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1 Introduction

The last decade has shown a growing concern with aspects of language in-
terpretation for which the truth conditional paradigm seems too poor. The
focus is now on the context change potential of a sentence rather than on
its truth conditions. Prime example is the dynamic semantics for predicate
logic introduced in [Groenendijk and Stokhof 1991].

Besides introducing new techniques in formal semantics, these dynamic
systems also offer new challenges for logic, because they allow for more vari-
ation in the notion of consequence. These new notions of consequence differ
from the classical ‘preservation of truth’ notion in various respects. They
have different structural properties, which means, amongst other things,
that standard constructions for proving completeness do not apply.

In this paper we will be concerned with the semantics for ‘might’ and the
three consequence relations in the update semantics of [Veltman 1991]. The
consequence relations are introduced and studied in an abstract setting in
section 2. Next we will turn to the logics for ‘might’ that these consequence
relations give rise to. We will present three sequent-style systems; each of
them is shown to be complete and decidable. The final section contains a
general cut elimination result.!

!This paper grew out of a talk by Frank Veltman in which he presented three complete
sequent systems for ‘might’ (corresponding to the three notions of validity). Jaap van
der Does streamlined the sequent systems so that they lend themselves to (Cautious) Cut
elimination [van der Does 1994], and Willem Groeneveld supplied in his thesis the more
general outlook that is now presented in section 2. See [Groeneveld and Veltman 1994]
(section 3). Cf. also [Groeneveld 1995]. The first author takes part in the PIONIER
project ‘Reasoning with Uncertainty’ (NWO grant PGs —22-262). For the other two au-
thors the work for this paper formed part of the Esprit Basic Research Project byAna
(6852). Some of the results presented here are also proved by [Van Eijck and De Vries
1995] by means of a Hoare logic, and a translation into S5.



2 Abstract Update Semantics

A system of dynamic semantics for a given language specifies a set of infor-
mation states and for each sentence a binary relation between information
states. In this section we completely abstract away from any specific fea-
ture of the information states, and from any syntactic detail of the language
under consideration.

Definition 2.1 (Frames) Suppose L is some non-empty set of symbols.
Then a frame for £ is a structure F = (X, ([¢]F)pec), where ¥ is a non-
empty set, and for each ¢ € L, [p]r C ¥ X X is a binary relation on 3. A
frame F is generated if there is a unique state T € 3., called the minimal
state, such that for each o € 3, 0 = T or there are ¢4, ..., ¢, € L such that
(T,0) € [p1]F o o[pn]F, where o is relational composition. O

The three consequence relations introduced in the more concrete seman-
tics of [Veltman 1991] can already be defined in the present abstract setting.

Definition 2.2 (Consequence relations) Let £ be a set and consider
a frame F = (X, ([plr)pec). We define three concepts of validity for an
argument py,...,p, = ¢, i.e. an argument with a sequence of premisses
Pi,...,pn and a conclusion ¢. 2

1. Test Consequence:

F Ete p1y -y pn = ¢ M fix([py]7) 0 - - -0 fix([pa]7) € fix([q]x)
2. Ignorant Consequence:

F Fic p1y--ypn = qiff (T,t) € [p1]Fr o0 [pn]F implies (¢,t) € [¢]F
3. Update Test Consequence:

F Bute P1; -+ pn = ¢ iff 1ge([p1]ro---o[pn]x) C fix([q]x) o°

When (2,¢) € [¢], ¢ is a fixed point of the relation [¢]. This means that
an update with ¢ does not force an agent who happens to be in state ¢ to
change it. Apparently, the information supplied by ¢ is already contained
in ¢: ‘the state ¢ supports ¢’, as we shall say, or ‘p is accepted in 7’.

2fiz, do and rge respectively stand for the operation of taking the set of fixed points,
the domain, and the range of a binary relation.

®The subscripts are mnemonic: ‘tc’ stands for ‘test consequence’, ‘ic’ for ignorant
consequence, and ‘utc’ for update test consequence.



Given this, it is easy to see that the consequence relations of definition 2.2
are all based on the idea that an argument is valid if and only its conclusion
is supported by its premises.

In F¢c this idea is made more precise by requiring that the conclusion
be supported by any state which supports the premises. In the relations
;. and Fyupe a more dynamic interpretation is given. According to Fytc
an argument is valid iff its conclusion is supported by any state in which
one can arrive after learning the premisses (in the order in which they are
given). The relation k. is a special case of this: it says that an argument is
valid if starting from the state of ignorance any update with the premisses
will lead to a state which supports the conclusion.

In general Fyic implies =y and ., as is easily verified. The follow-
ing proposition shows that the converse implications also hold provided the
following constraints are satisfied:

e Permutation: for all p,q € L, [p]ro[q]lr = [¢]Fo [p]F
e Idempotency: for all p € £, rge([p]r) C fix([p]F)

Proposition 2.3 Let F = (X, ([p]Fr)pec) be a frame for £. Then the fol-
lowing hold.

1. If F Fute p1y- -« P = q then F Fie p1,.. oy pn = ¢q

2. If F =ute p1y..ypn = g then F Fi p1,...,pn = q.

3. If F satisfies Permutation and Idempotency, then F =¢c p1,...,p, = ¢
implies F Futc P1,--+yPn = ¢

4. If F is generated, and satisfies Permutation and Idempotency, then
F Fic 1y -+, pn = q implies F Fyge p1, ... pn = ¢

Proof: left to the reader. O

Given that the three consequence relations do not in general coincide, the
question arises in which respects they differ. We will approach this question
by proving that the relations validate different structural inference rules.

Definition 2.4 (Pure Structural Rule) Let d € {cl,icl,utc}. Define
Val(d,F) = {(X = p) | F F4 (X = p)}. Then a sequent rule R is a
pure structural rule for d provided that for all frames F, Val(d, F) is closed
under R. a



For example, a simple inspection of the definition of Fytc will show that the
rules of Left Monotony and Cautious Cut
X=q X=p XpY=yqg

X =g M XY = ¢

cc

are pure structural rules of Fy¢c, and in fact and any rule that is derivable
from LM and C'C will also be a pure structural rule for Fy.. A natural
question is then whether the rules LM and C'C completely determine the
pure structural rules of Fyic. The answer to this question is yes: if R is a
pure structural rule of Fy¢c then it is derivable from LM and CC.

Definition 2.5 (Structural Completeness) A set of sequent rules ¥ is
structurally complete for d if every pure structural rule of d is derivable from

Y (d e A{cl, icl,utc}). ]

The structural completeness results presented below are all based on
representation results in the following sense.

Definition 2.6 A set of sequent rules X is d-representable if and only if
for each set of sequents A that is closed under all rules of X, there exists a

frame Fy(A) such that: Fy(A) Fq (X = p) iff (X = p) € A. O

Lemma 2.7 If ¥ is d-representable then X is structurally complete for d.

Proof: Suppose that I is d-representable, but there is some pure structural
rule Sy,...,5,/S for d that is not derivable from Y. Let A be the closure
of {S1,...,5,} under all rules of ¥. Then S ¢ A. Then Fy4(A) F; Sy,
ooy Fa(A) Eq Sy, but Fg(A) ¥ S. So Val(d, F4(A)) is not closed under
Si,...,5,/8, contradiction. O

Consider these structural rules of inference:

XY:>qM X=p YpZ=q¢q
p=p Refl XpY = ¢ Mon YXZ = g
XpYpZ = ¢ X=gq X=p XpY=q
XpYZ = ¢ Contr X =g M XY =q  ¢C

The rules Refl (Reflexivity), C'ut, Mon (Monotony) and C'ontr (Contrac-
tion) are all familiar from classical logic. In fact any logic that defines valid
consequence as preservation of truth will validate these four structural rules.
LM (Left Monotony) is a weak variant of Monotony, and CC' (Cautious Cut)
is a weak variant of C'ut.



Proposition 2.8 On the class of all frames:

(i) Refl, Cut, Mon and Contr are structurally complete for .
(i) CC completely determines the structural rules of ..

(i) CC and LM are structurally complete for Fygc.

Proof: the details for (i) can be found in [van Benthem 1991a] or [Groen-
eveld 1995]. The main idea is to use lemma 2.7, and to represent an any
set of sequents A that is closed under Reflexivity, Cut, Monotony and Con-
traction, by a frame CI(A) = (X, ([p])pec), which is defined by ¥ = £<¢
and [p] = {(X, X) | (X = p) € A}.

The proof of (ii) is more simple than (iii); for the latter we cite the proof
of [van Benthem 1991c]. Suppose A is closed under LM and C'C', and define
a frame by (3, ([p])pec) by ¥ = L%, and

[p] = {(X, X) | (X = p) € AFU{(X, Xp) | X € L=}

Claim: (X = p) € A iff Ute(A) Fute X = p. This means that A is
Futc-representable, which is sufficient in view of lemma 2.7.

Proof of the claim: Assume that (py,...,p, = ¢) € A and suppose that
X € rge([pg]lo---o[pn]). Then Xg[p1]Xy1---Xu_1[pn] X, = X for some
Xo,...,X,. We show with induction on ¢ that (X;piy1,...,pn = q) € A.
By taking ¢ = n, this gives that (X = ¢) € A, so X € fix[q], which we are
after.

i = 0: The assumption that (p1,...,p, = ¢) € A and LM yields that
()(0])1, N —4 (]) € A.

i — 1+ 1: suppose as induction hypothesis that (X;pit1,...,pn = ¢) €
A. We have X;[p;+1]Xit1. By the definition of [-], one of the following
two cases must obtain. Case 1: X;41 = X;p;+1. The apply the induction
hypothesis. Case 2: X;41 = X; and (X; = pi+1) € A. Then apply CC, i.e
from X; = p;41 and X;piy1,...,0n = q we conclude X;pii9, ..., 0, = q.

Conversely, suppose that rge([pj]o---o[pn]) C fix([q]). Since p; ...p, €
rge([py]lo---o[pn]), also p1...p, € fix([g]). But the latter can only be if

(pl,,pan)EA a

The results of this proposition, for instance for Fytc, should be seen in
the following perspective. The content of proposition 2.8 (ii) is that for any
concrete relational semantics with Fytc as consequence relation, LM and
C'C will be valid structural inference rules. This means that any additional
structural inference rule that comes out as valid in such a concrete semantics



does not so much reflect a property of Fytc, but rather reflects a property
that is specific for the semantics.

An instance of this phenomenon can be seen by restricting the class of
all relational frames to the functional and idempotent frames (the ‘might’
semantics we will discuss below has these two properties).

X=p XY=q
XpY = ¢

» RRefl CM

Xp=>
Proposition 2.9 On the class of all functional idempotent frames:

(i) Refl, Cut, Mon and Contr are structurally complete for ==.
(i) CC, RRefl and C'M are structurally complete for .
(i) CC, LM , RRefl and C'M are structurally complete for Fygc.

Proof: For (i), note that the frame used as the relational representation for
Ftc in proposition 2.8 is in fact idempotent and partial functional. This can
be turned into a functional frame by the familiar trick of adding a new state
1 to which all missing transitions are directed.

Again F;. is simpler than Fyic so only the latter is treated here. One
can adapt the relational representation for =yt to

[p] ={(X, X) [ (X = p) e [FU{(X, Xp) [ (X = p) €1}

This yields a functional and idempotent model. The details, which are
similar to the relational case, are left to the reader. a

So, for Fic nothing changes, but the dynamic relations ;. and Fyic get
two extra structural rules, RRefl and C'M. In fact, for Fyic the correspon-
dence is that RRefl characterizes idempotency, and C'M is valid due to
functionality. For a detailed discussion of Fytc in the context of idempotent
and functional updates the reader is referred to [Groeneveld 1995].

3 ‘Might’: syntax and semantics

In this section the syntax and semantics of the propositional language M is
presented.

The syntax of M is defined on top of a standard propositional language
over a set of propositional letters P := {p;,...,py,-..}. There is a dis-
tinction between Lo and £q formulas in order to preclude iterations of the
might-operator.



Definition 3.1 (syntax) Lo Fou=p | ~Fo| (Fo A Fo)
Ly Fyu=Fy|MFy =

Semantically, MF (read ‘It might the case that F”), is interpreted as an
operator which tests for consistency, a metaproperty. So, the fact that M
only occurs as an outermost operator corresponds to a strict division between
the object language Lo and the metalanguage £;. Below, formulas of the
form My are called M-formulas.

The semantics of M specifies the update function associated with a for-
mula, not its truth conditions. More precisely, a formula ¢ denotes a func-
tion from information states to information states.

Definition 3.2 (information structures, models, updates) An infor-
mation structure is a structure 7 := (1, A, T, F;) consisting of a Boolean
algebra (hence: BA) (1, A, T) with a family of operators F; : 1" — 1.4 A
model for a vocabulary P is an information structure Z := (I,AT, [[p]]z>pep,
where the update functions [p[* : 1 —» I must satisfy:

a. ip]Ci introspective
b. If ¢ C j then ¢[p] C j[p] monotone
c. IfiC j[p] then i C i[p] stable

Here C is defined by ¢ C jiff ¢t Aj = j, as usual. When no confusion is likely
the superscript 7 is omitted. The argument is placed before the function
so as not to disturb the order among the formulas in case of the sequences
introduced below.

With every formula ¢ an update function [¢]? : I — Lis given as follows.

a. i[p] = i[p]
i[~¢] = i—ily]

c. ilpAY] = dp]AiY]
[

i Mg - {z if i) # L

1 otherwise

Here L =4 T°¢ is the inconsistent information state, and 7 — 7 =4¢ ¢ A j°.
Finally, the update function of a sequence of formulas oy ...0, is defined
inductively by i[oy ...0,]F = (i[o1 .. .0n_1])[0.]". O

*Cf. [Van Benthem 1991c] and [Kanazawa 1994a,b] for a more general relational notion
of information structure. We will use basic facts concerning BA’s without much notice.



Perhaps the most prominent feature of definition 3.2 is that all formulas
are interpreted as operators on a BA. This move to a higher level enables a
uniform definition of interpretation. But Lo formulas can also be interpreted
as elements of a BA.

Proposition 3.3 For all ¢ € £y and all states @: i[p] =i A T[¢].
Proof: Induction on the structure of ¢. The atomic case is based on the
fact that [p] is introspective, monotone, and stable. O

Proposition 3.3 reveals to what extent the constraints on [p] are preserved
under the definition of [¢]:

Corollary 3.4 For all formulas ¢, [¢] is introspective and monotone. It is
stable in case ¢ is a formula of L. ad

A further consequence of 3.3 is that [¢] is idempotent: ¢[¢][¢] = i[¢], for all
@ and all © € Z. Proposition 3.3 does not hold for M-formulas. The next
proposition collects some useful properties of sequences of formulas.

Proposition 3.5 For all sequences II, II’, and all 7 € Z:
i) L) =1
ii) L, T = [

ii) i[ll, o, I1'] C 4[11, 1]

iv) i[I1] C i[Ilo]

v) i[[1] # L iff ¢[I1*] = ¢[II§] # L for each initial segment I1* of II.

I1y is II with all M-formulas erased.
Proof: We only prove (v). One direction is clear, so assume ¢[I1] # L. First
note that no initial segment I1* has ¢[II*] = L; otherwise, ([II] = L by (i~
ii). As to the remaining claim, distinguish two cases in an induction on the
length of IT*.

o [I*= A, ¢ with ¢ € Ly. Then: ¢[A, @] =i n. 1[Ao, ¢] = t[(A, ¢)q)-

e 1" = A, M. It is an immediate consequence of i[A, ¢] = L that ¢[II*] =
1, which is impossible. So, ¢[A, ¢] # L, and therefore {[A, My] = i[A] =; 1.
i[Aq] = [(A, Myp)q]. =

The models introduced in [Veltman 1991] are more concrete than the
ones defined above. They are based on the following three assumptions.
First, a world is a finite set of proposition letters, which represent the



atomic facts that obtain in it. Second, an information state is a set of
worlds, the worlds compatible with the information at hand. Third, a model
should contain as many information states as possible. More in particu-
lar, given a finite set of proposition letters P, the models have the form
(pp(P),c,N, 0(P), 1, [pid)per, with and [p] defined by: i[p] = in{j €
o(P) : p € 7}. Tt is almost immediate that [p] is introspective, monotone,
and stable. This means that concrete models are a special case of the models
given by definition 3.2. By abuse of notation we denote these models by P,
and allow P to be infinite.

Concrete models have the advantage of turning an £y-semantics into one
for Li-sentences. Since a world in an information state is equivalent to an
valuation m : P — {0,1}, the concrete models are built by taking the
power of the set of models for cpL (Classical Propositional Logic). Given
the Lg-models, a concrete model contains all possible information states
which can be obtained from them. By contrast, definition 3.2 allows models
of this kind to consists of a field over a subset of the set of all £y-models.”
Proposition 3.6 has some properties of updating concrete information states
with a sequence I' of Lg-formulas in terms of their models.

Proposition 3.6 Let 7 be a state in P, I a sequence of Ly-formulas. Set
m(I') = m(AT), m a valuation.

i) T ={meP —{0,1}: m(l') =1}

i) il={mei:m(l) =1}
i) ) =¢iff e C T iff forallmei:m(l) =1
iv) T[] = Liff T ke

Proof: by 3.3, and the completeness of classical propositional logic. a

In case i[¢] = ¢, ¢ is accepled in i. Proposition 3.6 (iii) shows that acceptance
generalizes truth: ¢ accepts @ iff ¢ is valid in <.
4 Completeness and decidability

For convenience of the reader we repeat the definitions of ¢, F;. and Fygc,
but now in the context of M.

°A field is a non-empty set of sets which is closed under intersection and complemen-
tation.



Definition 4.1 (logical consequence) Let I a class of models, Z € I, and
let II, 7 be a sequence of L£i-formulas.

o I =L 7 iff: for all i € Z: i[7] = i, if i[o] = i for each o in II.
o I EL 7 iff: TZ[I, ] = TZ[m].
o I L, 7 iff: 4[IL, 7] = #[l1] for each i € Z.

For each of the relations F, 7 is called a consequence of Il relative to I
— I E7—iff I =F 7 for each 7 € L. O

The updates in M are Idempotent, but Permutation fails. So, proposi-
tion 2.3 does not apply. The next examples show that Fic, ;. and Fygc are
really different:

Mp,—pEge L Mp,—pWE. L Mp,—pFue L
pbﬁthq p|:ich pbﬁuthq

By combining the system M as defined in section 3 with either of the con-
sequence relations F; (7 € {tc, ic, utc}), three logics Mic, Mjc, and Mygc
are generated. In this section we will take a closer look at these logics, and
introduce a complete sequent system for each.

The sequent systems combine a sequent system for the “object” language
Lo with one for the “meta”-language £4,. More in particular, the three
might-logics share the system M which consists of two general structural
rules (reflexivity, cautious cut) together with classical logical rules for the
constants — and A, and the structural rules monotonicity, contraction, and
permutation for Ly-sequents. The system M is extended to a system M;
(¢ as above) by adding logical rules for the ‘might’-operator and structural
rules for £;-sequents.

With a view to natural language semantics it seems less than ideal to
distinguish between levels of language. But logically it is proficient. For
example, the completeness and decidability results below directly extend
well-know facts concerning classical logic.

Conventions The letters o, @, x,...vary over Lo-formulas, and A, T, ...
over finite, possibly empty sequences of Lo-formulas. Li-formulas are de-
noted by o, 7, p, ..., and finite, possibly empty sequences of such formulas
by II, A,.... The letters may carry sub- or superscripts. The set PrROP(II)
consists of the proposition letters used to built II. Il refers to the sequence
of Lo-formulas, which results from erasing the M-formulas in II. A sequent

10



is a pair (II, o). The sequent (I, 7) is derivable within sequent system S iff
[ Fg 7 can be derived from instances of the axioms and the rules of S.

4.1 The common part M

All three logics have the following rules in common.

The Classical Part consists of Lg-sequents.

Logical rules Lioi b x i Ther T
TotApabx A TheiAg, 70
The o Lok o ok X
[t e o=k x
Structural rules
I+ VAR X Lo, AF X ) F,so,zb,AFxperm

TFo fmon F oA x ™ 0 AFy " Ty, 0,AF x

The Common £; Part consist of £;-sequents.

o Il,o,AFT

efl cautious cut

orol ImAFT

Observe that in the context of the classical structural rules cautious cut,
referred to as ‘ccut’, is equivalent to the familiar cut rule.

Tk ApAFY
AT, A F

cut

To be precise, monotonicity and ccut imply cut, while contraction, per-
mutation and cut imply ccut. This means that the system Mg, which is
M restricted to Lg-sequents, is a sound and complete sequent calculus for
classical logic.

Fact 4.2 T |—M0 Y = r |:cpl ©

Since the might-logics are obtained by adding logical and structural rules to
M, they also have:

Fact 4.3 ', o =T hm g

Finally, for each extension M; of M the reflexivity rule can be restricted to
proposition letters. This is handy, for it means that in the ccut-free variant
of M; the rule need not be considered as ‘might’ introducing.

11



4.2 The test logic M,

The logic My is the simplest of the three logics introduced above. In this
section we define a sequent system Mjic that completely axiomatizes Myc.
M. consists of M together with the following rules:®

Logical rules

Ak e o
A, My =My M ™
Structural rules
Irmer - I, o pIl'-T7
L 2P ' perm
I, o, 0" 0 HI—TRmOH H’,p,U,H’I—Tp

In the soundness proof below, i[ll] = ¢ will mean that i[o] = ¢ for all o in
II. (Given that all updates are introspective, we are allowed to so).

Proposition 4.4 (soundness) The system M. is sound with respect to
class of all models: if Il k. 7 then II K. 7.

Proof: We show that rule M preserves |:tIc- The other cases are similar or
simpler. Assume that A, =L, ¢, That is: if i[A, @] = i then i[¢)] = i,
for each ¢« € Z. We derive a contradiction from the assumption that (i)
JIA] = 7 (i) j[M¢] = j and (iii)) j[Mv] # j, for some 57 € Z. It follows
from (iii) that j # L and j[¢] # L. Since 7 # L (ii) gives j[p] # L. Set
k = jl¢]. Then kE[A] = k, due to (i) and the fact that A is £y. Also,
k[¢] = k by the idempotency of [¢]. The main assumption gives: k[¢)] = k.
So, jlel[¥] = jlvlle] # L, which is in conflict with j[¢] = L. O

In rule M, the restriction to Lo-formulas is crucial, otherwise soundness
would be lost. For let P = {p,q}. Then pV ¢, M—p, —q |=fc 1. But pVv
¢, M—p, M—q |7£Z)c ML. E.g., j = {mi,mz} with m;(p) = ma(g) = 1 and
ma(p) = m1(g) = 0 accepts the last three formulas.

In the next proof II* stands for the sequence I1 with all M-operators erased.

Theorem 4.5 (completeness) If I i 7 then 11 k¢ 7.

Proof: Assume II . 7. Due to Lyon and Ry, this means that Iy Fie 7°.
Let P O proP(ll, 7). Classical completeness gives a model m : P — {0,1}
with (*) m(Ilp) = 1 and m(Ilp, 7*) = 0. We use this to find an 7 € P with
i[IT] = i and i[7] # 1.

5We use the same name for possibly different rules in different logics; it is the obvious
choice and no confusion is likely.

12



e 7 € Ly. Consider i = TP[lly]. Since i > m ¢ i[7] by (*) and propo-
sition 3.6 (iii), it holds that ¢[7] # ¢,. But also i[o] = ¢ for the formulas
o in II. In case o is in Ily this is clear from proposition 3.6 (iii). So let
I =1I'", My, [1"”. 1t is sufficient to prove i[¢] # L. If not proposition 3.6 (iv)
gives: Ilg, F¢p). Rule M with ¢ (and hence Mv) empty: Ilp, M Fc.
So by permutation: IIj), My, ITj F¢c. Lmon and Rpon turn this into the
contradictory: II k¢ 7.

o 7 ¢ Lo. Consider i = TP [=7*,I1y]. By proposition 3.6 (iii): i[7*] = L.
So i[T] = L # 1, using (*). But ¢[o] = i for o in II. As before the o in Ily pose
no problem. In case IT = II', My, I’ it suffices to prove i[¢] # L. Assume
otherwise. Proposition 3.6 (iv) gives: =7*, Ilo, ¢ Fcp1. Hence Ilg, ¢ Fepp 7°.
Contrary to the assumption one can show that Il ¢, 7 by means of M,
permutation, and the monotonicity rules. a

The next two corollaries are seen to hold by checking the above proofs.

Corollary 4.6 M;. is sound and complete with respect to the model P,
with P the proposition letters used to generate the formulas. |

Corollary 4.7 (ccut elimination) The system M. is deductively equiv-
alent to the system without the ccut rule. a

Corollary 4.8 (decidability) The logic My, is decidable.
Proof: For the ccut-free version of M. it holds that IT . 7 iff:
(i) 1P ey or [P ¢y 7° for a permutation [P of II; or
(ii) (IP)g F¢py 7* for a permutation 1P of II.

But (i) and (ii) only use finitely many instances of the decidable relation
l_cpl' O

4.3 Starting from ignorance: the logic M;.

The main result of this section states for each finite set of atoms P we can
find a sequent system M. that completely axiomatizes Mj;. on the model
P. The sequent system M. over the language P consists of M and the
following L;-rules.

Logical rules

I, o
I, M

IAFT ke

L II,Mp, A7 ™2 I1 - Mo

Rm

13



S @1, 0F @, 6
R VT
In rule M, § is required to be a complete diagram relative to the finite P;

that is, 6 is a sequence (=)py,..., (—)p, of (negations of) atoms such that
each p € P occurs exactly once.

Structural rules

Proposition 4.9 (soundness) The system M;. is sound with respect to
the model P: if Il k. 7 then II |=i72 T.

Proof: We only consider rule M. Assume T[§,v] = T[] for all v in I, 9.
Since § is a diagram, classical completeness gives a valuation m such that

m(I',¥) =1. So T[[', 4] # L, and therefore T[I', My)] = T[I']. ]

Notice that the proof requires T to contain all Lg-models. Completeness is
established by means of the following lemma.

Lemma 4.10 If II ., then T[II'] = T[II}] for each initial II" of II.
Proof: We distinguish two cases in an induction on the length of I

o [I'=A, ¢ with ¢ € Lo. Then T[A, ¢] =in. T[Ao, ¢] = T[(A, ¢)o)-

o I[I' = A, M. It is sufficient to prove T[A, ¢] # L. For then T[A, Myp] =
T[A] = T[(A,Mg)o]. So let IT = II', 11", and assume T[A,¢] = L. By the
induction hypothesis: T[Ag, ] = L. Proposition 3.6 (iv): Ag, ¢ F¢p- So
I, 11" k¢ by respectively using L1, Lmon, and Lyz. But this contradicts
the assumption. a

Theorem 4.11 (completeness) If IT = 7, then II k. 7.

Proof: Assume Il . 7. Two cases are to be distinguished. e 7 € Ly. Then
with Lma: Ilp tic 7, and hence Ilg f/.) 7. Classical completeness gives some
m with m(Ilp) = 1 and m(Ilp, 7) = 0. Due to Rymon I1 .. Hence, by lemma
4.10: T[] = T[llp] 3 m & T[ll, 7] = T, 7]

o 7 = M. Claim: g, ¢ F¢p). To prove this claim, note that if Ilo, ¥ .
classical completeness gives a diagram ¢ with § k. v for each v in Ilg, ®.
Rule M: Iy F¢p M. Hence, by Liyyp: 1 F¢p M, a contradiction.

Since Ig, ¥ F¢p) and by Ripon: I Fie, lemma 4.10 and proposition 3.6 (iv)
imply: T[II, ] = T[llp, %] = L. Hence: T[II,M#%] = L. On the other hand,
by lemma 4.10 and classical completeness: T[II] = T[llg] # L = T[II, M].

In both cases it is found that IT 2 7. O

Since P is finite, it is clear that M;. is decidable.
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4.4 The update-test logic M.
In this section we axiomatize Mygc, i.e., M with Fyic as its consequence

relation. The sequent system My extends M with two logical rules:

ILAFT Aol x all x in ') 9)
I, Mp, A7 ™ A, Mp, I' - My

Rule M allows ¢, I'; and % to be empty. Therefore, the following rules in
are instances of M.

Ak AFx (all x inT, %)
A, My = My AT+ My

Proposition 4.12 (soundness) The system My is sound with respect
to class of all models: if Il Fyte 7 then II Fyte 7.

Proof: Again we discuss only the rule M. Assume A, ¢ |=lzltc ~ for each vy
in I';¢. Pick ¢ € Z. In case i[A,p] = L it is clear that i[A, My, ', My] =
i[A, Mp,T']. So let i[A,¢] # L. By assumption i[A, ¢] = i{[A, ¢, [, ¢]. So
i[A, ¢, I',¥] # L and hence i[A,I',¥] # L. Therefore (*) i[A,I',My] =
i[A,T']. And since i[A, ] # L, also (**) i{[A,Mg] = i{[A]. But (*) and
(**) imply ¢[A, Mg, I', My)] = ¢[A, Mg, I']. The choice of ¢ was arbitrary, so
A, M, T EL M. O

Lemma 4.13 (consistency lemma) If I /¢ 7, then for each initial seg-
ment I’ of IT and each P 2 prop(Il, 7): TP[= A(Il, 7°), 1] # L.

Proof: Let P be a model of the relevant kind and set i = T7 [= A(Ilg, 7*)].
We use induction on the length of II' = A, 0.

Observe that it is sufficient to prove i[A,0%] # L. For if ¢®* = o we
are done. Whereas if 0 = Mg we have: i[ll'] = {[A,My] = i[A] %, L.
So assume ¢[A,0°%] = L. By the i.h. and corollary 3.5 (v): i[Ag,0°] = L.
According to corollary 3.6 and the definition of iz =A(Ilg, 7°), Ag, 0® F¢p1. So
by classical reasoning and fact 4.3: Ag, 0® Fute A(Ilg, 7°). Let I = I, 11"
R yields: Ag, 0°® Fuic v for each v in TIf), 7°. Rule M: Ag, o, 11§ Fute 7. (To
be precise, if 0 € Ly we assume ¢ in M to be empty, and similarly for 7.)
L proves: Il Fyic 7, a contradiction. |

Theorem 4.14 (completeness) If 11 Fyc 7 then 11 Fyge 7.

Proof: Assume Il l/y¢c 7, and let P O proOP(II, 7). Set ¢ = TP AIlg, 7%)].
Then by lemma 4.13 and corollary 3.5 (v): i[II] = ¢[Ilg] = T[-7*,1lg] # L.
It follows that i[II,7¢] = T[-7*,1lg,7*] = L. Whether or not 7* = 7, in
both cases we get i[[1] # L = i[Il, 7]. Therefore: IT ¥ 7. 0
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A check of the above proofs gives some corollaries.

Corollary 4.15 Mytc is sound and complete with respect to the model P,

with P the proposition letters used to generate the formulas. a
Corollary 4.16 If P = prop(I1,7), then Il Fyge 7 iff IT =2 7. O

Corollary 4.17 (decidability) The logic My is decidable.

Proof: In order to check whether or not Il byt 7 it suffices to search the
finitely many states of pPrROP(II, 7) (corollary 4.16). As soon as a counter
model is found we know Il e 7, but otherwise: Il Fyge 7. a

Corollary 4.18 (ccut elimination) The cautious cut rule can be elimi-

nated from Mygc. |
Proof: If at all, cautious cut is only used in the classical part, where it is
eliminable. a

This ends our discussion of Mytc.

We have been careful in presenting M as an extension of classical propo-
sitional logic. But to what extent does this approach generalize to other
‘base’ logics? That is, is it possible to restate the above result as a preser-
vation result of the form: for each complete Ly-logic of a certain kind, there
exists a might logic which is complete (and similarly for other properties).
The main point seems to be to find a generalization of the concrete models.
We have to leave this question open. A similar question can be asked with
respect to cautious cut elimination. But here we need not bother about
semantical issues since the result can be proved syntactically.

5 Cautious Cut Elimination

In this section we forget about set-theoretic interpretations and confine our-
selves to syntactic methods. We shall prove the following theorem concern-
ing generalizations of the update test logic for ‘might’.

Theorem 5.1 Let g be a consequence relation for Lg-sequents which is
reflexive, and closed under monotony and cautious cut. Extend the language
to an Li-language as in definition 3.1, and extend o to Fy for the £;-
language by closure under cautious cut and the rules M and Ly, of section 4.4.
If o has cautious cut elimination, then so has k.
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Notice that we need not assume reflexivity for £i-sequents, since it can be
derived by means of rule M. This is handy, for it means that in the ccut-free
variant of -y reflexivity need not be considered as ‘might’ introducing.

Proof of theorem 5.1 As in case of b, the relation g will contain logical
and structural rules for Lg-sequents. But the use of these rules is blocked
after an application of M or Ly,. This means that if ccut is applied to ccut-
free premisses that part of a derivation will have the following structure:

Ajotoy (yin T, o*) M A g x (xin TV, 7°)

M

AMp, T'Fo (L )(* ) A MY, T =7 (L )(* )
ko m Mo, AT m
AT ccut

Here, (M) indicates that M is applied at most once, and (Ly)* that Ly, is
used finitely many (possibly zero) times. Given this general form we prove
ccut-elimination as follows.

Let D be a derivation for ;. If D is ccut-free we are done. Otherwise
select an occurrence of ccut with cutt-free premisses. If this occurrence lies
within the Lg-part of D we know by assumption how to eliminate it. But if
the ccut is applied to £i-sequents we distinguish four cases.

Case I: There are no applications of M above the cut. Then, the situation
is:

o Fo ¢ . Ho,,Agbo ¥ .
e ) Teary U
ILAF ¢ cet
This can be reduced to:
oo @ o, 0, Ag o ¥ )
H07A0 F ¢ (L )* et
ILAE m

Here ccut occurs in the Lg-part and is hence eliminable.

Case II: In deriving the right-hand side premiss of the ccut, M is applied
once. The situation is:
§ o v (v in A, 7°)
Iy o x " HﬁaM@aAé'_T "
e (Lm) 11 A (Lm)
ImEy I, x,AFT .
,AFT et

17



We distinguish two subcases. When x occurs in Aj; we obtain a ccut-free
derivation from the left premiss by deleting this occurrence. But when x
occurs in IIj; we have IIj, = Iy, x, [1{; for some II{] (and hence Ag = I1j, Aj).
Then the above can be reduced to:
o Fo x Mo, x, I1g Fo v (v in Ag, 7°)
HOv Hgv ¥ + v (7 in A67 T.)
o, 11§, Mg, Aj 7 .
ILAFT (Lm)

ccut

Again, these ccuts are eliminable by assumption.

Case I1I: M is used once in deriving the left-hand side premiss of the ccut.
This case is trivial, for in the right premiss the ccut formula comes from Ly,.

Case IV: The derivations of both premisses contain an application of M.
Again the trivial reduction of the previous case may apply, but the situation
may also be more interesting:

Hé)vﬂa I_0 Y (7 in Hgv ¢) H67 Hgv T/} }_0 X (X in AOa T.)

M M
I, Mo, I1” = Mgy~ ™ I, Mo, IT", M4y, A = 7 mt
I, Mg, 17, A F 7 et
This reduces to:
H67H6/7¢|_0 X (X in AOaT.) mon
H67 14 l_O X (X in Hgv 1’1) H67 P Hgv ¢ |_0 X (X in AOa T.) cut
H67 p l_O X (X in Hgv AOa T.)
[T, Mg, TG, A - 7
! n (Lm)
' Mg, 1", A1
This completes the proof of theorem 5.1. a

Note that in reducing the ccut to Lo-sequents the £; part of the proof grows
at most n+ 1 steps, where n is the length of I}, ¢’ in the reduction of Case
IV. The other reductions shorten or do not alter the length of the proof.

If ko in theorem 5.1 is decidable, -y can be shown to be decidable too.
Except for ccut, the rules of Iy satisfy the subformula property. So the
following algorithm to check whether or not Il -1 7 is recursive:

i) If 7 € Lo check whether Il - 7.
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ii) If 7 = M check whether 11j), ¢ F¢ v for each v in II{j, %, and each
partition IT = II', My, I1” (¢, II{;, or ¥» may be empty).

By assumption Fq is decidable, so the recipe defines a finite search space with
all possible initial sequents to introduce the M-formulas in II, 7. Therefore,
IT -y 7 iff the algorithm finds a derivable Lg-sequent from which II Fy 7
can be derived. In particular, since by is decidable this argument gives a
syntactic proof of corollary 4.17.

6 Further Issues

In this section we mention two topics for further study.

Firstly, one would like to obtain similar results for formulas with nested
occurrences of the might-operator (cf. [Van Eijck and De Vries 1995]). Such
nestings are not allowed here, since the reflexivity axiom would then be lost.
E.g., the formula Mp A —p is not reflexive. One way to go would be to
assume that reflexivity only holds for proposition letters, and to argue that
the formulas which do not preserve this property are somehow inadmissible.
For instance, the example given corresponds to the unacceptable sentence:
‘it might be p and it isn’t p.’

Secondly, one may wonder about the minimal algebraic structure for
the Lg-part. For instance, do we retain completeness and decidability if we
generalize the structures to those of the form (I, A, L) with A associative
and idempotent, and L a left and right neutral element? [Kanazawa 1994b]
has some results in this direction for a partial version of ‘might’.
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