities of interest later on. In G/G/1 example:
e.g. number of served customers n and their total waiting
time w .

4. Events: these are the things that can occur to the system over
time. Every time an event occurs, the above three variables
are updated. In earlier example: arrivals and departures of
customers



Key ingredients

Discrete event simulation is a general technique, built around the
idea of ‘discrete events’ that has been developed to help one follow
a model over time and determine the relevant quantities of interest.

It generally consists of a number of important components:

1. A simulation ’clock’ t: this is a variable that keeps track of
how much time has elapsed since the start of the system.

2. System state variable: a variable that keeps information on
the current state of the system. In G/G/1 example: the
number of customers in the system, let’s call it l .

3. Statistical counter variables: these are variables that are kept
to compute quantities of interest later on. In G/G/1 example:
e.g. number of served customers n and their total waiting
time w .

4. Events: these are the things that can occur to the system over
time. Every time an event occurs, the above three variables
are updated. In earlier example: arrivals and departures of
customers



General idea for the G/G/1 example

In a nutshell, the idea of a discrete event simulation program for
the G/G/1 example would be to discretely cycle through all events
as follows:

I Step 1: Plan the first event. Starting with an empty system, the first
event will be an arrival of the customer. This will occur at time A1, where
A1 is the sample of the interarrival-time distribution (use uniform
sample). The event time will be A1.

I Step 2: Handle the earliest upcoming planned event:

1. Set t to be equal to the time of this event.
2. In case the event is an arrival:

I Plan the next arrival event at time t + Ai , with Ai a sample of
the interarrival-time distribution.

I If L = 0, plan the next departure event at time t + Bi , with Bi

a sample of the service time distribution.
I l := l + 1

Otherwise, if the event is a departure:
I l := l − 1
I If l > 0, then plan the next departure event at time T + Bi ,

with Bi a sample of the service time distribution.
I n := n + 1. We also increase w with the departed customer’s

waiting time, which is T minus its actual arrival time minus
its service time.



General idea for the G/G/1 example

In a nutshell, the idea of a discrete event simulation program for
the G/G/1 example would be to discretely cycle through all events
as follows:

I Step 1: Plan the first event. Starting with an empty system, the first
event will be an arrival of the customer. This will occur at time A1, where
A1 is the sample of the interarrival-time distribution (use uniform
sample). The event time will be A1.

I Step 2: Handle the earliest upcoming planned event:

1. Set t to be equal to the time of this event.

2. In case the event is an arrival:
I Plan the next arrival event at time t + Ai , with Ai a sample of

the interarrival-time distribution.
I If L = 0, plan the next departure event at time t + Bi , with Bi

a sample of the service time distribution.
I l := l + 1

Otherwise, if the event is a departure:
I l := l − 1
I If l > 0, then plan the next departure event at time T + Bi ,

with Bi a sample of the service time distribution.
I n := n + 1. We also increase w with the departed customer’s

waiting time, which is T minus its actual arrival time minus
its service time.



General idea for the G/G/1 example

In a nutshell, the idea of a discrete event simulation program for
the G/G/1 example would be to discretely cycle through all events
as follows:

I Step 1: Plan the first event. Starting with an empty system, the first
event will be an arrival of the customer. This will occur at time A1, where
A1 is the sample of the interarrival-time distribution (use uniform
sample). The event time will be A1.

I Step 2: Handle the earliest upcoming planned event:

1. Set t to be equal to the time of this event.
2. In case the event is an arrival:

I Plan the next arrival event at time t + Ai , with Ai a sample of
the interarrival-time distribution.

I If L = 0, plan the next departure event at time t + Bi , with Bi

a sample of the service time distribution.
I l := l + 1

Otherwise, if the event is a departure:
I l := l − 1
I If l > 0, then plan the next departure event at time T + Bi ,

with Bi a sample of the service time distribution.
I n := n + 1. We also increase w with the departed customer’s

waiting time, which is T minus its actual arrival time minus
its service time.



General idea for the G/G/1 example

In a nutshell, the idea of a discrete event simulation program for
the G/G/1 example would be to discretely cycle through all events
as follows:

I Step 1: Plan the first event. Starting with an empty system, the first
event will be an arrival of the customer. This will occur at time A1, where
A1 is the sample of the interarrival-time distribution (use uniform
sample). The event time will be A1.

I Step 2: Handle the earliest upcoming planned event:

1. Set t to be equal to the time of this event.
2. In case the event is an arrival:

I Plan the next arrival event at time t + Ai , with Ai a sample of
the interarrival-time distribution.

I If L = 0, plan the next departure event at time t + Bi , with Bi

a sample of the service time distribution.
I l := l + 1

Otherwise, if the event is a departure:
I l := l − 1
I If l > 0, then plan the next departure event at time T + Bi ,

with Bi a sample of the service time distribution.
I n := n + 1. We also increase w with the departed customer’s

waiting time, which is T minus its actual arrival time minus
its service time.



General idea for the G/G/1 example cntd.

I Step 3: If t has not reached a certain number T , return to step 2.
Otherwise go to step 4. (How large should T be chosen? Upcoming
lecture!)

I Step 4: Calculate the average of all stored waiting times. This is an
estimate for E[W ].

Often, when looking for a stationary waiting time, it is better not
to include the first portion of the stored waiting times in the
average. Why?



General idea for the G/G/1 example cntd.

I Step 3: If t has not reached a certain number T , return to step 2.
Otherwise go to step 4. (How large should T be chosen? Upcoming
lecture!)

I Step 4: Calculate the average of all stored waiting times. This is an
estimate for E[W ].

Often, when looking for a stationary waiting time, it is better not
to include the first portion of the stored waiting times in the
average. Why?



This is all very nice, but we’ll need the computer to perform these
steps.

How do we write a suitable computer program?

Let’s see an example.



Simulation example: the bank

I A bank opens at 10AM. At 5PM it closes, but any remaining
customers arriving prior to this time will still be served.

I There are c bank clerks, who work equally fast, and serve
queued customers in the order of arrival.

I Customers arrive according to a Poisson arrival process with
rate λ customers/minute.

I The service times that each of the customers require is
Unif[a, b] distributed.

For the queueing theorists among us: this is an M/G/c queue!

Problem statement:

Determine for given values of c, λ, a and b:

a) the average length of the queue during the day

b) the average waiting time of a customer during the day

c) the fraction of time that the clerk is busy during the day



The bank: system state variables

The system state variables (or simply states) should contain
enough information about the history of the system, such that,
given the current state, the previous states become irrelevant to
predict the future behaviour of the system.

For the bank example, the following should be stored in the system
state variables:

1. The number of customers in the queue (to track average
queue length)

2. The arrival times of the customers in the queue (to track
waiting times of customers)

3. The status of each of the bank clerks: busy/not busy (to
track busy fraction of clerks)



The bank: system state variables

The system state variables (or simply states) should contain
enough information about the history of the system, such that,
given the current state, the previous states become irrelevant to
predict the future behaviour of the system.

For the bank example, the following should be stored in the system
state variables:

1. The number of customers in the queue (to track average
queue length)

2. The arrival times of the customers in the queue (to track
waiting times of customers)

3. The status of each of the bank clerks: busy/not busy (to
track busy fraction of clerks)



The bank: system state variables

The system state variables (or simply states) should contain
enough information about the history of the system, such that,
given the current state, the previous states become irrelevant to
predict the future behaviour of the system.

For the bank example, the following should be stored in the system
state variables:

1. The number of customers in the queue (to track average
queue length)

2. The arrival times of the customers in the queue (to track
waiting times of customers)

3. The status of each of the bank clerks: busy/not busy (to
track busy fraction of clerks)



The bank: system state variables

The system state variables (or simply states) should contain
enough information about the history of the system, such that,
given the current state, the previous states become irrelevant to
predict the future behaviour of the system.

For the bank example, the following should be stored in the system
state variables:

1. The number of customers in the queue (to track average
queue length)

2. The arrival times of the customers in the queue (to track
waiting times of customers)

3. The status of each of the bank clerks: busy/not busy (to
track busy fraction of clerks)



The bank: events

The most important notion in discrete event simulation
encompasses events, which can potentially the state of the model.

For discrete event simulation, it is essential that events can only
occur at discrete points in time!

The assumption that events can only occur discretely in time,
enables us to compress the true scale of time into just changing
the simulation clock only at moments at which an event occurs.

Time intervals in between events where the system state variables
do not change are irrelevant and can be skipped.

For the bank example: the events are the arrivals and departures
(i.e. end of service) of customers. Only at these time instants, the
system state variables actually change!



The bank: events

The most important notion in discrete event simulation
encompasses events, which can potentially the state of the model.

For discrete event simulation, it is essential that events can only
occur at discrete points in time!

The assumption that events can only occur discretely in time,
enables us to compress the true scale of time into just changing
the simulation clock only at moments at which an event occurs.

Time intervals in between events where the system state variables
do not change are irrelevant and can be skipped.

For the bank example:

the events are the arrivals and departures
(i.e. end of service) of customers. Only at these time instants, the
system state variables actually change!



The bank: events

The most important notion in discrete event simulation
encompasses events, which can potentially the state of the model.

For discrete event simulation, it is essential that events can only
occur at discrete points in time!

The assumption that events can only occur discretely in time,
enables us to compress the true scale of time into just changing
the simulation clock only at moments at which an event occurs.

Time intervals in between events where the system state variables
do not change are irrelevant and can be skipped.

For the bank example: the events are the arrivals and departures
(i.e. end of service) of customers. Only at these time instants, the
system state variables actually change!



The bank: statistical counters

The statistical counter variables are variables that store statistical
information which can be used to compute the requested
performance measures at the end of a simulation.

Also the statistical counter variables are updated only at times
when an event occurs.

For the bank example, the statistical counter variables are:

1. The number of customers that arrived in the system so far.

2. The total waiting time of customers that have arrived in the
system so far (the waiting time of a customer does not include
the actual service time.

3. The total amount of time that a bank clerk has been busy so
far.

4. The total surface under the graph of the number of customers
in the queue so far (this number does not include the
customers being served by a bank clerk).

The last one may need some explanation...



The bank: statistical counters

The statistical counter variables are variables that store statistical
information which can be used to compute the requested
performance measures at the end of a simulation.

Also the statistical counter variables are updated only at times
when an event occurs.

For the bank example, the statistical counter variables are:

1. The number of customers that arrived in the system so far.

2. The total waiting time of customers that have arrived in the
system so far (the waiting time of a customer does not include
the actual service time.

3. The total amount of time that a bank clerk has been busy so
far.

4. The total surface under the graph of the number of customers
in the queue so far (this number does not include the
customers being served by a bank clerk).

The last one may need some explanation...



The bank: statistical counters cntd.

Let Q(t) be the number of customers in the queue at time t. This
is a step function that only changes at event times.

For example:

After a large number of events, the average number in the queue
E[Q] after an event time t∗ can be estimated as:

E[Q] ≈ 1

t∗

∫ t∗

0
Q(t)dt.

To compute last integral: update the sum of the surfaces of
rectangles under the graph after every event!



The bank: statistical counters cntd.

Let Q(t) be the number of customers in the queue at time t. This
is a step function that only changes at event times. For example:

After a large number of events, the average number in the queue
E[Q] after an event time t∗ can be estimated as:

E[Q] ≈ 1

t∗

∫ t∗

0
Q(t)dt.

To compute last integral: update the sum of the surfaces of
rectangles under the graph after every event!



The bank: statistical counters cntd.

Let Q(t) be the number of customers in the queue at time t. This
is a step function that only changes at event times. For example:

After a large number of events, the average number in the queue
E[Q] after an event time t∗ can be estimated as:

E[Q] ≈ 1

t∗

∫ t∗

0
Q(t)dt.

To compute last integral: update the sum of the surfaces of
rectangles under the graph after every event!



The bank: towards a computer program
Idea of a discrete event simulation program: cycle through all
events, at which point system states and statistical counter
variables will be adjusted.

I The system starts with arrival event, namely at time A1

(obtained from a uniform sample!). The occurence of any
event typically triggers new events. For example, first event
will incite a new arrival event at time A1 + A2 (another
sample!), and because all clerks are still available, a departure
event at time A1 + B1.

I A computer program keeps all events in an event list in
increasing order of event times. It constantly deletes the first
event of the event list, leading to new events in the event list
and updates in all variables.

I At the end of the simulation, distill performance measure
estimates from statistical counter variables.



The bank: towards a computer program
Idea of a discrete event simulation program: cycle through all
events, at which point system states and statistical counter
variables will be adjusted.

I The system starts with arrival event, namely at time A1

(obtained from a uniform sample!). The occurence of any
event typically triggers new events. For example, first event
will incite a new arrival event at time A1 + A2 (another
sample!), and because all clerks are still available, a departure
event at time A1 + B1.

I A computer program keeps all events in an event list in
increasing order of event times. It constantly deletes the first
event of the event list, leading to new events in the event list
and updates in all variables.

I At the end of the simulation, distill performance measure
estimates from statistical counter variables.



A flow chart of the computer program

Initialisation 

START 

End of 
simulation? 

Event 
kind? 

Result output 

Put customer in 
queue 

Increase no. of 
clerks and 
schedule 
departure 

Schedule next 
arrival 

Take next cust. 
out of queue and 
schedule his/her 

departure 

Decrease no. of 
bank clerks 

Collect next event 
from event list 

Is 
queue 
empty? 

Clerk 
available? 

STOP 

Arrival 

Departure 

No 

Yes 

Yes 

No 

Yes 

No 



A Mathematica implementation

Now: demonstration and treatment of example Mathematica code.



Some things to note

I Effectively modularising is key to writing a good simulation
program.

I Object oriented programming languages like Java, C++,
Python will yield much faster programs than
Mathematica/Matlab, et cetera.

I I opted for a simple array to implement the event list.
However, anytime an event is added to the event list, the
whole event list needs to be sorted. For large simulation
programs, this is very inefficient.

I Popular data objects to use for event lists are binary trees,
heaps and linked lists, as they sort much more efficiently. This
is however beyond the scope of this course.



Some things to note

I Effectively modularising is key to writing a good simulation
program.

I Object oriented programming languages like Java, C++,
Python will yield much faster programs than
Mathematica/Matlab, et cetera.

I I opted for a simple array to implement the event list.
However, anytime an event is added to the event list, the
whole event list needs to be sorted. For large simulation
programs, this is very inefficient.

I Popular data objects to use for event lists are binary trees,
heaps and linked lists, as they sort much more efficiently. This
is however beyond the scope of this course.



Some issues for future lectures

I The bank simulation program only simulates one day. To get
true expectations of performance measures, we would have to
rerun the program many times and take averages. Key issue:
how many runs are sufficient for reliable estimates?

I The bank only runs for seven hours. Some systems run in a
stationary setting (i.e., as if they have run for an infinite
amount of time already). Key issue: how long does a
simulation need to run before it sufficiently reached
stationarity?

See you next time!



Some issues for future lectures

I The bank simulation program only simulates one day. To get
true expectations of performance measures, we would have to
rerun the program many times and take averages. Key issue:
how many runs are sufficient for reliable estimates?

I The bank only runs for seven hours. Some systems run in a
stationary setting (i.e., as if they have run for an infinite
amount of time already). Key issue: how long does a
simulation need to run before it sufficiently reached
stationarity?

See you next time!



Some issues for future lectures

I The bank simulation program only simulates one day. To get
true expectations of performance measures, we would have to
rerun the program many times and take averages. Key issue:
how many runs are sufficient for reliable estimates?

I The bank only runs for seven hours. Some systems run in a
stationary setting (i.e., as if they have run for an infinite
amount of time already). Key issue: how long does a
simulation need to run before it sufficiently reached
stationarity?

See you next time!


