
The Software Invention Cube:
a Classification Scheme for Software Inventions

Jan A. Bergstra♣ Paul Klint♠

♣ Informatics Institute, University of Amsterdam
and

Faculty of Philosophy, University of Utrecht

www.science.uva.nl/˜janb

♠ Centrum voor Wiskunde en Informatica (CWI), Software Engineering Department
and

Informatics Institute, University of Amsterdam

www.cwi.nl/˜paulk

May 18, 2007

Abstract

The patent system aims at protecting inventions. The requirement that a software invention should
make “a technical contribution” turns out to be untenable inpractice and this raises the question what
constitutes an invention in the realm of software. We develop the Software Invention Cube (SWIC),
a classification of software inventions and use this classification to explore the meaning of the notions
“novelty”, “inventive step” and “someone skilled in the art” for software inventions. We come to the
conclusion that no meaningful distinction can be made between a software invention and a software
discovery, a distinction that is crucial in patent law. We also show that only in very few cases copyright
is an alternative for patents to protect software inventions.

In our analysis we make a distinction betweensoftware inventionism(the point of view that software
inventions per se can exist and precede any patenting or any other form of protection) and thetechno-
political decisionsthat can be combined with it. The result is a framework that enables reasoning about
the software inventions and their potential protection. Note that we completely decouple the question of
what constitutes a software invention and the desirabilityto protect such an invention in any way.

1 Background

As part of a three year European Commission (EC) study1 on the effects of software patents on innovation
we are involved in a multi-disciplinary effort to understand the effects of software patents. These effects
are studied from legal, economical, and computer science perspectives.

This paper is a sequel to our previous paper [4]. In that papera proposal was formulated for an IPR-
based software engineering life cycle and it was argued thatonly when an IPR-based software engineering
life cycle is used a rational strategy towards software patenting, software patent licensing as well as IPR
defense is possible. Further an extensive discussion was given regarding the problem of so-called trivial
patents. These seem to undermine the vitality and usefulness of the software patenting system. A number of
examples of patents and patent applications that may be considered trivial was given. Long term strategies
were discussed to remove trivial patents from the scene. Further a research agenda consisting of a number

1Study of the effects of allowing patent claims for computer-implemented inventions, a joint study by MERIT (University of
Maastricht, Netherlands), Centre of Intellectual Property Law CIER (University of Utrecht, Netherlands), Centrum voor Wiskunde
en Informatica (Amsterdam, Netherlands), Telecommunication Engineering School at the Universidad Politécnica de Madrid (UPM),
Spain and Centre for Research on Innovation and Internationalization (CESPRI) at Bocconi University, Milan, Italy.

1



Figure 1: From concept to innovation.

of promising research questions concerning software patenting was worked out in significant detail and
several policy recommendations were made.

The goal of the current paper is to study the notion ofinventionin the realm of software. In Section 2 we
start with the colloquial meaning of the word “invention” and gradually move on to legal and other aspects
of this notion. In Section 4 we give a summary of the state of the art in software and how it is documented.
The main topic of the paper is presented in Section 5 where we analyze what a software invention is. In
Section 5 we formulate the conclusions and recommendationsof this research.

2 What is an invention?

2.1 Colloquial meaning

Let us first consider the colloquial meaning of the wordinvention. The American Heritage Dictionary of
the English Language [5] defines invention as follows2

1. The act or process of inventing.

2. A new device, method, or process developed from study and experimentation.

3. Skill in inventing; inventiveness.

4. A discovery; a finding.

Webster Online [15] defines invention as

1. Discovery, finding.

2We do not consider meanings that are not relevant for the current discussion.

2



2. Productive imagination.

3. Something invented as (1) a product of the imagination; (2) a device, contrivance, or process origi-
nated after study and experimentation.

4. The act or process of inventing

WordNet [11] defines it as:

1. The creation of something in the mind.

2. A creation (a new device or process) resulting from study and experimentation.

3. The act of inventing

An invention is a creation of the mind, and both the process toarrive at this creation or the capability
to create it are referred to as invention. An invention is also supposed to be new, although it is unspecified
for whom. An invention is a novel device, material, or technique.

It is also useful to contrast invention with two other highlyrelated words:discoveryand innovation.
Although invention and discovery are synonymous in certaincontexts, it is also common to use invention
for a creation of the mind and discovery for a novel observation, usually of a natural phenomenon. We
quote Reference.com to explain the difference between invention and innovation [8]:

Following the terminology of political economist Joseph Schumpeter, an invention differs from
an innovation. While an invention is merely theoretical (even though it might have been filed
with the Patent Office), an innovation is an invention that has been put into practice. However,
this conflicts with the theory of social anthropologists andother social sciences researchers.
In social sciences, an innovation is anything new to a culture. The innovation does not need
to have been adopted.

We infer from the above that there are three phases that play arole in the colloquial meaning of the
word “invention”:

1. The capability or skill to invent.

2. The act or process of invention.

3. The outcome of this process.

Other phases like

4. Application of the invention.

5. Adoption of the invention.

belong to the realm of innovation. Another way to represent this distinction is shown in Figure 1. During
the conceptual phase, amental conceptfirst comes into existence in the mind of the inventor and is then
gradually refined, made more precise and finally described indetail; it is turned into adescribed concept.
Next the merits, if any, of the described concept have to be determined. If the outcome is positive, the
described concept is transformed into avalidated conceptthat forms the core of an invention. In the
subsequentinventionphase, the IPR and application policy for the invention haveto be determined:

• Keep it secret.

• Keep it secret and apply it.

• Publish it.

• Patent it.

In the innovationphase, the invention is applied and used.

3



2.2 Legal meaning

Merriam-Webster’s Dictionary of Law [14] gives the following definition for invention:

1. A device, process, or discovery under U.S. patent law thatis new and useful, that reflects extraordi-
nary creative ability or skill, and that makes a distinct andrecognized contribution to and advance-
ment of science.

2. The act or process of creating such an invention.

Although the word invention has a colloquial meaning, in thecontext of the law it has been defined as an
independent, technical notion. According to [12], the European Patent Convention (Article 52) a patentable
invention is characterized by three properties: novelty, inventive step, and industrial applicability. We give
some brief excerpts from the European Patent Convention to clarify these notions. EPC, Article 54 defines
noveltyas:

• An invention shall be considered to be new if it does not form part of the state of the art.

• The state of the art shall be held to comprise everything madeavailable to the public by means of
a written or oral description, by use, or in any other way, before the date of filing of the European
patent application.

EPC, Article 56 definesinventive stepas:

• An invention shall be considered as involving an inventive step if, having regard to the state of the
art, it is not obvious to a person skilled in the art.

EPC, Article 57 definesindustrial applicabilityas:

• An invention shall be considered as susceptible of industrial application if it can be made or used in
any kind of industry, including agriculture.

In order to apply the above definitions to the area of softwarewe will have to answer several questions:

• What is the “state of the art” in software?

• What is a person “skilled in the art” of software?

• What is a software invention?

• How can a software invention be compared with the state of theart?

We will return to these questions in the following sections.

2.3 Described inventions as a class of knowledge

Invention represents a form of knowledge that is usually identified with its readable textual description. An
invention is seen as adescribed invention.

At the opposite end of the spectrum areembodied inventions: described inventions that have been
applied in a specific, material, case. Formidable questionsarise here like: “what inventions are embodied
in an Airbus A 380?” or “Are any inventions embodied in the human body?”.

Patenting is about the creation of a body of described inventions and its use, whereas infringement deals
with the matching between described inventions and embodied inventions. The state of the art contains
described inventions as well as embodied inventions thoughthe degree to which is a matter of dispute and
development. By default we will use the term “invention” to denote a described invention. If an embodied
invention is meant this will always be made explicit, or be clear from the context.

Following the EPC we will explicitly not insist on the requirement that an invention be new.3 An
invention has been new at the time of its making, later on it isstill an invention though not new anymore.

3This counter-intuitive situation was pointed out to us by Reinier Bakels [2].

4



The advantage of this terminology is that a patent application can be said to contain an invention even
if its novelty is contested. It is very much like mathematical theorems: scientific journals prefer new
theorems, but the concept of a theorem as such in no way refersto novelty. Similarly, the discovery of
radio-activity is still to be classified as a discovery, though not a new or recent discovery.

We do not assume that all inventions constitute patentable subject matter by definition. Thus some
inventions may escape patenting, for instance, if regulations have been adapted because the economic or
legal effects of patenting certain classes of inventions are considered detrimental.

Summing up: being an invention is independent of either specific patents or even the existence or oper-
ation of entire patenting systems, like being awork is independent of the existence of copyright regulations.
Moreover, inventions go through a life-cycle, but never cease toexist.

It is the embodiments that may cease to exist, and in some cases all descriptions of an invention may
disappear. From a theoretical point of view the questions “Was the invention of the combustion engine
done by Archimedes ”, and “Was the invention of the combustion engine known to the ancient Greeks”
are reasonable historic questions, currently both provided by a negative answer. Such questions are never
seriously asked, but do not differ in principle from the reasonable question “Was RSA known to the KGB
before R, S and A developed it?” [9].

2.4 Discovery versus invention

In the natural sciences there is a conceptual tool to make a distinction between discovery and invention:
discoveries are embodied in nature while inventions are embodied in artefacts. Notions such as “reality”
and “observation” are used to explain that the instruments—being artefacts—used during experiments lead
to valid conclusions that are independent from the actual instruments being used.

In the world of software no plausible distinction between invention and discovery seems possible. As
we have seen in Section 2.1, dictionaries fail to make a sharpdistinction between these words. It is also
artificial to split discovery and invention as the results ofscience versus those of technology. As a con-
sequence, it seems hard to distinguish algorithmic inventions/discoveries—usually considered as scientific
discoveries and thus being unpatentable—from other software inventions. This explains why proponents
of software patents have a hard time delineating the scope ofpatentable content. We expect that no reliable
distinction can be made.

It is commonly considered a good thing that countries maintain groups of public knowledge workers
who produce software inventions/discoveries which are published before they can ever be patented. This
provides a balancing force against software patenting.

Even if those knowledge workers are classified as scientistsand are employed by general universities,
that fails to provide any criterion or deeper grounds as to why certain topics in software engineering are
being investigated with the purpose of publication in mind rather than that of patenting. It is the phenomenal
effectiveness of the scientific mode of operation that justifies the public costs that go with the employment
of these software engineering scientists as well as with thefacilities that they need for their work. However,
each theme within software engineering can be approached inthe publication-oriented scientific tradition
as well as in a more closed and patent-oriented commercial R &D tradition and both approaches can lead
to valid and useful outcomes. Hence we must conclude that neither approach leads to an answer of the
discovery versus invention question.

3 Copyright versus patent

Before we further elaborate the main theme of this paper—understanding what software inventions are—
a small digression on Intellectual Property Rights (IPR) isappropriate. The common view on copyright
versus patenting is that copyright protects theexpressionof an idea, while a patent protects theidea itself.
We have discussed this extensively in [4]. An intriguing case occurs when both, orthogonal, mechanisms
are applicable to protect the same artefact.

A first line of defense is to use copyright to protect the ownerof the expression (which is an embodiment
of the invention) against IPR violations. A second line of defense is to patent specific ideas.

5



Figure 2: The software life cycle

Since legal procedures involving patents imply significantlegal risks and associated costs, it will be
preferable to use – in case of a perceived violation – the firstline of defense (copyright) whenever possible.

This combined usage of copyrights/patents is only relevantfor a patent holder who actually exploits the
inventions described in his patents. He can only do so by producing embodiments and these are in many
cases susceptible to copyright violation. A patent holder who does not own embodiments of inventions
described in the patents he owns cannot resort to copyright protection. This implies that in the standard case
for which the patent system has been setup patents and copyright protection go hand in hand. Copyrighting
is an indispensable tool because copyright violation is often easier to establish than patent infringement.
However, patent protection is unavoidable in all cases where copyright protection falls short.

This standard case does not seem to correspond with the current practice of software protection. Only
rarely, holders of software patents want to enforce a monopoly on the production and delivery of the inven-
tions described in their patents, but instead they prefer touse copyright to protect one specific embodiment.
It is this strange situation where the practice of software patenting strongly departs from the philosophical
background of the patent system that leads to the optical illusion that copyrighting suffices.

Patents are intended to create temporary monopolies, but inpractice copyrights are misused to cre-
ate such software monopolies. Given the long duration of copyright protection, this gives undesired and
lengthy protection to pioneers in the market. The key problem is the excessive length of copyright pro-
tection in combination with the fact that copyright protection has not been designed for creating economic
monopolies.

4 What is the state of the art in software?

In software engineering, the software life cycle is a frequently used manner of organizing the software
development process. Figure 2 shows a strongly simplified version of the life cycle taken from a standard
textbook [13]. There are many models for software development but in most models one can distinguish
the following five phases:

1. Requirements engineering: collect the requirements andexpectations from the future owners and

6



users of the system.

2. Design: translate the requirements in a specification that describes the global architecture and the
functionality of the system.

3. Implementation: build the system.This amounts to transforming the design into software source
code.

4. Testing: test that the implemented system conforms to thespecification.

5. Maintenance: install, maintain and gradually improve the system.

It should be emphasized that the software life cycle covers design and construction of a software product
as well as its use. Each phase contains a Validation and Verification (V&V) sub-phase in which the quality
of the deliverables of that phases are controlled. Also notethe backward arrows that make this into a real
“cycle”: it is possible to become aware in later phases that decisions made in a previous phase have to be
revised.

The state of the art in software is the explicit body of knowledge about software engineering that is
documented in:

• The Software Engineering Body of Knowledge (SWEBOK) [10].

• University curricula.

• Text books.

• Publications by professional organizations such as Association for Computing Machinery (ACM,
see [1]) and the Institute of Electrical and Electronics Engineers (IEEE, see [6]).

• Web sites and mailing lists related to software projects.

• Publicly available results of the software engineering life cycle from software projects. This includes
all artefacts of the life cycle, including designs, source code, and documentation.

• Lectures, courses, and oral presentations about software engineering topics.

5 What is a software invention?

For each phase of the software engineering life cycle, one can distinguish the following four aspects that
play a role in inventions:

1. Thecapabilitiesto carry out this phase.

2. Theprocessthat is used to produce the results of each phase.

3. Thetoolsthat are used to support this process.

4. Thedeliverableof each phase, i.e., the output produced in the course of thisphase.

In principle, inventions are conceivable for all5 ∗ 4 = 20 phase/aspect combinations and for each
phase/aspect combination, the three properties novelty, inventive step, and industrial applicability have
to be specified. The final step in this analysis is therefore toinvestigate the IPR implications of each
phase/aspect combination. This is achieved by addressing the following five questions for each phase/aspect
combination:

1. What is the state of the art and how is it described?

2. What is the expected technical content of a described invention?

3. What is the expected size of an inventive step?

7



Figure 3: The Software Invention Cube (SWIC)

4. Who are skilled in the art?

5. How does an infringement look like?

The properties novelty, inventive step, and industrial applicability are contained in these questions, where
industrial applicability is contained in our technical content question. Observe that other authors make a
distinction between physical utility, logical utility andapplication utility [7], but we consider this as more
geared towards the US patent system where usability is emphasized as a requirement rather than technical
contribution.

By differentiating by life cycle phase it becomes clear how widely the answers to these questions can
and probably will differ. A requirements engineer will needskills coming from psychology, sociology,
business administration, formal specification and software engineering, while an implementor needs skills
in programming languages, algorithms, software architecture, and software engineering. In other words
software engineering is not a homogeneous skill but is basedon several scientific and engineering disci-
plines.

This differentiation thus leads to more specific answers andmay help to focus on described inventions.
For instance, in a description of a new compiler technique itis unnecessary (or rather undesirable) to
include usability arguments like “this invention can be used in a personal computer, including a hard disk,
CD drive, and a network connection ...” as one so often reads in patent descriptions. Unless, of course,
the invention is specifically related to these usability aspects. A typical example of the latter would be a
compilation technique that is specifically aiming at reduction of power usage in mobile devices.

This analysis is summarized in Figure 3 that shows theSoftware Invention Cube(SWIC). It shows the
five phases of the software engineering life cycle (Engineering phase/Technical aspect front plane), the four
aspects of each phase (Technical aspect/Legal assessment top plane), and the five IPR questions for each
phase/aspect pair (Engineering phase/Legal assessment right plane). In total5 ∗ 4 ∗ 5 = 100 combinations
are contained in the cube that need analysis. We will now discuss some representative cells of the cube.

8



6 Exploring the Software Invention Cube

We will now briefly explore some parts of the Software Invention Cube. Our intention is not to be ex-
haustive but to illustrate that the meaning of the notions along the Legal Assessment axis widely vary
depending depending on the location in the SWIC. The concepts “state of the art”, “technical content”,
“inventive step”, “skilled in the art” and “infringement” are context-dependent and cannot be defined for
software as a whole.

6.1 Requirements Engineering

As already mentioned, requirements engineering is about collecting the requirements and expectations from
the future owners and users of a system. It amounts to interview techniques, development of use cases of
the envisaged system, informal or formal specification of the results of these interviews or use cases, and
consistency checks on these specifications. For all four aspects inventions are conceivable.

6.1.1 Requirements Engineering/Capabilities

Consider the following two hypothetical inventions in Requirements Engineering/Capabilities:4

• An interview technique and a manner to train these techniques.

• A social game that leads to better use cases and user involvement.

The state of the art is contained in the requirements engineering literature as a whole but has links to
psychology, sociology, and may be business administration. The technical content is likely to be rather
non-technical, e.g., a method to let prospective users write stories how they expect the system to behave.
The inventive step might be the specific format of the story cards or the use of social techniques. A
person skilled in the art will have a background in requirements engineering, and in particular knowledge
elicitation and interview techniques. An infringement may, for instance, be an interview technique that
uses an essential part of the inventive step.

Discussion It will be clear that only very specific parts of the above inventions can be protected by
copyright. For instance, the layout of story cards. The obvious protective measure is a patent to protect the
idea on which the invention is based.

6.1.2 Requirements Engineering/Tools

Consider the following hypothetical invention in Requirements Engineering/Tools:

• A tool to administrate the results of interviews.

The state of the art is that part of the requirements engineering literature that is devoted to methods and
techniques. The technical content amounts to the specific aspects of interviews that are administrated and
handled by the tool. The inventive step might be the specific views that are given on the interviews, e.g.,
statistics that show how well the use cases have been coveredby different user groups. A person skilled in
the art might be either a requirements engineer or a tool builder. A typical infringement is a tool with the
same functionality as the inventive step.

Discussion Copyright can be used to protect the source code of the tool and its documentation. However,
the essential idea embodied in the tool can only be protectedby a patent.

4Here and in the following paragraphs we will suggest severalhypothetical inventions which we characterize in a very global
manner by omitting actual details. In a real case, such details would be essential.

9



6.2 Implementation

Implementation amounts to building the desired system by manually or (semi-)automatically transforming
the design into software source code.

6.2.1 Implementation/Tools

Consider the following hypothetical invention in Implementation/Tools:

• A profiling tool that indicates in a program’s source code theamount of energy that will be consumed
by a program when it is executed on a specific mobile device.

The state of the art consists of compiler construction, electronics, and software engineering. The tech-
nical content are the techniques to map instruction sequences for a specific device back to energy consump-
tion characteristics of the original source code and the ways to visualize this information. The inventive
step is the idea to associate energy consumption with sourcecode. A person skilled in the art is a compiler
writer specialized in energy-aware code generation or an electronics expert. A typical infringement is a
tool that implements this same idea.

Discussion Copyright can be used to protect the source code of the tool and its documentation. However,
the essential idea embodied in the tool can only be protectedby a patent.

6.2.2 Implementation/Deliverables

Consider the following hypothetical invention in Implementation/Deliverables:

• A system that predicts the Dow Jones index.

The state of the art consists of software engineering and financial mathematics. The technical content
are the mathematical models used to make predictions. The inventive step is the specific mathematical
model used and its specific implementation. A person skilledin the art is a software engineer or financial
specialist. A typical infringement is a software system that implements the same mathematical model.

Discussion The main deliverable of software implementation is source code and copyright can be used
to protect it. However, the essential idea embodied in the software can only be protected by a patent.

6.3 Testing

Testing is used to determine whether or not a system conformsto its specifications.

6.3.1 Testing/Process

Consider the following invention in Testing/Process:

• Test first: write test cases that describe the functional behavior of a system before any coding is done.
During implementation, use the test cases to check conformance with the intended system behavior.5

The state of the art consists of software engineering, in particular specification and testing. The techni-
cal content is the idea to start with test cases rather than touse them later in the life cycle. The inventive step
is this reordering of the life cycle. A person skilled in the art is a software engineer. A typical infringement
is a similar reordering of the life cycle.

Discussion The actual description of this invention can be protected bycopyright. Since this invention is
close to a business process, it is not clear whether it can be protected by a patent.

5This strategy is used in Extreme/Agile Programming [3].

10



6.3.2 Testing/Deliverables

Consider the following hypothetical invention in Testing/Deliverables:

• Produce a color-coded version of the source code, where green source code means well-covered by
test cases and red source code means that the code has not beenexecuted by the test cases.

The state of the art consists of software engineering, in particular testing. The technical content is the
idea to display test coverage as a color-coded version of thesource code. The inventive step the use of this
color-coding. A person skilled in the art is a tester. A typical infringement is a testing system that uses
color-coding for presenting test coverage.

Discussion The actual form of the color-coded source may be protected bycopyright. The idea itself can
only be protected by a patent.

7 Conclusions

We have given evidence that software inventions can be classified in a Software Invention Cube that dis-
tinguishes the phases of the software engineering life cycle, aspects that play a role in inventions, and
IPR views on them. The 100 combinations generated by this cube have widely different characteristics
regarding possibilities for protection.

The first conclusion that we can draw from this analysis is that software inventions do exist. We call
this point of viewsoftware inventionism. Note that we decouple this observation from anytechno-political
considerationswhether software inventions should be protected or not.

Given, the Software Invention Cube, we are now in the position to answer the four questions that we
raised in Section 2.2:

• What is the “state of the art” in software?

• What is a person “skilled in the art” of software?

• What is a software invention?

• How can a software invention be compared with the state of theart?

As our analysis shows, these questions are very hard to answer in general since they strongly depend on
specific circumstances. However, in a structured context, like the SWIC, specific answers are possible as
has been shown by our examples.

The SWIC can be helpful when used systematically for writingpatent applications, for organizing
prior art databases which are in fact “existing invention databases”, for reverse engineering “systems” into
constellations of embodied inventions and into families ofdescribed inventions. Much of the old heritage
will have to be restructured in terms of described inventions for which patents cannot be filed anymore.
Looking at existing practice this poses a significant modularization problem that can be solved (at least in
principle) by means of a systematic matching with the SWIC.

Most studies related to software patents focus on only a small part of the SWIC. In particular, Engineer-
ing phase = Implementation and Technical aspect = deliverables. The SWIC makes clear that significantly
more cases have to be considered.

An intriguing self-referential question is whether the software engineering life cycle itself is a software
invention. This question can also be asked for the Software Invention Cube. Both are scientific results
rather than inventions, as a consequence both are not patentable.

Our main conclusions are the following:

• To the best of our knowledge the Software Invention Cube is a new perspective on the subject of IPR
on software.

• Software inventions do exist, we call this software inventionism.

11



• No meaningful distinction can be made between software inventions and software discoveries.

• Although copyright on software plays a prominent role in thedebate on software patents, we have
shown that only in very few cases copyright is an alternativefor patents to protect software inven-
tions.

• Protection systems for software should be based on clear principles of knowledge organization. The
Software Invention Cube is a proposal for such a principle.

• In a first approximation the state of the art in software is contained in the body of knowledge as
documented, for instance, in SWEBOK [10]. However, important links exist to other areas such as
psychology, sociology, business administration, economics, manufacturing, and electronics. Due to
the wide applicability of software and software inventions, this may amount to links to most areas of
knowledge.

• Due to the vast amount of knowledge that constitutes the state of the art in software, the concept of
someone “skilled in the art” is useless. More specifically, it is useless unless this notion is specified
in further detail. SWIC provides a possible decomposition of “the art” into manageable subareas
where persons “skilled in (that part of) the art” can be identified.

Thedesirabilityof the protection of software inventions has technical, legal, economic, and even moral
aspects. We have explicitly not addressed such techno-political issues in the current paper.

Acknowledgments

Discussions with Reinier Bakels have drawn our attention tothe fact that, contrary to intuition, inventions
need not be new from a legal perspective. The comments made byBronwyn Hall on a draft of this paper
are gratefully acknowledged.

References

[1] Association for Computing Machinery (ACM).http://www.acm.org.

[2] R. Bakels. Private communication, 2005 2005.

[3] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

[4] J.A. Bergstra and P. Klint. About ”trivial” software patents: The isnot case.Science of Computer
Programming, 16(3):264–285, 2007.

[5] The American Heritage Dictionary of the English Language, 2000.

[6] Institute of Electrical and Electronics Engineers (IEEE). http://www.ieee.org.

[7] R. Plotkin. From idea to action: toward a unified theory ofsoftware and the law.International Review
of Law, Computers & Technology, 17(3), November 2003.

[8] Reference.com.http://Reference.com.

[9] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems.Communications of the ACM, 21(2):120–126, 1978.

[10] Software engineering body of knowledge (SWEBOK).http://www.swebok.org, 2004.

[11] Princeton University. Wordnet 2.0.http://wordnet.princeton.edu, 2003.

[12] E.A. van Nieuwenhoven Helbach, J.L.R.A. Huydecoper, and C.J.J.C. van Nispen, editors.Industrïele
Eigendom, volume Bescherming van technische innovatie. Kluwer, 2002. In Dutch.

12



[13] H. van Vliet. Software Engineering: Principles and Practice. Wiley, second edition, 2000.

[14] Merriam-webster’s dictionary of law. Merriam-Webster, Inc., 1996.

[15] Webster online.http://websteronline.com, 2005.

13


