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Abstract:

The following pages form a synopsis of some lectures on symmetry which are part
of the 1998-’99 course Quantum Physics II (for second year students) at the
University of Amsterdam. They are supplied as to supplement the treatment given
in Introduction to Quantum mechanics of David J. Griffith, which is used as text
book with the course.

The basic concepts and uses of symmetry in the classical and quantum description
of simple dynamical systems in three dimensions are summarized.

In the first part we recall some basics of classical mechanics. In the following section
the notion of symmetry and conserved quantities is discussed on the classical level.
In section 3. the consequences of symmetry on the quantum level are discussed.
The final section discusses as a sample problem the symmetries of two dimensional
-isotropic as well as anisotropic - two-dimensional harmonic oscillator.
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The symmetries that are really important in nature, are not the symmetries of

things but the symmetries of laws.

Steven Weinberg

Symmetries in simple dynamical systems
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1 Classical dynamical systems (a reminder)

1.1 Particle in external potential

Think of a particle moving in a potential V (q)

• Dynamical variables:
position q
velocity v = q̇ or momentum p = mv
acceleration a = v̇
energy E etc. etc.

• Parameters:
mass m
height and width parameters in potential

• State of the system:
at given time t the state is determined by q(t) and v(t)

• Time evolution:
The (Newtonian) equation of motion

F = ma with F = −∂V (q)
∂q

Note that the equation is a second order differential equation, the solution is
determined by specifying q(0) and v(0).
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1.2 Lagrange formulation of dynamics

• Lagrangian:

L(t) = L(q, q̇)

= Kinetic Energy - Potential Energy

= 1
2
mv2 − V (q)

• The Action:

S[q] =
∫

L(t)dt

• The variational principle :

The condition that the action S is stationary under small but otherwise arbi-
trary variations

q → q + δq

implies that we impose that

δS = S[q + δq]− S[q] = 0

• Euler-Lagrange eqns :

This stationarity requirement of the Action implies the Euler-Lagrange eqns to
hold

d
dt
(∂L
∂q̇
)− ∂L

∂q
= 0

for the case at hand we recover ofcourse Newtons equation:

mv̇ + ∂V
∂q

= 0
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1.3 Hamiltonian formulation of dynamics

• Canonical momentum:

p = ∂L
∂q̇

• Phase space: (q,p)- space

• Hamiltonian or Energy function:

H(q, p)

= pq̇ − L
= p2/2m+ V (q)

= Kinetic Energy + Potential Energy

• Hamilton equations:

q̇ = ∂H
∂p

→ q̇ = p
m

ṗ = −∂H
∂q
→ ṗ = −∂V

∂q
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1.4 Time evolution of functions on phase space

• Time evolution

df
dt

= ∂f
∂q
q̇ + ∂f

∂p
ṗ

= ∂f
∂q

∂H
∂p
− ∂f

∂p
∂H
∂q

• Poisson bracket :

{f, g} = ∂f
∂q

∂g
∂p
− ∂f

∂p
∂g
∂q

so that

df
dt

= {f,H}

The Hamiltonian generates the time evolution.
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1.5 ∗ Classical mechanics and symplectic geometry

• Configuration space Q (Diff. manifold) with q ∈ Q

• Tangent space of Q at the point q is TqQ with q̇ ∈ TqQ

• Tangent bundle TQ with (q, q̇) ∈ TQ
and L : TQ→ <

• Cotangent bundle T ∗Q with (q, p) ∈ T ∗Q
and H : T ∗Q→ <

q

TQTangentbundle

Q

T QT Q

q
.

q’
.q’q
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Tangent bundle TQ

Bundle space

Fibre RN −→ TQN

↓
QN

Base manifold
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1.6 ∗ Poisson structure - Symplectic form

• The space of functions on phase space P ' T ∗Q is equipped with a Poisson
structure. It is called symplectic because there exists a symplectic two-form

ω : C∞(P )→ TP

explicitly

ω = ωijdx
i ∧ dxj = dqi ∧ dpi

i.e. it maps a function f to a socalled Hamiltonian vectorfield Xf by

iXf
ω = df

if Xf is uniquely defined then w is called nondegenerate, so for the explicit
choice above we obtain

Xf = ∂f
∂p

∂
∂q
− ∂f

∂q
∂
∂p

in particular

Xp =
∂
∂q

and Xq = − ∂
∂p

• Relation between Poisson bracket and symplectic form

{., .} : C∞(P )→ C∞(P )

and

{f, g} = ω(Xf , Xg) = ωij
∂f
∂xi

∂g
∂xj

Furthermore we have the relation between the Lie-bracket of vector fields and
the vector field of the Poisson bracket

[Xf , Xg] = X{f,g}

• The time evolution on phase space P is generated by XH , because

df
dt

= XHf = {f,H}
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2 Symmetries

2.1 Relation between Symmetries and Conservation laws

• Conserved quantity Qa in Lagrangian formulation:
d
dt
Qa (qi(t), q̇i(t)) = 0

• Noether’s Theorem

If the action functional S[qi] is invariant under an infinitesimal symmetry trans-
formation

qi → qi
′ = qi + δaqi

i.e.

δS = S[qi
′]− S[qi] = 0

then the Lagrangian can at most change by a total time derivative

δL = d
dt
Λ.

On the other hand:

δL = ∂L
∂qi
δqi +

∂L
∂q̇i
δq̇i

=

[

∂L

∂qi
− d

dt

∂L

∂q̇i

]

︸ ︷︷ ︸

δqi +
d
dt

(
∂L
∂q̇i
δqi

)

= 0 because of equation of motion.

• Conserved charge:

From the above it follows that for each one parameter family of symmetry
transformations we obtain a conserved charge or constant of the motion:

Qa = ∂L
∂q̇i
δaqi − Λ

dQa

dt
= 0
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Examples:

a. Momentum conservation and translational invariance

Lagrangian of free particle: L = 1
2
mq̇2

Translation q → q + ε :

δεq = ε −→ δL = 0 −→ Λ = 0

Qε =
∂L
∂q̇
δq ' p

b. Energy conservation and time translation symmetry

Time translation t→ t+ ε :

δL(t) = ε∂tL −→ Λ = εL

On the other hand:

δεq = ε∂tq

−→ δL = ∂t(
∂L
∂q̇
εq̇ = ε∂t(pq̇)

−→ Qε ' pq̇ − L = H

c. Spherical symmetry of central potential

L = 1
2
mẋ2 − V (|x|)

Rotation around x̂i-axis by angle δα:

δixj = −δαεijkxk −→ δL = 0 −→ Λ = 0

Obtain:

Qi = ∂L
∂ẋj
δixj

' −pjεijkxk = (x× p)i = Li

We see that the conserved charges Qi correspond to the components of the angular
momentum vector L.
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2.2 Conserved charges generate the corresponding symme-
tries

• In the Hamiltonian framework it is convenient to use Poisson brackets to discuss
symmetries and conserved quantities:

Consider a quantity Qa = Qa(qi, pi)

then
dQa

dt
= {Qa, H}

so that

{Qa, H} = 0←→ dQa

dt
= 0

Note that energy conservation is automatic i n this picture.

• The conserved quantity Qa “generates” the symmetry transformations on the
phase space through the Poisson brackets:

δaq
i = {qi, Qa} = ∂Qa

∂pi

δapi = {pi, Qa} = −∂Qa

∂qi
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2.3 Algebraic structure

• Consider a set {Qa} of independent conserved quantities (i.e. {∂qi
Qa, ∂pi

Qa}
are independent vectors),

then

{Qa, Qb}
will satisfy (because of Jacobi identity)

{{Qa, Qb}, H} = 0

i.e. is also conserved.

• In general we obtain a closed (polynomial) algebra

{Qa, Qb} = Pab({Qc})
(finitely generated - (non)linear)

• Lie Algebra

Most relevant is the linear case, in which case we speak of a Lie algebra:

{Qa, Qn} = fab
cQc ,

with the fab
c being the structure constants.

Example:

The components of the angular momentum vector span the following algebra:

{Li, Lj} = εijkLk

where the structure constants correspond to the totally antisymmetric ε sym-
bol, which is completely fixed by specifying ε123 = 1 and its antisymmetry
(εijk = −εjik = −εikj) This is the algebra of the generators of rotations in three
dimensions denoted as SO3.
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3 Quantum mechanics

3.1 Quantum versus classical

Classical Quantum

State: State vector:

(q(t), p(t)) |ψ(t)〉 ∈ H

Dynamical variables: Operators:

A(q, p) Â(p̂, q̂) = Â†

Poisson brackets: Commutators:

{A,B} ≡ ∂A
∂q

∂B
∂p
− ∂A

∂p
∂B
∂q

[

Â, B̂
]

≡ ÂB̂ − ÂB̂

{q, p} = 1 [q̂, p̂] ≡ ih̄

Time evolution of the state:

q̇ = ∂H
∂p

ih̄∂t |ψ(t)〉 = Ĥ |ψ(t)〉

ṗ = −∂H
∂q

(Hamilton equations) (Schrödinger equation)

Description of dynamics:

dA
dt

= {A,H} idÂ(t)
dt

= [Â(t), Ĥ]

(Heisenberg equation)

Â(t) ≡ Û(t)ÂÛ †(t)

|ψ(t)〉 = Û(t) |ψ(0)〉

Û(t) = e−iĤt/h̄

16



3.2 Symmetries and Quantum degeneracies

Symmetries lead on the quantum level in general to degeneracies.

• The symmetry operators Qa satisfy

[Qa, H] = 0 −→ Qa is time independent
−→ [Qa, Qb] is also symm.op.

• Spectral degeneracy:

H |un〉 = En |un〉
|ψ(t)〉 = ∑

n cn(t) |un〉 (?)
Consider the state Qa |un〉
H(Qa |un〉) = [H,Qa] |un〉+QaH |un〉

= QaEn |un〉 = En(Qa |un〉)
−→ Qa |un〉 is also eigenstate of H with same eigenvalue

• Eigenspaces of H “carry” unitary
(

because for an observable : Qa = Q†a
)

rep-

resentations of the symmetry algebra ([Qa, Qb] = fab
cQc)

−→
[

Associated Lie Group: U(xa) = eix
aQa

]
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3.3 Labelling of states in Quantum Mechanics

• To label the states we choose a maximal set of mutually commuting independent
operators {Hi} (one of which is the Hamiltonian)

[Hi, Hj] = 0 for all i, j

As these operators Hi mutually commute they can be simultaneously diagonal-
ized and we can choose a basis for the Hilbert space consisting of simultaneous
eigenvectors of {Hi}
Hi |{ak}〉 = ai |{ak}〉

• The other Qa 6∈ {Hi} will mix these states to a certain extent, leading to
irreducible subspaces ←→ irred.reps of symm.algebra

Example

Traslational invariance x ∈ <:
H0 = H = p2

2m
H1 = p = −ih̄ d

dx

Here p is the generator of translations.

Eigenstates:

p|k〉 = h̄k|k〉
H|k〉 = h̄2k2

2m
|k〉

with wavefunctions

ψk(x) = 〈x|k〉 =
√

1
2πh̄

eikx

The representations are one-dimensional and labeled by k.

Remark:

Suppose that we would have quantised the particle on a circle, implying that

x→ x+ 2πR,

then we have to demand in addition that

ψk(x) = ψk(x+ 2πR).

From this condition one derives that k has to satisfy the condition

k = n
R
for any integer n. The momenta would be quantised.
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3.4 The Hydrogen atom

• Hamiltonian: H = p2

2m
− µ

r
r = |x|

Where the operator p2

2m
= −h̄2

2m
∇2 is up to a constant the three-dimensional

Laplace operator.

• The Hamiltonian is invariant under rotations because it only depends on the
‘length’ of the vectors p and x. The rotational symmetry is generated by the
components of the angular momentum operator

Li = εijkxjpk [Li, H] = 0

SO3 algebra∗: [Li, Lj] = iεijkLk

Important is the socalled Casimir operator L2 =
∑

i L
2
i : it is an invariant

operator which does commute with all components Li

[L2, Li] = 0

• Considering the Schrödinger equation as a second order differential equation
the presence of symmetry will lead to a preferred system of coordinates for
which the equation becomes seperable. For the case of spherical (cylindrical)
symmetry for example one may choose spherical (cylindrical) coordinates. See
section 4.1 in the book of Griffith. The connection with the symmetry operators
is as follows:

H = −h̄2

2m
∂
∂r

2 − µ
r
+ h̄2

2mr2
L2

where L2 only depends on the angular variables (θ, φ)

L2 = 1
sin θ

∂
∂θ

(

sin θ ∂
∂θ

)

+ 1
sin2 θ

∂2

∂φ2

To solve the Schrödinger equation the wavefunction ψ can be written as a
product

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ)

and the three-dimensional partial differential equation can be separated in three
ordinary differential equations.

Up to normalisation the solutions can be written as

ψn,l,m(r, θ, φ) = 〈r, θ, φ|n, l,m〉 = jl(knr)Y
m
l (θ, φ)

• As a maximal set of mutually commuting operators one may choose {H,L2, L3}
with simultaneous eigenstates |n, l,m〉
H |n, l,m〉 = c

n2 |n, l,m〉
L2 |n, l,m〉 = l(l + 1) |n, l,m〉 , with 0 ≤ l ≤ n− 1

L3 |n, l,m〉 = m |n, l,m〉 , with −l ≤ m ≤ l

The eigenvalues l and m are completely determined by the structure of the
symmetry algebra SO3 and the hermiticity of the Li operators (as is explained
in section 4.3 in Griffith).
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• Unitary Irreducible Reps of SO3: UIR’s of SO3, labeled by l ∈ Z+, are (2l+1)
dimensional with basis {|l,m〉} , −l ≤ m ≤ l

−→ Eigenspaces of H are not irreducible SO3 rep’s (the energy eigenvalues are
not only independent of m, as it should, but also independent of l).

−→ is this additional degeneracy due to some extra, accidental (dynamical)
symmetry?
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3.5 Symmetries of the H-atom (continued)

• Indeed, for the special case V (r) = −µ
r
there is an additional (dynamical)

symmetry generated by the Runge-Lenz vector R:

R = L× p + µr
r

with [Ri, H] = 0

R

L

Figure 1: On the classical level the Keppler orbit is indeed closed (and fixed) if
V = −µ

r
, its orientation in space is fixed by the conserved vectors L and R.

• The total symmetry algebra now becomes:

[Li, Lj] = iεijkLk

[Li, Rj] = iεijkRk

[Ri, Rj] = −2εijkHLk
︸ ︷︷ ︸

−→ Algebra is non-linear!

• On an eigenspace of H, the Hamiltonian is constant and we are left with the
(linear) algebra SO4 ' SO3 × SO3 (as the notation suggests this algebra is
indeed isomorphic to the one which generates rotations in 4 euclidean dimen-
sions)

→ The SO4 symmetry accounts for the additional degeneracy w.r.t the quantum
number l.
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3.6 ∗ Beyond Symmetry: Spectrum generating algebra’s

• In the operator algebra a special role is played by the operators which satisfy

[H,Ai] = aiAi

These operators transform eigenvectors of different eigenspaces into each other
(hence they are called ‘step’ operators)

H (Ai |n〉) = [H,Ai] |n〉+ AiH n〉
= (ai + En) (Ai |n〉)

• - The symmetry algebra is a subalgebra of the spectrum generating algebra
- For the Hydrogen atom this spectrum generating algebra is the algebra SO4,2

(See for example the book Classical Groups for Physicists by B.G. Wybourne)
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4 A sample problem: Symmetries of 2-dim. har-

monic oscillators

Harmonic oscillators play a central role in the description of basically every physical
system, this is so because small perturbations around a stable configuration in most
cases lead lead to harmonic oscillations. This system is ofcourse trivial to solve, but
here we study it mainly as an interesting playground to illustrate basic symmetry
concepts in quantum mechanics.

So we consider in the following two problems a particle of mass M moving in the
(x1, x2) - plane in a harmonic potential.

4.1 The isotropic case

1. Consider the Hamiltonian

H =
1

2M
(p21 + p22) +

1

2
Mω2(x21 + x22) (1)

with ω the ‘angular’ frequency of the oscillator. Give the Hamilton equations.

2. These equations decouple if one considers the linear combinations

a± =

√

Mω2

2
x1 ± i

√

1

2M
p1

b± =

√

Mω2

2
x2 ± i

√

1

2M
p2

Give the equations for a± and b±.

3. Solve these equations and check that they also yield the expected solutions for
x1(t) and x2(t).

4. In the corresponding quantummechanical problem we should interpret xiand pi
as operators satisfying the canonical commutation relations

[xi, pj] = ih̄δij

[xi, xj] = [pi, pj] = 0.

Derive the commutation relations for the ‘raising’ and ‘lowering’ operators a =
a+, a† = a−, b = b+ and b† = b−.

5. Write the Hamiltonian in terms of the ‘raising’ and ‘lowering’ operators.

6. The ground- or lowest energy state |Ω > is defined by the property that it is
annihilated by the ‘lowering’ operators:

a|Ω >= b|Ω >= 0 (2)
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The excited states are obtained by acting with the ‘raising’ operators on the
groundstate. Show that the state

|p, q >= (a†)p(b†)q|Ω > (3)

is an eigenstate of the Hamiltonian. Clearly the operator algebra of the ‘raising’
and ‘lowering’ operators is the ‘spectrum generating’ algebra of the problem at
hand. Determine the energy eigenvalue of |p, q >.

7. Which states are degenerate and how many are there on a given level.

8. The degeneracy in the spectrum suggests the existence of synmetries. Consider
the operators

S+ = ab†,

S− = a†b,

S0 = b†b− a†a.

Show that these commute with H and are indeed time independent.

9. Now determine the algebra of the S-operators. Which well known algebra do
you get. Note that this symmetry is ‘accidental’ or ‘dynamical’ as it does not
immediately follow from the geometric symmetry in the problem (i.e. just the
SO2 symmetry of rotations in the plane generated by S0).

10. The states |p, q > are eigenstates of S0, determine the eigenvalues s0.
A highest weight state |l > is one which satisfies

S0|l > = l|l >
S+|l > = 0.

Which states |p, q > are highest weight states and what are their eigenvalues
s0.

11. Act repeatedly with the operator S− on |l >. What are theH and S0 eigenvalues
E and s0 you subsequently obtain. What is the smallest value for s0 that occurs.
Draw the spectrum as dots in the (E, s0)-plane.

12. Interprete the spectrum in terms of the representation theory of the symmetry
algebra.

24



4.2 ∗ The anisotropic case

We now consider a Hamiltonian

H =
1

2M
(p21 + p22) +

1

2
M(ω2

1x
2
1 + ω2

2x
2
2). (4)

As we are interested in the case where degeneracies occur we choose ω1 = 1/m and
ω2 = 1/n, with m and n positive integers. For convenience we set M = h̄ = 1.

1. Check that the folllowing ‘raising’ and ‘lowering’ operators:

a† =
1√
2
(
x1√
m
− i
√
mp1)

a =
1√
2
(
x1√
m

+ i
√
mp1)

b† =
1√
2
(
x2√
n
− i
√
np2)

b =
1√
2
(
x2√
n
+ i
√
np2),

satisfy the standard commutation relations ( as obtained in 1.e)

2. Give the Hamiltonian in terms of the ‘raising’ and ‘lowering’ operators.

3. Check that the operators S± defined in 1.h are no longer symmetry operators.

4. Determine the degeneracies in the spectrum of |p, q > states.

5. Verify that the following operators do commute with H

$+ = am(b†)n

$− = (a†)mbn

$0 =
1

n
(b†b+

1

2
)− 1

m
(a†a+

1

2
).

What is the logic behind this.

6. Let us from now on restrict ourselves to the simplest nontrivial case where
m = 2 and n = 1. Consider the following symmetry operators

j+ =
1√
3
a2b†

j− =
1√
3
(a†)2b

j0 =
2

3
(b†b− a†a).

Write down the algebra of these operators including also H. One of the com-
mutators is nonlinear and contains terms proportional to j20 and H2. This

nonlinear algebra is called W
(2)
3
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7. We expect this algebra to have finite dimensional unitary representations. To
find out about this, study the action of the symmetry operators on the low
lying states of the spectrum. Draw the dots in the (E, j0)-plane.

8. Determine which |p, q > states are of highest weight, and which are of lowest
weight.

9. Compare the spectra of the isotropic and anisotropic case in the (p, q)-plane
and indicate the various quantum numbers as well as the actions of the various
symmetry operators.
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