The Software Invention Cube:
a Classification Scheme for Software Inventions

Jan A. Bergstra Paul Klint*

* |nformatics Institute, University of Amsterdam
and
Faculty of Philosophy, University of Utrecht

www.science.uva.nl/“janb

® Centrum voor Wiskunde en Informatica (CWI), Software Eegiring Department
and
Informatics Institute, University of Amsterdam

www.cwi.nl/"paulk

May 18, 2007

Abstract

The patent system aims at protecting inventions. The remént that a software invention should
make “a technical contribution” turns out to be untenabl@iiactice and this raises the question what
constitutes an invention in the realm of software. We dqwele Software Invention Cube (SWIC),
a classification of software inventions and use this clasdiin to explore the meaning of the notions
“novelty”, “inventive step” and “someone skilled in the 'afor software inventions. We come to the
conclusion that no meaningful distinction can be made betwe software invention and a software
discovery, a distinction that is crucial in patent law. Wsoashow that only in very few cases copyright
is an alternative for patents to protect software invergion

In our analysis we make a distinction betwesarftware inventionisr(the point of view that software
inventions per se can exist and precede any patenting ortary form of protection) and thiechno-
political decisionghat can be combined with it. The result is a framework thabéss reasoning about
the software inventions and their potential protectionteNthat we completely decouple the question of
what constitutes a software invention and the desiraliifgrotect such an invention in any way.

1 Background

As part of a three year European Commission (EC) staaythe effects of software patents on innovation
we are involved in a multi-disciplinary effort to understhtine effects of software patents. These effects
are studied from legal, economical, and computer sciencsppetives.

This paper is a sequel to our previous paper [4]. In that pagepposal was formulated for an IPR-
based software engineering life cycle and it was argueddthigttwhen an IPR-based software engineering
life cycle is used a rational strategy towards softwaremtatg, software patent licensing as well as IPR
defense is possible. Further an extensive discussion was gegarding the problem of so-called trivial
patents. These seem to undermine the vitality and usefubidise software patenting system. A number of
examples of patents and patent applications that may bédeved trivial was given. Long term strategies
were discussed to remove trivial patents from the sceneh&ua research agenda consisting of a number

1study of the effects of allowing patent claims for compirtgiemented inventionsa joint study by MERIT (University of
Maastricht, Netherlands), Centre of Intellectual Propedw CIER (University of Utrecht, Netherlands), CentrunovaViskunde
en Informatica (Amsterdam, Netherlands), TelecommuitingEngineering School at the Universidad Politécnica deltl (UPM),
Spain and Centre for Research on Innovation and Interradtiation (CESPRI) at Bocconi University, Milan, Italy.

Concept Mental concept

Described concept

Validated concept
Invention
Innovation Y A4

Figure 1: From concept to innovation.

of promising research questions concerning software patewas worked out in significant detail and
several policy recommendations were made.

The goal of the current paper is to study the notiomaéntionin the realm of software. In Section 2 we
start with the colloguial meaning of the word “invention"dagradually move on to legal and other aspects
of this notion. In Section 4 we give a summary of the state efdtt in software and how it is documented.
The main topic of the paper is presented in Section 5 wherenalyze what a software invention is. In
Section 5 we formulate the conclusions and recommendatithés research.

2 What isan invention?

2.1 Colloquial meaning

Let us first consider the colloquial meaning of the worgdention The American Heritage Dictionary of
the English Language [5] defines invention as folléws

1. The act or process of inventing.

2. A new device, method, or process developed from study mperenentation.
3. Skill in inventing; inventiveness.

4. A discovery; a finding.

Webster Online [15] defines invention as

1. Discovery, finding.

2We do not consider meanings that are not relevant for theotdiscussion.

2. Productive imagination.

3. Something invented as (1) a product of the imaginatiopa(@evice, contrivance, or process origi-
nated after study and experimentation.

4. The act or process of inventing
WordNet [11] defines it as:

1. The creation of something in the mind.
2. Acreation (a new device or process) resulting from studl/experimentation.

3. The act of inventing

An invention is a creation of the mind, and both the processtive at this creation or the capability
to create it are referred to as invention. An invention i® algpposed to be new, although it is unspecified
for whom. An invention is a novel device, material, or tecjud.

It is also useful to contrast invention with two other highélated words:discoveryandinnovation
Although invention and discovery are synonymous in certaintexts, it is also common to use invention
for a creation of the mind and discovery for a novel obseovatusually of a natural phenomenon. We
guote Reference.com to explain the difference betweemtimveand innovation [8]:

Following the terminology of political economist Joseph@uapeter, an invention differs from
an innovation. While an invention is merely theoreticalgf@though it might have been filed
with the Patent Office), an innovation is an invention thad baen put into practice. However,
this conflicts with the theory of social anthropologists arhber social sciences researchers.
In social sciences, an innovation is anything new to a celtdrhe innovation does not need
to have been adopted.

We infer from the above that there are three phases that plalean the colloquial meaning of the
word “invention”:

1. The capability or skill to invent.

2. The act or process of invention.

3. The outcome of this process.
Other phases like

4. Application of the invention.

5. Adoption of the invention.

belong to the realm of innovation. Another way to represkistdistinction is shown in Figure 1. During
the conceptual phase naental concepfirst comes into existence in the mind of the inventor and é&nth
gradually refined, made more precise and finally describelgiail; it is turned into alescribed concept
Next the merits, if any, of the described concept have to lterdened. If the outcome is positive, the
described concept is transformed intovaidated concepthat forms the core of an invention. In the
subsequenhventionphase, the IPR and application policy for the invention havee determined:

Keep it secret.

Keep it secret and apply it.
Publish it.

Patent it.

In theinnovationphase, the invention is applied and used.

2.2 Legal meaning

Merriam-Webster's Dictionary of Law [14] gives the followg definition for invention:

1. A device, process, or discovery under U.S. patent lawishaéw and useful, that reflects extraordi-
nary creative ability or skill, and that makes a distinct aacognized contribution to and advance-
ment of science.

2. The act or process of creating such an invention.

Although the word invention has a colloquial meaning, in ¢batext of the law it has been defined as an
independent, technical notion. According to [12], the Frgran Patent Convention (Article 52) a patentable
invention is characterized by three properties: noveliyentive step, and industrial applicability. We give
some brief excerpts from the European Patent Conventiolatifycthese notions. EPC, Article 54 defines
noveltyas:

¢ Aninvention shall be considered to be new if it does not foart pf the state of the art.

e The state of the art shall be held to comprise everything naad#able to the public by means of
a written or oral description, by use, or in any other wayobefthe date of filing of the European
patent application.

EPC, Article 56 defineBwventive ste@s:

e An invention shall be considered as involving an inventitepdf, having regard to the state of the
art, it is not obvious to a person skilled in the art.

EPC, Article 57 definegdustrial applicabilityas:

¢ An invention shall be considered as susceptible of indaisipplication if it can be made or used in
any kind of industry, including agriculture.

In order to apply the above definitions to the area of softwaravill have to answer several questions:
e What is the “state of the art” in software?
e What is a person “skilled in the art” of software?
e What is a software invention?
e How can a software invention be compared with the state céttie

We will return to these questions in the following sections.

2.3 Described inventions as a class of knowledge

Invention represents a form of knowledge that is usuallpiified with its readable textual description. An
invention is seen asd@escribed invention

At the opposite end of the spectrum ambodied inventionsdescribed inventions that have been
applied in a specific, material, case. Formidable questiise here like: “what inventions are embodied
in an Airbus A 3807 or “Are any inventions embodied in the lambody?”.

Patenting is about the creation of a body of described imvesfnd its use, whereas infringement deals
with the matching between described inventions and emdddientions. The state of the art contains
described inventions as well as embodied inventions thélugldegree to which is a matter of dispute and
development. By default we will use the term “invention” terabte a described invention. If an embodied
invention is meant this will always be made explicit, or beaelfrom the context.

Following the EPC we will explicitly not insist on the regeiment that an invention be néwAn
invention has been new at the time of its making, later onstilsan invention though not new anymore.

3This counter-intuitive situation was pointed out to us byriRe Bakels [2].

The advantage of this terminology is that a patent appticatan be said to contain an invention even
if its novelty is contested. It is very much like mathemadtideorems: scientific journals prefer new
theorems, but the concept of a theorem as such in no way tefersvelty. Similarly, the discovery of
radio-activity is still to be classified as a discovery, thbunot a new or recent discovery.

We do not assume that all inventions constitute patentalidgst matter by definition. Thus some
inventions may escape patenting, for instance, if requiathave been adapted because the economic or
legal effects of patenting certain classes of inventiorscansidered detrimental.

Summing up: being an invention is independent of eitherifipgratents or even the existence or oper-
ation of entire patenting systems, like beingarkis independent of the existence of copyright regulations.
Moreover, inventions go through a life-cycle, but neverseetexist

It is the embodiments that may cease to exist, and in soms edlsgescriptions of an invention may
disappear. From a theoretical point of view the questionas\the invention of the combustion engine
done by Archimedes ”, and “Was the invention of the combustingine known to the ancient Greeks”
are reasonable historic questions, currently both pravimlea negative answer. Such questions are never
seriously asked, but do not differ in principle from the @zable question “Was RSA known to the KGB
before R, S and A developed it?” [9].

2.4 Discovery versusinvention

In the natural sciences there is a conceptual tool to makstection between discovery and invention:
discoveries are embodied in nature while inventions areoslieldl in artefacts. Notions such as “reality”
and “observation” are used to explain that the instrumesing artefacts—used during experiments lead
to valid conclusions that are independent from the actisituments being used.

In the world of software no plausible distinction betweewveintion and discovery seems possible. As
we have seen in Section 2.1, dictionaries fail to make a stlistmction between these words. It is also
artificial to split discovery and invention as the resultssoience versus those of technology. As a con-
sequence, it seems hard to distinguish algorithmic ineestdiscoveries—usually considered as scientific
discoveries and thus being unpatentable—from other sodtivaentions. This explains why proponents
of software patents have a hard time delineating the scopatefhtable content. We expect that no reliable
distinction can be made.

It is commonly considered a good thing that countries mairgaoups of public knowledge workers
who produce software inventions/discoveries which ardiglued before they can ever be patented. This
provides a balancing force against software patenting.

Even if those knowledge workers are classified as sciemtralsare employed by general universities,
that fails to provide any criterion or deeper grounds as tg wdrtain topics in software engineering are
being investigated with the purpose of publication in miatther than that of patenting. It is the phenomenal
effectiveness of the scientific mode of operation thatfiestithe public costs that go with the employment
of these software engineering scientists as well as witfettibties that they need for their work. However,
each theme within software engineering can be approachibe ipublication-oriented scientific tradition
as well as in a more closed and patent-oriented commercialR&dition and both approaches can lead
to valid and useful outcomes. Hence we must conclude th#tiereapproach leads to an answer of the
discovery versus invention question.

3 Copyright versus patent

Before we further elaborate the main theme of this paper-etstanding what software inventions are—
a small digression on Intellectual Property Rights (IPRappropriate. The common view on copyright
versus patenting is that copyright protects ¢éixpressiorof an idea, while a patent protects tidea itself
We have discussed this extensively in [4]. An intriguingecascurs when both, orthogonal, mechanisms
are applicable to protect the same artefact.

Afirstline of defense is to use copyright to protect the owoféhe expression (which is an embodiment
of the invention) against IPR violations. A second line ofestese is to patent specific ideas.

Figure 2: The software life cycle

Since legal procedures involving patents imply signifidegil risks and associated costs, it will be
preferable to use — in case of a perceived violation — thelifisof defense (copyright) whenever possible.

This combined usage of copyrights/patents is only relefaara patent holder who actually exploits the
inventions described in his patents. He can only do so byymiod embodiments and these are in many
cases susceptible to copyright violation. A patent holdeo woes not own embodiments of inventions
described in the patents he owns cannot resort to copyrigtegtion. This implies that in the standard case
for which the patent system has been setup patents and ghpgrotection go hand in hand. Copyrighting
is an indispensable tool because copyright violation isroftasier to establish than patent infringement.
However, patent protection is unavoidable in all cases ehepyright protection falls short.

This standard case does not seem to correspond with thentpreetice of software protection. Only
rarely, holders of software patents want to enforce a molyapothe production and delivery of the inven-
tions described in their patents, but instead they prefes¢ocopyright to protect one specific embodiment.
It is this strange situation where the practice of softwatepting strongly departs from the philosophical
background of the patent system that leads to the opticaldh that copyrighting suffices.

Patents are intended to create temporary monopolies, tpraittice copyrights are misused to cre-
ate such software monopolies. Given the long duration ofidgpt protection, this gives undesired and
lengthy protection to pioneers in the market. The key pnobie the excessive length of copyright pro-
tection in combination with the fact that copyright protenthas not been designed for creating economic
monopolies.

4 What isthe state of the art in software?

In software engineering, the software life cycle is a freglyeused manner of organizing the software
development process. Figure 2 shows a strongly simplifiesive of the life cycle taken from a standard
textbook [13]. There are many models for software develaygrhat in most models one can distinguish
the following five phases:

1. Requirements engineering: collect the requirementseapéctations from the future owners and

users of the system.

2. Design: translate the requirements in a specificationdbscribes the global architecture and the
functionality of the system.

3. Implementation: build the system.This amounts to tramsing the design into software source
code.

4. Testing: test that the implemented system conforms tegheification.
5. Maintenance: install, maintain and gradually improwegiistem.

It should be emphasized that the software life cycle covesigth and construction of a software product
as well as its use. Each phase contains a Validation andd&tiifn (V&V) sub-phase in which the quality
of the deliverables of that phases are controlled. Also tit@eéackward arrows that make this into a real
“cycle”; it is possible to become aware in later phases tieatsions made in a previous phase have to be
revised.

The state of the art in software is the explicit body of kna¥ge about software engineering that is
documented in:

e The Software Engineering Body of Knowledge (SWEBOK) [10].
e University curricula.
e Text books.

¢ Publications by professional organizations such as Aasioai for Computing Machinery (ACM,
see [1]) and the Institute of Electrical and ElectronicsiBagrs (IEEE, see [6]).

e Web sites and mailing lists related to software projects.

e Publicly available results of the software engineering ¢ifcle from software projects. This includes
all artefacts of the life cycle, including designs, sourode, and documentation.

e Lectures, courses, and oral presentations about softwgireering topics.

5 What isa softwareinvention?

For each phase of the software engineering life cycle, onalistinguish the following four aspects that
play a role in inventions:

1. Thecapabilitiesto carry out this phase.

2. Theprocesghat is used to produce the results of each phase.

3. Thetoolsthat are used to support this process.

4. Thedeliverableof each phase, i.e., the output produced in the course gbhizise.

In principle, inventions are conceivable for &l 4 = 20 phase/aspect combinations and for each
phase/aspect combination, the three properties novaltgntive step, and industrial applicability have
to be specified. The final step in this analysis is thereforeestigate the IPR implications of each
phase/aspect combination. This is achieved by addreswirigltowing five questions for each phase/aspect
combination:

1. What is the state of the art and how is it described?
2. What is the expected technical content of a describedhtioe?

3. What is the expected size of an inventive step?

Engineering phase

Technical aspect

Figure 3: The Software Invention Cube (SWIC)

4. Who are skilled in the art?

5. How does an infringement look like?

The properties novelty, inventive step, and industrialligppility are contained in these questions, where
industrial applicability is contained in our technical ¢ent question. Observe that other authors make a
distinction between physical utility, logical utility arapplication utility [7], but we consider this as more
geared towards the US patent system where usability is esiggithas a requirement rather than technical
contribution.

By differentiating by life cycle phase it becomes clear hoidely the answers to these questions can
and probably will differ. A requirements engineer will negkllls coming from psychology, sociology,
business administration, formal specification and sofveargineering, while an implementor needs skills
in programming languages, algorithms, software architegtand software engineering. In other words
software engineering is not a homogeneous skill but is bageskveral scientific and engineering disci-
plines.

This differentiation thus leads to more specific answersmaag help to focus on described inventions.
For instance, in a description of a new compiler technique itnnecessary (or rather undesirable) to
include usability arguments like “this invention can bedigea personal computer, including a hard disk,
CD drive, and a network connection ..."” as one so often reagaient descriptions. Unless, of course,
the invention is specifically related to these usabilityeasp. A typical example of the latter would be a
compilation technique that is specifically aiming at redhutbf power usage in mobile devices.

This analysis is summarized in Figure 3 that showsSt#ware Invention Cub&WIC). It shows the
five phases of the software engineering life cycle (Enginggrhase/Technical aspect front plane), the four
aspects of each phase (Technical aspect/Legal assesapghane), and the five IPR questions for each
phase/aspect pair (Engineering phase/Legal assessgieiplane). In totab « 4 « 5 = 100 combinations
are contained in the cube that need analysis. We will nonudsssome representative cells of the cube.

6 Exploring the Software I nvention Cube

We will now briefly explore some parts of the Software InventCube. Our intention is not to be ex-
haustive but to illustrate that the meaning of the notioms@lthe Legal Assessment axis widely vary
depending depending on the location in the SWIC. The coscipate of the art”, “technical content”,
“inventive step”, “skilled in the art” and “infringement’ra context-dependent and cannot be defined for

software as a whole.

6.1 Requirements Engineering

As already mentioned, requirements engineering is abdletting the requirements and expectations from

the future owners and users of a system. It amounts to it@riechniques, development of use cases of
the envisaged system, informal or formal specification efrésults of these interviews or use cases, and
consistency checks on these specifications. For all folgdsnventions are conceivable.

6.1.1 RequirementsEngineering/Capabilities

Consider the following two hypothetical inventions in Rggments Engineering/Capabilitiés:

e An interview technique and a manner to train these techsique

e A social game that leads to better use cases and user invehiem

The state of the art is contained in the requirements engimgkiterature as a whole but has links to
psychology, sociology, and may be business administrafidre technical content is likely to be rather
non-technical, e.g., a method to let prospective usergwtdries how they expect the system to behave.
The inventive step might be the specific format of the stomdsar the use of social techniques. A
person skilled in the art will have a background in requirata@ngineering, and in particular knowledge
elicitation and interview techniques. An infringement miyr instance, be an interview technique that
uses an essential part of the inventive step.

Discussion It will be clear that only very specific parts of the above intrens can be protected by
copyright. For instance, the layout of story cards. The obsiprotective measure is a patent to protect the
idea on which the invention is based.

6.1.2 Requirements Engineering/Tools

Consider the following hypothetical invention in Requirembis Engineering/Tools:
e Atool to administrate the results of interviews.

The state of the art is that part of the requirements engimgéterature that is devoted to methods and
techniques. The technical content amounts to the specfectsof interviews that are administrated and
handled by the tool. The inventive step might be the specifiws that are given on the interviews, e.g.,
statistics that show how well the use cases have been covgdiferent user groups. A person skilled in
the art might be either a requirements engineer or a tootléuilA typical infringement is a tool with the
same functionality as the inventive step.

Discussion Copyright can be used to protect the source code of the taldtiedocumentation. However,
the essential idea embodied in the tool can only be protdstedpatent.

4Here and in the following paragraphs we will suggest sevieyabthetical inventions which we characterize in a venybglo
manner by omitting actual details. In a real case, suchldetaiuld be essential.

6.2 Implementation

Implementation amounts to building the desired system hyually or (semi-)automatically transforming
the design into software source code.

6.2.1 Implementation/Tools

Consider the following hypothetical invention in Implentation/Tools:

o A profiling tool that indicates in a program’s source codeahmunt of energy that will be consumed
by a program when it is executed on a specific mobile device.

The state of the art consists of compiler construction tedeacs, and software engineering. The tech-
nical content are the techniques to map instruction seasdioc a specific device back to energy consump-
tion characteristics of the original source code and theswayisualize this information. The inventive
step is the idea to associate energy consumption with seodm A person skilled in the art is a compiler
writer specialized in energy-aware code generation or actrelnics expert. A typical infringement is a
tool that implements this same idea.

Discussion Copyright can be used to protect the source code of the taldtedocumentation. However,
the essential idea embodied in the tool can only be protdustedpatent.
6.2.2 Implementation/Deliverables
Consider the following hypothetical invention in Implentation/Deliverables:
e A system that predicts the Dow Jones index.

The state of the art consists of software engineering anddinbmathematics. The technical content
are the mathematical models used to make predictions. Mestine step is the specific mathematical
model used and its specific implementation. A person skilietie art is a software engineer or financial
specialist. A typical infringement is a software systent thgplements the same mathematical model.

Discussion The main deliverable of software implementation is soumgecand copyright can be used
to protect it. However, the essential idea embodied in tfitevaoe can only be protected by a patent.

6.3 Testing

Testing is used to determine whether or not a system conftariitsspecifications.

6.3.1 Testing/Process

Consider the following invention in Testing/Process:

e Test first: write test cases that describe the functionadtieh of a system before any coding is done.
During implementation, use the test cases to check confozenaith the intended system behavior.

The state of the art consists of software engineering, itiquéar specification and testing. The techni-
cal content s the idea to start with test cases rather thasgthem later in the life cycle. The inventive step
is this reordering of the life cycle. A person skilled in thiéia a software engineer. A typical infringement
is a similar reordering of the life cycle.

Discussion The actual description of this invention can be protecteddpyright. Since this invention is
close to a business process, it is not clear whether it candiegted by a patent.

5This strategy is used in Extreme/Agile Programming [3].

10

6.3.2 Testing/Deliverables

Consider the following hypothetical invention in TestiDgliverables:

e Produce a color-coded version of the source code, wher@a gmeace code means well-covered by
test cases and red source code means that the code has nexeegied by the test cases.

The state of the art consists of software engineering, itiquéar testing. The technical content is the
idea to display test coverage as a color-coded version dfdhece code. The inventive step the use of this
color-coding. A person skilled in the art is a tester. A tgbimfringement is a testing system that uses
color-coding for presenting test coverage.

Discussion The actual form of the color-coded source may be protectambpyright. The idea itself can
only be protected by a patent.

7 Conclusions

We have given evidence that software inventions can beifitasé a Software Invention Cube that dis-
tinguishes the phases of the software engineering lifeecyadpects that play a role in inventions, and
IPR views on them. The 100 combinations generated by this balve widely different characteristics
regarding possibilities for protection.

The first conclusion that we can draw from this analysis i$ saétware inventions do exist. We call
this point of viewsoftware inventionistmNote that we decouple this observation from geghno-political
considerationsvhether software inventions should be protected or not.

Given, the Software Invention Cube, we are now in the pasitibpanswer the four questions that we
raised in Section 2.2:

o What is the “state of the art” in software?
e What is a person “skilled in the art” of software?
e What is a software invention?

e How can a software invention be compared with the state céttie

As our analysis shows, these questions are very hard to ams\general since they strongly depend on
specific circumstances. However, in a structured contiket the SWIC, specific answers are possible as
has been shown by our examples.

The SWIC can be helpful when used systematically for writpagent applications, for organizing
prior art databases which are in fact “existing inventiotabases”, for reverse engineering “systems” into
constellations of embodied inventions and into familiesl@$cribed inventions. Much of the old heritage
will have to be restructured in terms of described inverditor which patents cannot be filed anymore.
Looking at existing practice this poses a significant modzddion problem that can be solved (at least in
principle) by means of a systematic matching with the SWIC.

Most studies related to software patents focus on only algraglof the SWIC. In particular, Engineer-
ing phase = Implementation and Technical aspect = delilesalhhe SWIC makes clear that significantly
more cases have to be considered.

An intriguing self-referential question is whether theta@fre engineering life cycle itself is a software
invention. This question can also be asked for the Softwawerition Cube. Both are scientific results
rather than inventions, as a consequence both are not phalent

Our main conclusions are the following:

e To the best of our knowledge the Software Invention Cube svaperspective on the subject of IPR
on software.

e Software inventions do exist, we call this software invenism.

11

e No meaningful distinction can be made between softwarenithvrs and software discoveries.

e Although copyright on software plays a prominent role in tledate on software patents, we have
shown that only in very few cases copyright is an alterndtivgpatents to protect software inven-
tions.

e Protection systems for software should be based on cleaziplés of knowledge organization. The
Software Invention Cube is a proposal for such a principle.

e In a first approximation the state of the art in software istaored in the body of knowledge as
documented, for instance, in SWEBOK [10]. However, impoatrtanks exist to other areas such as
psychology, sociology, business administration, ecoespmanufacturing, and electronics. Due to
the wide applicability of software and software inventigiiiés may amount to links to most areas of
knowledge.

¢ Due to the vast amount of knowledge that constitutes the sfahe art in software, the concept of
someone “skilled in the art” is useless. More specificallis useless unless this notion is specified
in further detail. SWIC provides a possible decompositibfitlee art” into manageable subareas
where persons “skilled in (that part of) the art” can be idferd.

Thedesirabilityof the protection of software inventions has technicalalegconomic, and even moral
aspects. We have explicitly not addressed such techntgadlssues in the current paper.

Acknowledgments

Discussions with Reinier Bakels have drawn our attentiainécfact that, contrary to intuition, inventions
need not be new from a legal perspective. The comments maBedmyvyn Hall on a draft of this paper
are gratefully acknowledged.

References

[1] Association for Computing Machinery (ACMht t p: / / www. acm or g.
[2] R. Bakels. Private communication, 2005 2005.
[3] K. Beck. Extreme Programming Explained: Embrace Changddison-Wesley, 1999.

[4] J.A. Bergstra and P. Klint. About "trivial” software paits: The isnot caseScience of Computer
Programming 16(3):264—285, 2007.

[5] The American Heritage Dictionary of the English Langaag000.
[6] Institute of Electrical and Electronics Engineers (BEht t p: / / ww. i eee. or g.

[7] R. Plotkin. From idea to action: toward a unified theorgoftware and the lawnternational Review
of Law, Computers & Technolog¥7(3), November 2003.

[8] Reference.comhtt p:// Ref erence. com

[9] R. Rivest, A. Shamir, and L. Adleman. A method for obtamidigital signatures and public-key
cryptosystemsCommunications of the ACN1(2):120-126, 1978.

[10] Software engineering body of knowledge (SWEBOK).t p: / / www. swebok. or g, 2004.
[11] Princeton University. Wordnet 2.0it t p: / / wor dnet . pri ncet on. edu, 2003.
[12] E.A.van Nieuwenhoven Helbach, J.L.R.A. Huydecoped &.J.J.C. van Nispen, editotadustriéle

Eigendomvolume Bescherming van technische innovatie. Kluwer2200 Dutch.

12

[13] H.van Vliet. Software Engineering: Principles and Practic&/iley, second edition, 2000.
[14] Merriam-webster’s dictionary of law. Merriam-Websstinc., 1996.

[15] Webster onlineht t p: / / webst er onl i ne. com 2005.

13

