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Handout 1

1 Introductory remarks

1.1 Static vs. dynamic view

◦ Static view: meaning equals truth conditions
◦ Dynamic view: meaning is context-change potential

1.2 Influences

◦ Speech act theory
◦ Procedural semantics (AI, NLP)
◦ Stalnaker on presupposition and assertion
◦ Non-monotonic reasoning, defaults
◦ G̊ardenfors on belief revision

1.3 Dynamic interpretation

◦ Kamp’s discourse representation theory
◦ Heim’s file change semantics
◦ Game-theoretical semantics (Hintikka); discourse semantics (Seuren)

1.4 Dynamic semantics

Difference between dynamic interpretation and dynamic semantics:

Dynamic interpretation Locates the dynamics in the interpretation pro-
cess as such.

Dynamic semantics Places the dynamics of interpretation in the seman-
tics proper.

Assumption:
There is a difference between ‘interpretation’ and ‘semantics’.

Characteristics of dynamic semantics:
◦ Meaning is a function from contexts to contexts (‘update’).
◦ Updates are defined recursively.
◦ Entailment is defined in terms of updates.
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1.5 The nature of contexts

Assumption (unwarranted):
Language is primarily a tool for conveying information

Hence:
A context is an information state.

Information may concern various items, such as:
◦ Aspects of the world
◦ Aspects of the discourse
◦ Information of other speech participants

1.6 Modeling information states

An information state is modeled by a set of possibilities: those possibilities
which are open according to the information state.

Growth of information is elimination of possibilities.

[Caveats.]

1.7 Applications

Empirical issues:
◦ Incremental interpretation of discourse, c.q. texts
◦ Pronominal coreference: donkey anaphora, intersentential anaphora

(plurals, generalized quantifiers, symmetric and asymmetric quantifi-
cation)

◦ Modalities and modal subordination
◦ Tense and aspect (temporal structure of texts)
◦ Presuppositions, topic / focus
◦ Default reasoning (non-monotonic reasoning)
◦ Questions and answers (text coherence)
◦ Relational nouns and implicit arguments
Theoretical issues:
◦ The semantics – pragmatics boundary
◦ Formal properties of dynamic systems (expressiveness, completeness)
◦ Relations with proof systems
◦ The nature of variables
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2 Setting up this course

2.1 The nature of this course

What the course is not:
◦ A general overview of all the empirical issues and theoretical ap-

proaches.
Starting points:
◦ A specific descriptive area: the interaction of pronouns and modals.
◦ A specific theoretical approach: our own.
Characteristics:
◦ A mixture of basic and more advanced issues.
◦ Partly work in progress.

2.2 The contents of this course

Tentative schedule:

Week 1: core bussiness
Class 1. Introduction; outline of descriptive area.
Class 2. Framework 1: Modeling information states.
Class 3. Framework 2: Updates; semantic notions.
Class 4. Predicate logic: coreference.
Class 5. Modal predicate logic: modality and coreference.

Week 2: diversification
Class 6. Comparison with standard modal predicate logic.
Class 7. Modal subordination.
Class 8. Dialogue structure.
Class 9. Questions and answers.

Class 10. Free for all.
The material of the first week will be available in a course book which is on
its way now from Amsterdam to Copenhagen.
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3 Modality, coreference, and discourse

3.1 Modality

Order matters:

(1) a. It might be raining outside [. . . ] It isn’t raining outside.
b. 3p ∧ . . . ∧ ¬p

(2) a. It isn’t raining outside [. . . ] ∗It might be raining outside.
b. ¬p ∧ . . . ∧3p

Non-equivalence needed for propositional modal logic:

(3) 3φ ∧ ¬φ 6≡ ¬φ ∧3φ

3.2 Coreference

Intersentential anaphora:

(4) a. A man walks in the park. He wears a blue sweater.
b. ∃xPx ∧Qx

(5) a. A man wearing a blue sweater is walking in the park.
b. ∃x(Px ∧Qx)

Equivalence needed for predicate logic:

(6) ∃xφ ∧ ψ ≡ ∃x(φ ∧ ψ)

Donkeys!

(7) a. If a farmer owns a donkey, he beat it.
b. ∃x(Px ∧ ∃y(Qy ∧Rxy))→ Sxy

(8) a. Every farmer who owns a donker, beats it.
b. ∀x(Px ∧ ∃y(Qy ∧Rxy))→ Sxy)

Equivalence needed for predicate logic:

(9) ∃xφ→ ψ ≡ ∀x(φ→ ψ)
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3.3 Modality and coreference

Binding vs. scope:

(10) a. There is someone hiding in the closet. He might have done it.
b. ∃xQx ∧3Px

(11) a. There is someone hiding in the closet who might have done it.
b. ∃x(Qx ∧3Px)

Non-equivalence needed on modal predicate logic:

(12) ∃xφ ∧3ψ 6≡ ∃x(φ ∧3ψ)

Modal donkeys:

(13) a. If there is someone hiding in the closet, he might have done it.
b. ∃xQx→ 3Px

(14) a. Anyone who is hiding in the closet might have done it.
b. ∀x(Qx→ 3Px)

Non-equivalence needed in modal predicate logic:

(15) ∃xφ→ 3ψ 6≡ ∀x(φ→ 3ψ)

The following discourses should be inconsistent, but in ordinary modal pred-
icate logic (16b) and (17c) are not:

(16) a. Someone has done it. But it might be that noone has done it.
b. ∃xPx ∧3∀y¬Py

(17) a. Someone has done it. But it might be that he hasn’t done it.
b. ∃xPx ∧3¬Px
c. ∃x(Px ∧3¬Px)

And note that although it is inconsistent, (17b) can not be concluded from
(18), which is consistent:

(18) ∃xPx ∧ ∀y3Py ∧ ∀y3¬Py
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3.4 Modality and identity

This should be consistent:

(19) a. Someone has done it. It might be Alfred. But it also might not
be Alfred.

b. ∃x(Px ∧ ∀y(Py → x = y)) ∧3x = a ∧3x 6= a
c. . . . It isn’t Alfred. It’s Bill.
d. . . . ∧ x 6= a ∧ x = b

Also if you know who Alfred is, because you know who you are, and you
want (20) to be consistent!

(20) Someone has done it. It might be you. But it also might not be you.

But this is not consistent:

(21) ∃x(Px ∧ ∀y(Py → x = y) ∧3x = you ∧3x 6= you)

Notice: without uniqueness (and without the brackets), still having rigidly
designating constants, things are consistent. An example:

(22) ∃x(x2 = 4) ∧3x = 2 ∧3x = −2

And possible worlds are not in the picture here.

3.5 (Un)specificity

The ultimate form of unspecificity:

(23) a. Someone has done it. It might be anyone. And anyone might not
be it.

b. ∃x(Px ∧ ∀y(Py → x = y)) ∧ ∀y3x = y ∧ ∀y3x 6= y
(24) a. Alfred might be anyone. And anyone might not be Alfred.

b. ∀x3x = a ∧ ∀x3x 6= a
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3.6 Modal subordination

Default: quantifiers inside the scope of negation or modals cannot bind vari-
ables outside:

(25) a. Noone has done it. ∗It is Alfred.
b. ¬∃xPx ∧ x = a

(26) a. It might be the case that someone is hiding in the closet. ∗He has
done it.

b. 3∃xPx ∧Qx

But there are exeptions:

(27) a. It might be the case that someone is hiding in the closet. He
might be the one who did it.

b. 3∃xPx ∧3Qx
(28) a. A wolf might come in. It would eat you first.

b. 3∃xPx ∧2Qx
(29) a. No man walks in the park at night. He might get robbed.

b. ¬∃x(Px ∧Qx) ∧3Rx

These mean roughly the same as:

(30) a. It might be the case that someone is hiding in the closet. If there
is someone hiding in the closet, then it might be the one who did
it.

b. 3∃xPx ∧ (∃xPx→ 3Qx)
(31) a. A wolf might come in. If a wolf comes in, it will eat you first.

b. 3∃xPx ∧ (∃xPx→ Qx)
(32) a. No man walks in the park at night. If a man walks in the park

at night, then he might get robbed.
b. ¬∃x(Px ∧Qx) ∧ (∃x(Px ∧Qx)→ 3Rx)
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3.7 Discourse coherence

Compare:

(33) a. It might be raining outside [. . . ] It isn’t raining outside.
b. ?It might be raining outside. It isn’t raining outside.
c. ∗It might be raining outside and it isn’t raining outside.

The acceptability of a discourse may presuppose that different speakers, or
different ‘utterance occasions’ are involved.

There are information states that can be consistently updated with (34),
but there is no single consistent information state that can support it:

(34) 3p ∧ ¬p

Another example:

(35) a. Alfred hasn’t done it. There is someone hiding in the closet. He
might have done it. It is Alfred.

b. ¬Pa ∧ ∃xQx ∧3Px ∧Qa

Tthough this is consistent, it cannot be supported by a single information
state. But if the closet is opened before the last sentence of the discourse is
uttered (which gives another information state) it is fine, (35) is an accept-
able discourse.

But notice the difference:

(36) a. Alfred hasn’t done it. There is someone hiding in the closet who
might have done it. It is Alfred.

b. ¬Pa ∧ ∃x(Qx ∧3Px) ∧Qa

This discourse is unacceptable. Any information state that has been updated
with the first two sentences, can no longer support the last sentence. But
the discourse is consistent, if we don’t know who Alfred is.
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Handout 2

4 Introduction

◦ Our aim is to provide an update semantics for the language of modal
predicate logic.

◦ The basic idea is that the meaning of a sentence is its information
change potential, rather than its truth conditions.

◦ The issues we hope to shed some new light on are those of coreference,
modality and identity.

◦ The central notions are those of information, updating information,
consistency and coherence of information.

◦ The framework we use is that of possible world semantics. Hence, our
approach to information change is eliminative rather than construc-
tive. And we don’t know yet how to do better than that.

◦ The status of our way of doing semantics is pre-Montagovian. But
here we do know how to do better.

5 Information

5.1 Two kinds of information

◦ To explicate the meaning of a sentence as its potential to change in-
formation states, we have to specify the nature of information states.

◦ An information state is a set of possibilities, those alternatives which
are still open according to our information.

◦ What the possibilities are, depends on what information is about.
◦ First, there is information about the world, which provides a partial

answer to the question what the world is like.
◦ One way of gathering such information is by linguistic communication.
◦ The interpretation process brings along its own questions concern-

ing discourse information. For example, there are questions about
anaphoric relations that we have to resolve.

◦ We have to keep track of items we have talked about. We use pegs for
this. We hang information on them.

◦ Since discourse information is needed in the interpretation of dis-
course, which is an important source of information about the world,
indirectly, discourse information also provides information about the
world.
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5.2 Three ingredients of information

Information about the world

◦ Our information about the world is represented by the set of worlds
that are still possible alternatives according to our information.

◦ We think of worlds as total first order models.
◦ We will assume that we know the domain of discourse. We know the

objects we could talk about. (Though we may not know their names).
◦ This means that our possible worlds share the same domain. We can

think of them as interpretation functions of first order models.
◦ Extending information about the world amounts to eliminating worlds

from the ones we considered still possible.

Discourse information

◦ The language we want to interpret is a logical language that has vari-
ables and quantifiers.

◦ Quantifiers introduce new pegs.
◦ Variables are the anaphoric expressions of our language.
◦ To resolve anaphoric relations, we not only have to keep track of which

pegs we’ve got, but also of which variable is associated with which peg.
◦ Extending discourse information is adding variables and new pegs, i.e.,

it is adding new discourse questions.

Linking discourse information to information about the world

◦ An assignment of objects in the domain of discourse to the pegs—and
hence indirectly to the variables asociated with them—links discourse
information to information about the world.

◦ What is a suitable assignment of an object to a peg may depend on
what information we have about the world.

◦ Usually, our information allows for several such possible assignments.
◦ Getting better informed on this score is to eliminate some such pos-

sible asignments, i.e., it means getting a better answer to some of our
discourse questions.

◦ If a certain assignment that gets eliminated was the only possible one
with respect to some world, then elimination of that assignment brings
with it the elimination of that world.
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5.3 Possibilities

The ingredients of information states are possibilities:

Definition 1
Let D, the domain of discourse, and W , the set of possible worlds, be two
disjoint non-empty sets.
The set of possibilities based on D, W is the set I of quintuples i =
〈v, n, r, g, w〉, where:

1. v is a finite subset of variables
2. n is a natural number
3. r is an injection from v into n
4. g is a function from n into D
5. w ∈W

We call 〈v, n, r〉, or r for short, the referent system of i.

The variables in v are the variables in active use. The number n stands
for the number of pegs that have been introduced. The pegs themselves
are the numbers smaller than n. The function r associates variables with
pegs. It is an injection because a variable may get disconnected from a peg.
The function g assigns to each peg an object. Variables are assigned an
object, indirectly, via the peg they are associated with. The composition of
g and r assigns values to variables: g(r(x)) ∈ D. Since v and n are just the
domain and range of r, they are kind of superfluous. When handy, we refer
to possibilities as triples 〈r, g, w〉.

5.4 Information states

Information states are (real) subsets of the set of possibilities:

Definition 2
Let I be the set of possibilities based on D and W .
The set of information states based on I is the set S such that s ∈ S, iff

1. s ⊆ I
2. ∀i, i′ ∈ s: i and i′ share their referent system

Variables and pegs are introduced globally with respect to an information
state. That is why an information state has a unique referent system.
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5.5 Extending possibilities

A possibility can be extended by adding a variable, associating it with the
next peg, assigning that peg a value, and leaving the rest as it was.

Definition 3
Let i, i′ ∈ I, i = 〈v, n, r, g, w〉 and i′ = 〈v′, n′, r′, g′, w′〉.
i ≤ i′, i′ is an extension of i iff

1. v ⊆ v′
2. n ≤ n′
3. (a) If x ∈ v then r(x) = r′(x) or n ≤ r′(x)

(b) If x 6∈ v and x ∈ v′ then n ≤ r′(x)
4. ∀m < n: g(m) = g′(m)
5. w = w′

We allow to re-use a quantifier. If that happens, we still introduce a new
peg and associate the variable of the quantifier with that new peg. The old
peg it was connected with has no variable associated with it anymore.

Fact 1
1. ≤ is a partial order on I
2. The minimal possibilities are: {〈∅, ∅, w〉 | w ∈W}
3. There are no maximal possibilities

There are no maximal possibilities, because one can always add a new peg.

5.6 Extending information states

An information state can be extended in two ways: by extending possibilities
in it, and by eliminating possibilities from it.

Definition 4
Let S be the set of information states based on I, s, s′ ∈ S.
s ≤ s′, s′ is an extension of s, iff ∀i′ ∈ s′:∃i ∈ s: i ≤ i′

An information state s′ is an extension of an information state s if every
possibility in s′ is an extension of some possibility in s.

Fact 2
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1. ≤ is a partial order on S
2. There is a unique state of minimal information: {〈∅, ∅, w〉 | w ∈W}
3. There is a unique state of maximal information: ∅

Non-empty subsets of the minimal information state are called initial states.
The maximal information state is called the absurd state. States of total
information are states consisting of just one possibility. They are just below
the absurd state, and above anything else in the extension hierarchy.

5.7 Subsistence

Subsistence is weaker notion of ‘identity’ between states, disregarding the
possible addition of variables and new pegs:

Definition 5
Let s, s′ ∈ S. i ∈ s.

1. i subsists in s′ iff ∃i′ ∈ s′: i ≤ i′
2. s subsists in s′, s ↼ s′ iff s ≤ s′ and ∀i ∈ s: i subsists in s′

If s subsists in s′, then not only every possibility in s′ is an extension of
some possibility in s, but also every possibility in s has an extension in s′.
Subsistence is a partial order.

5.8 Similarity

We not just keep track of the variables and the pegs that have been in-
troduced, but also of the order in which they were. And there can be pegs
around that got disconnected from a variable. Similarity abstracts from that:

Definition 6

1. Let i, i′ ∈ I, i = 〈v, n, r, g, w〉, i′ = 〈v′, n′, r′, g′, w′〉.
i is similar to i′, i ≈ i′ iff v = v′&w = w′&∀x ∈ v: g(r(x)) = g′(r′(x))

2. Let s, s′ ∈ S.
s is similar to s′, s ≈ s′ iff
(a) ∀i ∈ s:∃i′ ∈ s′: i ≈ i′
(b) ∀i′ ∈ s′:∃i ∈ s: i′ ≈ i

Similarity is an equivalence relation.
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5.9 Updates

The meaning of a sentence is its information change potential.

Definition 7
Let S be the set of information states based on a set of possibilities I.
A state transformer on S is a partial function from S to S.

We use postfix notation: s[τ ] is the result of transforming s by τ . s[τ ][τ ′]
is the result of first transforming s by τ , and next transforming s[τ ] by τ ′.
Whether s can be transformed to some state s′ by τ may depend on the
fulfillment of certain constraints. If a state s does not meet them, then s[τ ]
does not exist.

Some properties of state transformers:

Definition 8
Let τ be a state transformer on S.

1. τ is safe iff ∀s ∈ S: s[τ ] exists
2. τ is an update iff ∀s ∈ S such that s[τ ] exists: s ≤ s[τ ]
3. τ is eliminative iff ∀s ∈ S such that s[τ ] exists: s[τ ] ⊆ s
4. τ is a test iff ∀s ∈ S such that s[φ] exists: s ↼ s[τ ] or s[τ ] = ∅
5. τ is distributive iff ∀s ∈ S: s[τ ] = ∪i∈s{i}[τ ]

We will interpret sentences as updates. We do not deal with downdating or
revision of information.

Fact 3
Let P be any of the properties of: being safe, being an update, being elimi-
native, being a test, being distributive.
If τ and τ ′ have the property P , then their composition has the property P

A sequence of similar updates preserves their properties.

Eliminative tests just test (non-eliminative ones may also add new pegs):

Fact 4
If τ is eliminative and τ is a test, then ∀s ∈ S such that s[τ ] exists: s[τ ] = s
or s[τ ] = ∅
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5.10 Classical updates

Definition 9
τ is a (safe) classical update iff τ is a (safe) distributive eliminative update

Fact 5
If τ is a safe eliminative update, then τ is a eliminative test on each state
of total information: ∀i ∈ I: {i}[τ ] = {i} or ∅

Distributivity of classical updates furthermore guarantees that for a (safe)
classical update we can define the proposition that it expresses:

Definition 10
If τ is a safe classical update, then the proposition expressed by τ , Pτ =
{i ∈ I | {i}[τ ] 6= ∅}

The non-dynamic nature of classical updates can then be stated as follows:

Fact 6 For all safe classical updates τ : s[τ ] = s ∩ Pτ

5.11 Consistency

To be willing to update with a sentence, updating with it should not lead
to the absurd state:

Definition 11
Let s be an information state, φ a sentence.

1. s allows φ iff s[φ] exists and s[φ] 6= ∅
2. s forbids φ iff s[φ] = ∅

Definition 12
Let φ be a sentence, S the set of information states.

1. φ is consistent iff ∃s ∈ S: s allows φ
2. φ is inconsistent iff ∀s ∈ S: if s[φ] exists, then s forbids φ

No information state allows for an update with an inconsistent sentence.
Consistency is a necessary condition for a sentence to be acceptable.
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5.12 Coherence

To assert a sentence correctly, our information state should support it:

Definition 13
Let s be an information state, φ a sentence.
s supports φ iff s[φ] exists and s ↼ s[φ]

A necessary condition for a sentence to be acceptable is that it is coherent.

Definition 14
Let φ be a sentence, S the set of information states.
φ is coherent iff ∃s ∈ S: s 6= ∅ and s supports φ

We note the following:

Fact 7
For all φ such that s[φ][φ] = s[φ] it holds that φ is consistent iff φ is coherent

5.13 Entailment and equivalence

If updating with the sequence of sentences φ1, . . . , φn always results in a
state which supports ψ, we may say that φ1, . . . , φn entail ψ. The order of
the premisses may matter and entailment is not monotone.

Definition 15
Let φ1, . . . , φn, ψ be sentences, S the set of information states.
φ1, . . . , φn |= ψ iff ∀s ∈ S: if s[φ1] . . . [φn][ψ] exists, then s[φ1] . . . [φn] sup-
ports ψ

Two sentences are equivalent if they have similar update effects:

Definition 16
Let φ and ψ be sentences, S the set of information states.
φ ≡ ψ iff ∀s ∈ S: s[φ] ≈ s[ψ]

Equivalence ignores the order in which variables and pegs are introduced,
and pays no attention to pegs with which no variable is associated.
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Handout 3

6 Co-reference

We now start stating an update semantics for the language of modal predi-
cate logic. In this section we restrict ourselves to the predicate logical frag-
ment.

6.1 Terms and predicates

A possibility gives all we need to interpret our basic expressions:

Definition 17
Let α be a basic expression, i = 〈v, n, r, g, w〉 ∈ I, I based upon W and D.

1. If α is an individual constant, then i(α) = w(α) ∈ D
2. If α is a variable such that α ∈ v, then i(α) = g(r(α)) ∈ D, else i(α)

does not exist
3. If α is an n-place predicate, then i(α) = w(α) ⊆ Dn

The non-existence of variables in a state will be the only source of partiality
of our updates.

6.2 Atomic updates

The interpretation of atomic formulas:

Definition 18 s[Rt1 . . . tn] = {i ∈ s | 〈i(t1), . . . , i(tn)〉 ∈ i(R)}

Definition 19 s[t1 = t2] = {i ∈ s | i(t1) = i(t2)}

In case one of the terms in an atomic formula is a variable that is not in the
set v in s, the update with that formula does not exist. Atomic updates are
partial updates, unless they contain no variables.

Observation:
◦ Atomic updates are consistent and coherent, partial, classical updates.
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6.3 (Re-)Assignment

We define an update that (re-)assigns a value to a variable.

Definition 20
Let i = 〈v, n, r, g, w〉 ∈ I, s ∈ S, x ∈ V ar, d ∈ D.

1. i[x/d] = 〈v ∪ {x}, n+ 1, r[x/n], g[n/d], w〉
2. s[x/d] = {i[x/d] | i ∈ s}

Fact 8
1. i < i[x/d]
2. s ≤ s[x/d]
3. If s 6= ∅, then s < s[x/d]
4. s ↼ s[x/d]

Observations:
◦ (Re-)assignment is a non-classical, distributive and non-eliminative

update
◦ (Re-)assignment is allowed and supported by every non-absurd infor-

mation state

6.4 Existential quantification

Definition 21 s[∃xφ] = ∪d∈D(s[x/d][φ])

If we update a state s with ∃xφ, we pick an object d from the domain, and
we (re-)assign d to x in s. The state s[x/d] that results from this is updated
with φ. After we have done this for every object d, we collect the results.

Fact 9
1. If φ is an update, then for all s ∈ S: if s[∃xφ] exists and s 6= ∅, then
s < s[∃xφ]

2. If φ is a distributive update, then ∃xφ is a distributive update
3. ∃xφ is not a classical update

Fact 10
1. ∃xPx |= ∃yPy
2. ∃xPx 6≡ ∃yPy
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3. ∃xPx |= Px
4. ∃x∃yRxy ≡ ∃y∃xRxy

Observations:
◦ Existential quantification is a non-eliminative, real update.
◦ It is distributive if its complement is.
◦ It is allowed (forbidden) in a state if that state extended with a new

peg, under some (every) assignment of an object to that peg, allows
(forbids) the complement of the quantifier.

◦ It is supported by a state if that state extended with a new peg, under
every assignment of an object to that peg, supports the complement.

6.5 Sequencing

We interpret conjunction as a sequence of updates.

Definition 22 s[φ ∧ ψ] = s[φ][ψ]

Sequencing passes on dynamic effects. Since order matters in dynamic se-
mantics it cannot be expected to be a commutative operation.

Fact 11

1. ((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ))
2. ∃xφ ∧ ψ ≡ ∃x(φ ∧ ψ), if φ and ψ are distributive updates
3. φ ∧ ψ ≡ ψ ∧ φ, if φ and ψ are classical updates
4. x = a ∧ ∃x(x = b) 6≡ ∃x(x = b) ∧ x = a
5. x = a ∧ ∃x(x = b) 6|= x = a ∧ ∃x(x = b)
6. ∃xPx ≡ ∃xPx∃xPx

Observations:
◦ Sequencing inherits its properties from its conjuncts.
◦ It is eliminative (distributive), if both of its conjuncts are.
◦ A conjunction is allowed (forbidden) (supported) by an information

state, if the first conjucnt is allowed (forbidden) (supported) by that
information state, and if the second conjunct is allowed (forbidden)
(supported) by the information state that results from updating the
orginal state with the first conjunct.
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6.6 Negation

Definition 23 s[¬φ] = {i ∈ s | ¬∃i′: i ≤ i′ and i′ ∈ s[φ]}

A negation ¬φ eliminates those possibilities in s that would subsist after
updating s with φ.

Apart from negating, negation blocks the binding of quantifiers in its scope:

(37) a. It is not the case that a man is walking in the park. ∗He is wearing
a blue sweater.

b. ¬∃xPx ∧Qx

But cf.:

(38) No man walks in the park at night. He would get robbed.

Fact 12

1. ¬φ is an eliminative update
2. If φ is a distributive update, then ¬φ is too

Fact 13

1. ¬¬φ |= φ
2. φ |= ¬¬φ, if φ is an eliminative update
3. Px ∧ ∃x¬Px 6|= ¬¬(Px ∧ ∃x¬Px)
4. ¬¬φ ≡ φ, if φ is an eliminative update,
5. ∃xPx 6≡ ¬¬∃xPx

6.7 Implication, disjunction and universal quantification

We add as non-basic operations:

Definition 24

1. (φ→ ψ) =df ¬(φ ∧ ¬ψ)
2. (φ ∨ ψ) =df ¬(¬φ ∧ ¬ψ)
3. ∀xφ =df ¬∃x¬φ

Calculating their interpretation we arrive at:
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Fact 14

1. s[φ→ ψ] =
{i ∈ s | ∀i′: if i ≤ i′ and i′ ∈ s[φ], then ∃i′′: i′ ≤ i′′ and i′′ ∈ s[φ][ψ]}

2. s[φ ∨ ψ] = {i ∈ s | ∃i′: i ≤ i′ and i′ ∈ s[φ] or i′ ∈ s[¬φ][ψ]}
3. s[∀xφ] = {i ∈ s | ∀d ∈ D: ∃i′ such that i ≤ i′ and i′ ∈ s[x/d][φ]}

If we update a state with φ→ ψ, then a possibility will remain just in case:
if it subsists after an update with φ, then all its extensions after updating
with φ should subsist after a further update with ψ.

If we update a state with φ∨ψ, those possibilities remain which subsist after
an update with φ, or which do not subsist after an update with φ but which
do subsists after an update with ψ.

If we update a state with ∀xφ, then those possibilities remain, which after
every (re-)assignment of x to some object, subsist after an update with φ.

Fact 15
If φ and ψ are distributive updates, then ∃xφ→ ψ ≡ ∀x[φ→ ψ]

Fact 16
φ |= ψ iff |= φ→ ψ

7 Summing up

Observations:
◦ All formulas of predicate logic constitute distributive updates.
◦ Not all formulas of predicate logic constitute eliminative updates.
◦ Dynamic predicate logic is not classical.
So, providing the language of predicate logic with an update semantics makes
sense. Some of the effects of that we have seen above.
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8 Modality

In this section we add epistemic modalities to the language.

Definition 25
◦ s[3φ] = s if s allows φ

= ∅ if s forbids φ

The might-operator tests for consistency with an information state.

Fact 17
1. 3φ is an eliminative test
2. 3φ is a non-distributive update

Consistency testing essentially involves looking at an information state glob-
ally, and not pointwise with respect to the possibilities it contains.

Note: inc ombination with an existential quantifier eliminiation effects do
occur: ∃x3Px may eliminate possibilities from an information state.

Order matters: An example:

(39) a. It might be raining outside [. . . ] It isn’t raining outside.
b. It isn’t raining outside [. . . ] ∗It might be raining outside.

Its explanation:

(40) a. 3p ∧ ¬p is consistent
b. ¬p ∧3p is inconsistent

Why the dots are important:

(41) ∗It might be raining outside and it is not raining outside.

The unacceptability is accounted for by the following observation:
◦ 3φ ∧ ¬φ is incoherent, though consistent
The unacceptability of (3) follows because it is viewed as a (single) sentence,
and hence is incoherent. That unlike (3), (1a) is acceptable, is because it is
viewed as a discourse, which, unlike a sentence, allows for different utterance
occasions.

Consequence:
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◦ 3p ∧ ¬p 6≡ ¬p ∧3p

Other observations:
◦ 3p ∧ ¬p 6|= 3p ∧ ¬p
◦ 3p |= 3p, but 3p ∧ ¬p 6|= 3p

Usually, one defines a 2-operator in terms of the 3-operator:

Definition 26
◦ 2φ =df ¬3¬φ
◦ s[2φ] = s if s supports φ

= ∅ if s[φ] exists and s does not support φ

Whereas 3φ tests for acceptance, 2φ tests for support. One way to read 2φ
is as . . . So, φ.

3φ being a test means that we do not (yet) account for:
◦ Update of second order information
◦ Update of information about what is possible

9 Coreference and modality

Extended binding inside the scope of modal operators:

(42) ∃xPx ∧3Qx

Due to that, the following is inconsistent:

(43) ∃xPx ∧ ¬3Px

Also inconsistent is:

(44) ∃xPx ∧3∀y¬Py

But this one is not:

(45) ∃xPx ∧ ∀y3¬Py

Yet inconsistent is:

(46) ∃xPx ∧ ∀y3¬Py
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So we see that ∃xφ∧ψ and ∃x(φ∧ψ) are not generally equivalent. And the
same holds for ∃xφ→ ψ and ∀x(φ→ ψ).

Two more illustrations.

(47) a. ∃x(Qx ∧3Px)
b. There is someone hiding in the closet who might be the one who

did it.

(48) a. ∃xQx ∧3Px
b. There is someone hiding in the closet. He might be the one who

did. it.

Imagine the following situation. You and your spouse have three sons. One
of them broke a vase. Your spouse is very anxious to find out who did it.
You are not interested at all. Both you and your spouse know that your
eldest didn’t do it, he was playing outside when it must have happened.
You are looking for him to help you do the washing up. He might be hiding
somewhere. In the meantime your spouse has gone upstairs.

Suppose your spouse hears a noise coming from the closet. If it is the shuffling
of feet, your spouse will know that someone is hiding in there, but will not
be able to decide which of your three sons it is. In that case your spouse
could utter (10), but not (9).

But if the noise she hears is a high-pitched voice she knows it can’t be you
eldest son, he already has a frog in his throat. In that case she can say (9).

So, if your spouse yells (9) from upstairs, you stay were you are, but if it
is (10) that your spouse screams, you run upstairs to check whether perhap
your aid is hiding there.

Next consider:

(49) a. ∀x(Qx→ ♦Px)
b. Anyone who is hiding in the closet might be the one who did it.

(50) a. ∃xQx→ ♦Px
b. If there is someone hiding in the closet, he might be the one who

did it.

Take the same situation again. Only in case your spouse just heard some
high-pitched voice, (11) is a correct utterance.In the other case (11) is not
supported, and only (12) is left.
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So, there is a difference between (9) and (10), and between (11) and (12).
Our semantics predicts this difference:

Fact 18
1. ∃x(Px ∧3Qx) 6≡ ∃xPx ∧3Qx
2. ∃xQx→ ♦Px 6≡ ∀x(Qx→ ♦Px)

Two important features of ∃x and 3

◦ 3φ is interpreted as a global consistency test, both with respect to
information about the world, and with respect to discourse informa-
tion.

◦ ∃xφ is involves distributive (w.r.t. the re-assigment of x) update with
the matrix φ.

Consequence: Updating with ∃x3Px outputs as possible values of x only
those d such that in some w compatible with our information d has the
property P in w. If 3Px is within the scope of ∃x, the consistency test is
performed one by one for each d ∈ D, where we eliminate those d as possible
values for x for which the test fails. (The formula ∃x3Px is not a test.)

10 Identity, coreference and modality

Consider the following example:

(51) a. ∃!xPx ∧3x = a ∧3x 6= a
b. Someone has done it. It might be Alfred. It might not be Alfred.

(52) a. x 6= a ∧ x = b
b. It is not Alfred. It is Bill.

The sequence of sentences (7) is consistent and coherent. If we continue it
with (8), everything together is still consistent. But viewed as one sentence,
it would be incoherent.

The consistency of (7) does not depend on not knowing who a is. You know
who you are, still you want (9) to be consistent. It is.

(53) a. ∃!xPx ∧3x = you ∧3x 6= you
b. Someone has done it. It might be you. But it might also not be

you.
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Even in case only one world would be left, might can still have a non-trivial
meaning.

(54) ∃x(x2 = 4) ∧3x = 2 ∧3x = −2

This is a valid formula.

11 Identity and identification

The following two sentences are consistent:

(55) ∃!xPx ∧ ∀y3(x = y) ∧ ∀y3(x 6= y)
(56) ∀x3(x = a) ∧ ∀x3(x 6= a)

These are ultimate forms of non-identification.

Definition 27
Let α be a term, s an information state.

1. α is identified in s iff ∀i, i′ ∈ s: i(α) = i′(α)
2. α is an identifier iff ∀s:α is identified in s.

If α is identified in s, then s contains the information who α is, in at least
some sense of knowing who. If α is not identified in s, then there is at least
some doubt about who α is.

Fact 19

1. α is identified in s iff s supports ∃x3x = α ∧ ∀y(3y = α→ y = x)
2. α is an identifier iff |= ∃x3x = α ∧ ∀y(3y = α→ y = x)

The formula which characterizes identification is a (non-eliminative) test for
whether α is identified in an information state or not.

12 Why we need identifiers

We need identifiers. Otherwise, if we start out being ignorant we can never
really find out who is who, in the sense of knowing the names of the objects
we are talking about.
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Definition 28
Let 〈r, g, w〉 ∈ I, 〈r, g′, w′〉 ∈ I
〈r, g, w〉 ' 〈r, g′, w′〉 iff there exists a bijection f from D onto D such that:

1. For every peg m in the domain of g: g′(m) = f(g(m))
2. For every individual constant a:w′(a) = f(w(a))
3. For every n-place predicate P :
〈d1, . . . , dn〉 ∈ w(P ) iff 〈f(d1), . . . , f(dn)〉 ∈ w′(P )

Fact 20
∀s ∈ S such that s =0[φ1] . . . [φn]: if i ∈ s then i′ ∈ s, for every i′ ' i

13 We need something like this

To fill the need for identifiers, we add demonstratives to our language.

Definition 29
We add this to the logical inventory of the language.
◦ Let d ∈ D, then thisd is a term.
◦ Let i ∈ I, then i(thisd) = d

Fact 21

1. thisd is an identifier
Let this and that be two different identifiers.

2. |= 3(this = that)→ (this = that)
3. |= (this = that)→ 2(this = that)

Suppose the domain consists of two individuals. We update a state of igno-
rance with the following sequence:

(a 6= b) ∧ (this 6= that) ∧ ¬∃x((x 6= this) ∧ (x 6= that))
Our information state will support:

3(this = a) ∧3(that = a) ∧3(this = b) ∧3(that = b)
Our information state will forbid:

∀x3(x = this)
Whereas it supports:

∀x3(x = a)
And at the same time, of course, our information state forbids:
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3(b = a)
Like universal instantiation is not always allowed, existential generalization
is not either:

∀y3y 6= a 6|= ∃x∀y3y 6= x

Fact 22

1. If α is an identifier, then ∀xφ |= [α/x]φ
2. If α is an identifier, then [α/x]φ |= ∃xφ
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14 Leibniz’ law

Consider:
◦ If s supports a = b, then s[φ(a)] = s[φ(b)]
This holds in a standard modal semantics only if a and b are rigid.

In our system it holds also for non-identified names.

But we do not have:
◦ If s supports 3a = b, then s[φ(a)] = s[φ(b)]
Counterexample:
◦ There are non-absurd states s such that s supports 3a = b, and such

that s also supports 3a 6= b. But no non-absurd state s supports
3b 6= b.

Of course, if a and b are both identified in s, then it can never occur that s
supports both 3a = b and 3a 6= b.

15 Barcan formulae

Consider the following arguments:
1. ∃x3φ(x) /3∃xφ(x)
2. 3∃xφ(x) / ∃x3φ(x)
3. ∀x3φ(x) /3∀xφ(x)
4. 3∀xφ(x) / ∀x3φ(x)

In a standard modal semantics (e.g., in Montague’s IL) which has one fixed
domain for all worlds, and in which the assignments are independent of the
worlds, arguments 1, 2, and 4 come out valid, while argument 3 is invalid.

The same holds for our system.

Yet, besides with (3), there is also something wrong with (2), and (4). Only
the validity of (1) is beyond reasonable doubt.
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15.1 No fixed domain

We drop the assumption that we know what the domain of discourse is, that
we know which objects exist in the real world.
◦ Instead of having a single domain D shared by all worlds, we view D

as the set of possible individuals. Each possible world w ∈ W has its
own domain Dw ⊆ D.

◦ This means that we can no longer identify a world with just an inter-
pretation function. A world w is now a full fledged first order model,
identified by a domain Dw, and an interpretation function Fw, which
determines the extensions of the constants and predicates of our lan-
guage with respect to Dw.

◦ Extending world knowledge still amounts to eliminating possible worlds.
But now we can learn, e.g., that there is more than one object, which
would mean eliminating all those worlds w where Dw is a singleton
set.

◦ We assume that one of the possible worlds is the real world (if only
we knew which one!), and that its domain consists of the objects that
really exist.

◦ These objects, whichever they are, are the only objects that we can
possibly get acquainted with, and that we might be able to point at
while uttering demonstratives.

To implement this in our framework, we have to adapt a few of the more
basic definitions. The other definitions that are based on them can remain
‘literally’ the same.

First, we add a definition that explicitly defines what possible worlds are:

Definition 30 (Possible worlds)
Let D be a non-empty set of possible objects, and B the set of non-logical
constants of a first order language.
The set of possible worlds based on D and B, is the set W of pairs w =
〈Dw, Fw〉, where:

1. ∅ 6= Dw ⊆ D
2. Fw is an ordinary (total) interpretation function assigning extensions

to the elements of B with respect to Dw:
a. If α ∈ B and α is an individual constant, then F (α) ∈ Dw

b. If α ∈ B and α is an n-place predicate, then F (α) ⊆ (Dw)n
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Among the elements of W , there is a distinguished element w, the real world.
E is the set of real objects: Dw =df E.

Note that Fw is a total function. In particular, we assume that we know that
each name denotes an object, but we may not know which one. We try to
find out what the real world (an ordinary first order model) looks like: what
the real objects are, and what properties they have. The language is given
to us. And names denote objects, we know that.

We don’t allow for the possibility that an individual constant denotes an
object that does not exist. If we were to play this game, we would still let
Fw be a total function, but Fw(c) could be just an element of D, and not
necessarily of Dw. If Fw(c) 6∈ Dw, this means that the object that the name
c refers to does not exist in w. Why not let Fw(c) be undefined in this
case? A Kripkean answer: a name is a name because by some act of initial
baptism the expression is introduced to refer to a particular object. From
an ontological/metaphysical point of view it rigidly refers to some object.
From an epistemological point of view, we may not know to which object it
rigidly refers (since we don’t know what the metaphysically possible worlds
are). The bearer of a name may cease to exist, then the name still refers to
the same object, it only does not exist anymore. Whether or not the bearer
of a name actually exists or not, is just one of the things we may want to
find out. If the bearer of a name does not exist, this is no reason for the
name not to be defined. There extension is always defined, that is how they
come to be. A name is not a name unless at some point it has been used to
baptize a particular object. Meaningless sounds are not in the domain of F .
(This alternative view, where name do always refer to some possible object,
but not necessarily to an existing one, only makes sense if next to epistemic
possibilities we also introduce ontological possibilities. Then the aim of the
game is not only to find out what the real world is like, but also what the
real metaphysically possible world are. We will return to this later.)

Next, we make some minor changes in the definition of what the possibilities
are:

Definition 31 (Possibilities)
Let D, B and W be as defined above.
The set of possibilities based on D, B and W , is the set I of quintuples
i = 〈v, n, r, g, w〉, where:

1. v is a finite subset of variables
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2. n is a natural number
3. r is an injection from v into n
4. g is a function from n into Dw

5. w ∈W
We call 〈v, n, r〉, or r for short, the referent system of i.

The only change is in clause 4: pegs (and the variables associated with them)
are assigned an object in the domain of the world of the possibility.

The definitions of the notion of an information state; of the relation of ex-
tension between possibilities and between information states; the notions of
subsistence and similarity; the notion of a state transformer, and the prop-
erties we distinguished; the notions of consistency, support, and coherence;
and the definitions of entailment and equivalence, all remain unaltered.

We make one change in the definition of the language:

Definition 32 (Demonstratives)
Let d ∈ E, then thisd is a term

As we noted above, we can only point at some object d, and say this, if that
object exists in the real world, i.e., if d ∈ E, the domain of the real world.

The definition of the interpretation of basic expressions remains virtually
the same, but we have added demonstratives:

Definition 33 (Extensions of basic expressions)
Let α be a basic expression, an individual constant, variable, demonstrative
or n-place predicate; and let i = 〈v, n, r, g, w〉 ∈ I, I based upon D, B and
W .

1. If α is an individual constant, then i(α) = Fw(α)
2. If α is a variable, then i(α) = g(r(α)), if α ∈ v, else i(α) is not defined
3. If α is a demonstrative thisd, then i(α) = d, if d ∈ Dw, else i(α) is not

defined
4. If α is an n-place predicate, then i(α) = Fw(α)

For the extension of a demonstrative to be defined in a possibility, it is
required that the object pointed at exists in the domain of the world in that
possibility. That makes sense given the assumption that demonstratives can
only be used to refer to existing objects.
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The definition of the interpretation of atomic formulae remains the same.
It looks different because this time we are more explicit about when the
update with an atomic formula is undefined:

Definition 34 (Atomic updates)
s[Rt1 . . . tn] = {i ∈ s | 〈i(t1), . . . , i(tn)〉 ∈ i(R)}, if ∀k: 1 ≤ k ≤ n and
∀i ∈ s: i(tk) is defined; else s[Rt1 . . . tn] is not defined

For a variable x, the precondition amounts to the requirement that x is
present in the reference system of s, which is the same in each of its possi-
bilities. For a demonstrative thisd, the precondition requires that d should
be present in each of the domains of the possible worlds occurring in s:
d ∈ ∩〈r,g,w〉∈sDw. This means nothing else than that according to our infor-
mation we are sure that d exists. Actually, since for thisd to be a term it is
required that d ∈ E, this piece of information is real knowledge.

Definition 35 (Identity)
s[t1 = t2] = {i ∈ s | i(t1) = i(t2)}, if ∀i ∈ s: i(t1) and i(t2) are defined; else
s[t1 = t2] is not defined.

We also have to make some adjustments in the definition of (re-)assignment:

Definition 36 ((Re-)assignment)
Let i = 〈v, n, r, g, w〉 ∈ I, s ∈ S, x ∈ V ar, d ∈ D.

1. i[x/d] = 〈v ∪ {x}, n + 1, r[x/n], g[n/d], w〉, if d ∈ Dw, else i[x/d] is
undefined.

2. s[x/d] = {i[x/d] | ∃i ∈ s such that i[x/d] is defined}

Here, too, the only change is that a peg (and a variable associated with
it) can only be assigned an object as value in a possibility if that object
is in the domain of the world in that possibility. This means that some
possibilities i ∈ s may not subsist in s[x/d]. This will happen if d is not in
the domain of the world in i. (So, with varying domains, it is no longer true
that s ↼ s[x/d].)

All the other update clauses remain the same, except that we have to be
careful with the use of our demonstratives. For, to be able to interpret a
term thisd, our information state has to be such that we acknowledge the
existence of d. If something is being pointed at in the discourse situation,
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then apparently that object does exist, and we are aware of that. (The latter
is covered by the requirement that d should be in the domain of each world
that is still possible according to our information.

However, so far our framework does not incorporate a mechanism to get
acquainted with an object. As we saw in the previous lecture, states are
closed under isomorphisms, as long as they are only updated with sentences
not containing demonstratives. That means, if a certain possibility is in s,
all possibilities isomorphic to it will be in s. Hence, in this way we will never
get at an object which is an element of the domains of all possibilities in
s. So, we will never get in a position where we can use a demonstrative
properly.

As a solution we offer the possibility of getting acquainted with a set of
objects:

Definition 37 (Acquaintance)
Let s ∈ S, and A ⊆ E.
s[A] = {〈r, g, w〉 ∈ s | A ⊆ Dw}

Now, if an assertion such as P (thisd) has been preceeded, e.g., by an update
s[{d}] it will be interpretable in any extension of s[{d}].

Fact 23

1. ∃x3Px |= 3∃xPx
2. 3∃xPx 6|= ∃x3Px , yet 3∃xPx ∧ ¬∃x3Px is incoherent
3. ∀x3Px 6|= 3∀xPx, and ∀x3Px ∧ ¬3∀xPx is coherent
4. 3∀xPx 6|= ∀x3Px, yet 3∀xPx ∧ ¬∀x3Px is incoherent
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16 Definite descriptions continued

16.1 E-type variables

A variable which is bound by a certain existential quantifier, but is not in
the scope of it, can not always be replaced by a suitable anaphoric definite
description.

(57) a. If Pedro owns a donkey then he beats it.
b. If Pedro owns a donkey, then he beats the donkey that he owns.

(58) a. Pedro owns two donkeys, Ali and Baba. If Pedro owns a donkey
then he beats it.

b. Pedro owns two donkeys. Ali and Baba. ? If Pedro owns a donkey
then he beats the donkey that he owns.

The discourse should not explicitly provide for more than one different peg
that satisfies the description. In that case the precondition for the anaphoric
use is not met.

If a variable can be replaced by a suitable description, i.e., if the precondition
for the anaphoric use of the definite decription is met, then the result is
equivalent to the orginal.

Formally:
◦ If s[∃xφ(x)∧ıx(φ(x), ψ(x)] is defined, then s[∃xφ(x)∧ıx(φ(x), ψ(x)] =

s[∃xφ(x) ∧ ψ(x)]

Fact 24
1. |= ıx(Px, Px)
2. ∃!xPx ∧ ∀y3¬Py 6|= 3¬ıx(Px,¬Px)

Fact 25 (Problem)
1. |= ∃x(ıy(Py, x = y)

Reminder, this means that if the formula is defined in a state, it is
supported by it.

2. ¬∃x(ıy(Py, x = y) is either inconsistent with s or undefined in s.

Fact 26
For absolute use of a description:
this 6= that ∧3ıx(Px, x = this) ∧3ıx(Px, x = that) is consistent, whereas
this 6= that∧3ıx(3Px, x = this)∧3ıx(3Px, x = that) is inconsistent. For
anaphoric use this is different. Both are consistent.
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16.2 Accommodation

One might uphold that even though ‘The queen of Holland is rich’ has the
precondition that Holland has a queen and no more then one, this still does
not mean that an information state has to support this piece of information.
That one can accommodate the presupposition by simply updating with this
information. One could make the precondition into the requirement that an
information state can be updated with that information, i.e., that updating
with it does not lead to the absurd state.

Notice, there still is a difference with between ı(Qx,Rx) and ∃!xPx∧Rx. If
the information state s is such that it does not allow ∃!xPx, then updating
∃!xPx∧Rx leads to the absurd state, whereas the update of s with ı(Qx,Rx)
is undefined.

The following definition captures this idea:

Definition 38 (Semantics, absolute use, accommodating)

1. Provided that the precondition in 2 is fulfilled,
s[ıx(φ, ψ)] = [∃!xφ][ψ],
else it is undefined

2. Let s′ = ∪d∈Ds[x/d], s′′ = s′[φ].
Precondition:
s′′ 6= ∅ and ∀i′′ ∈ s′′,∃i ∈ s, ∃!i′ ∈ s′: i ≤ i′ ≤ i′′

Now the precondition for ıx(Qx,Px) to be defined in s amounts to: s allows
∃!xPx.

The definition for anaphoric use can be adapted in a similar way. Whether
thins really can/should be done in this way remains to be seen.
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17 Definite descriptions, presuppositions, and
accommodation

17.1 Adjusting the definitions

Definition 39 (Semantics, absolute use)

1. Provided that the precondition in 2 is fulfilled,
s[ıx(φ, ψ)] = ∪d∈D(s[x/d][φ])[ψ],
else it is undefined

2. Precondition
∀i ∈ s, ∃!d ∈ D such that i subsists in s[x/d][φ]

3. Accommodating the precondition in s:
s∗ = {i ∈ s | ∃!d ∈ D such that i subsists in s[x/d][φ]}

Definition 40 (Auxiliary notions)

1. Let i = 〈v, n, r, g, w〉.
Qi = {d ∈ D | ∃m < n: g(m) = d}

2. s[x/d]Q = {i[x/d] | i ∈ s and d ∈ Qi}

Definition 41 (Semantics, anaphoric use)

1. Provided that the precondition in 2 is fulfilled,
s[ıx(φ, ψ)] = ∪d∈D(s[x/d]Q[φ])[ψ],
else it is undefined

2. Precondition
∀i ∈ s, ∃!d ∈ D: i subsists in s[x/d]Q[φ]

3. Acommodating the precondition in s:
s∗ = {i ∈ s | ∃!d ∈ D: i subsists in s[x/d]Q[φ]}

17.2 Putting accommodation in the definition

In definition 1.1 on the handout entitled ‘Definite decriptions continued’,
accommodation is built into the definition of the interpretation of definite
descriptions. This means that if the existence, the uniqueness, or the contents
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of the restriction φ is not supported by s, but is consistent with s, then
interpretation does not fail, but s is simply updated with that information.

In terms of the definitions stated above, it means that in case the state s∗

that results after updating s with the precondition is not the absurd state
(in which case undefinednes would result), we simply replace s in the update
clause by s∗, and proceed from there.

This is not the right idea about accommodation. Consider s[¬ıx(Px,Qx)].
Suppose your state does not support that there is a unique object that is
P . Say, in some world w w(P ) = ∅, in others it is not. Using the accommo-
dating definition, after s[ıxPx,Qx)] possibilities with that w will have been
eliminated. But this means that if we apply negation, then in the end result
the world w with no P in it returns. So, in the resulting state you end up
with something like: either there is no P , or there is one, but it doesn’t have
the property Q. (Notice that this works in the same way if the negation is
internal rather than eternal.)

This is wrong. If you assume that presuppositions can be accommodated,
then also after the negation ¬ıx(Px,Qx), you should have updated with
there being a unique thing with the property P . The world w should have
been eliminated.

In other words, accommodation should not be build into the definition, then
you get the wrong results under negation.

17.3 Accommodation

If you are in an updating process, and a precondition fails, update the orig-
inal s at the very beginning of the process with the precondition. (Replaces
by s∗) Restart the process. If you end up in the absurd state, remove the
most global ∗ and start again. Keep going on like like this, until no stars can
be removed anymore, and what comes out of tht iss the final result.
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