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Abstract In many natural languages, there are clear syntactic and/or intonational
differences between declarative sentences, which are primarily used to provide infor-
mation, and interrogative sentences, which are primarily used to request information.
Most logical frameworks restrict their attention to the former. Those that are concerned
with both usually assume a logical language that makes a clear syntactic distinction
between declaratives and interrogatives, and usually assign different types of seman-
tic values to these two types of sentences. A different approach has been taken in
recent work on inquisitive semantics. This approach does not take the basic syntactic
distinction between declaratives and interrogatives as its starting point, but rather a
new notion of meaning that captures both informative and inquisitive content in an
integrated way. The standard way to treat the logical connectives in this approach is
to associate them with the basic algebraic operations on these new types of meanings.
For instance, conjunction and disjunction are treated as meet and join operators, just
as in classical logic. This gives rise to a hybrid system, where sentences can be both
informative and inquisitive at the same time, and there is no clearcut division between
declaratives and interrogatives. It may seem that these two general approaches in the
existing literature are quite incompatible. The main aim of this paper is to show that
this is not the case. We develop an inquisitive semantics for a logical language that
has a clearcut division between declaratives and interrogatives. We show that this
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language coincides in expressive power with the hybrid language that is standardly
assumed in inquisitive semantics, we establish a sound and complete axiomatization
for the associated logic, and we consider a natural enrichment of the system with
presuppositional interrogatives.

Keywords Logics of questions · Inquisitive semantics · Partition semantics

1 Introduction

In many natural languages, there are clear syntactic and/or intonational differences
between declarative sentences, which are primarily used to provide information, and
interrogative sentences, which are primarily used to request information. Most logi-
cal frameworks, both in the linguistic and in the philosophical tradition, restrict their
attention to the former. Those that are concerned with both (Hamblin 1973; Kart-
tunen 1977; Hintikka 1981, 1983, 1999, 2007; Groenendijk and Stokhof 1984, 1997;
Wiśniewski 1996, 2001, among others) usually assume a logical language that makes
a clear syntactic distinction between declaratives and interrogatives. We will say that
such analyses are syntactically dichotomous.

Most of these analyses do not only assume a syntactic distinction between declara-
tives and interrogatives, but also assign different types of semantic values to these two
sentence types. We will say that such analyses are not only syntactically dichotomous,
but also semantically dichotomous.

A concrete example of an approach that is both syntactically and semantically
dichotomous is the partition semantics of Groenendijk and Stokhof (1984, 1997). For
simplicity, let us consider only the propositional fragment of the system, as presented
in (Groenendijk and Stokhof, 1997, §4). This system assumes a logical language that
contains (i) a standard propositional language L, and (ii) sentences of the form ?ϕ,
where ϕ ∈ L. Sentences in the basic propositional language L are called declaratives,
while sentences of the form ?ϕ are called interrogatives. This means that every sentence
in the language is either declarative or interrogative. Thus, the system is syntactically
dichotomous.

Semantically, the basic picture that Groenendijk and Stokhof argue for is that declar-
atives express propositions, viewed as sets of possible worlds, while interrogatives
express equivalence relations over the set of possible worlds. Since equivalence rela-
tions correspond to partitions, interrogatives can be seen as partitioning the set of all
possible worlds, while declaratives can be seen as carving out a particular region in
the set of all possible worlds. In uttering a declarative ϕ, a speaker provides the infor-
mation that the actual world is located in the region carved out by ϕ, while in uttering
an interrogative ?ϕ, a speaker requests enough information to locate the actual world
in one of the cells of the partition induced by ?ϕ. Thus, declaratives and interrogatives
receive different types of semantic values, which means that the system is not only
syntactically dichotomous, but also semantically dichotomous.

A different approach has been pursued in recent work on inquisitive semantics
(Groenendijk and Roelofsen 2009; Ciardelli 2009; Ciardelli and Roelofsen 2011,
among others). This approach does not take the syntactic distinction between declar-
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atives and interrogatives as its starting point, but rather a new notion of meaning that
captures both informative and inquisitive content in an integrated way. The standard
way to treat the logical connectives in this approach is to associate them with the
basic algebraic operations on these new types of meanings (Roelofsen 2011, 2013;
Ciardelli et al. 2012). For instance, conjunction and disjunction are treated as meet
and join operators, respectively, just as in classical logic. This treatment of the logical
connectives gives rise to a hybrid system, where sentences may be both informative
and inquisitive at the same time, and there is no clearcut division between declaratives
and interrogatives. This system is referred to as InqB, where B stands for basic. InqB is
not syntactically dichotomous, and since semantic dichotomy presupposes syntactic
dichotomy, it is not semantically dichotomous either. The logic that InqB gives rise to
has been investigated in Ciardelli (2009), Ciardelli and Roelofsen (2009, 2011).

It may seem that the two approaches are quite incompatible, since their architectures
diverge in such a fundamental way. The main goal of this paper is to show that this is
in fact not the case. Even though inquisitive semantics, viewed as a general approach
to meaning, does not require a clearcut syntactic distinction between declaratives and
interrogatives, it is perfectly compatible with such a distinction. To demonstrate this,
we will show how the new type of meanings assumed in inquisitive semantics can be
assigned in a natural way to sentences in a language that has a clearcut distinction
between declaratives and interrogatives. The resulting system will be referred to as
InqD, where D stands for dichotomous. Evidently, InqD is syntactically dichotomous.
Strictly speaking, it is not semantically dichotomous, since all sentences are assigned
the same type of meanings, capturing both their informative and their inquisitive
content. However, in the case of declarative sentences, inquisitive content will always
be trivial, while in the case of interrogative sentences, informative content will always
be trivial. Thus, even though the system is not semantically dichotomous in the strict
sense of the term, it does clearly capture the crucial semantic difference between
declaratives and interrogatives.

We provide meaning preserving translations between InqD and InqB, as well as a
sound and complete proof system for the logic that InqD gives rise to. We show that the
expressive power of InqD crucially extends that of partition semantics. In particular,
InqD allows for a basic analysis of disjunctive and conditional questions, which are
notoriously beyond the expressive reach of partition semantics (see, e.g., Mascarenhas
2009; Ciardelli et al. 2013a).

We also consider an extension of InqD with presuppositional interrogatives. We
refer to this system as InqDπ , where π stands for presuppositional. We show that the
proof system developed for InqD is also sound and complete for InqDπ , provided that
its inference rules are taken to apply to the wider range of interrogatives available
in InqDπ . From the perspective of comparing different erotetic logics, an important
feature of InqDπ is that it exhibits some fundamental similarities with some of the
most widely-studied existing systems, in particular the inferential erotetic logic (IEL)
of Wiśniewski (1996, 2001) and the interrogative model of inquiry (IMI) of Hintikka
(1981, 1983, 1999, 2007). Just like InqDπ , these systems assume a dichotomous lan-
guage with presuppositional interrogatives. This similarity makes it easier to compare
inquisitive semantics with IEL and IMI, and to transfer insights between the differ-
ent approaches. For instance, it seems that the notion of entailment considered in
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inquisitive semantics is meaningful and relevant in the context of IEL and IMI as well,
and that the axiomatization result established in this paper can be exported straight-
forwardly.

The system InqD achieves division of semantic labor at the cost of sacrificing
the algebraic treatment of the logical constants embodied by InqB. We conclude by
sketching a way to reconcile the tenets of the two approaches by building division of
labor not directly into the core system, but rather on top of it.

The paper is organized as follows. We start in Sect. 2 with a brief review of InqB.
Then, in Sect. 3, we present InqD, and meaning preserving translations between InqD
and InqB. In Sect. 4 we provide a proof system for the logic that InqD gives rise to, and
in Sect. 5 we compare the expressive power of InqD with that of partition semantics.
In Sect. 6, we present the system InqDπ , and show that the proof system for InqD is
also sound and complete for InqDπ , provided that we take its inference rules to apply
to the wider range of interrogatives available in InqDπ . In Sect. 7 we briefly sketch
an alternative way of achieving division of labor than the one offered by InqD, and
indicate its potential relevance for the semantic analysis of natural language. Section 8
concludes.

2 Basic inquisitive semantics

We start with a brief review of InqB. Throughout the paper we will restrict our attention
to the propositional case. The language of InqB, LInqB,P , is a standard propositional
language based on a set of atomic sentences P , with ⊥,∧,∨, and → as its basic
connectives. We also make use of three abbreviations.

Definition 1 (Abbreviations)

1. ¬ϕ abbreviates ϕ → ⊥
2. !ϕ abbreviates ¬¬ϕ

3. ?ϕ abbreviates ϕ ∨ ¬ϕ

The ingredients for the semantics of InqB are worlds and states. A P-world is simply
a valuation function for P , assigning a truth value to each atomic sentence p ∈ P .
A P-state is a set of P-worlds. Reference to the set of atomic sentences P will be
dropped whenever possible. The semantics of InqB is defined not in terms of truth at
worlds, but rather in terms of support at states.

Definition 2 (Support for InqB)

1. s |� p iff ∀w ∈ s : w(p) = 1
2. s |� ⊥ iff s = ∅
3. s |� ϕ ∨ ψ iff s |� ϕ or s |� ψ

4. s |� ϕ ∧ ψ iff s |� ϕ and s |� ψ

5. s |� ϕ → ψ iff ∀t ⊆ s : if t |� ϕ then t |� ψ

Support is persistent: if a state s supports a sentence ϕ, then every substate t ⊆ s
also supports ϕ. Moreover, the empty state supports every sentence, which means
that every sentence is supported by at least one state. Thus, the set of states that
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supports a given sentence is always non-empty and downward closed. Non-empty,
downward closed sets of states are referred to as propositions in inquisitive seman-
tics, and the set of states that support a sentence ϕ is referred to as the proposition
expressed by ϕ.

Definition 3 (Propositions in inquisitive semantics)
A P-proposition is a non-empty, downward closed set of P-states.

Definition 4 (Propositions expressed by sentences in InqB) The proposition expressed
by a sentence ϕ in InqB, [ϕ]InqB, is the set of all states that support ϕ in InqB.

We will usually simply write [ϕ] instead of [ϕ]InqB. Given the properties of support
mentioned above, the proposition [ϕ] expressed by a sentence in InqB is indeed always
a proposition in the sense of definition 3. Moreover, the language of InqB is expressively
complete, in the sense that for any finite set P of atomic sentences, any P-proposition
is the proposition expressed by some sentence in LInqB,P . The proof of this fact can
be found in Ciardelli (2009).

Proposition 1 (Expressive completeness of InqB)
Let P be a finite set of atomic sentences. Then for any P-proposition A there is a
sentence ϕ ∈ LInqB,P such that [ϕ] = A.

In uttering a sentence ϕ, a speaker is taken to provide the information that the actual
world is included in one of the states that supports ϕ, and to request enough infor-
mation from other participants to establish a specific state that supports ϕ. Thus, the
proposition expressed by ϕ captures both its informative and its inquisitive content.

Definition 5 (Entailment and equivalence)

1. ϕ |� ψ iff [ϕ] ⊆ [ψ]
2. ϕ ≡ ψ iff ϕ |� ψ and ψ |� ϕ

One sentence ϕ entails another sentence ψ just in case every state that supports ϕ

also supports ψ . This means that whenever we accept the information provided by
ϕ and supply the information requested by ϕ, establishing a state that supports ϕ,
we also accept the information provided by ψ and supply the information requested
by ψ .

The set of all propositions in inquisitive semantics, together with the inquisitive
entailment order, forms a Heyting algebra, just like the set of all classical proposi-
tions together with the classical entailment order. Moreover, disjunction, conjunction,
negation, and implication behave semantically as join, meet, and (relative) pseudo-
complement operators in this algebra, just like in classical logic (Roelofsen 2011).
Thus, InqB can be seen as the equivalent of classical propositional logic (CPL) in
the inquisitive setting. For this reason, it is regarded as the most basic inquisitive
semantics.

Since in uttering ϕ, a speaker provides the information that the actual world is
located in one of the states in [ϕ], the informative content of ϕ is characterized by⋃[ϕ].
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Definition 6 (Informative content) info(ϕ):= ⋃[ϕ]
In classical propositional logic, the informative content of a sentence ϕ is embodied by
the set of all worlds in which that sentence is true, which we will denote as |ϕ|. It can
be shown that for every ϕ ∈ LInqB, info(ϕ) = |ϕ|. This means that, while inquisitive
semantics adds an inquisitive dimension to the classical notion of meaning, InqB does
not diverge from CPL as far as informative content goes.

A sentence ϕ is called informative iff its informative content is non-trivial, i.e., iff
info(ϕ) �= ω, where ω denotes the set of all worlds. On the other hand, ϕ is called
inquisitive iff in order to establish a state that supports ϕ it is not enough to just accept
the informative content of ϕ, i.e., iff info(ϕ) /∈ [ϕ]. This means that in order to establish
a state that supports ϕ, additional information beyond info(ϕ) is needed.

Definition 7 (Informativeness and inquisitiveness)

– ϕ is informative iff info(ϕ) �= ω

– ϕ is inquisitive iff info(ϕ) /∈ [ϕ]
In terms of informativeness and inquisitiveness, the following semantic categories can
be distinguished.

Definition 8 (Assertions, questions, hybrids, and tautologies)

– ϕ is an assertion iff it is non-inquisitive
– ϕ is a question iff it is non-informative
– ϕ is a hybrid iff it is both informative and inquisitive
– ϕ is a tautology iff it is neither informative nor inquisitive

It can be shown that, as long as we restrict ourselves to the propositional case, every
state that supports a given sentence ϕ is included in a maximal state supporting ϕ

(see, e.g., Ciardelli 2009; Ciardelli and Roelofsen 2011).1 Together with the fact that
support is persistent, this means that the proposition expressed by ϕ is completely
determined by the set of maximal states that support ϕ. These states are referred to as
the possibilities for ϕ.

Definition 9 (Possibilities for a sentence)
The maximal states that support a sentence ϕ are called the possibilities for ϕ.

Fact 1 (Possibilities and propositions)
For every state s and every sentence ϕ, s ∈ [ϕ] iff s is included in a possibility for ϕ.

This allows for an alternative characterization of inquisitiveness and assertions.

Fact 2 (Inquisitiveness in terms of possibilities)

1. ϕ is inquisitive iff there are at least two possibilities for ϕ

2. ϕ is an assertion iff there is exactly one possibility for ϕ

1 This fact does not hold anymore in the first-order version of InqB (Ciardelli 2009, 2010; Ciardelli et al.
2013b).
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(a) (b) (c)

Fig. 1 An example of a hybrid (a), an assertion (b), and a question (c)

The characterization of propositions in terms of possibilities also allows for a perspic-
uous visual representation of propositions. Figure 1 depicts the propositions expressed
by some simple sentences in a language that has just two atomic sentences, p and q.
Given such a language, there are just four possible worlds to consider: a world where
both p and q are true, one where p is true and q is false, one where p is false and
q is true, and one where both p and q are false. In Fig. 1 these worlds are marked
11, 10, 01, and 00, respectively. Figure 1a depicts the proposition expressed by p∨q.
Since the proposition expressed by a sentence is fully determined by the possibilities
for that sentence, we only depict these possibilities. In the case of p ∨ q, there are
two possibilities: one consisting of all worlds where p is true, 11 and 10, and one
consisting of all worlds where q is true, 11 and 01. Notice that p ∨ q is informative,
since info(p ∨ q) �= ω. It provides the information that the actual world is one in
which at least one of p and q is true. It is also inquisitive, since it has more than one
possibility. Since p ∨ q is both informative and inquisitive, it is a hybrid.

Figure 1b depicts the proposition expressed by !(p ∨ q). This sentence has the
same informative content as p ∨ q, but it is not inquisitive. Thus, it is an assertion.
This illustrates a more general fact. Namely, for any sentence ϕ, !ϕ has precisely the
same informative content as ϕ. Moreover, !ϕ is always an assertion, i.e., it is never
inquisitive. For this reason, ! is referred to as the non-inquisitive projection operator
in InqB.

Finally, Fig. 1c depicts the proposition expressed by ?p. This sentence is not infor-
mative, since info(?p) = ω. However, it does request information. Specifically, it
requests enough information to either establish a state that supports p or a state that
supports ¬p. Thus, ?p is a question. Again, this illustrates a more general fact. Namely,
for any ϕ, ?ϕ requests enough information to establish a state that supports either ϕ

or ¬ϕ. Moreover, ?ϕ is always a question, i.e., it is never informative. For this reason,
? is referred to as the non-informative projection operator in InqB.

A sentence ϕ is always equivalent to the conjunction of its two projections, ?ϕ and
!ϕ. This fact, which will play an important role later on, is known as ‘division’ (see,
e.g., Ciardelli 2009; Groenendijk and Roelofsen 2009).

Fact 3 (Division) For any sentence ϕ, ϕ ≡ ?ϕ ∧ !ϕ
Given these notions, it is natural to think of sentences in InqB as inhabiting a two-
dimensional space, as depicted in Fig. 2 (see Mascarenhas 2009; Ciardelli 2009;
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Fig. 2 Projection and division

Roelofsen 2013). One of the axes is inhabited by questions, which are always non-
informative; the other axis is inhabited by assertions, which are always non-inquisitive;
the ‘zero-point’ of the space is inhabited by tautologies, which are neither informative
nor inquisitive; and the rest of the space is inhabited by hybrids, which are both infor-
mative and inquisitive. Every hybrid sentence ϕ has a projection onto the horizontal
axis, !ϕ, and a projection onto the vertical axis, ?ϕ. The former is always an assertion,
the latter is always a question, and the conjunction of the two is always equivalent
with ϕ itself.

This concludes our brief review of InqB. Notice that the system is not syntactically
dichotomous: there is no clearcut syntactic division between declaratives and interrog-
atives. It may be suitable to think of sentences of the form !ϕ and ?ϕ as corresponding to
declaratives and interrogatives in natural language, respectively (see Roelofsen 2013).
However, even so, the logical language also contains many sentences that are not of
this form, and can as such not be classified as being either declarative or interrogative.

Note also that questions and assertions are defined in InqB as semantic categories.
That is, whether a given sentence counts as an assertion or a question is not defined in
terms of syntactic features, but rather in terms of semantic features: the proposition that
the sentence expresses, and its informative content. Thus, these categories are quite
different from the categories of declaratives and interrogatives, which are syntactic in
nature.

Finally, note that InqB is not semantically dichotomous either. All sentences are
assigned the same type of semantic value: a non-empty, downward closed set of states.
These semantic values capture both informative and inquisitive content at the same
time. In some cases, the informative content or the inquisitive content of a sentence
is trivial. However, the system does not make use of two distinct types of semantic
values, one to capture informative content and the other to capture inquisitive content,
as is characteristic of semantically dichotomous approaches.

3 Inquisitive semantics for declaratives and interrogatives

We now turn to the heart of the paper, which aims to show that, even though inquisitive
semantics does not require a clearcut syntactic division between declaratives and
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interrogatives, it is certainly compatible with such a division. We will specify an
alternative system, InqD, which uses exactly the same inquisitive semantic machinery
as InqB, but applies this machinery to a language that makes a clear division between
declaratives and interrogatives.

3.1 Language

The logical language that we will consider, LInqD, consists of declaratives, interrog-
atives, and sequences of sentences that may be either declarative or interrogative.
The latter are included to allow for meaning-preserving translations back and forth
between InqD and InqB. In defining LInqD we will use α and β as meta-variables rang-
ing over declaratives, μ and ν as meta-variables ranging over interrogatives, and ϕ

and ψ as meta-variables ranging over arbitrary sentences. We start with a definition
of the declarative fragment of the language, L!.

Definition 10 (Declaratives) L! is the smallest set containing a given set P of atomic
sentences, as well as ⊥, and is closed under conjunction and implication. That is:

– If α, β ∈ L!, then α ∧ β ∈ L! as well
– If α, β ∈ L!, then α → β ∈ L! as well

Negation and disjunction are defined as abbreviations, as follows.

Definition 11 (Abbreviations) For any α, β ∈ L!:
– α → ⊥ is abbreviated as ¬α

– ¬(¬α ∧ ¬β) is abbreviated as α ∨ β

Now let us turn to interrogatives. As is common practice in a number of logical
approaches to questions, in particular the inferential erotetic logic (IEL) of Wiśniewski
(1996, 2001) and the interrogative model of inquiry (IMI) of Hintikka (1981, 1983,
1999, 2007), we take basic interrogatives to be of the form ?{α1, . . . , αn}, where
α1, . . . , αn are declarative sentences.2 Intuitively, the declaratives α1, . . . , αn deter-
mine what is needed to resolve the issue that is raised by ?{α1, . . . , αn}. This intuition
will be reflected by the semantic clauses given below: a state will support ?{α1, . . . , αn}
just in case it supports at least one of α1, . . . , αn .

We place one restriction on the formation of basic interrogatives. Namely, the set
{α1, . . . , αn} must be such that α1 ∨ · · · ∨ αn constitutes a classical tautology. In
other words, for every possible world w, at least one of α1, · · · , αn must be true in
w. Intuitively, this means that it must always be possible to truthfully resolve a basic
interrogative in any possible world.3

2 Like IEL, we take the symbols ‘{’ and ‘}’ to be part of the object language. This means that, e.g.,
?{p,¬p}, ?{¬p, p}, and ?{p, p,¬p} are three distinct interrogative formulas. Unlike IEL, we impose no
requirement that n ≥ 2 or that the α’s should be syntactically distinct. However, different choices in this
respect would be just as compatible with the framework that we are going to propose, and would not impinge
on the results that will be established here.
3 Instead of imposing this restriction, we could also think of a basic interrogative ?{α1, . . . , αn} as presup-
posing that the actual world is one where the interrogative can be truthfully resolved, i.e., a world where
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Unlike in IEL and IMI, besides basic interrogatives, our language will also con-
tain more complex interrogatives. These are built from basic ones using conjunction
and implication. In the case of conjunction, both conjuncts must be interrogatives.
In the case of implication, the antecedent must be declarative, and the consequent
interrogative.4

Definition 12 (Interrogatives) L? is the smallest set such that:

– If α1, . . . , αn ∈ L! and α1 ∨ · · · ∨ αn is a classical tautology,
then ?{α1, . . . , αn} ∈ L?

– If μ, ν ∈ L?, then μ ∧ ν ∈ L?
– If α ∈ L! and μ ∈ L?, then α → μ ∈ L?

Finally, we define LInqD as the language containing both L! and L?, as well as finite
sequences of sentences from either L! or L?.

Definition 13 (LInqD) LInqD is the smallest set such that:

– If ϕ ∈ L! ∪ L?, then ϕ ∈ LInqD

– If ϕ1, . . . , ϕn ∈ L! ∪ L?, then 〈ϕ1, . . . , ϕn〉 ∈ LInqD

A sequence 〈ϕ1, . . . , ϕn〉 may be thought of as a discourse or text consisting of multiple
consecutive sentences.

3.2 Semantics

In defining the semantics of InqD, we follow exactly the same pattern as we did in
defining the semantics for InqB above. We first specify recursively when a sentence is
supported by a given state.

Definition 14 (Support for InqD)

1. s |� p iff ∀w ∈ s : w(p) = 1
2. s |� ⊥ iff s = ∅
3. s |� ?{α1, . . . , αn} iff s |� α1 or … or s |� αn

4. s |� ϕ ∧ ψ iff s |� ϕ and s |� ψ

5. s |� α → ψ iff ∀t ⊆ s : if t |� α then t |� ψ

6. s |� 〈ϕ1, . . . , ϕn〉 iff s |� ϕ1 and … and s |� ϕn

Footnote 3 continued
at least one of α1, . . . , αn is true (see Hintikka 1981, 1983, 1999, 2007; Wiśniewski 1996, 2001). This
alternative will be explored in Sect. 6. Yet another strategy would be to assume that a basic interrogative
?{α1, . . . , αn} cannot only be resolved by establishing that one of α1, . . . , αn is true, but also by establishing
that all of α1, . . . , αn are false. This also guarantees that basic interrogatives can be truthfully resolved in
every world (see Groenendijk 2011).
4 The constraint that the antecedent of a conditional interrogative must be a declarative, is a bit arbitrary from
a purely semantic perspective. In InqB, an implication is bound to be a question (i.e., non-informative) as soon
as its consequent is. So, unlike the constraint on conjunction that both conjuncts must be interrogative, which
is needed to guarantee that the conjunction as a whole expresses a question, the constraint on implication
is not semantically motivated (see Groenendijk (2011) for more detailed discussion of this point).
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The proposition expressed by ϕ, denoted [ϕ]InqD, is the set of all states supporting ϕ.
Just like for InqB, support for InqD is persistent, and moreover the empty state supports
every sentence. This ensures that the proposition [ϕ]InqD expressed by a sentence is
always a proposition in the sense of inquisitive semantics (definition 3). All other
semantic notions—entailment, equivalence, the informative content of a sentence, the
possibilities for a sentence, informative and inquisitive sentences, questions, assertion,
hybrids, and tautologies—carry over directly from InqB to InqD as well.

When comparing the definition of support for InqD and InqB, we find two differ-
ences, which concern the third and the sixth clause. The sixth clause in the support
definition for InqD is concerned with sequences of sentences. Such sequences were not
part of the language in InqB, so this clause is not present in the support definition for
InqB. In InqD, sequences are treated just like conjunctions: a state supports a sequence
just in case it supports every element of the sequence.

Now let us consider the third clause of the support definition. In InqB, the third
clause was concerned with disjunction. In InqD, disjunction is not a basic connective,
rather α ∨β is defined as an abbreviation of ¬(¬α ∧¬β). Thus, the support definition
for InqD does not include a clause for disjunction. Rather, the third clause of the defini-
tion is concerned with basic interrogatives. However, notice that the clause is still very
similar to the clause for disjunction in InqB: a state supports ?{α1, . . . , αn} just in case
it supports at least one of α1, . . . , αn , while in InqB, a state supports a disjunction just
in case it supports at least one of the disjuncts. Thus, from a semantic point of view,
basic interrogatives in InqD behave just like disjunctions in InqB. The only difference
is that the ‘disjuncts’ of a basic interrogative in InqD cannot be chosen arbitrarily. In
order to guarantee that the issue raised by a basic interrogative ?{α1, . . . , αn} can be
truthfully resolved in every world, the ‘disjuncts’ α1, . . . , αn have to be chosen in such
a way that in every world, at least one of them is true.5

The fifth clause of the support definition, concerning conditionals, is the same as
in InqB. However, it is easy to see that, in the context of InqD, the clause can be given
a simpler and more intuitive formulation.

Fact 4 (Alternative clause for conditionals in InqD)
For any conditional α → ϕ in InqD and any state s:

s |� α → ϕ ⇐⇒ s ∩ |α| |� ϕ

A final observation to make about the support definition for InqD is that the clauses for
conjunction and implication apply uniformly to both declaratives and interrogatives.
There is no need to specify separate clauses for the two types of sentences. This is
made possible by the fact that, even though InqD is syntactically dichotomous, it is not
semantically dichotomous. Just as in InqB, all sentences are assigned the same type
of semantic value: a non-empty, downward closed set of states.

One striking difference between InqB and InqD is that the latter does not contain
any hybrid sentences. Declaratives are never inquisitive, and interrogatives are never

5 This restriction will be lifted in Sect. 6, where we will consider interrogatives that can only be truthfully
resolved in some worlds.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Propositions expressed by some simple sentences in InqD

informative. In other words, every declarative is an assertion, and every interrogative
is a question. The labor of providing and requesting information is strictly divided
between the two sentence types.

Fact 5 (Questions, assertions, and hybrids in InqD)

– Every declarative in InqD is an assertion.
– Every interrogative in InqD is a question.
– No single sentence in InqD is a hybrid.

Of course, a sequence of sentences in InqD may very well be hybrid. For instance, the
sequence 〈p, ?{q,¬q}〉 consisting of the declarative p and the interrogative ?{q,¬q},
provides the information that p is the case, and requests further information to deter-
mine whether q is the case (see Fig. 3h and the discussion below).

Recall that in InqB, the informative content of a sentence ϕ always amounts to
the set of worlds in which it is classically true: info(ϕ) = |ϕ|. This means that InqB
does not diverge from the classical treatment of informative content, it just adds an
inquisitive dimension to the notion of meaning. An analogous result holds for InqD.
Namely, the informative content of every declarative sentence α in InqD amounts to
the set of worlds in which it is classically true: info(α) = |α|. Moreover, since every
declarative α is an assertion in InqD, there is always a unique possibility for α, which
coincides with |α|. Thus, for all intents and purposes, the meaning of a declarative in
InqD can be identified with its classical meaning.

Fact 6 (Declaratives behave classically in InqD)
For every declarative α in InqD, s |� α ⇐⇒ s ⊆ |α|. In particular, a declarative α

has a unique possibility, which coincides with |α|.
As we will see, this fact entails that the logic of the declarative fragment of InqD
simply coincides with classical propositional logic (CPL). Thus, InqD is a conservative
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extension of CPL, and in this sense it extends CPL in a less drastic way than InqB.
However, there is also a sense in which InqD extends CPL in a more drastic way than
InqB. Namely, besides enriching the semantic machinery, it also enriches the syntax.
It does not only add an inquisitive dimension to the notion of meaning, but also a new
syntactic category—the category of interrogatives—to the logical language.

3.3 Examples

To illustrate the semantics of InqD, we have depicted the propositions expressed by
some simple sentences in Fig. 3. As before, we assume that our language contains just
two atomic sentences, p and q, which means that there are just four possible worlds,
11, 10, 01, and 00. Also as before, we only depict possibilities. As we saw above, for
every declarative α there is a single possibility, which coincides with the proposition
expressed by α in CPL. This is illustrated for some simple declarative sentences in
Fig. 3a–d.

Now let us turn to interrogatives. First consider the basic interrogative ?{p,¬p}.
As depicted in Fig. 3e, there are two possibilities for this interrogative, one consisting
of all worlds where p is true, and one consisting of all worlds where ¬p is true. Thus,
this interrogative may be taken to correspond to the polar question whether p is true or
false. Polar questions in English usually only make one of the two ‘disjuncts’ explicit,
as illustrated in (1).

(1) Is John going to the party?

It is also possible to make both disjuncts explicit, as in (2), and in many natural
languages other than English, such as Mandarin Chinese, this is in fact the standard
way to formulate polar questions.

(2) Is John going to the party or not?

In terms of inquisitive content, (1) and (2) are equivalent. Both are used to raise the
issue whether John is going to the party or not, and both are resolved if and only if one
of the two options is established. This is suitably captured both in InqB and in InqD.
It has been noted that in English questions like (2) usually carry a sense of urgency
that is not necessarily conveyed by standard polar questions like (1) (Bolinger 1978;
Biezma 2009). In order to capture this fine-grained difference, it would be necessary
to further refine the basic inquisitive semantic machinery of InqB and InqD.

Turning back to the logical language of InqD, recall that there are two ways to
construct complex interrogatives, using either conjunction or implication. Let us
consider one example of both. As depicted in Fig. 3f, the conjunctive interrogative
?{p,¬p}∧?{q,¬q} has four possibilities. Each of these possibilities contains enough
information to determine whether p is true and also whether q is true.

Now let us consider a conditional interrogative, p → ?{q,¬q}. As depicted in
Fig. 3g, there are two possibilities for this sentence, |p → q| and |p → ¬q|. Thus,
the sentence has the same resolution conditions as a simple conditional question in
English, exemplified in (3).

(3) If John is going to the party, will Mary go as well?
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The two possibilities correspond to the two basic resolving answers to this question:

(4) a. Yes, if John is going, Mary is going as well.
b. No, if John is going, Mary won’t go.

Finally, let us consider a simple sequence of two sentences, 〈p, ?{q,¬q}〉. Notice that
the first element of the sequence is declarative and the second interrogative. As depicted
in Fig. 3h, there are two possibilities for 〈p, ?{q,¬q}〉. Both of these support p. In
addition, one of them supports q and the other supports ¬q. Thus, both possibilities
contain the information that p is true, as well as sufficient information to determine
whether q is true or not.

Notice that all the interrogative sentences we considered are such that their possibil-
ities together cover the set of all possible worlds, as depicted in Fig.3e–g. This means
that none of them is informative, they are all questions, in accordance with fact 5. The
sequence 〈p, ?{q,¬q}〉 has two possibilities, which means that it is inquisitive, but
these states do not cover the set of all possible worlds, which means that the sequence
is informative as well. Thus, as noted earlier, this example illustrates that sequences
can be hybrid, unlike individual sentences in InqD.

3.4 Translations

We will now show that there is a straightforward translation procedure that transforms
any sequence of sentences in InqD into an equivalent conjunction of sentences in InqB,
and conversely any sentence ϕ in InqB can be turned into an equivalent sequence of
two sentences 〈αϕ, μϕ〉 in InqD, where αϕ is a declarative equivalent with !ϕ, and μϕ

an interrogative equivalent with ?ϕ.6

A corollary of this result is that InqD and InqB have exactly the same expressive
power. Recall that InqB is expressively complete (see proposition 1 above). Thus, the
fact that it is possible to translate every sentence in LInqB into an equivalent sequence
of sentences in LInqD implies that InqD is also expressively complete.

Let us first consider the translation from LInqD to LInqB, which is straightforward.
Note that the translation procedure given below only applies to sentences that do not
contain the non-basic connectives ¬ and ∨. If we want to translate a sentence that
does contain ¬ or ∨, we first have to rewrite it in terms of the basic connectives, and
then translate it into LInqB using the procedure given here.

Definition 15 (Translation from LInqD to LInqB)

1. (p)† = p for all p ∈ P
2. (⊥)† = ⊥
3. (?{α1, . . . , αn})† = (α1 ∨ · · · ∨ αn)

4. (α → ψ)† = α → (ψ)†

5. (ϕ ∧ ψ)† = (ϕ)† ∧ (ψ)†

6. (〈ϕ1, . . . , ϕn〉)† = (ϕ)† ∧ · · · ∧ (ϕn)
†

This translation procedure is meaning preserving.

6 Throughout this section we will assume that both LInqD and LInqB are based on the same set of atomic
sentences P .
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Fact 7 ((.)† is meaning preserving) For all ϕ ∈ LInqD : [ϕ]InqD = [(ϕ)†]InqD.

As may be expected, translation in the other direction is less straightforward. For a
start, given that LInqD does not contain any single sentences that are hybrid, it will
not be possible to translate every sentence in LInqB into a single sentence in LInqD in
a meaning preserving way. It is possible, however, to translate each sentence in LInqB

into a pair of sentences in LInqD.
Recall from Sect. 2 that in InqB, every sentence ϕ is equivalent with the conjunction

of its two projections, !ϕ∧?ϕ. We referred to this fact as the division fact: the informa-
tive and the inquisitive content of a sentence ϕ can always be divided over one sentence
that is an assertion, !ϕ, and another sentence that is a question, ?ϕ. We will use this fact
to establish the desired meaning preserving translation from LInqB to LInqD. Namely,
we will first show how to translate sentences of the form !ϕ, and then sentences of
the form ?ϕ. Together with the division fact, this will yield a meaning-preserving
translation procedure for the entire language.

First, recall that the informative content of every sentence ϕ in InqB coincides with
the set of worlds in which this sentence is classically true, |ϕ|, and the same holds
for every declarative in InqD. It follows that whenever ϕ is an assertion in InqB, it
expresses exactly the same proposition in InqB as in InqD, namely ℘(|ϕ|).
Fact 8 If ϕ is an assertion in InqB, then [ϕ]InqD = [ϕ]InqB = ℘(|ϕ|).
Recall that every sentence of the form !ϕ is an assertion in InqB. So !ϕ expresses
the proposition ℘(|!ϕ|). But since !ϕ abbreviates ¬¬ϕ, |!ϕ| amounts to |ϕ|, which
means that [!ϕ]InqB = ℘(|ϕ|) = [ϕ]InqD. Thus, for sentences of the form !ϕ, there is a
straightforward meaning preserving translation from InqB to InqD.

Now let us turn to sentences in InqB of the form ?ϕ. In order to deal with these
sentences, we need to build on the fact that every sentence ϕ in LInqB can be turned
into an equivalent sentence of the form ¬ϕ1 ∨ · · · ∨ ¬ϕn , a disjunction of negated
sentences. One way of achieving this is given by the following disjunctive negative
translation.

Definition 16 (Disjunctive negative translation)

1. dnf(p) = ¬¬p
2. dnf(⊥) = ¬¬⊥
3. dnf(ψ ∨ χ) = dnf(ψ) ∨ dnf(χ)

4. dnf(ψ ∧ χ) = ∨{¬¬(ψi ∧ χ j ) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}7

where:
– dnf(ψ) = ψ1 ∨ · · · ∨ ψn

– dnf(χ) = χ1 ∨ · · · ∨ χm

5. dnf(ψ → χ) = ∨{¬¬∧
1≤i≤n(ψi → χ f (i)) | f : {1, . . . , n} → {1, . . . ,m}}

where:
– dnf(ψ) = ψ1 ∨ · · · ∨ ψn

– dnf(χ) = χ1 ∨ · · · ∨ χm

7 If Φ is a finite set of formulas, we write
∨

Φ to denote the disjunction ϕ1 ∨ · · · ∨ ϕn , where ϕ1, . . . , ϕn
is an arbitrary enumeration of the elements of Φ. Similarly, later on we shall write ?Φ for the interrogative
?{ϕ1, . . . , ϕn}, where ϕ1, . . . , ϕn is an arbitrary enumeration of Φ.
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The sentence dnf(ϕ) is called the disjunctive negative form of ϕ. As shown in (Cia-
rdelli 2009; Ciardelli and Roelofsen 2011), a sentence is always equivalent with its
disjunctive negative form.

Fact 9 For any ϕ ∈ LInqB, [ϕ]InqB = [dnf(ϕ)]InqB.

Every negated sentence is an assertion in InqB. So the dnf of a sentence is always a
disjunction of assertions, and by fact 8 all these assertions express exactly the same
proposition in InqD as they do in InqB. Now consider a sentence of the form ?ϕ in
InqB, and its disjunctive negative form dnf(?ϕ). Since ?ϕ is a question, dnf(?ϕ) is
also a question, which means that |dnf(?ϕ)| = ω. In other words, for every possible
world w ∈ ω, there is at least one disjunct of dnf(?ϕ) that is classically true in w.
This means that:

?{ψ | ψ is a disjunct of DNF(?ϕ)}
is a well-formed basic interrogative in InqD. Moreover, it is clear that this basic inter-
rogative expresses exactly the same proposition in InqD asdnf(?ϕ) does in InqB, which
in turn is the same as the proposition expressed by ?ϕ in InqB. This, then, establishes
the desired meaning preserving translation.

As before, the translation procedure given below is intended to be applied only to
sentences in InqB that do not contain any non-basic connectives. If we want to translate
a sentence ϕ that does contain non-basic connectives, then we first have to rewrite it in
terms of the basic connectives in InqB, and then translate it using the procedure given
below. Moreover, recall that disjunction is a basic connective in InqB but not in InqD;
if the translation of ϕ contains a disjunction β ∨ γ , this is to be treated in InqD as an
abbreviation of ¬(¬β ∧ ¬γ ).

Definition 17 (Translation from LInqB to LInqD)
For every ϕ ∈ LInqB: (ϕ)
 = 〈ϕ, ?{ψ | ψ is a disjunct of dnf(?ϕ)}〉.
Fact 10 ((.)
 is meaning preserving) For every ϕ ∈ LInqB : [(ϕ)
]InqD = [ϕ]InqB
Thus, despite the considerable differences in their syntax, InqD and InqB are equivalent
in terms of expressive power. Moreover, it can be seen from the translation in defi-
nition 17 that removing conjunctive and conditional interrogatives from InqD would
not reduce the expressive power of the system. All propositions can be expressed by
declaratives, basic interrogatives, and sequences consisting of declaratives and basic
interrogatives.

In Sect. 5 we will consider two natural ways to restrict the expressive power of
InqD. The most radical way of doing so will yield a system that essentially amounts
to the propositional fragment of the partition semantics of Groenendijk and Stokhof
(1984, 1997), discussed in the beginning of the paper. But, before coming to that, we
will first consider the logic that InqD gives rise to.

4 Entailment and validity in InqD

InqD comes with a notion of entailment and validity that applies uniformly to declar-
atives and interrogatives.
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Definition 18 (Entailment and validity)

– We say that a set of sentences Φ entails a sentence ψ in InqD, notation Φ |�InqD ψ ,
just in case ψ is supported by any state that supports all sentences in Φ.

– We say that ϕ is valid in InqD just in case is it is supported by all states.
– The set of all validities in InqD is called the logic of InqD, and is denoted L InqD.

Before investigating the formal properties of entailment and validity in InqD, let us
first consider what these notions amount to at an intuitive level, depending on the
syntactic category of the sentences involved. First consider a sentence ϕ that is valid
in InqD. There are two cases to consider, the case where ϕ is a declarative and the
case in which it is an interrogative. If ϕ is a declarative, then it is valid just in case its
informative content is trivial. This means that it cannot be used to provide non-trivial
information. If ϕ is an interrogative, then it is valid just in case the issue that it raises is
trivially resolved. This means that it cannot be used to request non-trivial information.
Thus, from a conversational point of view, valid sentences, be they declarative or
interrogative, are sentences that cannot be used to make any non-trivial contribution
to the conversation. Moreover, it follows from fact 6 that a declarative is valid in InqD
if and only if it is a tautology in classical logic.

Now consider entailment. Let us restrict ourselves to cases where the antecedent
is a single sentence rather than a set containing multiple sentences. Then there are
four cases to consider, the case where both antecedent and consequent are declarative,
the case where both are interrogative, and two cases where one is declarative and the
other interrogative. We will continue to use α and β as meta-variables ranging over
declaratives, and μ and ν as meta-variables ranging over interrogatives, and we will
use |�CPL to denote entailment in classical propositional logic.

Case 1: declarative entails declarative
If α and β are declaratives, then it follows from fact 6 that α |�InqD β ⇐⇒
|α| ⊆ |β| ⇐⇒ α |�CPL β. Thus, a declarative α entails another declarative β

just in case α provides as least as much information as β, that is, iff α classically
entails β.
Case 2: interrogative entails interrogative
Intuitively, a state supports an interrogative just in case it contains enough infor-
mation to resolve the issue expressed by the interrogative. Thus, an interrogative
μ entails another interrogative ν just in case any piece of information that resolves
the issue expressed by μ also resolves the issue expressed by ν; in other words, just
in case μ requests at least as much information as ν does. Thus, in this case entail-
ment does not compare informative strength, as it does in the case of declaratives,
but rather inquisitive strength.
Case 3: declarative entails interrogative
It follows from fact 6 that for any declarative α and any interrogative μ,
α |�InqD μ ⇐⇒ |α| |� μ. So, α entails μ just in case the information pro-
vided by α is sufficient to resolve the issue expressed by μ. In this case, entailment
is thus related to answerhood.
Case 4: interrogative entails declarative
Suppose now an interrogative μ entails a declarative α. This implies that the
informative content of μ entails the informative content of α, info(μ) ⊆ info(α).
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But since μ is an interrogative, its informative content is trivial, i.e., coincides with
the set ω of all worlds. But then, info(α) must be trivial as well, which means that
α must be a tautology. Thus, an interrogative can never entail a declarative unless
the latter is a tautology (in which case, it is entailed by any sentence).

Now that it is clear what validity and entailment amount to at an intuitive level, let
us turn to the formal properties of these notions. We will focus on entailment, since
validity is a special case thereof. We first note that the deduction theorem holds for
declaratives.

Proposition 2 (Deduction theorem)
For any set of sentences Φ, any declarative α and any sentence ψ ,

Φ,α |�InqD ψ ⇐⇒ Φ |�InqD α → ψ

Next we note that the logic is compact. The proof of this fact follows the same line
of reasoning as the proof of the corresponding fact for InqB, which can be found in
Ciardelli (2009), pp. 24–25.

Proposition 3 (Compactness) For any Φ and ψ , if Φ |�InqD ψ then there is a finite
Φ ′ ⊆ Φ such that Φ ′ |�InqD ψ .

The interrogative operator is a syntactically constrained form of constructive disjunc-
tion. This is witnessed by the fact that it has the disjunction property.

Proposition 4 (Disjunction property for ?) For any declaratives α1, . . . , αn:

|�InqD ?{α1, . . . , αn} ⇐⇒ |�InqD αi for some 1 ≤ i ≤ n

In fact, this is a particular case of a more general and important fact.

Proposition 5 For any declaratives α1, . . . , αn and any set of declaratives Γ :

Γ |�InqD ?{α1, . . . , αn} ⇐⇒ Γ |�InqD αi for some 1 ≤ i ≤ n

We now come to the task of axiomatizing |�InqD. Since we’ve already seen that the
declarative fragment of InqD behaves classically, we will have to enrich a system for
classical logic with special rules to deal with interrogatives. We choose to build on a
natural deduction system for classical logic.

The rules of the system are listed in Fig. 4 on the next page, using α, β, γ for declar-
atives, μ, ν, λ for interrogatives, and ϕ,ψ for generic sentences, which may belong
to either category. We write Φ �InqD ψ if there is a proof of ψ whose undischarged
assumptions are all included in Φ. Throughout the rest of this section we will drop
the subscript InqD and simply write |� and � for |�InqD and �InqD.

A couple of remarks are in place here. First, notice that the introduction and elimi-
nation rules for the interrogative operator have exactly the same shape as the (standard)
rules for disjunction. The crucial difference between the two operators lies in the gen-
erality of the elimination rule: in the case of ?, the conclusion of the elimination rule
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Fig. 4 A derivation system for InqD
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can be any formula, declarative or interrogative, whereas for ∨, the conclusion must
be a declarative. This simple restriction prevents obviously unsound derivations, such
as the one from the tautology α ∨ ¬α to the polar interrogative ?{α,¬α}.

The Kreisel-Putnam rule is named after a similar rule proposed and investigated by
Kreisel and Putnam (1957) in the context of intuitionistic logic. The original rule is
concerned with implications that have a negative antecedent and a disjunctive conse-
quent. It distributes the disjuncts of the consequent over the implication as a whole.
Similarly, our inference rule distributes the ‘disjuncts’ of a basic interrogative that
forms the consequent of an implication over the implication as a whole. An analogous
axiom also plays a crucial role in the axiomatization of InqB (Ciardelli 2009; Ciardelli
and Roelofsen 2011).

One can check that each of the rules is sound with respect to the semantics, which
means that the deduction system as a whole is sound as well.

Proposition 6 (Soundness) For any set of sentences Φ and any sentence ψ:

Φ � ψ ⇒ Φ |� ψ

As far as declaratives are concerned, the system coincides with the usual natural
deduction system for CPL, and therefore it is complete for our semantics.

Proposition 7 For any set of declaratives Γ and any declarative α:

Γ |� α ⇒ Γ � α

Next consider the case in which the premisses are declaratives and the conclusion is
a basic interrogative.

Proposition 8 For any set of declaratives Γ and any basic interrogative ?{α1, . . . , αn}:

Γ |� ?{α1, . . . , αn} ⇒ Γ � ?{α1, . . . , αn}

Proof Suppose Γ |� ?{α1, . . . , αn}. Then, by proposition 5, we must have Γ |� αi

for some 1 ≤ i ≤ n. But then it follows from the completeness of our system for
declaratives, proposition 7, that Γ � αi , whence by using the introduction rule for ?
we can conclude that Γ � ?{α1, . . . , αn}. ��
The next step towards completeness is to show that in fact, any interrogative is provably
equivalent to a basic interrogative, so that the previous proposition generalizes to
arbitrary interrogatives.

Definition 19 (Provable equivalence) We say that two sentences ϕ and ψ are provably
equivalent, notation ϕ ≡P ψ , just in case ϕ � ψ and ψ � ϕ.

Lemma 1 Any interrogative is provably equivalent to a basic one.

Proof The proof goes by induction on the complexity of the interrogative μ under
consideration. The claim is trivially true for a basic interrogative, so we just have to
consider the induction step for conjunctive and conditional interrogatives.
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1. Consider a conjunctive interrogative μ ∧ ν and suppose the induction hypothesis
holds for μ and ν, that is, suppose there are declaratives α1, . . . , αn, β1, . . . , βm

such that
– μ ≡P ?{α1, . . . , αn}
– ν ≡P ?{β1, . . . , βm}

We claim that μ ∧ ν is provably equivalent to the basic interrogative

λ := ?{αi ∧ β j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

We are going to show that this is the case by indicating how these two sentences
may be derived from each other in our system.
(a) Assume μ ∧ ν. Eliminating the conjunction we obtain both μ and ν, whence

by induction hypothesis we obtain both ?{α1, . . . , αn} and ?{β1, . . . , βm}.
Now assume αi for some 1 ≤ i ≤ n. Whatever β j we assume, for 1 ≤ j ≤ m,
we will be able to derive αi ∧ β j , whence, by introduction of the ? operator,
we obtain λ.
Since λ may be obtained from β j for all j and since we have the interrogative
?{β1, . . . , βm}, by the rule of ?-elimination we can discharge all the assump-
tions β j and obtain λ.
This proof of λ can be carried out under the assumption αi for any i . Since
we have the interrogative ?{α1, . . . , αn}, we can apply again the ?-elimination
rule, discharge all the hypotheses αi and conclude λ.

(b) Conversely, assume λ. Now, if we assume any item αi ∧β j we can conclude αi

and thus, by ?-introduction, we obtain ?{α1, . . . , αn}. Then from ?{α1, . . . , αn}
we can obtain the provably equivalent interrogative μ. Now, since μ can be
obtained under the assumption αi ∧β j for any 1 ≤ i ≤ n and 1 ≤ j ≤ m, and
since we have the interrogative λ =?{αi ∧ β j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, the
?-elimination rule applies: all the assumptions αi ∧ β j can be discharged and
μ can be concluded.
With a totally analogous strategy we proceed to obtain ν, and finally by the
introduction of conjunction we conclude μ ∧ ν.

2. Now consider a conditional interrogative α → μ and assume by the induction
hypothesis that μ is provably equivalent to a basic interrogative ?{β1, . . . , βm}.
We claim that α → μ is provably equivalent to the basic interrogative ?{α →
β1, . . . , α → βn}. Again we will indicate how these sentences are interderivable
in the system.
(a) Assume α → μ. Now assume α: then we can conclude μ and therefore,

by assumption, also ?{β1, . . . , βm}. Now we discharge the hypothesis α and
conclude α → ?{β1, . . . , βm}. At this point we have to resort to our Kreisel-
Putnam rule, which yields ?{α → β1, . . . , α → βn}. The role of the Kreisel-
Putnam rule in the system is precisely to guarantee this last inference, which
would not be possible otherwise.

(b) Conversely, assume ?{α → β1, . . . , α → βn}. Also, assume α. Now,
whichever of the items α → β j we assume, eliminating the implication we will
be able to conclude β j ; then we can obtain ?{β1, . . . , βm} by ?-introduction,
and therefore also the provably equivalent sentence μ.
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Hence, μ may be concluded from any of the assumptions α → β j for any
1 ≤ j ≤ n, and since we have the interrogative ?{α → β1, . . . , α → βn},
we can apply the ?-elimination rule, discharge all the hypotheses α → β j and
conclude μ.
Finally, we discharge the hypothesis α and conclude α → μ. The only remain-
ing undischarged assumption is ?{α → β1, . . . , α → βn}. This concludes the
proof of the lemma. ��

Proposition 8 can now be generalized to arbitrary interrogatives.

Proposition 9 For any set of declaratives Γ and any interrogative μ:

Γ |� μ ⇒ Γ � μ

Proof Suppose that Γ |� μ. By the previous lemma, μ is provably equivalent to a
basic interrogative ?{α1, . . . , αn}. In particular, μ � ?{α1, . . . , αn}. Since the proof
system is sound we have that μ |� ?{α1, . . . , αn}, and since Γ |� μ we also have
that Γ |� ?{α1, . . . , αn}. It follows then from proposition 8 that Γ � ?{α1, . . . , αn}.
Finally, since ?{α1, . . . , αn} � μ, we can conclude that Γ � μ. ��
Putting together propositions 7 and 9 yields a completeness result for the case in which
all premises are declaratives.

Proposition 10 For any set of declaratives Γ and any arbitrary sentence ϕ:

Γ |� ϕ ⇒ Γ � ϕ

Now let us examine the case where we have an interrogative premise.

Proposition 11 Let μ be an interrogative and ϕ an arbitrary sentence.

μ |� ϕ ⇒ μ � ϕ

Proof Suppose that μ |� ϕ. According to lemma 1, μ is provably equivalent to a basic
interrogative ?{α1, . . . , αn}. In particular, ?{α1, . . . , αn} � μ. But then, since the proof
system is sound, we have that ?{α1, . . . , αn} |� μ, and since μ |� ϕ, we also have
that ?{α1, . . . , αn} |� ϕ. Now consider any αi , 1 ≤ i ≤ n. Any state that supports
αi also supports ?{α1, . . . , αn}, and therefore also ϕ. This means that αi |� ϕ. But
then, since αi is a declarative, proposition 10 tells us that αi � ϕ. So ϕ can be derived
from any αi , 1 ≤ i ≤ n. But then, using the ?-elimination rule, it can be derived from
?{α1, . . . , αn}, and therefore also from the provably equivalent interrogative μ. Thus,
we can conclude that μ � ϕ. ��
So, the case in which there is a single interrogative premise is fine too. We now turn
to the general case, where we have an arbitrary set of premises.

Theorem 11 (Completeness theorem)For any set of sentences Φ and any sentence ψ:

Φ |� ψ ⇒ Φ � ψ
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Proof Suppose that Φ |� ψ . First, since the system is compact (proposition 3), there
is a finite Φ ′ ⊆ Φ with Φ ′ |� ψ . Let us divide this finite set Φ ′ into a set of declaratives
Γ and a set of interrogatives �. We then have that �,Γ |� ψ .

Now, a state supports all the interrogatives in � if and only if it supports the
conjunctive interrogative λ := ∧

�. Analogously, a state supports all the declaratives
in Γ if and only if it supports the conjunction γ := ∧

Γ .
Therefore, �,Γ |� ψ is equivalent to λ, γ |� ψ . In turn, by the deduction theorem,

this is equivalent to λ |� γ → ψ . Now we have only one interrogative as our assump-
tion, and proposition 11 ensures completeness for this case, yielding λ � γ → ψ . But
if λ � γ → ψ , then λ, γ � ψ .

Finally, notice that both λ and γ are conjunctions of sentences in Φ: therefore,
both are derivable from Φ. So from Φ one can derive both λ and γ , whence in turn
one can derive ψ . Thus, we have shown that Φ � ψ , and the completeness result is
established. ��

5 Restricting the expressive power of InqD

In this section, we consider two ways of restricting the expressive power of InqD, and
argue that the full expressive power is needed for a suitable analysis of natural language.
We also address the issue whether, and to what extent, a semantics of interrogatives
is to be intensional, which is related to the issue of expressive power.

5.1 Simpler basic interrogatives

We saw in Sect. 3.4 that the expressive power of InqD would not be reduced if we
removed conjunctive and conditional interrogatives from the language. That is, every
proposition that is expressed by a conjunctive or a conditional interrogative can just
as well be expressed by a basic interrogative in the language.

However, if we restrict the syntax of basic interrogatives themselves, then the
expressive power of the system does significantly decrease. Given the usual form of
polar interrogatives in natural languages like English, there is one particularly natural
way to restrict the syntax of basic interrogatives in our logical language. Namely, rather
than assuming that the interrogative operator applies to a finite set of declaratives, we
could assume that it applies to a single declarative. Rather than basic interrogatives of
the form ?{α1, . . . , αn}, for any n ≥ 1, we would then only have basic interrogatives
of the form ?α. Let us call the system that results from this adjustment InqC.8

Definition 20 (Syntax of InqC) The syntax of InqC is just like that of InqD, except for
the formation of basic interrogatives. For any declarative α, ?α is a basic interrogative,
and nothing else is a basic interrogative in InqC.

8 It can be shown that this system coincides with the propositional fragment of the system presented in
Velissaratou (2000), which amounts to an enrichment of partition semantics with conditional questions.
This explains the C in InqC.
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Semantically, a basic interrogative of the form ?α is most naturally treated as raising
the issue whether α is true or not. In terms of support, this means that a state supports
?α just in case it supports either α or ¬α.

Definition 21 (Semantics of InqC) The semantics of InqC is just like that of InqD,
except for the support clause for basic interrogatives, which is as follows:

– s |� ?α iff s |� α or s |� ¬α

One may expect that, given the possibility to form conjunctive and conditional inter-
rogatives, restricting the syntax of basic interrogatives in the way just described does
not reduce the expressive power of the overall system. But it does. To demonstrate
this, we will show that all sentences of InqC are characterized by a particular property,
that is not a general feature of sentences in InqD and InqB.

Proposition 12 (InqC is pair-distributive)
For every sentence ϕ in InqC and every state s:

s |� ϕ ⇐⇒ ∀w, v ∈ s : {w, v} |� ϕ

Proof The left-to-right direction of the equivalence holds by the persistence of support.
For the converse, we will prove the contrapositive implication: if s �|� ϕ, then there
are w, v ∈ s such that {w, v} �|� ϕ. We proceed by induction on the complexity of ϕ.

– ϕ is a declarative α. Recall that a state s supports a declarative α iff s ⊆ |α|
(fact 6). So, if s �|� α, then there is a world w ∈ s which is not in |α|. But then,
again by the same property of declaratives, {w} �|� α, and notice that {w} is of the
form {w, v} with w = v ∈ s.

– ϕ is a polar interrogative ?α. Suppose s �|� ?α. This means that s is not included
in either |α| or |¬α|, and thus must contain both a world w where α is true and a
world v where α is false. But then the state {w, v} is also not included in either |α|
or |¬α|, whence {w, v} �|� ?α.

– ϕ is a conjunctive interrogative μ ∧ ν. If s �|� μ ∧ ν, then either s �|� μ, or s �|� ν.
Suppose s �|� μ. Then by the induction hypothesis there are w, v ∈ s such that
{w, v} �|� μ. But then also {w, v} �|� μ ∧ ν. Similarly if s �|� ν.

– ϕ is a conditional interrogative α → μ. Suppose s �|� α → μ. According to
fact 4, this happens if and only if s ∩ |α| �|� μ. Now by the induction hypothesis
there are two worlds w, v ∈ s ∩ |α| such that {w, v} �|� μ. But since w and v are
in α, {w, v} ∩ |α| = {w, v}, so we also have {w, v} ∩ |α| �|� μ. Using again fact 4
we get {w, v} �|� α → μ, which is what we wanted, since both worlds w and v

are in s. ��
The fact that InqC is pair-distributive means that the semantics can be based on a
notion of support that is only concerned with pairs of worlds (more precisely, with
states containing at most two worlds) rather than with arbitrary sets of worlds. In such
a setup, then, the proposition expressed by a sentence can be encoded as a binary
relation on the set of all possible worlds, namely ∼ϕ= {〈w, v〉 | {w, v} |� ϕ}.

This is reminiscent of partition semantics, where interrogatives also express a rela-
tion on the set of all possible worlds. In the case of partition semantics, the relation
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expressed by an interrogative is always an equivalence relation, which corresponds
with a partition. In the case of InqC, viewed as a relational semantics, the proposition
expressed by a sentence is not always an equivalence relation. For instance, a condi-
tional interrogative like p → ?q is supported by the pair of worlds {11, 00} and also
by the pair {00, 01} but not by the pair {11, 01} (where the labels of the worlds are as
in our earlier examples). We will show below that if we further restrict the syntax of
InqC by taking away conditional interrogatives, we obtain a system that has exactly
the same expressive power as partition semantics.

The earliest version of inquisitive semantics, presented in Groenendijk (2009)
and Mascarenhas (2009), was also defined as a relational semantics, satisfying pair-
distributivity. However, it has been argued in Ciardelli (2009); Ciardelli and Roelofsen
(2011) that pair-distributivity is not a desirable feature for inquisitive semantics, and
the main systems discussed in this paper, InqD and InqB, therefore purposefully lack
this feature.

The gist of the problem that pair-distributivity gives rise to can be illustrated with
a simple example. Consider a language with three atomic sentences, p, q, and r ,
and consider an issue that can be resolved by establishing that either one of these
sentences is true, or that they are all false. In InqB this issue is expressed by the
sentence ?(p∨q ∨ r), in InqD it is expressed by the sentence ?{p, q, r,¬(p∨q ∨ r)}.
In natural languages like English issues of this kind are expressed by disjunctive
interrogatives with rising intonation on all disjuncts, indicated in the example below
with upward pointing arrows.9

(5) Is Peter going to Italy↑ this summer, or to France↑, or to Spain↑?
a. To Italy.
b. To France.
c. To Spain.
d. No, he is not going anywhere.

The issue raised by (5) can be resolved by answering that Peter is going to one of the
three countries, or that he is not going to any of them.

Consider the proposition expressed by ?{p, q, r,¬(p ∨ q ∨ r)} in InqD. Since
there are only three atomic sentences in our language, there are eight possible
worlds: 111, 110, 101, 011, 100, 001, 010, and 000. The proposition expressed by
?{p, q, r,¬(p ∨ q ∨ r)} has four maximal elements: |p|, |q|, |r |, and |¬(p ∨ q ∨ r)|.
We will show that this proposition cannot be expressed in any system that is pair-
distributive. Towards a contradiction, suppose that ϕ is a sentence that expresses
the given proposition in a system that is pair-distributive. Then, ϕ is supported by
all pairs in |p| = {111, 110, 101, 100}, all pairs in |q| = {111, 110, 011, 010}, and
all pais in |r | = {111, 101, 011, 001}. But then it is also supported by all pairs in
{111, 101, 011, 101}, the set of all worlds in which at least two of the atomic sen-
tences are true. But then, again by pair-distributivity, the state {111, 101, 011, 110}

9 Disjunctive questions like (5), with rising intonation on all disjuncts, are called open disjunctive questions
(Roelofsen and van Gool 2010). Open disjunctive questions are to be distinguished from alternative ques-
tions, which come with falling intonation on the final disjunct (Bartels 1999; Pruitt and Roelofsen 2013),
and have different semantic characteristics as well. We will return to alternative questions momentarily.
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as a whole also supports ϕ. But this state does not support ?{p, q, r,¬(p ∨ q ∨ r)}
in InqD, because it does not support any of the ‘disjuncts’ of the interrogative. So
ϕ does not express the proposition under consideration, which contradicts our initial
assumption.

The upshot of this example is that any pair-distributive system, including InqC and
the relational inquisitive semantics of Groenendijk (2009) and Mascarenhas (2009),
has trouble dealing with disjunctive questions with three or more disjuncts. In InqD and
InqB, this problem does not arise. Thus, the difference in expressive power between
InqD and InqB on the one hand and InqC on the other, is crucial from the point of view
of natural language semantics.

5.2 No conditional interrogatives

Now, let us consider a further restriction of InqC, leaving out conditional interrogatives
from the syntax of the language. We saw that in the case of InqD, leaving out condi-
tional interrogatives did not have a real impact on the expressive power of the system.
But in the case of InqC it does. Namely, it essentially leads us back to the proposi-
tional fragment of the partition theory that we discussed in the beginning of the paper
as one of the most elementary semantic theories dealing with both declaratives and
interrogatives.

To see this, first consider the proposition expressed by a basic interrogative ?α in
InqC. There are two cases to consider. First, if α is a contradiction or a tautology,
then there is a single possibility for ?α, namely the set of all possible worlds. This
possibility, then, forms a (trivial) partition of the set of all possible worlds, consisting
of only one cell. Second, if α is not a contradiction or a tautology, then there are exactly
two possibilities for ?α. One of these is the unique possibility for α, and the other is
the unique possibility for ¬α. These possibilities are disjoint, and together they cover
the set of all possible worlds. Thus, they form a partition of the set of all possible
worlds consisting of two cells.

It is easy to see that if μ and ν are two interrogatives whose possibilities form a
partition of the set of all possible worlds, then the conjunction of μ and ν has this
property as well. But this means that, as long as we do not allow for conditional
interrogatives, all interrogatives in InqC express partition-like propositions. Thus, in
terms of expressive power, we have the following hierarchy:

partition semantics < InqC < InqD = InqB

Notoriously, disjunctive and conditional questions are beyond the reach of a basic
partition semantics.10 If we move one step up, to InqC, a basic account of conditional
questions comes within reach, though disjunctive questions remain problematic. If
we move one more step up, to InqD/InqB, a basic account of disjunctive questions
becomes available as well.

10 Although see Isaacs and Rawlins (2008) for an analysis of conditional questions in a dynamic partition
semantics that allows for hypothetical updates of the context of evaluation.
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5.3 The debate on the intensionality of interrogatives

In Groenendijk and Stokhof (1997) it is extensively argued, for the most basic case
of yes/no-interrogatives in a propositional language, that it is impossible to construe
an extensional semantics for interrogatives that gives rise to suitable logical notions
of answerhood and entailment. According to Groenendijk and Stokhof, the semantic
evaluation of interrogatives has to be intensional in the sense that it needs to relate to
more than one possible world.

This claim has been challenged by Nelken and Francez (2002), who develop what
they call an extensional semantics for interrogatives, which assigns to each interrog-
ative one of 5 truth values, organized as a bilattice.11 Unfortunately, as is noticed
in the paper itself, the interpretation is inadequate in that it does not validate, e.g.,
|� ?(α ∨ ¬α), where the disjunction is classical, and hence, tautological. Nelken and
Francez try to overcome this inadequacy by calling upon an underlying intuitionistic
logic. But once such a move is made, it can no longer be claimed that the resulting
semantics for interrogatives is extensional.

A new attempt to provide an extensional semantics for interrogatives was launched
in Nelken and Shan (2006). Remarkably, Nelken and Shan operate in the framework of
modal logic. They equate a basic interrogative of the form ?α with a modal statement
�α ∨ �¬α, where �α is taken to mean that “α is known” or “α is in the common
ground”. The idea of using modal logic for the analysis of interrogatives goes back to
Åqvist (1965) and Hintikka (1976), who interpret a question as a request for knowledge.
The statement �α ∨�¬α can be thought of as capturing the knowledge that is needed
to completely satisfy the request expressed by ?α. As Nelken and Shan put it: “We
interpret a question as the knowledge condition required to answer it completely.”

Nelken and Shan claim that the resulting treatment of interrogatives is extensional.
More precisely, they claim (and prove in the appendix of their paper) that under their
analysis “any entailment between questions is satisfiable iff it is satisfiable with two
worlds, and falsifiable iff it is falsifiable with two worlds” (p.256) and subsequently
note that “a two-world structure can be easily simulated by a non-modal first-order
model that assigns to each atomic formula one of 4 truth values: {FF, TF, FT, TT}.
The truth value of a more complex formula is then computed by applying the regular
truth tables of the logical operators pointwise; for example, the disjunction of TF and
FT is TT. The ? operator checks whether the two worlds agree: it maps TT and FF to
TT; and TF and FT to FF” (p. 257). Strictly speaking, this 4-valued system is indeed
extensional, in the sense that it no longer makes explicit reference to multiple possible
worlds. However, as Nelken and Shan note, it still clearly “has an intensional flavor,
in that the 4 truth values simply encode 2 possible worlds” (p. 257).

11 In the extended version of Groenendijk (2009) (url provided in the references), it is shown that the
relational inquisitive semantics developed there allows for an alternative formulation that also assigns one
of 5 values to each sentence in the language. A brief comparison with the 5-valued system of Nelken and
Francez (2002) is also made. The two systems are closely related, but there is one value in each system that
splits into two values in the other. It is this difference that causes the problem for Nelken and Francez noted
in the main text, a problem that does not occur in the system of Groenendijk (2009). See also (Groenendijk,
2008, §6.5) for more extensive discussion of this point.
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This result needs to be interpreted with some care. First of all, while it could be
seen as refuting the intensionality claim made by Groenendijk and Stokhof, which
says that a semantic treatment of interrogatives needs to make reference to more than
one possible world, it can also be seen as making this claim more precise, showing
that two worlds are in fact enough, at least for the kind of interrogatives considered
by Nelken and Shan.

With respect to the latter qualification, it is important to note that in the proof of their
claim, Nelken and Shan actually explicitly restrict themselves to interrogatives which
are conjunctions of basic interrogatives. This means, in particular, that the claim does
not apply to conditional and disjunctive interrogatives; it only applies to interrogatives
that correspond to partitions.12 Thus, in our terms, Nelken and Shan essentially show
that partition semantics is pair-distributive. In the present setting, this is an imme-
diate consequence of Proposition 12, which says that not only partition semantics
but also InqC, which is strictly more expressive in that it also allows for conditional
interrogatives which do not correspond to partitions, is still pair-distributive.

However, we have argued above that the expressive power of partition semantics,
and even of InqC, is not sufficient for a suitable semantic analysis of interrogatives in
natural language. Such an analysis requires us, at the very least, to move to a system
with the expressive power of InqD and InqB.

Within the modal approach of Nelken and Shan, such a move can be made by
allowing for basic interrogatives of the form ?{α1, . . . , αn} (rather than just ?α), cor-
responding to the modal formula �α1 ∨ · · · ∨ �αn . However, the moment we extend
the expressive power of the interrogative fragment of the language in this way, we
know from Ciardelli (2009), Ciardelli and Roelofsen (2011), and the discussion above
that the number of possible worlds needed for the evaluation of interrogatives is no
longer bounded. In particular, two worlds are not sufficient anymore. This holds irre-
spectively of whether one adopts a support semantics relative to information states, or
a semantics à la Nelken and Shan (2006) in terms of knowledge conditions expressed
by modal statements.

This allows us to make Groenendijk and Stokhof’s intensionality claim again more
precise: as long as we restrict the expressive power of the interrogative fragment of
our formal language to that of partition semantics, as Nelken and Shan do, or even
to that of InqC, our semantics need not make reference to more than two possible
worlds. However, the moment we move to a system with the expressive power of InqD
and InqB, two worlds are no longer sufficient — indeed, our semantics needs to make
reference to sets of possible worlds with arbitrary cardinality.13

12 This may also explain the fact why for Nelken and Shan 4 values are sufficient, whereas Groenendijk
(2009) needs 5. The latter, unlike the former, does allow for disjunctive and conditional interrogatives,
although we have seen above that its treatment of disjunctive interrogatives is problematic.
13 To avoid confusion, it should be noted that the syntax of Nelken and Shan’s system does allow for
formulas of the form p → ?q, corresponding to p → (�q ∨ �¬q). Since Nelken and Shan explicitly
talk about such formulas as “conditional questions” it may be puzzling that we present them as restricting
the expressive power of the interrogative fragment of their formal language to that of partition semantics.
However, as remarked above, in proving their extensionality claim, Nelken and Shan do explicitly restrict
themselves to conjunctions of basic interrogatives. This means that formulas like p → ?q, at least for
the purpose of Nelken and Shan’s central result, do not count as interrogatives. Furthermore, in our view,
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5.4 Two loose ends

We have shown that InqD is a natural, conservative extension of CPL, equivalent in
expressive power with the standard inquisitive system InqB, and that the full expressive
power of InqD and InqB is needed for the analysis of declaratives and interrogatives in
natural language. However, along the way we brought up two issues that should still
be considered in further depth.

First, a basic interrogative ?{α1, . . . , αn} in InqD expresses an issue that is settled
precisely when one of α1, . . . , αn is established. As mentioned, this notion of basic
interrogatives is familiar from other erotetic logics, in particular Wiśniewski’s IEL
and Hintikka’s IMI. However, InqD constrains the formation of basic interrogatives
in a particular way: a formula ?{α1, . . . , αn} only counts as a basic interrogative if
the disjunction α1 ∨ · · · ∨ αn is a classical tautology. The role of this condition is
to ensure that the proposition expressed by an interrogative always covers the whole
logical space ω, so that, semantically, the interrogative is a question. We mentioned
in footnote 3 that instead of imposing this restriction, we could also think of a basic
interrogative ?{α1, . . . , αn} as presupposing that the actual world is one where the
interrogative can be truthfully resolved, i.e., a world where at least one of α1, . . . , αn

is true. This is indeed how basic interrogatives are construed in IEL and IMI. We will
explore this alternative in Sect. 6.

The second issue is that, even though the expressive power of InqD is sufficient
to capture the meaning of disjunctive questions like (5), with rising intonation on all
disjuncts, it is not sufficient to suitably capture the meaning of disjunctive questions
like (6) below, with falling intonation on the final disjunct:

(6) Is Peter going to Italy↑ or France↓?

As mentioned in footnote 9, disjunctive questions with rising intonation on all disjuncts
are called open questions, while disjunctive questions with falling intonation on the
final disjunct are called alternative questions. Intuitively, there is a clear semantic
difference between the two. Namely, alternative questions, unlike open questions,
imply that exactly one of the disjuncts holds.14

Crucially, this exclusive implication has a different status than the information
provided by the corresponding disjunctive assertion. As illustrated in (7) and (8) below,

Footnote 13 continued
formulas like p → ?q, as interpreted by Nelken and Shan, do not suitably capture the knowledge conditions
of conditional interrogatives in natural language. In effect, the prediction is that a complete answer to p → ?q
is known just in case p happens to be false, or a complete answer to ?q is known. The right analysis, in
our view, is that a complete answer to p → ?q is known just in case a complete answer to ?q is known
under the assumption that p holds. But this is impossible to express by a modal formula in the interrogative
fragment of Nelken and Shan’s formal language, even if we extend this fragment with conditionals of the
form ϕ → μ, where ϕ is an arbitrary formula and μ a basic interrogative. Rather, a new abbreviation would
be needed for �(p → q) ∨ �(p → ¬q).
14 It should be noted that, although this description of the semantic difference between open and alternative
questions is good enough for our purposes here, it needs to be refined in view of cases like (i) below.

(i) Is Peter going to Italy↑, or France↑, or both↓?

If (i) were to imply that exactly one of its disjuncts holds, then it would be contradictory, which is clearly
not the case. For discussion of this issue, we refer to Roelofsen and van Gool (2010).
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in the case of the assertion, a denial of the exclusive implication is typically marked
with the direct disagreement particle no, whereas in the case of the question, a denial
of the exclusive implication should rather be marked with less direct disagreement
particles like actually or in fact.

(7) A: Peter is going to Italy or France.
B: No, he is staying home.

(8) A: Is Peter going to Italy↑ or France↓?
B: #No / In fact, / Actually, he is staying home.

Disagreement particles like actually and in fact are typically used to mark denials of
non-at-issue implications, in particular presuppositions, as illustrated in (9).

(9) A: John stopped smoking.
B: #No / In fact, / Actually, he never smoked.

For this reason, the exclusive implication of an alternative question is generally
regarded as a non-at-issue implication (see, e.g., Aloni et al. 2009; Haida 2010; Roelof-
sen and van Gool 2010; AnderBois 2011; Biezma and Rawlins 2012). None of the
systems discussed in this paper so far are designed to deal with non-at-issue implica-
tions, so none of them can be expected to suitably deal with alternative questions. In
other words, while we argued above that the full expressive power of InqD and InqB
is necessary for the analysis of questions in natural language, the case of alternative
questions shows that it is not yet sufficient.

6 Extending InqD with presuppositional interrogatives

In order to address the issues laid out above, we will consider a natural extension of InqD
that includes presuppositional interrogatives. We will refer to this extended system as
InqDπ , where π stands for presuppositional. The section is structured as follows: we
will first illustrate the changes that need to be made to include presuppositions in
our semantic picture, then we will introduce the system InqDπ , and finally we will
consider two natural notions of entailment in this enriched setting, showing that the
completeness result established earlier for InqD can be extended to InqDπ .

6.1 Presuppositions in inquisitive semantics

In presuppositional inquisitive semantics (Ciardelli et al. 2012), the meaning of a
sentence ϕ is determined by a pair 〈π(ϕ), [ϕ]〉, where π(ϕ) is a state—the presup-
position of ϕ—and [ϕ] is the proposition expressed by ϕ, with the condition that
info(ϕ) ⊆ π(ϕ). In uttering ϕ, a speaker is taken to presuppose that the actual world is
included in π(ϕ). Furthermore, as before, she is taken to provide the information that
the actual world is included in info(ϕ), and to request enough information from other
participants to establish a specific state in [ϕ]. The condition info(ϕ) ⊆ π(ϕ) ensures
that the information provided is a (possibly trivial) enhancement of the information
presupposed.

In a presuppositional setting, the notion of informativeness given above needs to
be reformulated to take presuppositions into account: a sentence ϕ is called infor-
mative just in case it provides strictly more information than it presupposes, that is,
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info(ϕ) ⊂ π(ϕ). As before, ϕ is called a question iff it is non-informative. Given the
new, more general definition of informativeness, this now means that info(ϕ) = π(ϕ).
Thus, a question may be characterized as a sentence whose proposition [ϕ] covers the
presupposition π(ϕ). As before, a tautology is defined as a sentence that is neither
informative nor inquisitive. However, notice that tautologies may now have non-trivial
presuppositions.

Non-presuppositional systems can be regarded as special cases of presuppositional
systems where the presupposition of every sentence is trivial, i.e., π(ϕ) = ω for every
ϕ. The systems InqB and InqD discussed above can be regarded as two such systems.
Notice that in a non-presuppositional system, the notion of informativeness boils down
to the one given in Sect. 2. As a consequence, a question can be characterized as a
sentence ϕ whose informative content coincides with ω.

Figure 5 depicts three examples of meanings in a presuppositional inquisitive
semantics. In each of the figures, the state drawn with dashed borders is the pre-
supposition π(ϕ), whereas the states drawn with solid borders are the possibilities
that make up the proposition [ϕ]. If a sentence expresses the meaning depicted in
Fig. 5a, it has a non-trivial presupposition, namely, it presupposes that p. Moreover,
it is informative, since its informative content is strictly included in the presuppo-
sition. And finally, it is an assertion, since it has only one possibility. If a sentence
expresses the meaning depicted in Fig. 5b, it again has a non-trivial presupposition,
namely, it presupposes that at least one of p and q is true. Moreover, it is a question,
since its informative content coincides with its presupposition; and it is inquisitive,
since it has two different possibilities, one corresponding to the information that p,
and the other corresponding to the information that q. Finally, if a sentence expresses
the meaning depicted in Fig. 5c, it is a tautology, since it is neither informative—its
informative content coincides with its presupposition—nor inquisitive—it has just one
possibility; however, it does have a non-trivial presupposition, namely, it presupposes
that p.

6.2 The system InqDπ

InqD is designed to embody a strict division of labor between the two syntactic cate-
gories: declaratives only provide information, while interrogatives only request infor-
mation. That is, every declarative is an assertion, and every interrogative is a question.

(a)  Assertion (b)  Question (c)  Tautology

Fig. 5 An assertion, a question, and a tautology with presuppositions
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In a non-presuppositional setting, the desire to ensure this division of labor forces us
to restrict the syntactic rule for forming basic interrogatives.

To see this, suppose we want a basic interrogative ?{α1, . . . , αn} to be a ques-
tion. The semantic clause for the interrogative operator in InqD implies that
[?{α1, . . . , αn}] = [α1] ∪ · · · ∪ [αn], so that info(?{α1, . . . , αn}) = info(α1) ∪ · · · ∪
info(αn). Now, recall that InqD is a conservative extension of classical propositional
logic, that is, for any declarative α we have that info(α) = |α|. So the above informative
content amounts to |α1| ∪ · · · ∪ |αn| = |α1 ∨ · · · ∨ αn|. Now, since InqD is a non-
presuppositional system, something is a question iff its informative content amounts
to ω. So, if we want a basic interrogative ?{α1, . . . , αn} to come out as a question, we
need to ensure that |α1 ∨· · ·∨αn| amounts to ω, which means that α1 ∨· · ·∨αn should
be a classical tautology. Hence the requirement that is placed on basic interrogatives
in InqD. If α1 ∨ · · · ∨ αn is not a classical tautology, then ?{α1, . . . , αn} would be
informative, and thus the division of labor between declaratives and interrogatives
would be violated.

But notice that we are only compelled to this conclusion because InqD is a non-
presuppositional system. If we bring presuppositions into the picture, it can very
well be that ?{α1, . . . , αn} is a question while info(?{α1, . . . , αn}) is different from ω.
What is required is just that info(?{α1, . . . , αn}) coincides with the presupposition
π(?{α1, . . . , αn}), which may be non-trivial. So, by bringing presuppositions into the
picture we can allow the formation of a basic interrogative ?{α1, . . . , αn} for an arbi-
trary sequence of declaratives α1, . . . , αn , while still retaining a strict division of labor
between declaratives and interrogatives. This idea is implemented in the system InqDπ .

The syntax of InqDπ coincides with the syntax of InqD, except that a basic inter-
rogative ?{α1, . . . , αn} may now be formed out of any finite sequence of declaratives
α1, . . . , αn . Since presuppositions are now part of the picture as well, the semantics
of InqDπ needs to specify two maps, a map π assigning a presupposition to each
sentence, and a map [ ] assigning a proposition to each sentence. We let the latter be
defined simply by the support clauses given for InqD in definition 14; only, clause 3
now applies to a broader class of interrogatives.

As for the map π , we will proceed as follows: we will set aside presuppositions of
declaratives for simplicity, assuming the declarative fragment behaves just like in InqD;
as for presuppositions of interrogatives, the constraint that interrogatives should always
be questions does not leave us much choice: the presuppositionπ(μ)of an interrogative
μ must always coincide with its informative content info(μ), which is determined by
the proposition [μ]. So, for any interrogative μ,π(μ) is fully determined by [μ] and the
requirement that, semantically, interrogatives should be questions. Some calculation
shows that the resulting inductive clauses for π should be the following.

Definition 22 (Presuppositions)

– π(α) = ω for any declarative α

– π(?{α1, . . . , αn}) = |α1 ∨ · · · ∨ αn|
– π(μ ∧ ν) = π(μ) ∩ π(ν)

– π(α → μ) = {w | w �∈ |α| or w ∈ π(μ)}.
These definitions guarantee that the division of labor is preserved in this system.
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(a) (b) (c) (d)

Fig. 6 Four interrogatives in InqDπ

Fact 12 (Division of semantic labor in InqDπ )

– any declarative α is an assertion
– any interrogative μ is a question

Moreover, it is easy to see from the definitions that InqDπ is a conservative extension
of InqD: for any sentence ϕ which belongs to the language of InqD we have that
π(ϕ) = ω and (trivially) [ϕ]InqDπ

= [ϕ]InqD. So, InqDπ simply extends InqD, allowing
the treatment of a less constrained class of interrogative sentences, which includes basic
interrogatives with non-trivial presuppositions, and complex interrogatives having
such basic interrogatives as components.

Figure 6 shows the meanings of some interrogatives in InqDπ . Figure 6a depicts
the meaning of ?{p,¬p}: this interrogative is also a sentence in InqD, and indeed, as
expected, it receives the same interpretation in InqDπ as in InqD: it expresses the polar
question whether p and it has a trivial presupposition. Figure 6b depicts the meaning
of ?{p, q}: since p∨q is not a classical tautology, this interrogative is not a sentence of
InqD; in InqDπ , it is a question that presupposes that at least one of p and q is true, and
requests enough information to establish either p or q. Figure 6c depicts the meaning
of ?{p ∧ ¬q, q ∧ ¬p}: again, since (p ∧ ¬q) ∨ (q ∧ ¬p) is not a classical tautology,
this interrogative is not a sentence of InqD; in InqDπ , it is a question that presupposes
that exactly one of p and q is true, and requests enough information to establish
either p or q. This is precisely the type of meaning that we need to suitably deal
with alternative questions in natural languages, as exemplified in (6) above.15 Finally,
Fig. 6d depicts the conditional interrogative (p ∨ q) → ?{p, q}. The consequent of
this interrogative is the basic interrogative ?{p, q} of Fig. 6b which, as we have just
seen, carries a presupposition; however, it follows from the last clause of definition
22 that this presupposition is ‘cancelled’ by the antecedent of the conditional, that is,
the sentence as a whole carries no presupposition.16 As the figure shows, the resulting

15 Notice that we are not concerned here with how this type of meaning is constructed compositionally in
natural languages. This is of course a very important issue, but it is beyond the scope of the present paper.
All we want to show by means of this example is that, in terms of expressive power, the system InqDπ is
rich enough to deal with alternative questions.
16 It is a distinctive feature of presuppositions that in compound sentences a presupposition of one of
the components can be cancelled by the informative content of another component. It has proven to be
notoriously difficult to accurately account for such cancellation phenomena, which is known as theprojection
problem for presuppositions. Since we only deal here with presuppositions of interrogatives, and since the
Footnote 16 continued
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interrogative is a question that requests enough information to establish at least one
of (p ∨ q) → p and (p ∨ q) → q.

6.3 Entailment in InqDπ

There are two different natural ways to generalize the notion of entailment we consid-
ered for InqD to InqDπ . Both ways are sensible, but they capture different intuitions.
Let us say that a sentence ϕ makes sense in a state s in case the information presup-
posed by ϕ is available in s, that is, s ⊆ π(ϕ). In the first, stronger sense, a sentence
ϕ entails a sentence ψ in case whenever ϕ is supported, ψ makes sense and it is sup-
ported as well.17 In the second, weaker sense, a sentence ϕ entails a sentence ψ in
case whenever ϕ is supported and ψ makes sense, ψ is supported as well. Intuitively,
the latter condition means that ψ cannot be used to make any non-trivial contribution
to the conversation after ϕ is settled, and thus can be read as “ψ is redundant after
ϕ”. In the general definition of these notions, the antecedent may be a set of sentences
rather than a single sentence.

Definition 23 (Entailment relations in InqDπ )

– Φ |�s
InqDπ

ψ iff for any state s, if s |� ϕ for all ϕ ∈ Φ then s |� ψ .
– Φ |�w

InqDπ
ψ iff for any state s, if s |� ϕ for all ϕ ∈ Φ and s ⊆ π(ψ), then s |� ψ .

In the following, we will mostly drop the subscript InqDπ and simply write |�s and
|�w. To illustrate the difference between the two notions, consider the declarative p
and the interrogative ?{p ∧ ¬q, q ∧ ¬p}, which, as we saw above, can be taken to
represent the alternative question whether p or q. Suppose p is supported in s. Then, if
the interrogative ?{p∧¬q, q∧¬p} makes sense in s, s supports (p∧¬q)∨(q∧¬p).
Since s supports p, it follows that s must support p∧¬q, and thus also the interrogative
?{p ∧ ¬q, q ∧ ¬p}. Thus, p weakly entails ?{p ∧ ¬q, q ∧ ¬p}, which captures the
fact that ?{p ∧ ¬q, q ∧ ¬p} cannot be used to make any non-trivial contribution to a
conversation after p is established. However, the mere fact that p is established in s
does not by itself ensure that the question ?{p ∧ ¬q, q ∧ ¬p} makes sense in s, and
so p does not strongly entail ?{p ∧ ¬q, q ∧ ¬p}.
Fact 13

– p �|�s ?{p ∧ ¬q, q ∧ ¬p}
– p |�w ?{p ∧ ¬q, q ∧ ¬p}
This example illustrates a general difference between weak and strong entailment from
declaratives to interrogatives. The declaratives that strongly entail an interrogative μ

are the ones that, by themselves, provide sufficient information to establish a state that

only compound sentences in which interrogatives can combine with informative sentences are conditional
interrogatives, projection poses no problem here.
17 Notice that, since

⋃[ϕ] ⊆ π(ϕ), a formula ϕ can only be supported in states in which it makes sense in
the first place. Thus, the condition s ⊆ π(ϕ) need not appear explicitly in the definition of strong entailment,
as it is implied by the condition s |� ϕ.
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supports μ. The declaratives that weakly entail μ, on the other hand, are those that, in
response to μ –thus, assuming the information presupposed by μ– provide sufficient
information to establish a state that supportsμ. As the name suggests, strong entailment
implies weak entailment.

Fact 14 If Φ |�s ψ , then Φ |�w ψ .

It is immediate from the definition that weak and strong entailment coincide when
the conclusion ψ has a trivial presupposition. Thus, in particular, they deliver the
same results when the conclusion is a declarative. Unlike in InqD, where an interrog-
ative could only entail a declarative if the declarative is a tautology, entailment from
interrogatives to declaratives may now hold non-trivially: an interrogative μ entails a
declarative α iff μ presupposes α.

Fact 15 μ |�s α ⇐⇒ μ |�w α ⇐⇒ π(μ) ⊆ |α|
When restricted to sentences in InqD, both notions simply coincide with entailment in
InqD.

Fact 16 If Φ ⊆ LInqD and ψ ∈ LInqD, then

Φ |�s
InqDπ

ψ ⇐⇒ Φ |�w
InqDπ

ψ ⇐⇒ Φ |�InqD ψ

This means in particular that, just like entailment in InqD, both weak and strong
entailment are conservative extensions of classical propositional logic. Finally, we are
now going to see that weak entailment can actually be reduced to strong entailment.
For, a sentence ψ is weakly entailed by Φ if and only if ψ is strongly entailed by Φ

with the addition of a declarative γψ that captures the presupposition of ψ . For any
sentence ϕ, the declarative γϕ is given by the following recursive definition.

Definition 24

– γα = � for α declarative
– γ?{α1,...,αn} = α1 ∨ · · · ∨ αn

– γ(μ∧ν) = γμ ∧ γν

– γ(α→μ) = α → γμ

The declarative γϕ expresses the presupposition of ϕ, in the following sense.

Fact 17 For any sentence ϕ and any state s, s |� γϕ ⇐⇒ s ⊆ π(ϕ).

Now the following connection between weak and strong entailment follows from the
definitions together with the previous fact.

Fact 18 (Weak entailment reduces to strong entailment)
For any set Φ of sentences and any sentence ψ ,

Φ |�w ψ ⇐⇒ Φ, γψ |�s ψ
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In Sect. 4 we presented a sound and complete aziomatization of the logic of InqD. Since
the language of InqDπ makes use of exactly the same connectives as the language
of InqD, the deduction system for InqD presented in Sect. 4 includes rules for all
connectives of InqDπ . It turns out that that very deduction system, when applied to the
extended language of InqDπ , yields a sound and complete axiomatization of strong
entailment in InqDπ (which is defined just like entailment in InqD). To convince oneself
of this, it suffices to go through the completeness proof presented in Sect. 4: nowhere
does the argument appeal to the syntactic restriction on basic interrogatives, or to the
semantic fact that the proposition expressed by an interrogative covers the logical
space. All it relies on are the support clauses, which InqDπ inherits unchanged from
InqD. Thus, the very same argument establishes the following completeness theorem
for strong entailment in InqDπ .

Theorem 19 (Soundness and completeness theorem for strong entailment)
For any set of sentences Φ and any sentence ψ ,

Φ |�s ψ ⇐⇒ Φ � ψ

Notice that, since weak entailment reduces in a simple way to strong entailment,
indirectly we obtain an axiomatic characterization of weak entailment as well.

7 Division of labor without dichotomy

We started this paper with the observation that many natural languages are character-
ized by a division of labor between two categories of sentences, distinguished by syn-
tactic and/or intonational features: declarative sentences are used primarily to provide
information, while interrogative sentences are used primarily to request information.

In this paper we have been concerned with the construction of a formal system InqD
that reflects such a division of labor, all the while being based on the uniform notion
of meaning provided by inquisitive semantics.18 However, it is important to note that,
in InqD, the division of labor was achieved at the cost of giving up one important
feature of the basic inquisitive semantics system InqB, namely the uniform algebraic
treatment of the logical constants.

This trade-off is unavoidable given the dichotomous nature of the system InqD. After
all, we have seen that, as soon as disjunction is associated with the join operation
on the space of inquisitive propositions, simple disjunctions of assertions express
hybrid propositions. Therefore, if all sentences are to be either questions or assertions,
disjunction cannot simply express the join operation. Rather, in InqD, the join operation
has to be adapted in such a way that it always delivers either an assertion or a question.
Indeed, ∨ is associated in InqD with a variant of the join operation that always yields
an assertion, and ? with a variant of the join operation that always yields a question.

18 We take it that as far as the division of labor is concerned InqD and InqDπ do not significantly differ,
and that what we say in this section about InqD, by and large also applies to its presuppositional extension
InqDπ .
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However, the strict dichotomy embodied by InqD is not the only way that division of
labor may come about in a semantic system. We would like to suggest here a different,
more subtle strategy that a system based on the inquisitive notion of meaning may
employ to attain division of labor while fully retaining the algebraic treatment of the
logical constants.

The proposal is to assume a structured system with two layers. The more funda-
mental layer consists of an InqB-like system, where the logical constants correspond
semantically with the basic algebraic operations on the space of meanings. Call sen-
tences of this system proto-sentences. A second, surface layer is then obtained by
heading a proto-sentence with one of a certain set of projection operators. Semanti-
cally, all the projection operators available in the system have the property of turning
a proto-sentence into something which is either an assertion, or a question (two such
operators could be the projections ! and ? that we encountered in Sect. 2). Call sentences
of this second layer projected sentences.

Unlike the dichotomous InqD, such a system fully preserves the algebraic treatment
of the logical constants, and only on top of that it implements the division of labor,
by heading each sentence with a projection operator that turns it into an assertion or
a question.

With regard to natural language, the idea underlying this approach is that the func-
tion of certain syntactic and intonational features is precisely to signal that certain
projection operators need to be applied, resulting in a projected sentence, and thus
ensuring a clear division of labor.

Now, how can we determine which of these two strategies, if any, is actually
employed by natural languages? One way this may be assessed is to consider disjunc-
tive sentences that are embedded in larger constructions, for instance in the antecedent
of a conditional, or in the scope of a modal operator. If such embedded disjunctions are
best treated as being purely informative, as in InqD, this speaks in favor of employing
the dichotomous strategy. However, if such embedded disjunctions are best treated as
hybrid, alternative-generating sentences, as in InqB, it is rather the non-dichotomous
strategy sketched here that is called for.

A range of recent linguistic investigations of conditionals, modals, imperatives,
comparatives and other constructions (Kratzer and Shimoyama 2002; Simons 2005;
Alonso-Ovalle 2006; Aloni 2007; Aloni and Roelofsen 2012, among others) indicates
that, in English and a number of other languages, embedded disjunctions behave in
such a way that not only their informative content matters, but also their potential to
generate alternatives. This suggests that those natural languages are not based on a strict
InqD-style dichotomy, but implement division of labor on top of a non-dichotomous,
InqB-style semantics.

8 Conclusions and further work

In this paper we have seen how the notion of meaning that forms the cornerstone
of inquisitive semantics can be taken as the basis for a dichotomous propositional
system InqD in which the tasks of providing and requesting information are rigidly
divided between declaratives and interrogatives. We connected this system with the

123



1726 Synthese (2015) 192:1689–1728

standard inquisitive system InqB by means of meaning preserving translations, estab-
lishing that InqD, just like InqB, is expressively complete for the relevant notion of
meaning.

InqD gives rise to a uniform, cross-categorical notion of entailment, that generalizes
classical entailment between declaratives to a combined logic involving both declar-
atives and interrogatives. For this logic we provided a simple proof system, showing
that the logical properties of the interrogative operator of InqD are those of a disjunc-
tion with a particularly strong elimination rule, and that the usual rules for conjunction
and implication also govern the logic of conjunctive and conditional interrogatives.

We considered certain restrictions on the syntax of InqD, showing that they lead
to a reduction in expressive power that affects the ability of the system to deal with
certain natural types of issues, and brought this in relation to the debate on whether
and to what extent a semantics for interrogatives needs to be intensional. Finally, we
extended our semantic apparatus to deal with presuppositional interrogatives. This
allowed us to lift the unnatural restriction placed on the formation of basic interrog-
atives in InqD, yielding a system InqDπ which is able to deal with a wider range of
interrogatives. While semantically richer, InqDπ inherits the well-behaved notion of
combined entailment of InqD, as well as the associated completeness result.

The systems InqD and InqDπ are of interest in several ways. First, they concretely
demonstrate that the notion of meaning proposed by inquisitive semantics is not inher-
ently linked to the particular treatment of the logical constants embodied by the system
InqB. In particular, although this notion of meaning does not require a dichotomous
language, it is compatible with one.

Second, InqD and InqDπ may be particularly useful in applications where questions
are relevant, but the alternative-generating character of disjunction is not (a case in
point is the inquisitive dynamic epistemic logic developed in Ciardelli and Roelof-
sen 2012). In such contexts, the use of a dichotomous language often helps to keep
intuitions clearer. For these applications, the availability of a simple and perspicuous
deduction system is a fundamental feature.

Third, several existing erotetic logics, most notably Wiśniewski’s IEL and Hin-
tikka’s IMI, assume dichotomous languages that share many features with InqDπ . This
similarity facilitates comparisons and transfer of insights to and from these traditions.
For instance, it seems that the notion of entailment considered in this paper is mean-
ingful and relevant in the context of IEL and IMI as well, and that the completeness
result established here may be exported to those systems.

Needless to say, the analysis conducted here leaves many issues open. For one
thing, in this paper we focused exclusively on propositional systems. Many interesting
phenomena concerning questions can only be analyzed appropriately in a first-order
setting. Our expectation is that issues of translatability and axiomatization will be
vastly more complicated in that context.

Furthermore, even though we remarked in several places on the potential relevance
of our logical investigations for the analysis of natural language, this potential remains
to be explored in much greater detail. In particular, while we pointed out that, in terms
of expressive power, the systems developed here are in principle capable of dealing
with a considerable range of declarative and interrogative constructions in natural
language, we have only been concerned with compositionality issues at a very high
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level of abstraction. Much further work is needed to spell out precisely how the relevant
meanings may be constructed compositionally in natural languages.
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