Stochastic Simulation

Jan-Pieter Dorsman¹ & Michel Mandjes^{1,2,3}

 $^1{\rm Korteweg\text{-}de}$ Vries Institute for Mathematics, University of Amsterdam $$^2{\rm CWI}$, Amsterdam <math display="inline">$^3{\rm Eurandom}$, Eindhoven$

University of Amsterdam, Fall, 2017

Chapter VI

Rare-Event Simulation

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z := \mathbb{P}(A)$ as being in the order of 10^{-3} or less.

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z := \mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Q: How to estimate these probabilities efficiently?

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z := \mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Q: How to estimate these probabilities efficiently?

A: Naive thought: just do a crude Monte Carlo simulation using $Z = \mathbb{1}_{\{A\}}$, and let it last very long?

In rare-event simulation, we consider the problem of estimating a rare event A. I.e., think of $z := \mathbb{P}(A)$ as being in the order of 10^{-3} or less.

Q: How to estimate these probabilities efficiently?

A: Naive thought: just do a crude Monte Carlo simulation using $Z = \mathbb{1}_{\{A\}}$, and let it last very long?

A: Let's see an example to see whether this is a valid answer.

Let's see whether this works... Let $Z = \mathbb{1}_{\{A\}}$, so that indeed $z = \mathbb{E}[Z] = \mathbb{P}(A)$. Z is then Bernoulli distributed with parameter z.

Let's see whether this works... Let $Z = \mathbb{1}_{\{A\}}$, so that indeed $z = \mathbb{E}[Z] = \mathbb{P}(A)$. Z is then Bernoulli distributed with parameter z.

We know that Var[Z] = z(1-z). This means that

$$\frac{\sigma_Z}{z} = \sqrt{\frac{1-z}{z}}$$

which behaves like $z^{-\frac{1}{2}}$ for small z.

Recall the 95%-confidence interval for \hat{z}_R :

$$\left(\hat{z}_R - 1.96 rac{\sigma_Z}{\sqrt{R}}, \hat{z}_R + 1.96 rac{\sigma_Z}{\sqrt{R}}
ight)$$

Suppose that we want to acquire a precision such that the width of our confidence interval is about 20% of the value of z. In other words:

$$0.1 = 1.96 \frac{\sigma_Z}{z\sqrt{R}}$$

or

$$R = \frac{100 \cdot 1.96^2 z (1 - z)}{z^2}.$$

Recall the 95%-confidence interval for \hat{z}_R :

$$\left(\hat{z}_R - 1.96 \frac{\sigma_Z}{\sqrt{R}}, \hat{z}_R + 1.96 \frac{\sigma_Z}{\sqrt{R}}\right)$$

Suppose that we want to acquire a precision such that the width of our confidence interval is about 20% of the value of z. In other words:

$$0.1 = 1.96 \frac{\sigma_Z}{z\sqrt{R}}$$

or

$$R = \frac{100 \cdot 1.96^2 z (1 - z)}{z^2}. (1)$$

This number increases like z^{-1} towards ∞ as $z \downarrow 0$. Thus..

A: No, when z becomes small enough, there is always a point at which crude Monte Carlo will fail as R gets too large.

We will need other machinery in this setting. Importance sampling will turn out to be a useful tool.

Formal setup:

▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.

Formal setup:

- ▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.
- $z(x) := \mathbb{P}(A(x)) \to 0 \text{ as } x \to \infty$

Formal setup:

- ▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.
- $ightharpoonup z(x) := \mathbb{P}\left(A(x)\right) o 0 \text{ as } x o \infty$
- ▶ Let Z(x) be an unbiased estimator for z(x): $\mathbb{E}[Z(x)] = z(x)$.

Formal setup:

- ▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.
- $ightharpoonup z(x) := \mathbb{P}\left(A(x)\right) \to 0 \text{ as } x \to \infty$
- ▶ Let Z(x) be an unbiased estimator for z(x): $\mathbb{E}[Z(x)] = z(x)$.
- ▶ An algorithm is defined as a family Z(x) of such estimators.

Formal setup:

- ▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.
- $ightharpoonup z(x) := \mathbb{P}\left(A(x)\right) o 0 \text{ as } x o \infty$
- ▶ Let Z(x) be an unbiased estimator for z(x): $\mathbb{E}[Z(x)] = z(x)$.
- ▶ An algorithm is defined as a family Z(x) of such estimators.

Quest: find well-performing algorithms such that the required R does not explode.

Formal setup:

- ▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.
- $ightharpoonup z(x) := \mathbb{P}\left(A(x)\right) \to 0 \text{ as } x \to \infty$
- ▶ Let Z(x) be an unbiased estimator for z(x): $\mathbb{E}[Z(x)] = z(x)$.
- ▶ An algorithm is defined as a family Z(x) of such estimators.

Quest: find well-performing algorithms such that the required *R* does not explode. What does this mean?

Formal setup:

- ▶ Let A(x) be a family of rare events, with e.g. $x \in \mathbb{R}_+$ or $x \in \mathbb{N}$.
- $ightharpoonup z(x) := \mathbb{P}(A(x)) \to 0 \text{ as } x \to \infty$
- ▶ Let Z(x) be an unbiased estimator for z(x): $\mathbb{E}[Z(x)] = z(x)$.
- ▶ An algorithm is defined as a family Z(x) of such estimators.

Quest: find well-performing algorithms such that the required R does not explode. What does this mean?

Recall the expression we just had:

$$R = \frac{100 \cdot 1.96^2 \text{Var} [Z(x)]}{z(x)^2}$$

We wish R to stay finite as $z(x) \downarrow 0$. This happens, when Z(x) has a bounded relative error:

$$\limsup_{x\to\infty}\frac{\mathrm{Var}\left[Z(x)\right]}{z(x)^2}<\infty.$$

Bounded relative error:

$$\limsup_{x\to\infty}\frac{\mathrm{Var}\left[Z(x)\right]}{z(x)^2}<\infty.$$

In practice, we often check whether a variant of this condition holds, *logarithmic efficiency*:

$$\limsup_{x\to\infty}\frac{\mathrm{Var}\left[Z(x)\right]}{z(x)^{2-\epsilon}}=0.$$

for any $\epsilon > 0$.

This condition is slightly weaker.

Bounded relative error:

$$\limsup_{x\to\infty}\frac{\mathrm{Var}\left[Z(x)\right]}{z(x)^2}<\infty.$$

In practice, we often check whether a variant of this condition holds, *logarithmic efficiency*:

$$\limsup_{x\to\infty} \frac{\operatorname{Var}\left[Z(x)\right]}{z(x)^{2-\epsilon}} = 0.$$

for any $\epsilon > 0$.

This condition is slightly weaker. Example: if $z(x) \sim Ce^{-\gamma x}$ and $Var[Z(x)] \sim x^p e^{-2\gamma x}$, then we have logarithmic efficiency, but no bounded relative error.

Bounded relative error:

$$\limsup_{x\to\infty}\frac{\operatorname{Var}\left[Z(x)\right]}{z(x)^2}<\infty.$$

In practice, we often check whether a variant of this condition holds, *logarithmic efficiency*:

$$\limsup_{x\to\infty}\frac{\operatorname{Var}\left[Z(x)\right]}{z(x)^{2-\epsilon}}=0.$$

for any $\epsilon > 0$.

This condition is slightly weaker. Example: if $z(x) \sim Ce^{-\gamma x}$ and $Var[Z(x)] \sim x^p e^{-2\gamma x}$, then we have logarithmic efficiency, but no bounded relative error.

Why logarithmic efficiency?

▶ The difference is minor from a practical point of view.

Bounded relative error:

$$\limsup_{x\to\infty}\frac{\mathrm{Var}\left[Z(x)\right]}{z(x)^2}<\infty.$$

In practice, we often check whether a variant of this condition holds, *logarithmic efficiency*:

$$\limsup_{x \to \infty} \frac{\operatorname{Var} \left[Z(x) \right]}{z(x)^{2-\epsilon}} = 0.$$

for any $\epsilon > 0$.

This condition is slightly weaker. Example: if $z(x) \sim Ce^{-\gamma x}$ and $Var[Z(x)] \sim x^p e^{-2\gamma x}$, then we have logarithmic efficiency, but no bounded relative error.

Why logarithmic efficiency?

- ▶ The difference is minor from a practical point of view.
- ▶ Logarithmic efficiency is often easier to verify.

Hence, our quest: find logarithmically efficient estimators.

Example. Let \emph{N} be a geometric r.v. with success parameter π , i.e.

 $\mathbb{P}(N=n) = \pi(1-\pi)^{n-1}$, and consider $z := \mathbb{P}(N \le m) = 1 - (1-\pi)^m$.

Example. Let N be a geometric r.v. with success parameter π , i.e.

 $\mathbb{P}(N=n)=\pi(1-\pi)^{n-1}$, and consider $z:=\mathbb{P}(N\leq m)=1-(1-\pi)^m$.

Now, let $\pi = \pi(x)$ depend on a parameter x such that $\pi(x) \downarrow 0$ as $x \to \infty$ so that $z = z(x) \downarrow 0$.

Example. Let N be a geometric r.v. with success parameter π , i.e.

$$\mathbb{P}(N=n)=\pi(1-\pi)^{n-1}$$
, and consider $z:=\mathbb{P}(N\leq m)=1-(1-\pi)^m$.

Now, let $\pi = \pi(x)$ depend on a parameter x such that $\pi(x) \downarrow 0$ as $x \to \infty$ so that $z = z(x) \downarrow 0$.

For simulating z, we consider importance sampling such that N is instead simulated from a geometric distribution with a success parameter $\tilde{\pi}$, which does not depend on x.

Example. Let N be a geometric r.v. with success parameter π , i.e.

$$\mathbb{P}(N = n) = \pi(1 - \pi)^{n-1}$$
, and consider $z := \mathbb{P}(N \le m) = 1 - (1 - \pi)^m$.

Now, let $\pi = \pi(x)$ depend on a parameter x such that $\pi(x) \downarrow 0$ as $x \to \infty$ so that $z = z(x) \downarrow 0$.

For simulating z, we consider importance sampling such that N is instead simulated from a geometric distribution with a success parameter $\tilde{\pi}$, which does not depend on x.

A family $\{Z(x)\}$ of estimators is now given by

$$Z(x) = \frac{1}{R} \sum_{i=1}^{R} \mathbb{1}_{\{N_i \leq m\}} \frac{\pi(x)(1-\pi(x))^{N_i-1}}{\tilde{\pi}(1-\tilde{\pi})^{N_i-1}},$$

The book shows that

$$\limsup_{x \to \infty} \frac{\operatorname{Var} \left[Z(x) \right]}{z(x)^2} \le \limsup_{x \to \infty} \frac{\mathbb{E} \left[Z(x)^2 \right]}{z(x)^2} = e - 1.$$

Hence, logarithmically efficient and bounded relative error!

We now proceed to the study of sums of light-tailed random variables (i.e. the relevant tails decay at least at an exponential rate).

Recall the idea of exponential tilting: suppose that X_1, \ldots, X_n are i.i.d with common density f(x). The importance distribution then preserves the i.i.d. property but changes f(x) to $g_{\theta}(x) = \frac{e^{\theta x}}{\mathbb{E}[e^{\theta X}]} f(x)$. Then,

$$L_{n,\theta} = \prod_{i=1}^{n} \frac{f(X_i)}{g_{\theta}(X_i)} = e^{-\theta S_n} \hat{F}[\theta]^n = e^{-\theta S_n + n\kappa(\theta)},$$

where
$$S_n = \sum_{i=1}^n X_i$$
, $\hat{F}[\theta] = \mathbb{E}\left[e^{\theta X}\right]$, $\kappa(\theta) = \log \hat{F}[\theta]$.

We now proceed to the study of sums of light-tailed random variables (i.e. the relevant tails decay at least at an exponential rate).

Recall the idea of exponential tilting: suppose that X_1,\ldots,X_n are i.i.d with common density f(x). The importance distribution then preserves the i.i.d. property but changes f(x) to $g_{\theta}(x) = \frac{e^{\theta x}}{\mathbb{E}[e^{\theta X}]} f(x)$. Then,

$$L_{n,\theta} = \prod_{i=1}^{n} \frac{f(X_i)}{g_{\theta}(X_i)} = e^{-\theta S_n} \hat{F}[\theta]^n = e^{-\theta S_n + n\kappa(\theta)},$$

where $S_n = \sum_{i=1}^n X_i$, $\hat{F}[\theta] = \mathbb{E}\left[e^{\theta X}\right]$, $\kappa(\theta) = \log \hat{F}[\theta]$. Moreover,

$$\mathbb{E}[h(X_1,\ldots,X_n)] = \mathbb{E}_{\theta}[h(X_1,\ldots,X_n)L_{n,\theta}]$$
$$= \mathbb{E}_{\theta}[h(X_1,\ldots,X_n)e^{-\theta S_n + n\kappa(\theta)}].$$

We now proceed to the study of sums of light-tailed random variables (i.e. the relevant tails decay at least at an exponential rate).

Recall the idea of exponential tilting: suppose that X_1,\ldots,X_n are i.i.d with common density f(x). The importance distribution then preserves the i.i.d. property but changes f(x) to $g_{\theta}(x) = \frac{e^{\theta x}}{\mathbb{E}[e^{\theta X}]} f(x)$. Then,

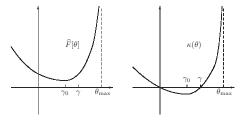
$$L_{n,\theta} = \prod_{i=1}^{n} \frac{f(X_i)}{g_{\theta}(X_i)} = e^{-\theta S_n} \hat{F}[\theta]^n = e^{-\theta S_n + n\kappa(\theta)},$$

where $S_n = \sum_{i=1}^n X_i$, $\hat{F}[\theta] = \mathbb{E}\left[e^{\theta X}\right]$, $\kappa(\theta) = \log \hat{F}[\theta]$. Moreover,

$$\mathbb{E}[h(X_1,\ldots,X_n)] = \mathbb{E}_{\theta}[h(X_1,\ldots,X_n)L_{n,\theta}]$$
$$= \mathbb{E}_{\theta}[h(X_1,\ldots,X_n)e^{-\theta S_n + n\kappa(\theta)}].$$

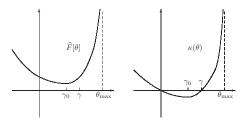
What do $\hat{F}[\theta]$ and $\kappa(\theta)$ typically look like?

These are $\hat{F}[\theta]$ and $\kappa(\theta)$ for a distribution F with negative mean and F(0) < 1:



- For $\theta \geq \theta_{max}$, $\hat{F}(\theta) = \infty$.
- γ_0 is the solution of $\hat{F}'[\theta] = \kappa'(\theta) = 0$.
- γ is the solution to $\hat{F}[\gamma] = 1 \kappa(\gamma) = 1$.

These are $\hat{F}[\theta]$ and $\kappa(\theta)$ for a distribution F with negative mean and F(0) < 1:



- ▶ For $\theta \ge \theta_{max}$, $\hat{F}(\theta) = \infty$.
- γ_0 is the solution of $\hat{F}'[\theta] = \kappa'(\theta) = 0$.
- γ is the solution to $\hat{F}[\gamma] = 1 \kappa(\gamma) = 1$.

We also define the notion of changed drift:

$$\mu_{\theta} = \mathbb{E}_{\theta}\left[X\right] = \mathbb{E}\left[\frac{Xe^{\theta X}}{\hat{F}[\theta]}\right] = \frac{\hat{F}'[\theta]}{\hat{F}[\theta]} = \kappa'(\theta).$$

Thus, $\mu_{\theta} < 0$ when $\theta < \gamma_0$, $\mu_{\gamma_0} = 0$ and $\mu_{\theta} > 0$ when $\theta > \gamma_0$.

Suppose that the support of X is not contained in $(-\infty,0]$, but that still, $\mathbb{E}[X] < 0$.

Now: **Siegmund's algorithm** to consider the problem of estimating, for large x,

$$z(x) = \mathbb{P}(\tau(x) < \infty)$$
, where $\tau(x) := \inf\{n : S_n > x\}$.

Idea: use exponential tilting to obtain

$$z(x) = \mathbb{E}\left[\mathbb{1}_{\{\tau(x) < \infty\}}\right] = \mathbb{E}_{\theta}\left[\mathbb{1}_{\{\tau(x) < \infty\}} L_{\tau(x),\theta}\right]$$
$$= \mathbb{E}_{\theta}\left[\mathbb{1}_{\{\tau(x) < \infty\}} e^{-\theta S_{\tau(x)} + \tau(x)\kappa(\theta)}\right].$$

Suppose that the support of X is not contained in $(-\infty, 0]$, but that still, $\mathbb{E}[X] < 0$.

Now: **Siegmund's algorithm** to consider the problem of estimating, for large x,

$$z(x) = \mathbb{P}(\tau(x) < \infty)$$
, where $\tau(x) := \inf\{n : S_n > x\}$.

Idea: use exponential tilting to obtain

$$z(x) = \mathbb{E} \left[\mathbb{1}_{\{\tau(x) < \infty\}} \right] = \mathbb{E}_{\theta} \left[\mathbb{1}_{\{\tau(x) < \infty\}} L_{\tau(x),\theta} \right]$$
$$= \mathbb{E}_{\theta} \left[\mathbb{1}_{\{\tau(x) < \infty\}} e^{-\theta S_{\tau(x)} + \tau(x)\kappa(\theta)} \right].$$

Q: How to choose θ ?

A: Well, should have at the very least that $\mathbb{P}_{\theta}\left(\tau(x) < \infty\right) = 1$,

Suppose that the support of X is not contained in $(-\infty,0]$, but that still, $\mathbb{E}[X] < 0$.

Now: **Siegmund's algorithm** to consider the problem of estimating, for large x,

$$z(x) = \mathbb{P}(\tau(x) < \infty)$$
, where $\tau(x) := \inf\{n : S_n > x\}$.

Idea: use exponential tilting to obtain

$$z(x) = \mathbb{E}\left[\mathbb{1}_{\{\tau(x) < \infty\}}\right] = \mathbb{E}_{\theta}\left[\mathbb{1}_{\{\tau(x) < \infty\}}L_{\tau(x),\theta}\right]$$
$$= \mathbb{E}_{\theta}\left[\mathbb{1}_{\{\tau(x) < \infty\}}e^{-\theta S_{\tau(x)} + \tau(x)\kappa(\theta)}\right].$$

Q: How to choose θ ?

A: Well, should have at the very least that $\mathbb{P}_{\theta}\left(\tau(x) < \infty\right) = 1$, which happens when $\mathbb{E}_{\theta}\left[X\right] > 0$, or $\theta > \gamma_0$. Then, we have that

$$z(x) = \mathbb{E}_{\theta} \left[e^{-\theta S_{\tau(x)} + \tau(x)\kappa(\theta)} \right].$$

Actually, when a positive solution γ to $\hat{F}[\gamma] = 1 - \kappa(\theta) = 1$ exists, $\theta = \gamma$ turns out to be optimal. Then, we have that

$$z(x) = \mathbb{E}_{\theta} \left[e^{-\theta S_{\tau(x)} + \tau(x)\kappa(\theta)} \right] = \mathbb{E}_{\gamma} \left[e^{-\gamma S_{\tau(x)}} \right] = e^{-\gamma x} \mathbb{E}_{\gamma} \left[e^{-\gamma \xi(x)} \right],$$

where $\xi(x) = S_{\tau(x)} - x$ is the overshoot.

Actually, when a positive solution γ to $\hat{F}[\gamma] = 1 - \kappa(\theta) = 1$ exists, $\theta = \gamma$ turns out to be optimal. Then, we have that

$$z(x) = \mathbb{E}_{\theta} \left[e^{-\theta S_{\tau(x)} + \tau(x)\kappa(\theta)} \right] = \mathbb{E}_{\gamma} \left[e^{-\gamma S_{\tau(x)}} \right] = e^{-\gamma x} \mathbb{E}_{\gamma} \left[e^{-\gamma \xi(x)} \right],$$

where $\xi(x) = S_{\tau(x)} - x$ is the overshoot.

Theorem: Siegmund's algorithm given by

$$Z(x) = e^{-\gamma x} e^{-\gamma \xi(x)}$$

(simulated in a setting where the distribution of the X's are exponentially tilted at rate γ) has bounded relative error.

Example of this particular change of measure: let X=U-T, where U,T are independent exponentially distributed with rate δ,β , where $\beta<\delta$. Then, γ is found by solving

$$1 = \hat{F}[\gamma] = \mathbb{E}\left[e^{\gamma U}\right] \mathbb{E}\left[e^{-\gamma T}\right] = \frac{\delta}{\delta - \gamma} \frac{\beta}{\beta + \gamma}.$$

This leads to $\gamma = \delta - \beta$.

Example of this particular change of measure: let X=U-T, where U,T are independent exponentially distributed with rate δ,β , where $\beta<\delta$. Then, γ is found by solving

$$1 = \hat{F}[\gamma] = \mathbb{E}\left[e^{\gamma U}\right] \mathbb{E}\left[e^{-\gamma T}\right] = \frac{\delta}{\delta - \gamma} \frac{\beta}{\beta + \gamma}.$$

This leads to $\gamma = \delta - \beta$. Note that

$$\mathbb{E}\left[e^{sX}\right] = \mathbb{E}_{\gamma}\left[e^{sX}L_{1,\gamma}\right] = \mathbb{E}_{\gamma}\left[e^{sX}e^{-\gamma X}\right] = \mathbb{E}_{\gamma}\left[e^{(s-\gamma)X}\right].$$

This implies that

$$\mathbb{E}_{\gamma}\left[e^{sX}\right] = \mathbb{E}\left[e^{(s+\gamma)X}\right] = \mathbb{E}\left[e^{(s+\gamma)U}\right] \mathbb{E}\left[e^{-(s+\gamma)V}\right] = \frac{\beta}{\beta - s} \frac{\delta}{\delta + s}.$$

Example of this particular change of measure: let X = U - T, where U, T are independent exponentially distributed with rate δ, β , where $\beta < \delta$. Then, γ is found by solving

$$1 = \hat{F}[\gamma] = \mathbb{E}\left[e^{\gamma U}\right] \mathbb{E}\left[e^{-\gamma T}\right] = \frac{\delta}{\delta - \gamma} \frac{\beta}{\beta + \gamma}.$$

This leads to $\gamma = \delta - \beta$. Note that

$$\mathbb{E}\left[e^{sX}\right] = \mathbb{E}_{\gamma}\left[e^{sX}L_{1,\gamma}\right] = \mathbb{E}_{\gamma}\left[e^{sX}e^{-\gamma X}\right] = \mathbb{E}_{\gamma}\left[e^{(s-\gamma)X}\right].$$

This implies that

$$\mathbb{E}_{\gamma}\left[e^{sX}\right] = \mathbb{E}\left[e^{(s+\gamma)X}\right] = \mathbb{E}\left[e^{(s+\gamma)U}\right]\mathbb{E}\left[e^{-(s+\gamma)V}\right] = \frac{\beta}{\beta-s}\frac{\delta}{\delta+s}.$$

This represents the distribution of the difference between two exponential random variables with rates β and δ ! **Conclusion**: z(x) can be computed be estimated by interchanging parameters. Applications in M/M/1 queue (see book).

Theorem: Siegmund's algorithm given by

$$Z(x) = e^{-\gamma x} e^{-\gamma \xi(x)}$$

(simulated in a setting where the X's are exponentially tilted at rate γ) has bounded relative error.

Sketch of proof:

Theorem: Siegmund's algorithm given by

$$Z(x) = e^{-\gamma x} e^{-\gamma \xi(x)}$$

(simulated in a setting where the X's are exponentially tilted at rate γ) has bounded relative error.

Sketch of proof:

- ▶ One can reason that under the exponentially tilted measure, $\xi(x)$ is a regenerative process, regenerating each time $S_{\tau(x)}$ has a partial maximum.
- ► From this, we can derive that $\{\xi(x), x \geq 0\}$ has a stationary distribution, i.e.

$$\lim_{\mathsf{x}\to\infty}\mathbb{E}_{\gamma}\left[e^{-\gamma\xi(\mathsf{x})}\right]=\mathbb{E}_{\gamma}\left[e^{-\gamma\xi(\infty)}\right]=:C$$

so that

$$z(x) = \mathbb{P}(\tau(x) < \infty) \sim Ce^{-\gamma x}$$

which is called the Cramér-Lundberg approximation.

Proof cntd.: We furthermore have that

$$\mathbb{E}_{\gamma}\left[Z^{2}(x)\right] = e^{-2\gamma x} \mathbb{E}_{\gamma}\left[e^{-2\gamma \xi(x)}\right] \sim C_{1}e^{-2\gamma x},$$

where $C_1 = \mathbb{E}_{\gamma} \left[e^{-2\gamma \xi(x)} \right]$. Thus,

$$Var_{\gamma}[Z(x)] \sim C_1 e^{-2\gamma x} - C^2(e^{-2\gamma x}) = C_2 e^{-2\gamma x}$$

with $C_2 = C_1 - C^2$. Thus, we have that the relative error satisfies

$$\frac{\operatorname{Var}_{\gamma}[Z(x)]}{Z(x)} \sim \frac{C_2 e^{-2\gamma x}}{C_2 e^{-2\gamma x}} = C_3 < \infty.$$

Q: Is $g_{\gamma}(x)$ the only importance sampling density which admits a bounded relative error in Siegmund's algorithm?

Q: Is $g_{\gamma}(x)$ the only importance sampling density which admits a bounded relative error in Siegmund's algorithm?

A: Yes, actually, it's the only one that even admits logarithmic efficiency!

To see this, suppose that we regard another importance sampling density $\tilde{h}(x)$ such that $\mathbb{E}_{\tilde{h}}[X] > 0$ (why?). Then, we would have

that
$$z(x) = \mathbb{E}\left[\mathbb{1}_{\{\tau(x) < \infty\}}\right] = \mathbb{E}_{\tilde{h}}\left[L_{\tau(x)}(f|\tilde{h})\right]$$
, so that

$$Z(x) := L_{\tau(x)}(f|\tilde{h}) = \prod_{i=1}^{\tau(x)} \frac{f(X_i)}{\tilde{h}(X_i)}.$$

Q: Is $g_{\gamma}(x)$ the only importance sampling density which admits a bounded relative error in Siegmund's algorithm?

A: Yes, actually, it's the only one that even admits logarithmic efficiency!

To see this, suppose that we regard another importance sampling density $\tilde{h}(x)$ such that $\mathbb{E}_{\tilde{h}}[X] > 0$ (why?). Then, we would have

that
$$z(x) = \mathbb{E}\left[\mathbb{1}_{\{\tau(x) < \infty\}}\right] = \mathbb{E}_{\tilde{h}}\left|L_{\tau(x)}(f|\tilde{h})\right|$$
, so that

$$Z(x) := L_{\tau(x)}(f|\tilde{h}) = \prod_{i=1}^{\tau(x)} \frac{f(X_i)}{\tilde{h}(X_i)}.$$

Theorem: This importance sampling algorithm is logarithmically efficient if and only if $\tilde{h}(x) = g_{\gamma(x)}$.

Q: Is $g_{\gamma}(x)$ the only importance sampling density which admits a bounded relative error in Siegmund's algorithm?

A: Yes, actually, it's the only one that even admits logarithmic efficiency!

To see this, suppose that we regard another importance sampling density $\tilde{h}(x)$ such that $\mathbb{E}_{\tilde{h}}[X] > 0$ (why?). Then, we would have

that
$$z(x) = \mathbb{E}\left[\mathbb{1}_{\{\tau(x) < \infty\}}\right] = \mathbb{E}_{\tilde{h}}\left|L_{\tau(x)}(f|\tilde{h})\right|$$
, so that

$$Z(x) := L_{\tau(x)}(f|\tilde{h}) = \prod_{i=1}^{\tau(x)} \frac{f(X_i)}{\tilde{h}(X_i)}.$$

Theorem: This importance sampling algorithm is logarithmically efficient if and only if $\tilde{h}(x) = g_{\gamma(x)}$.

Proof: We have already shown sufficiency.

Q: Is $g_{\gamma}(x)$ the only importance sampling density which admits a bounded relative error in Siegmund's algorithm?

A: Yes, actually, it's the only one that even admits logarithmic efficiency!

To see this, suppose that we regard another importance sampling density $\tilde{h}(x)$ such that $\mathbb{E}_{\tilde{h}}[X] > 0$ (why?). Then, we would have

that
$$z(x) = \mathbb{E}\left[\mathbb{1}_{\{\tau(x) < \infty\}}\right] = \mathbb{E}_{\tilde{h}}\left[L_{\tau(x)}(f|\tilde{h})\right]$$
, so that

$$Z(x) := L_{\tau(x)}(f|\tilde{h}) = \prod_{i=1}^{\tau(x)} \frac{f(X_i)}{\tilde{h}(X_i)}.$$

Theorem: This importance sampling algorithm is logarithmically efficient if and only if $\tilde{h}(x) = g_{\gamma(x)}$.

Proof: We have already shown sufficiency. So we assume now that $\tilde{h}(x) \neq g_{\gamma(x)}$ and show that the algorithm can not be logarithmically efficient in that case.

Suppose $\tilde{h}(x) \neq g_{\gamma(x)}$. Then,

$$\begin{split} \mathbb{E}_{\tilde{h}}\left[Z^{2}(x)\right] &= \mathbb{E}_{\tilde{h}}\left[L_{\tau(x)}^{2}(f|\tilde{h})\right] = \mathbb{E}_{\tilde{h}}\left[L_{\tau(x)}^{2}(f|g_{\gamma})L_{\tau(x)}^{2}(g_{\gamma}|\tilde{h})\right] \\ &= \mathbb{E}_{\gamma}\left[L_{\tau(x)}^{2}(f|g_{\gamma})L_{\tau(x)}(g_{\gamma}|\tilde{h})\right] = \mathbb{E}_{\gamma}\left[e^{\sum_{i=1}^{\tau(x)}K_{i}}\right], \end{split}$$

Suppose $\tilde{h}(x) \neq g_{\gamma(x)}$. Then,

$$egin{aligned} \mathbb{E}_{ ilde{h}}\left[Z^2(x)
ight] &= \mathbb{E}_{ ilde{h}}\left[L^2_{ au(x)}(f| ilde{h})
ight] = \mathbb{E}_{ ilde{h}}\left[L^2_{ au(x)}(f|g_\gamma)L^2_{ au(x)}(g_\gamma| ilde{h})
ight] \ &= \mathbb{E}_{\gamma}\left[L^2_{ au(x)}(f|g_\gamma)L_{ au(x)}(g_\gamma| ilde{h})
ight] = \mathbb{E}_{\gamma}\left[e^{\sum_{i=1}^{ au(x)}K_i}
ight], \end{aligned}$$

where

$$K_i = \log\left(\left(rac{f(X_i)}{g_{\gamma}(X_i)}
ight)^2 rac{g_{\gamma}(X_i)}{ ilde{h}(X_i)}
ight) = -2\gamma X_i - \log\left(rac{ ilde{h}(X_i)}{g_{\gamma}(X_i)}
ight).$$

Suppose $\tilde{h}(x) \neq g_{\gamma(x)}$. Then,

$$\begin{split} \mathbb{E}_{\tilde{h}}\left[Z^{2}(x)\right] &= \mathbb{E}_{\tilde{h}}\left[L_{\tau(x)}^{2}(f|\tilde{h})\right] = \mathbb{E}_{\tilde{h}}\left[L_{\tau(x)}^{2}(f|g_{\gamma})L_{\tau(x)}^{2}(g_{\gamma}|\tilde{h})\right] \\ &= \mathbb{E}_{\gamma}\left[L_{\tau(x)}^{2}(f|g_{\gamma})L_{\tau(x)}(g_{\gamma}|\tilde{h})\right] = \mathbb{E}_{\gamma}\left[e^{\sum_{i=1}^{\tau(x)}K_{i}}\right], \end{split}$$

where

$$\mathcal{K}_i = \log \left(\left(rac{f(X_i)}{g_{\gamma}(X_i)}
ight)^2 rac{g_{\gamma}(X_i)}{ ilde{h}(X_i)}
ight) = -2\gamma X_i - \log \left(rac{ ilde{h}(X_i)}{g_{\gamma}(X_i)}
ight).$$

Further,

$$\mathbb{E}_{\gamma}\left[K_{i}\right] = -2\gamma \mathbb{E}_{\gamma}\left[X_{i}\right] + \epsilon',$$

where $\mathbb{E}_{\gamma}\left[X_{i}\right] > 0$ and $\epsilon' = -\mathbb{E}_{\gamma}\left[\log\left(\frac{\ddot{h}(X_{1})}{g_{\gamma}(X_{1})}\right)\right]$. Further, we can prove that $\epsilon' > 0$.

Further, due to Jensen's inequality and Wald's equality,

$$\mathbb{E}_{\tilde{h}}\left[Z^{2}(x)\right] = \mathbb{E}_{\gamma}\left[e^{\sum_{i=1}^{\tau(x)} K_{i}}\right]$$

$$\geq e^{\mathbb{E}_{\gamma}\left[\sum_{i=1}^{\tau(x)} K_{i}\right]}$$

$$= e^{\mathbb{E}_{\gamma}\left[\tau(x)\right](\epsilon' - 2\gamma \mathbb{E}_{\gamma}[X_{i}])}$$

Further, due to Jensen's inequality and Wald's equality,

$$\mathbb{E}_{\tilde{h}}\left[Z^{2}(x)\right] = \mathbb{E}_{\gamma}\left[e^{\sum_{i=1}^{\tau(x)} K_{i}}\right]$$

$$\geq e^{\mathbb{E}_{\gamma}\left[\sum_{i=1}^{\tau(x)} K_{i}\right]}$$

$$= e^{\mathbb{E}_{\gamma}\left[\tau(x)\right](\epsilon' - 2\gamma \mathbb{E}_{\gamma}[X_{i}])}$$

Note that $\mathbb{E}_{\gamma}\left[\frac{\tau(x)}{x}\right] \to \frac{1}{\mathbb{E}_{\gamma}[X_1]}$ a.s. as $x \to \infty$. Thus, using $z(x) \sim Ce^{-\gamma x}$, we have that for $0 < \epsilon < \frac{\epsilon'}{\gamma \mathbb{E}_{\gamma}[X_1]}$,

Further, due to Jensen's inequality and Wald's equality,

$$\mathbb{E}_{\tilde{h}} \left[Z^{2}(x) \right] = \mathbb{E}_{\gamma} \left[e^{\sum_{i=1}^{\tau(x)} K_{i}} \right]$$

$$\geq e^{\mathbb{E}_{\gamma} \left[\sum_{i=1}^{\tau(x)} K_{i} \right]}$$

$$= e^{\mathbb{E}_{\gamma} \left[\tau(x) \right] \left(\epsilon' - 2\gamma \mathbb{E}_{\gamma} [X_{i}] \right)}$$

Note that $\mathbb{E}_{\gamma}\left[\frac{\tau(x)}{x}\right] \to \frac{1}{\mathbb{E}_{\gamma}[X_1]}$ a.s. as $x \to \infty$. Thus, using $z(x) \sim Ce^{-\gamma x}$, we have that for $0 < \epsilon < \frac{\epsilon'}{\gamma \mathbb{E}_{\gamma}[X_1]}$,

$$\lim_{x \to \infty} \inf \frac{\mathbb{E}_{\tilde{h}} \left[Z^{2}(x) \right]}{z(x)^{2-\epsilon}} = \lim_{x \to \infty} \inf \frac{\mathbb{E}_{\tilde{h}} \left[Z^{2}(x) \right]}{C^{2-\epsilon} e^{-2\gamma x + \epsilon \gamma x}} = \lim_{x \to \infty} \inf \frac{e^{x(\frac{\epsilon'}{\mathbb{E}_{\gamma}[X_{1}]} - 2\gamma)}}{C^{2-\epsilon} e^{-2\gamma x + \epsilon \gamma x}}$$

$$= \lim_{x \to \infty} \inf \frac{1}{C^{2-\epsilon}} \frac{e^{\frac{\epsilon' x}{\mathbb{E}_{\gamma}[X_{1}]}}}{e^{\epsilon \gamma x}} = \infty.$$

Further, due to Jensen's inequality and Wald's equality,

$$\mathbb{E}_{\tilde{h}}\left[Z^{2}(x)\right] = \mathbb{E}_{\gamma}\left[e^{\sum_{i=1}^{\tau(x)}K_{i}}\right]$$

$$\geq e^{\mathbb{E}_{\gamma}\left[\sum_{i=1}^{\tau(x)}K_{i}\right]}$$

$$= e^{\mathbb{E}_{\gamma}\left[\tau(x)\right]\left(\epsilon' - 2\gamma\mathbb{E}_{\gamma}\left[X_{i}\right]\right)}$$

Note that $\mathbb{E}_{\gamma}\left[\frac{\tau(x)}{x}\right] \to \frac{1}{\mathbb{E}_{\gamma}[X_1]}$ a.s. as $x \to \infty$. Thus, using $z(x) \sim Ce^{-\gamma x}$, we have that for $0 < \epsilon < \frac{\epsilon'}{\gamma \mathbb{E}_{c}[X_1]}$,

$$\lim_{x \to \infty} \inf \frac{\mathbb{E}_{\tilde{h}} \left[Z^{2}(x) \right]}{z(x)^{2-\epsilon}} = \lim_{x \to \infty} \inf \frac{\mathbb{E}_{\tilde{h}} \left[Z^{2}(x) \right]}{C^{2-\epsilon} e^{-2\gamma x + \epsilon \gamma x}} = \lim_{x \to \infty} \inf \frac{e^{x(\frac{\epsilon'}{\mathbb{E}_{\gamma}[X_{1}]} - 2\gamma)}}{C^{2-\epsilon} e^{-2\gamma x + \epsilon \gamma x}}$$

$$= \lim_{x \to \infty} \inf \frac{1}{C^{2-\epsilon}} \frac{e^{\frac{\epsilon' x}{\mathbb{E}_{\gamma}[X_{1}]}}}{e^{\epsilon \gamma x}} = \infty.$$

Conclusion: when $\ddot{h} \neq g_{\gamma}$, we will have no logarithmic efficiency... theorem proved!

Well, not entirely just yet. In passing, we assumed that $\epsilon' = -\mathbb{E}_{\gamma} \left[\log \left(\frac{\tilde{h}(X_1)}{g_{\gamma}(X_1)} \right) \right] > 0.$

Well, not entirely just yet. In passing, we assumed that $\epsilon' = -\mathbb{E}_{\gamma} \left[\log \left(\frac{\tilde{h}(X_1)}{\varepsilon_{\sigma}(X_1)} \right) \right] > 0.$

To see this, note that, again due to Jensen's inequality

$$\begin{split} \mathbb{E}_{\gamma} \left[\log \left(\frac{\tilde{h}(X_1)}{g_{\gamma}(X_1)} \right) \right] &< \log \mathbb{E}_{\gamma} \left[\frac{\tilde{h}(X_1)}{g_{\gamma}(X_1)} \right] \\ &= \log \int_{x: g_{\gamma}(x) > 0} \frac{\tilde{h}(x)}{g_{\gamma}(x)} g_{\gamma}(x) dx \\ &= \log \int_{x: g_{\gamma}(x) > 0} \tilde{h}(x) dx \\ &< \log 1 = 0. \end{split}$$

Another problem. Consider again a random walk $S_n := \sum_{i=1}^n X_n$, where the summands are independently distributed with common distribution F and mean μ (sign unimportant this time).

Another problem. Consider again a random walk $S_n := \sum_{i=1}^n X_n$, where the summands are independently distributed with common distribution F and mean μ (sign unimportant this time).

We are now interested in the family of rare events

$$A(n) = \{S_n > n(\mu + \delta)\},\,$$

where $\delta > 0$.

Another problem. Consider again a random walk $S_n := \sum_{i=1}^n X_n$, where the summands are independently distributed with common distribution F and mean μ (sign unimportant this time).

We are now interested in the family of rare events

$$A(n) = \{S_n > n(\mu + \delta)\},\,$$

where $\delta > 0$.

Due to the weak law of large numbers we have that

$$z(n)=\mathbb{P}\left(A(n)\right)\to 0$$

The main question: how to simulate the value of z(n) efficiently as n gets large?

To efficiently estimate $z(n) = \mathbb{P}(A(n))$, we again employ exponential change of measure, so that our algorithm becomes

$$Z(n) = e^{-\theta S_n + n\kappa(\theta)} \mathbb{1}_{\{S_n > n(\mu + \delta)\}},$$

where the X_i are sampled from the tilted distribution.

To efficiently estimate $z(n) = \mathbb{P}(A(n))$, we again employ exponential change of measure, so that our algorithm becomes

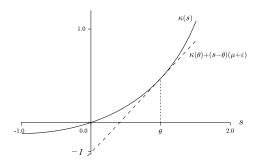
$$Z(n) = e^{-\theta S_n + n\kappa(\theta)} \mathbb{1}_{\{S_n > n(\mu + \delta)\}},$$

where the X_i are sampled from the tilted distribution. It turns out that θ should be chosen such that

$$\mathbb{E}_{\theta}\left[X\right] = \kappa'(\theta) = \mu + \delta.$$

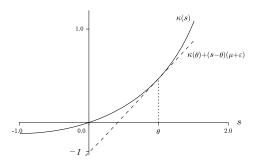
$$\mathbb{E}_{\theta}\left[X\right] = \kappa'(\theta) = \mu + \delta.$$

Under this constraint, $\theta > 0$, since $\kappa'(0) = \mu$ and κ is a convex function. Furthermore, we have that $I = \theta(\mu + \delta) - \kappa(\theta) > 0$.



$$\mathbb{E}_{\theta}\left[X\right] = \kappa'(\theta) = \mu + \delta.$$

Under this constraint, $\theta > 0$, since $\kappa'(0) = \mu$ and κ is a convex function. Furthermore, we have that $I = \theta(\mu + \delta) - \kappa(\theta) > 0$.



Theorem: The algorithm using the exponentially (θ) tilted measure is logarithmically efficient, and this measure is the only one to make the algorithm logarithmically efficient.

Proof: Structure similar to Siegmund's algorithm.

First, note that, since $\theta > 0$

$$z(n) = \mathbb{P}(A(n)) = \mathbb{E}_{\theta} \left[e^{-\theta S_n + n\kappa(\theta)} \mathbb{1}_{\{S_n > n(\mu + \delta)\}} \right]$$
$$= e^{-nI} \mathbb{E}_{\theta} \left[e^{-\theta(S_n - n(\mu + \delta))} \mathbb{1}_{\{S_n > n(\mu + \delta)\}} \right]$$
$$\leq e^{-nI}$$

Furthermore,

$$\begin{aligned} \operatorname{Var}_{\theta}\left[Z(n)\right] &\leq \mathbb{E}_{\theta}\left[Z^{2}(n)\right] = \mathbb{E}_{\theta}\left[e^{-2\theta S_{n} + 2n\kappa(\theta)}\mathbb{1}_{\left\{S_{n} > n(\mu + \delta)\right\}}\right] \\ &= e^{-2nI}\mathbb{E}_{\theta}\left[e^{-2\theta(S_{n} - n(\mu + \delta))}\mathbb{1}_{\left\{S_{n} > n(\mu + \delta)\right\}}\right] \\ &\leq e^{-2nI}. \end{aligned}$$

Thus, to establish logarithmic efficiency, we will require a lower bound of some sort on the z(n).

Note that, when the density of X_n is exponentially tilted with parameter θ ,

$$rac{S_n - n(\mu + \delta)}{\sqrt{n}}
ightarrow \mathcal{N}(0, \sigma_{ heta}^2)$$
 and

Thus, to establish logarithmic efficiency, we will require a lower bound of some sort on the z(n).

Note that, when the density of X_n is exponentially tilted with parameter θ ,

$$rac{S_n - n(\mu + \delta)}{\sqrt{n}}
ightarrow \mathcal{N}(0, \sigma_{ heta}^2)$$
 and

$$\lim_{n\to\infty}\mathbb{P}_{\theta}\left(\frac{S_n-n(\mu+\delta)}{\sqrt{n}}\in(0,1)\right)=\Phi(\frac{1}{\sigma_{\theta}})-\Phi(0)=:c>0.$$

Thus,

Thus, to establish logarithmic efficiency, we will require a lower bound of some sort on the z(n).

Note that, when the density of X_n is exponentially tilted with parameter θ ,

$$rac{S_n - n(\mu + \delta)}{\sqrt{n}}
ightarrow \mathcal{N}(0, \sigma_{ heta}^2)$$
 and

$$\lim_{n\to\infty}\mathbb{P}_{\theta}\left(\frac{S_n-n(\mu+\delta)}{\sqrt{n}}\in(0,1)\right)=\Phi(\frac{1}{\sigma_{\theta}})-\Phi(0)=:c>0.$$

Thus,

$$\begin{split} & \liminf_{n \to \infty} (e^{nI + \theta \sqrt{n}} z(n)) = \liminf_{n \to \infty} e^{\theta \sqrt{n}} \mathbb{E}_{\theta} \left[e^{-\theta (S_n - n(\mu + \delta))} \mathbb{1}_{\{S_n > n(\mu + \delta)\}} \right] \\ & \geq \liminf_{n \to \infty} e^{\theta \sqrt{n}} \mathbb{E}_{\theta} \left[e^{-\theta (S_n - n(\mu + \delta))} \mathbb{1}_{\{\frac{S_n - n(\mu + \delta)}{\sqrt{n}} \in (0, 1)\}} \right] \\ & \geq \liminf_{n \to \infty} e^{\theta \sqrt{n}} e^{-\theta \sqrt{n}} \mathbb{P}_{\theta} \left(\mathbb{1}_{\{\frac{S_n - n(\mu + \delta)}{\sqrt{n}} \in (0, 1)\}} \right) = c > 0. \end{split}$$

Thus, to show logarithmic efficiency, note that

$$\limsup_{n \to \infty} \frac{\mathsf{Var}_{\theta}\left[Z(n)\right]}{z(n)^{2-\epsilon}} = \limsup_{n \to \infty} \frac{\mathsf{Var}_{\theta}\left[Z(n)\right] e^{(2-\epsilon)(nl+\theta\sqrt{n})}}{z(n)^{2-\epsilon} e^{(2-\epsilon)(nl+\theta\sqrt{n})}}$$
$$\leq \frac{\limsup_{n \to \infty} e^{-\epsilon nl + (2-\epsilon)\theta\sqrt{n}}}{e^{2-\epsilon}} = 0.$$

To show that there is no other density which allows logarithmic efficiency, a proof using similar arguments as the one for Siegmund's algorithm can be given.