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Abstract

In this thesis we critically investigate the remarkable claim made by March–
Russell, Preskill and Wilczek, that it is possible to have Aharonov–Bohm
scattering in a model with a global gauge invariance only. A systematic
analysis of the model shows that the arguments in favour of the claim cannot
be maintained. We are not able though, to arive at a definite result in the
corresponding kinematical regime (small k) but do succeed in calculating a
non-trivial cross section in the other (high k) regime. A discussion of and
comparison with other results is also presented.
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CHAPTER 1

Introduction

The Aharonov–Bohm effect is a well-known concept in local gauge theories.
It is a purely quantum mechanical effect since its description needs the vector
potential or gauge connection, while in classical electrodynamics all observ-
able effects can be described in terms of the field strengths alone.

Since this effect is actually a manifestation of the holonomy of the connec-
tion, it was long thought it could only occur in local gauge theories. However
this view has been challenged in a recent paper of March–Russell, Preskill
and Wilczek where they introduced a Klein–Gordon model, with only a global
U(1) symmetry which breaks down to its discrete subgroup Z2 by conden-
sation of a charged scalar field λ. This λ field couples to another scalar field
η carrying half the λ charge. In the trivial case this condensation causes
a mass splitting between the real and imaginary components of the η field.
But in the presence of a vortex configuration these two components will scat-
ter off the global vortex. March–Russell et al. claim that this will yield an
Aharonov–Bohm cross section, which would be caused by the so-called “in-
ternal frame dragging”: in a vortex configuration there is a mixing between
the real and imaginary components, which can be removed by redefining the
fields; the η field acquires a non single valued phase factor and the internal
frame of its two components is dragged along when they circulate the vortex.
The objective of this thesis is to have a closer look at the model and to see
whether the Aharonov–Bohm effect really does occur in this model.

It is clear that to get a full understanding of the effect, it is necessary to
have a good knowledge of the conventional Aharonov–Bohm effect. That is
why we will start with a discussion of this effect in Chapter 2. The Aharonov–
Bohm effect can be considered as an example of Berry’s phase: a very general
phenomenon occurring whenever there is a non-trivial connection along a
noncontractable loop in space. So in Chapter 3 we discuss as an interesting
intermezzo Berry’s phase and consider the Aharonov–Bohm effect from that
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2 Introduction

perspective. In Chapter 4 we will introduce the model of March–Russell et
al. and derive the field equations, which correspond to a set of coupled Klein–
Gordon equations. As we are interested in the non-relativistic description of
the system we derive a Schrödinger system from the field equations. This
derivation involves some subtleties which were not appreciated by previous
authors, but which turn out to lead to deviations from the calculations of the
cross section presented in the existing literature. The obtained Schrödinger
equation will be used to calculate the correct cross section up to second order
in the relevant parameter related to the energy splitting. This will be done
in Chapter 5. We conclude with a discussion of our results in comparison
with those of previous papers.

We will use the same conventions as used in the literature: We will keep }
and c until the third Chapter and we will use Gaussian units and the metric
Diag(1,−1,−1,−1).

Dankwoord
Na anderhalf jaar met zware tijden en fijne momenten is het dan eindelijk
zo ver: de scriptie is af. Maar voordat de jonge onderzoeker door regen
en wind op weg zal gaan naar een volgend doel, wil hij eerst nog een paar
mensen bedanken. Allereest natuurlijk zijn begeleider Prof. Sander Bais: De
vaak lange besprekingen maakten het werk er zeker niet makkelijker maar wel
veel beter op, door precies de nog onduidelijke punten naar voren te brengen.
Daarnaast wil onze beginnende fysicus zijn medestudenten bedanken en in
het bijzonder Erwyn, die altijd een kritisch oog voor de scriptie en een gewillig
oor voor discussies had, en Daniel die er was toen het werk het zwaarst en de
dagen het donkerst waren. Tot slot nog dank aan alle vrienden die vrienden
bleven ook als ik geen tijd voor ze had.



CHAPTER 2

The Aharonov–Bohm Effect

In this Chapter we discuss the Aharonov–Bohm effect which demonstrates
that it is not possible to describe all electromagnetic phenomena in terms
of the field strength only. This effect is observed for example in an electron
double slit experiment. In the next Chapter where we will discuss Berry’s
phase we will meet a different form of the same effect.

2.1 A double slit experiment

We consider the double slit experiment sketched in figure 2.1. The magnetic
field B in the centre is confined to a narrow tube such that the electrons
move in a field-free region.

This implies that classically one

B

Figure 2.1: The Aharonov–Bohm effect

would not expect to see any effect,
since fields interact only locally. It
turns out however that there is a
quantum mechanical effect. Due to
the vector potential A the electron
interference pattern on the screen
on the right shifts over a distance
proportional to the magnetic flux.
The way to see this is as follows. Free particles in a magnetic field are
described by the Schrödinger equation:

− }
2

2m

(
∇+

ie

}c
A

)2

ψ = i}
∂

∂t
ψ (2.1)

where −e is the electron charge.
This Hamiltonian is obtained from the free Hamiltonian H = p2

2m
by the min-

imal substitution rule, which replaces the partial derivative by the covariant
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4 The Aharonov–Bohm Effect

derivative:

∂µ → Dµ = ∂µ − i
e

}c
Aµ (2.2)

or equivalently — in our case where there is no scalar potential V — p is
replaced by:

p→ p +
e

c
A (2.3)

See appendix A for more details. In regions where the field B = ∇ ∧A = 0
we can write A as the gradient of a function f , so locally we have a pure
gauge and we can gauge away the potential:

A→ A′ = A−∇f (2.4a)

ψ → ψ′ = ei(e/}c)fψ (2.4b)

There is a problem however: because the region where A is curlless —R2\{0}
— is non-simply connected, we cannot find a globally acceptable f : take the
following A in cylindrical coordinates:

A =
1

r
Aϕϕ̂ (2.5)

with Aϕ a constant equal to the flux Φ divided by 2π. If we want to write
this as the gradient of a function f :

∇f = A ⇒ ∂f

∂ϕ
= Aϕ ⇒ f(ϕ) =

∫ ϕ

0

Aϕdϕ′ = Aϕϕ (2.6)

For non-zero flux we obtain using Stokes’ theorem:

f(2π)− f(0) =

∮
A · dr = B 6= 0 (2.7)

So f(ϕ) is not single-valued and in general neither will be e−i(e/}c)f . But
that means that we would have to consider the non-single-valued solutions
ψ′ of the Schrödinger equation, and such solutions are not admissible. To
sum up we have two choices: a vector potential in our Hamiltonian or a
non-single-valued wavefunction.

We can look at the problem in a semi-classical way however and split the
wavefunction ψ into two parts ψupp and ψlow where ψupp is the part going
on the upper side of the flux tube and ψlow the part going on the lower side.
Each part now stays in a simply connected region and in both regions we can
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gauge away the vector potential to get a free Hamiltonian. On the screen on
the right where they “meet” we have:

ψupp = e
i(e/}c)

∫
Cupp

A·dr′
ψ0,upp (2.8a)

ψlow = e
i(e/}c)

∫
Clow

A·dr′
ψ0,low (2.8b)

and therefore

ψ = ψupp + ψlow

=
(

e−i(e/}c)
∮
C A·dr′ψ0,upp + ψ0,low

)
e

i(e/}c)
∫
Clow

A·dr′
(2.9)

The interference pattern is produced by |ψ|2, so the only effect of the gauge
potential is to change the relative phases of the two parts of the wavefunction
and this phase shift depends only on the loop integral of the vector potential
A which is equal to the flux Φ. Notice that this also means that the energy
does not depend on A unless it is time dependent.

2.2 The Aharonov–Bohm cross section

This method of splitting the wavefunction in two parts is a semi-classical ap-
proximation since we ignore the effects of diffraction. Aharonov and Bohm
in their original paper [1] also solve the problem without splitting the wave-
function in two parts. The energy of a plane wave with wavenumber k is
equal to k2

2m
so the wave equation for ψ in the presence of a vector potential

is [
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂ϕ
+ iα

)2

+ k2

]
ψ = 0 (2.10)

where 2πα = (e/}c)Φ.
If we make a mode expansion like

ψ =
∞∑

m=−∞

eimϕFm(r) (2.11)

and integrate out ϕ over [0, 2π] using the relation∫ 2π

0

ei(m−m′)ϕdϕ = 2πδmm′ (2.12)
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we see that Fm(r) satisfies a Bessel equation of order m+ α:[
∂2

∂r2
+

1

r

∂

∂r
− (m+ α)2

r2
+ k2

]
Fm(r) = 0 (2.13)

For each (m + α) there are two independent solutions: the Bessel functions
Jm+α(kr) and J−(m+α)(kr). So the general solution of (2.10) is

ψ =
∞∑

m=−∞

eimϕ
[
amJm+α(kr) + bmJ−(m+α)(kr)

]
(2.14)

where am and bm are arbitrary constants.
Lee Page [2] has solved the problem of a free charged particle moving in a
magnetic field and he finds a solution which is finite in the origin. Since we
can shrink the size of the core to zero, our solution should also be finite in
the origin and therefore negative noninteger order Bessel functions are not
allowed since they diverge in the origin (see appendix C). So the general
solution reduces to:

ψ =
∞∑

m=−∞

amJ|m+α|(kr)e
imϕ (2.15)

To calculate a scattering cross section we only need the large r behaviour
of the solution. For general α Aharonov and Bohm find the following expres-
sion:

ψ = e−i[αϕ−r·k] +
eirk

√
2πrk

sin πα
e−iπ/4e−iϕ/2

cos(ϕ/2)
(2.16)

where ϕ is the azimuthal position coordinate and k is the wave vector of a
wave moving to the left: k · r = −kr cosϕ.
This ψ seems to be non-single-valued but that is due to the fact that it is
only valid for ϕ 6= π. For ϕ = π we would need the exact solution. In general
this involves unsolvable integrals; they can be evaluated for the simple cases
α = n and α = n + 1

2
and then it turns out that the solution is indeed

single-valued.
The first term on the right-hand side of (2.16) represents the incoming

wave and this is exactly the wavefunction we got in our semi-classical descrip-
tion where we ignored the effect of diffraction. The second term in (2.16) is
the lowest order term in the large r expansion of the scattered wave. From
this term the differential scattering cross section can be easily obtained in
the following way. If we write ψ as

ψtot = ψin + eirk f(ϕ)√
r

(2.17)
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which defines the scattering amplitude f(ϕ), then the differential cross sec-
tion is given by (see for example Gasiorowicz [3] Chapter 24)

dσ

dΩ
= |f(ϕ)|2 (2.18)

So for equation (2.16) we find

f(ϕ) =
sin πα√

2πk

1

cos(ϕ/2)
e−iπ/4e−iϕ/2 (2.19)

dσ

dΩ
=

sin2πα

2πk

1

cos2(ϕ/2)

=
sin2πα

2πk

1

sin2(θ/2)
(2.20)

where θ is the scattering angle. It is measured with respect to the incoming
wave vector which makes an angle π with the positive x-axis.
We see that in the cases where α is an integer, i.e. the cases where we don’t
see a shift in the interference pattern, we have a zero differential scattering
cross section. In other cases we have a scattering cross section which is
sharply peaked in the forward direction θ = 0.



CHAPTER 3

Berry’s Phase

In this Chapter we will discuss the quantum geometric phase, also called
Berry’s phase [4]. Since the adiabatic theorem is a very important aspect of
this phase we will start with a discussion of it, following Messiah [5] Chap-
ter 17. Then in the next paragraph we will explain why there is a geometric
phase factor at all and derive an expression for it in terms of the energy
eigenstates. In the last paragraph we will discuss two examples: first the
prototype of a Berry’s phase experiment, a spin in a slowly changing mag-
netic field, because this is also a good example for the concept of holonomy
and finally we will treat the Aharonov–Bohm effect in a Berry context.

3.1 The adiabatic theorem

Consider a system in external field, for example an atom in an magnetic field.
We are interested in the resulting change in the system when the external
field is slowly changed. Suppose that the changing starts at time t0 with
Hamiltonian H0 and ends at time t1 with Hamiltonian H1. It is then useful
to define:

T := t1 − t0 and s := (t− t0)/T

So that we can parameterize H by s in a T independent way with

H(0) = H0 and H(1) = H1

And we will write the evolution operator U(t, t0) as

U(t, t0) = UT (s)

Finally we denote the eigenvalues of the Hamiltonian H by εn and their
corresponding projection operators by Pn. For the Adiabatic Theorem to
hold we need a few restrictions.

8



3.2 Why we need a geometric phase 9

(i) The functions εn(s) and Pn(s) must be continuous functions of s.

(ii) The eigenvalues must be “non-crossing”, i.e. εn(s) 6= ε′n(s) for all
s, n, n′, and the eigenstates form a complete basis.

(iii) The derivatives dPn
ds
, d2Pn

ds2
are well-defined and piece-wise continuous for

the whole interval [0, 1]

Now the Adiabatic Theorem, valid in the limit T →∞, predicts that if the
system is initially in an eigenstate of the Hamiltonian H0 then at every later
time t = t0 + sT it will be in an eigenstate of the corresponding Hamiltonian
H(s). We can write this in a more compact way as:
For all n UT (s) satisfies the condition:

lim
T→∞

UT (s)Pn(0) = Pn(s) lim
T→∞

UT (s) (3.1)

It is easy to see that the two forms are equivalent: Consider an eigen-
state |n(0)〉. This state evolves into UT (s) |n(0)〉 at a later time. Since
Pn(s) |n(s)〉 = |n(s)〉 we have

UT (s) |n(0)〉 = UT (s)Pn(0) |n(0)〉 (3.2)

Now if equation (3.1) holds this will be — in the limit T →∞ — equal to

Pn(s)UT (s) |n(0)〉 (3.3)

But that means that UT (s) |n(0)〉 must be an eigenstate of Pn(s) with eigen-
value 1, i.e. an eigenstate of the Hamiltonian H(s). Reversing this argument
it follows that if UT (s) |n(0)〉 is an eigenstate of the Hamiltonian H(s) equa-
tion (3.1) must be fulfilled.

We will not discuss the rather involved proof of the theorem since it does
not give much more insight and because we are really only interested in the
result itself. See Messiah [5] Chapter 17 for the complete proof.

3.2 Why we need a geometric phase

Suppose we have a Hamiltonian H(R) which depends on an external param-
eter R, for example a magnetic field, then the eigenstates and therefore the
Hilbert space will also depend on R. Suppose for every R we have a local
basis |n; R〉 for the Hilbert space. All these bases will be isomorphic but in
general not equal. So if R is not constant in time then a solution to the
Schrödinger equation

i
∂

∂t
|ψ(t)〉 = i

d

dt
|ψ(t)〉 = H(R(t)) |ψ(t)〉 (3.4)
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should be expanded in the basis |n; R(t)〉 and not in the basis |n; R(0)〉. But
this is a difficulty since we do not know how the bases for different R are
connected, that is we seem to be unable to express the state |ψ(t)〉 in the
initial state |ψ(0)〉. We do know however that if we start in an eigenstate
|n; R(0)〉 then according to the Adiabatic Theorem the system will — at a
later time — be described by a ket eiα |n; R(t)〉 where α is an unknown phase
factor, which must be included since a quantum mechanical state is only
defined up to a phase factor. Of course in the normal quantum mechanical
case of a time independent R we can integrate the Schrödinger equation
and find that α is equal to the familiar dynamical phase factor −En/}. So
perhaps in the case of non constant R(t) we could take

α
?
= −1

}

∫ t

0

dt′En(R(t′)) (3.5)

that is

|ψ(t)〉 ?
= e−

i
}

∫ t
0 dt′ En(R(t′)) |n; R(t)〉 (3.6)

We will show now that this cannot be true.
At every time |n; R(t)〉 is an eigenstate of H(R(t)) with the eigenvalue

En(R(t)). The ket |ψ(t)〉 is also an eigenstate of H(R(t)) with eigenvalue
En(R(t)) but in addition it also satisfies the Schrödinger equation. Therefore
we have the following two relations:

H(R(t)) |n; R(t)〉 = En(R(t)) |n; R(t)〉 (3.7)

i}
d

dt
|ψ(t)〉 = H(R(t)) |ψ(t)〉 = En(R(t)) |ψ(t)〉 (3.8)

Taking the total derivative of (3.6) leads to:

i}
d

dt
|ψ(t)〉 = e−

i
}

∫ t
0 dt′ En(R(t′))

[
En(R(t)) |n; R(t)〉+ i}

d

dt
|n; R(t)〉

]
= En(R(t)) |ψ(t)〉+ i}e−

i
}

∫ t
0 dt′ En(R(t′)) d

dt
|n; R(t)〉 (3.9)

Now using equation (3.8) we get the equality

d

dt
|n; R(t)〉 = 0 (3.10)

But the eigenstates |n; R(t)〉 only depend on t through R, so we get

d

dt
|n; R(t)〉 = Ṙ · ∇R |n; R(t)〉 = 0 (3.11)
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Since we have not specified the path R(t) yet, the direction of Ṙ(t) is arbi-
trary and we must conclude that

∇R |n; R(t)〉 = 0 (3.12)

which would imply that |n; R(t)〉 does not depend on R, which is obviously
incorrect.

So the phase factor cannot be the dynamical phase factor (3.5). It is
practical however to extract it by writing α as Γn(t) + γn(t) where Γn(t) is
the dynamical phase. Therefore the state |ψ(t)〉 is equal to:

|ψ(t)〉 = eiΓn(t)eiγn(t) |n; R(t)〉 (3.13)

Our goal is now to find an expression for this extra phase γ(t) and in partic-
ular in the case that R(t) makes a complete loop returning at time T to its
initial value R(0). The accompanying phase change γn(T ) is called Berry’s
phase. Let us now start by again taking the total time derivative of the ket
|ψ(t)〉

i}
d

dt
|ψ(t)〉 =

=

[(
En(R(t))− } d

dt
γn(t)

)
|n; R(t)〉+ i}

d

dt
|n; R(t)〉

]
ei(Γn(t)+γn(t))

= En(R(t)) |ψ(t)〉 −
[
γ̇n(t) |n; R(t)〉 − i

d

dt
|n; R(t)〉

]
}ei(Γn(t)+γn(t))

(3.14)

So after using (3.8) again we get

γ̇n(t) |n; R(t)〉 = i
d

dt
|n; R(t)〉 (3.15)

Taking the inner product with the bra 〈n; R(t)| on both sides we obtain an
expression for γ̇n(t)

γ̇n(t) = i 〈n; R(t)| d

dt
|n; R(t)〉 (3.16)
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Notice that γ̇n(t) - and therefore γn(t) - is real:

2Imγ̇n(t) = 2Re 〈n; R(t)| d

dt
|n; R(t)〉

= 〈n; R(t)| d

dt
|n; R(t)〉+ 〈n; R(t)| d

dt
|n; R(t)〉∗

= 〈n; R(t)| d

dt
|n; R(t)〉+

(
d

dt
〈n; R(t)|

)
|n; R(t)〉

=
d

dt
〈n; R(t)| n; R(t)〉 = 0 (3.17)

so indeed γn(t) is a good phase factor.
By integrating equation (3.16) we can now write the expression for γn(t)

γn(t) = i

∫ t

0

dt′ 〈n; R(t′)| d

dt′
|n; R(t′)〉

= i

∫ R(t)

R(0)

dR · 〈n; R|∇R |n; R〉 (3.18)

where equation (3.11) was used to obtain the last equality.
Finally by putting R(t) = R(T ) = R(0) we obtain Berry’s phase:

γn(C) = i

∮
C

dR · 〈n; R|∇R |n; R〉 (3.19)

In general this will not be zero since the integrand is not a total derivative.
It will be useful to use Stokes’s theorem, combined with the vector identity

∇∧ (f∇g) = ∇f ∧∇g, to write γn(C) as a surface integral over the surface
S with boundary ∂S = C:

γn(C) = i

∮
C

dR · 〈n; R|∇R |n; R〉

= i

∫
S

dS · (∇R ∧ 〈n; R|∇R |n; R〉)

= i

∫
S

dS · [ (∇R 〈n; R|) ∧ (∇R |n; R〉) ]

=: −
∫
S

dS ·Vn(R) (3.20)

The fact that a quantum mechanical state is defined upon a phase factor
makes it clear that the relevant quantities are the equivalent classes

[|n; R〉] = {g |n; R〉 |g ∈ U(1)} (3.21)
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So our geometry is a U(1) line bundle over the parameter space and fixing
the phase of |n; R〉 for each point R amounts to choosing a section. The
connection which prescribes how to parallel transport a state through this
line bundle is given by the integrand of equation (3.19)1 and is called Berry’s
connection (see Barry Simon [6] and Nakahara [7] Chapter 10). Therefore
Berry’s phase — since it is the integral of a connection — is a holonomy and
the two form Vn is a curvature — Berry’s curvature — since it is the exterior
derivative of the connection. In the case of the Aharonov–Bohm effect Berry’s
connection will be (almost) equal to the electromagnetic connection while
Berry’s curvature or field strength Vn will be equal to the magnetic field.

3.3 Examples

In this section the two best-known examples of Berry’s phase experiments
will be discussed: A particle with spin in a slowly changing magnetic field
and of course the Aharonov–Bohm effect.

3.3.1 A spin in a magnetic field

Consider a particle with spin in a slowly changing external magnetic field B.
The Hamiltonian describing the system is given by the potential energy

H = −M ·B (3.22)

where M is the magnetic moment. For a particle with only spin angular
momentum M is equal to

M =
qg

2mc
S (3.23)

where g is the gyromagnetic constant (≈ 2 for an electron) and S is the spin
operator with eigenvalues between −s} and s}.
So the Hamiltonian can be written as

− qg

2mc
S ·B (3.24)

Now assume the spin of the particle is initially in the direction of the mag-
netic field B. Quantum mechanically this means that the ket describing the
particle’s state is an eigenstate of the spin operator component in that direc-
tion and therefore it is an eigenstate of the Hamiltonian (3.24). According to

1Notice that indeed it transforms as a connection: under a gauge transformation
|n; R〉 → eiµ(R) |n; R〉 it transforms as 〈n; R|∇R |n; R〉 → 〈n; R|∇R |n; R〉+ i∇Rµ(R)



14 Berry’s Phase

the Adiabatic Theorem it will stay in an energy eigenstate since the magnetic
field and therefore the Hamiltonian are slowly changing. To calculate Berry’s
phase we need Vn(B), which boils down to determining how the eigenstates
change under a change in B. But for a given dS the change in B is small
and we can take all B to be close to a certain basepoint. So we need to know
|n; B〉. Since the experiment is spherically symmetric we can call the direc-
tion of the basepoint B0 the z-direction and therefore |n; B〉 will be close to
|sz〉. Now we can obtain |n; B〉 by starting out with the eigenstate of Sz and
then rotating it into the right direction. The spin operator component in the
rotated direction and the corresponding eigenstate can be written as

|sz〉 → |n; B〉 = U |sz〉 (3.25)

Sz → SB = USzU
−1 (3.26)

n denotes the eigenvalues of a spin component in general direction while
sz denotes the eigenvalues of the z-component of the spin. Of course the
numerical values of n and sz are equal.
Equation (3.26) can easily be derived by multiplying the equation

Sz |sz〉 = sz |sz〉 (3.27)

from the left with U and by putting U−1U between Sz and the ket. We see
that S transforms in the adjoint representation, which is of course obvious
since the spin rotations are generated by the spin operators and the genera-
tors of a group always transform in the adjoint representation. We will write
the rotation operator U(α) as

U(α) = e−
i
}
α·S (3.28)

where the rotation is around the axis α over an angle |α|.
This definition is in agreement with the

αα

x-axis

y-axis

z-axis

r

r
0

Figure 3.1: How to rotate a vector

commutation relation

− i

}

[Si, Sj] = εijkSk (3.29)

We have seen that we can take all B close
to the z-direction and therefore we can
take |α| to be small. Let us now first find
an expression for α. Suppose we want to
rotate a vector r0 with length r into a

vector r. Then the rotation axis α can be found from the relations (see
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figure 3.1)

r0 ∧ r

|r0 ∧ r|
=
α

|α|
(3.30)

|r0 ∧ r| = r2 sin(|α|) (3.31)

and therefore
r0 ∧ r

r2 sin(|α|)
=
α

|α|
(3.32)

Assuming |α| to be small this relation simplifies to

α =
r0 ∧ r

r2
(3.33)

So if we want to express the eigenstates of the spin in the direction of the
magnetic field B in terms of the eigenstates of Sz we find the following
expression for α:

α =
(0, 0, B) ∧B

B2
=

1

B
(−By, Bx, 0) (3.34)

It will be easier however to substitute B by Bz which may be done because
|α| is small and therefore Bz = B cos(|α|) ≈ B. We find U(α) and |n; B〉 to
be:

U(α) = e−
i
}

(BxSy−BySx)/Bz (3.35)

|n; B〉 = e−
i
}

(BxSy−BySx)/Bz |sz〉 (3.36)

And we can calculate ∇B |n; B〉:

∇B |n; B〉 = e−
i
}

(BxSy−BySx)/Bz
−i

}B2
z

(BzSy,−BzSx, BxSy −BySx) |sz〉 (3.37)

Again using the fact that |α| is small, and therefore Bz � Bx, By, we see
that the z-component of (3.37) is much smaller than its x and y-components.
By also putting back B instead of Bz equation (3.37) reduces to:

∇B |n; B〉 = e−
i
}

(BxSy−BySx)/Bz
−i

}B
(Sy,−Sx, 0) |sz〉 (3.38)

We are now able to calculate the outer product (3.20)

Vn(B) = −i (∇B 〈n; B|) ∧ (∇B |n; B〉)

= − i

}
2B2
〈sz| (0, 0,−SySx + SxSy) |sz〉

=
1

}B2
〈sz| ẑSz |sz〉

=
sz
B2

ẑ (3.39)
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we have used here the commutation relation for the spin operators:

− i

}

[Sx, Sy] = Sz (3.40)

Since we look at B near the z-axis, dS is equal to ẑdS and we find a total
Berry phase equal to

γn(∂S) =

∫
S

Vn · dS =

∫
S

n

B2
dS

=

∫
S

n

B2
B2dΩ

= nΩ(S) (3.41)

We see that we have obtained the important result that Berry’s phase for
a spin in a slowly changing magnetic field is equal to the enclosed solid
angle times the spin eigenvalue n of the state. Notice that the phase change
depends neither on the total spin s nor on the size of the magnetic field B.

It is instructive to look some more at the special case of s = 1
2
. In that

case the Hamiltonian is equal to

H = κσ ·B =

(
Bz Bx − iBy

Bx + iBy −Bz

)
(3.42)

where κ = − qg}
4mc

.
The eigenvalues of this Hamiltonian are ±κ|B|. By introducing spherical
coordinates:

Bx = B sin θ cosϕ (3.43a)

By = B sin θ sinϕ (3.43b)

Bz = B cos θ (3.43c)

it can be written as:

H = κB

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
(3.44)

It is now easy to show that the following ket is an eigenstate with eigenvalue
+κB:

|n; B〉N =

(
cos(θ/2)

eiϕ sin(θ/2)

)
(3.45)

However for θ = 0 and θ = π the angle ϕ can have all values between 0 and
2π. The point θ = 0 is no problem since the lower component of the state is



3.3 Examples 17

zero. At the point θ = π it is not though and the state is ill defined. But we
can find another state:

|n; B〉S = e−iϕ |n; B〉N =

(
e−iϕ cos(θ/2)

sin(θ/2)

)
(3.46)

This state is multi valued for θ = 0 but single valued for θ = π. So for every
θ we can find a single valued solution to the Schrödinger equation. Using the
expression for the gradient in spherical coordinates:

∇BT =
∂T

∂B
B̂ +

1

B

∂T

∂θ
θ̂ +

1

B sin θ

∂T

∂ϕ
ϕ̂ (3.47)

it is now straightforward to calculate Berry’s connection 〈n; B|∇B |n; B〉:

AN =
1

2
(1− cos θ)

ϕ̂

B sin θ
(3.48a)

AS = −1

2
(1 + cos θ)

ϕ̂

B sin θ
(3.48b)

which exactly equal to the gauge field for a Dirac magnetic monopole of
strength g = 1

2
except that here B plays the role of the radial coordinate

r. See Dirac [8] and Wu & Yang [9]. The reason for this is of course that
the magnetic monopole as well as a spin in a changing magnetic field are
described by a U(1) line bundle over R3\{0} ∼= S2. Berry’s phase for this
experiment is therefore proportional to the holonomy in the monopole field,
i.e. to the flux through the enclosed solid angle, just as we found in our
general calculation above.

3.3.2 The Aharonov–Bohm effect in a Berry context

Let us consider an electron at a position r with charge −e confined to a box
at a position R. The energy of the electron depends only on the relative
position r−R, i.e. the system is translation invariant. The Hamiltonian H
therefore is equal to

H = H(p, r−R) (3.49)

and the wavefunctions

〈r| n〉 = ψn(r−R) (3.50)

If we put the box next to a flux tube we have seen in Chapter 2 that we must
replace p by p + e

c
A. The states now become dependent on R. Locally we

can express the inner product 〈r| n; R〉 in terms of the ψn(r−R) in (3.50):

〈r| n; R〉 = ei(e/}c)
∫ r
R dr′·A(r′)ψn(r−R) (3.51)
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These functions are not single-valued but we will only need their derivatives,
that is, for a given R we need to know ψn only in a small neighbourhood
around this R.

In this case we will not calculate Vn to determine Berry’s phase but use
the contour integral form (3.19). So we want to calculate

〈n; R|∇R |n; R〉

The way to do this is to insert the identity

1 =

∫
BOX

d3r |r〉 〈r| (3.52)

Since these states |r〉 do not depend on R we can pull∇R through and obtain
the following expression∫

BOX

d3r 〈n; R| r〉∇R 〈r| n; R〉 (3.53)

If we now use equation (3.51) we find

〈n; R|∇R |n; R〉 =

∫
BOX

d3r ψ∗n(r−R)

[
− iq

}c
A(R) +∇R

]
ψn(r−R)

= − iq

}c
A(R) +

∫
BOX

d3r ψ∗n(r−R)∇Rψn(r−R) (3.54)

Berry in his original paper says that the second term vanishes (because of the
normalization of the ψn) but we find that this is only true after integrating
over the closed loop in R. To see this use the normalization of ψn:∫

BOX

d3r ψ∗n(r−R)ψn(r−R) =

∫
R3

d3r ψ∗n(r−R)ψn(r−R) = 1 (3.55)

to derive

0 = ∇R

∫
d3r ψ∗nψn =

∫
d3r [ψ∗n∇Rψn + (∇Rψ

∗
n)ψn] (3.56)

and therefore∫
d3r ψ∗n∇Rψn =

1

2

∫
d3r [ψ∗n∇Rψn − (∇Rψ

∗
n)ψn] (3.57)



3.3 Examples 19

Now take the contour integral:∮
∂S

dR ·
∫

d3r ψ∗n∇Rψn =

∫
S

dS · ∇R ∧
∫

d3r (ψ∗n∇Rψn)

=
1

2

∫
S

dS ·
∫

d3r ∇R ∧ [ψ∗n∇Rψn − (∇Rψ
∗
n)ψn] (3.58)

=
1

2

∫
S

dS ·
∫

d3r [(∇Rψ
∗
n) ∧ (∇Rψn)− (∇Rψ

∗
n) ∧ (∇Rψn)] = 0

So by integrating equation (3.54) we find the following Berry phase:

γn(C) = i

∮
C

dR · 〈n; R|∇R |n; R〉

=
q

}c

∮
C

dR ·A(R) =
q

}c
Φ (3.59)

This is of course again the well-known Aharonov–Bohm phase factor. Note
that we do have single-valued wavefunctions since this phase turns up after
moving the box around the flux line which must take some time. So in this
case the wavefunction can have more than one phase at the same place but not
at the same time as well, while globally gauging away the vector potential in
the Aharonov–Bohm experiment of Chapter 2 leads to a wavefunction having
more than one phase at the same place and time.

Notice also that in the experiment described above we need slow mo-
tion around the flux line since otherwise a centrifugal force would appear,
although the Aharonov–Bohm effect itself does not depend on the time in
which a complete loop is made.



CHAPTER 4

A Global Analogue of the A–B effect

We will now start with the main subject: A Klein–Gordon model with a
only a global U(1) symmetry group breaking down to a discrete subgroup
Z2. This model was first introduced by March–Russell, Preskill and Wilczek
[10] to show that local gauge theories are not the only theories in which
Aharonov–Bohm like scattering effects occur. We will start with a discussion
of the model. Then we will talk about the non-relativistic interpretation of
the complex and the real Klein–Gordon equation since the Aharonov–Bohm
effect should appear in the small k limit, i.e. in a non-relativistic limit. We
will end this Chapter with a derivation of the Schrödinger equation which
follows from this non-relativistic limit. From now on we will take } = c = 1.

4.1 The Model

Consider a model with a global U(1) symmetry describing two complex scalar
fields η and λ, where the charge of the η field is minus half the charge of the
λ field, i.e. symmetry transformations are of the form

λ→ eiαλ (4.1a)

η → e−iα/2η (4.1b)

with α a real constant.
Then in general one would expect an interaction term in the invariant La-
grangian density of the form:

∆L = −gλη2 + h.c. (4.2)

20
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where g is the (real) coupling constant.
Suppose the λ field has a potential term of a form leading to a non-zero
vacuum expectation value:

Vλ = G
(
|λ|2 − v2

)2
(4.3)

where G and v are positive real constants.
The η field has only a mass term and no further self interaction:

Vη = m2|η|2 (4.4)

The full Lagrangian density will then be

L = ∂µη∂
µη∗ −m2|η|2 + ∂µλ∂

µλ∗ −G
(
|λ|2 − v2

)2 − g
(
λη2 + λ∗η∗2

)
(4.5)

which gives the Euler–Lagrange equations

∂µ∂
µλ+G

(
|λ|2 − v2

)
λ+ gη∗2 = 0 (4.6a)

∂µ∂
µη +m2η + 2gλ∗η∗ = 0 (4.6b)

and their complex conjugates.
We are interested in what happens when the λ field condenses. First consider
the trivial case where1 <λ(r, ϕ)> = v, i.e. the vacuum expectation value is
constant in space and time. Equation (4.6a) then gives us <η> = 0, which
shows that in order to study the effective theory for the low lying states, we
should make the expansion

λ = v + σ1 + iσ2 (4.7a)

η = ρ1 + iρ2 (4.7b)

where all fields appearing at the right hand side are real.
Since the σ2 field corresponds to the broken generator this will be a massless
Goldstone boson as can also be seen by writing out the Vλ potential in terms
of σ1 and σ2. The second equation (4.6b) now reduces to the pair

∂µ∂
µρ1 + (m2 + Γ)ρ1 = 0 (4.8a)

∂µ∂
µρ2 + (m2 − Γ)ρ2 = 0 (4.8b)

1We will work in cylindrical coordinates with a trivial z dependence, so in fact we
consider the theory on the plane R2
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where Γ = 2gv. We have neglected higher order terms like ρ1σ1 etc.
So we see that the symmetry breaking leads to a mass splitting between the
real and imaginary components of the complex scalar field η. We will write
the different masses as:

µ1 =
√
m2 + Γ (4.9a)

µ2 =
√
m2 − Γ (4.9b)

Now consider the case where the vacuum expectation value of λ is no
longer constant in space but corresponds to a vortex configuration:

<λ(r, ϕ)> = veiϕ (4.10)

where ϕ is the polar angle and <λ(r, ϕ)> is single-valued as it should be.
In this case the η Euler–Lagrange equation (4.6b) acquires a ϕ dependent
mixing between the real and imaginary parts of η. We can resolve this point
by redefining the η field and absorbing half of the phase factor into it:

η = e−iϕ/2η̃ (4.11)

which — by taking the real and imaginary parts of this equation — can also
be written as: (

ρ1

ρ2

)
=

(
cos(ϕ/2) sin(ϕ/2)
− sin(ϕ/2) cos(ϕ/2)

)(
ρ̃1

ρ̃2

)
(4.12)

The Euler–Lagrange equation for η in terms of this new η̃ now reads:

eiϕ/2�(e−iϕ/2η̃) +m2η̃ + Γη̃∗ = 0 (4.13)

So we see the condensation of the λ field again gives rise to a mass splitting
between the real and imaginary components of the η̃ field, but there are two
other important consequences: the η̃ field has to be non single valued and
furthermore we get a change in our terms containing spatial derivatives:

eiϕ/2∂ϕη = eiϕ/2∂ϕ(e−iϕ/2η̃) = (∂ϕ −
i

2
)η̃ (4.14)

Notice that the expression on the right hand side of this equation just looks
as if the field η̃ is coupled to a background effective local gauge field Aµ =
1
iq

(∂µΩ)Ω−1 (where Ω = e−iϕ/2 and q = 1
2
) equal to the Aharonov–Bohm

gauge potential (2.5), in spite of the fact that there is of course no local
gauge field present in our theory.
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Using the expression for ∇2 in cylindrical coordinates

1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2
(4.15)

we can write out the ϕ dependence of �η = (∂2
t −∇2)η in terms of η̃:

eiϕ/2 1

r2
∂2
ϕ

(
e−iϕ/2η̃

)
= − 1

4r2
η̃ − i

r2
∂ϕη̃ +

1

r2
∂2
ϕη̃ (4.16)

and therefore we get two extra terms corresponding to q2A2 and 2iqA · ∇
respectively, where A = 1

r
ϕ̂ and q = 1

2
. In terms of ρ̃1 and ρ̃2 we find

A = σ2

r
ϕ̂, i.e. the second Pauli matrix and therefore these extra terms read:(

− 1
4r2 0
0 − 1

4r2

)
+

(
0 1

r2∂ϕ
− 1
r2∂ϕ 0

)
If we now look again at equation (4.6a), the Euler–Lagrange equation for

λ, we see that by inserting the vacuum λ = veiϕ we get:

−v∇2eiϕ + geiϕ<η̃∗2> = 0 (4.17)

and therefore2

<η̃> = ± iv

gr2
(4.18)

So actually we should write

η̃ = ± iv

gr2
+ ρ̃1 + iρ̃2 (4.19)

i.e. we should not expand around 0. Notice however that in the other Euler–
Lagrange equation there is no reference to v or g but only to the product
Γ = 2gv. So we can make the quotient v/g arbitrarily small and therefore
again expand around 0. In fact this is even necessary since the η̃ expectation
value is only a solution of the η̃ Euler–Lagrange equation if it is zero.

The Euler–Lagrange equation for ρ̃1 and ρ̃2 we obtained equals:

−∂2
t

(
ρ̃1

ρ̃2

)
=

(
−∇2 + µ2

1 + 1
4r2 − 1

r2∂ϕ
1
r2∂ϕ −∇2 + µ2

2 + 1
4r2

)(
ρ̃1

ρ̃2

)
(4.20)

So we must solve two coupled Klein–Gordon equations for two real fields.
But first let us look at the interpretation.

2Notice that the ± comes from the unbroken discrete subgroup Z2
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4.2 The interpretation of the non-relativistic

Klein–Gordon equation

We started out with a relativistic Lagrange density: A Klein–Gordon La-
grange density with interaction terms. The only context where such a theory
can be fully described is Quantum Field Theory. However in a non-relativistic
limit we can also give the solutions a one-particle Schrödinger interpretation.
In this section we will first discuss how this works for complex solutions and
then for real solutions.

4.2.1 The complex Klein–Gordon equation

First consider complex solutions η to the free Klein–Gordon equation:

(�+m2)η = 0 (4.21)

We then have two complex degrees of freedom: η and ∂tη. A Schrödinger
wavefunction has only one complex degree of freedom so the solution to the
Klein–Gordon equation cannot describe one particle, but must describe two
particles. If we solve the equation by separation of variables we see that
indeed we find two different solutions:

η±n (r, t) = Nei(kn·r∓Ent) (4.22)

where En =
√
m2 + k2

n . So we have found positive and negative energy
eigenstates.
Let us now derive the conserved norm. Multiply equation (4.21) from the
left by η∗ and multiply the complex conjugate equation from the left by η.
Taking the difference leads to:

0 = η∗�η − η�η∗ =: η∗
↔
�η (4.23)

Integrating this over entire space and using the spatial boundary condition
η|∞ = 0 we get a conserved norm:∫

L3

d3r η∗i

↔
∂

∂t
η = constant (4.24)

Calculating its value for the two solutions η± we find ±2EL3|N |2, i.e. the
η− solution has negative norm. In normal classical quantum mechanics the
norm of a wavefunction is a probability density but it is clear that this
cannot be true for the Klein–Gordon solutions. It turns out however that
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the negative energy states should be interpreted as positive energy anti-
particles. The norm therefore — since it is negative for anti-particles and
positive for particles — can be interpreted as a charge (not necessarily as
an electrical but rather as a “particle number”) density and its conservation
as charge conservation. So we see that only the total amount of charge is
conserved, not the number of particles. A quantum mechanical system with
a non constant number of particles however can only be fully described in
a second quantized system, i.e. by a quantum field theory. So we cannot
expect our first quantized treatment of the Klein–Gordon equation to be
completely successful but some important aspects of the full theory can be
reliably studied, especially at low energies where no real particle creation can
occur and this will also be the domain we are interested in.

A nice example which can be found in Gross [11] Chapter 4 is pair creation
described by a Coulomb interaction term

∂2
t → (∂t + iqV )2 = ∂2

t + 2iqV ∂t − q2V

Consider a high Coulomb barrier (i.e. potential energy greater than mass) in
the right half of space and no potential in the left part (for simplicity only
one dimension is used). One would not expect to see particles propagate in
the right half. Anti-particles however do not see a potential barrier but a
potential well since they have negative charge. Indeed the solutions show
that a particle incoming from the left bounces of the barrier while creating a
particle-anti-particle pair, from which the particle travels to the left and the
anti-particle travels to the right.

The interpretation of the complex Klein–Gordon field becomes even more
clear if we transform the single — second order in time — linear differential
equation into two coupled first order linear differential equations, that is if
we transform the scalar Klein–Gordon equation into a two component vector
Schrödinger equation (see Gross [11] and Feshbach and Villars [12]). As we
already mentioned, the solution η and its time derivative ∂tη are independent
variables. It is easier however to take two different linear combinations of
them. For example:

φ± =
1√
2m

(m± i∂t) η (4.25)

And therefore:

η =
1√
2m

(φ+ + φ−) (4.26a)

i∂tη =

√
2

m
(φ+ − φ−) (4.26b)
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Taking the time derivative of equation (4.25), using the Klein–Gordon equa-
tion for the second time-derivative and using the expressions of η and ∂tη we
find two coupled first order differential equations for φ±:

i∂t

(
φ+

φ−

)
=

(
m+ p2

2m
p2

2m

− p2

2m
−(m+ p2

2m
)

)(
φ+

φ−

)
(4.27)

The conserved norm (4.24) now reduces to∫
L3

d3r
(
|φ+|2 − |φ−|2

)
= constant (4.28)

If we write φ =

(
φ+

φ−

)
and introduce φ̄ = φ†σ3 we can write this as

∫
L3

d3r φ̄φ (4.29)

which shows a striking resemblance to the Dirac norm (in d = 2 we have that
γ0 equals the third Pauli matrix σ3).

Any other combination φ± = α [βη ± i∂tη] could have been taken as well.
We will use this freedom to diagonalize the Hamiltonian. First we will show
that we can find a solution by taking α = 1 and then we will look what
restrictions we should impose on general α by substituting φ± → αφ±. First
let us write η and i∂tη in terms of φ±:

η =
1

2
β−1(φ+ + φ−) (4.30a)

i∂tη =
1

2
(φ+ − φ−) (4.30b)

Now differentiating φ± and using the Klein–Gordon equation we find:

i∂tφ± = βi∂tη ± (−∂2
t η)

=
1

2

[
β(φ+ − φ−)± (−∇2 +m2)β−1(φ+ + φ−)

]
=

1

2

[
β ± (−∇2 +m2)β−1

]
φ+

1

2

[
−β ± (−∇2 +m2)β−1

]
φ−

(4.31)

So the Hamiltonian will be diagonal if and only if

β = (−∇2 +m2)β−1 (4.32)
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that is if

β2 = −∇2 +m2 (4.33)

Equation (4.31) now reduces to the Schrödinger equation i∂tφ± = ±βφ± so
if we want the φ+ to describe positive energy states we see that we should
take

β = +
√
−∇2 +m2 (4.34)

and we find:

i∂t

(
φ+

φ−

)
=

(√
−∇2 +m2 0

0 −
√
−∇2 +m2

)(
φ+

φ−

)
=: H

(
φ+

φ−

)
(4.35)

while

φ± =
√
−∇2 +m2 η ± i∂tη (4.36)

Notice that the conserved norm is of the form
∫

d3r (|φ+|2 − |φ−|2) =∫
d3r φ†σ3φ if and only if σ3H is hermitian:

i∂t

∫
d3r φ†σ3φ =

∫
d3r φ†σ3i∂tφ− (i∂tφ)†σ3φ

=

∫
d3r φ†σ3Hφ− (Hφ)†σ3φ

=

∫
d3r φ†[σ3H −H†σ3]φ

=

∫
d3r φ†[σ3H − (σ3H)†]φ (4.37)

Of course this is the case for the φ in relation (4.36), but what if we make
the substitution φ̃± = αφ±:

i∂tα
−1φ̃± = Hα−1φ̃± (4.38)

and therefore

i∂tφ̃± = αHα−1φ̃± =: H̃φ̃± (4.39)

If σ3H̃ must be hermitian we find:

σ3αHα
−1 = ασ3Hα

−1 = (ασ3Hα
−1)†

= (α−1)†︸ ︷︷ ︸
(α†)−1

σ3Hα
† (4.40)
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and therefore:

σ3Hα
†α = α†ασ3H (4.41)

So we see αφ± is also a good solution if σ3H and therefore also H itself
commutes with α†α.

In a nonrelativistic limit the particles should decouple since we do not
expect to see any signs of pair creation/annihilation in a low energy limit.
We can find the nonrelativistic limit by assuming that the quantities |p| and
T := E −m are much smaller than the mass m. Now look for a solution of
the form

φ =

(
χ1(r)
χ2(r)

)
e−iEt (4.42)

That is look for the influence of anti-particles on a particle. By using the
two-component Schrödinger equation we find

Tχ1 =
p2

2m
χ1 +

p2

2m
χ2 (4.43a)

(2m+ T )χ2 = − p2

2m
χ1 −

p2

2m
χ2 (4.43b)

and therefore (
1 +

T

2m
+

p2

4m2

)
χ2 = − p2

4m2
χ1 (4.44)

So we see that χ2 is of order 1/m2 times χ1. The first equation (4.43a) now
reduces to

Tχ1 =

(
p2

2m
− p4

8m3

)
χ1 (4.45)

That is we are left with an ordinary Schrödinger equation for the χ1 field
and we have even found the lowest order correction term to it. The χ2 field
which describes anti-particles is indeed much smaller and has only influence
on the correction terms. If we would have taken e+iEt as time dependence
for the fields we had found exactly the same equations. Only the roles of χ1

and χ2 would have been interchanged.
Finally we can look at Coulomb scattering from a central potential V = Q

r

in the two-component description in second order perturbation theory (see
Gross [11] Chapter 4). The first order term matrix element gives us the
familiar Coulomb differential cross section

dσ

dΩ
=

(
2QE

4k2 sin(ϕ/2)

)2

(4.46)
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t1

t2 t1

t2

Figure 4.1: The two second order Coulomb scattering Feynman diagrams

The second order element gives us scattering with intermediate propagating
states: one diagram with a positive energy state and one with a negative en-
ergy state as propagator. It can be shown that mathematically we can turn
around the direction of motion of the negative energy state and therefore
that we can also look at a diagram where the negative energy propagator is
travelling backwards in time. If we interpret it as a positive energy antipar-
ticle travelling forward in time however we see that at time t1 a particle-
antiparticle pair is created from which the particle will be the outgoing state
while at the later time t2 the antiparticle annihilates the incoming particle.
This is of course the Feynman prescription: negative energy states travel-
ling backwards in time are positive energy antiparticles travelling forwards
in time. The two diagrams with — respectively — a particle and an anti-
particle propagator are drawn in figure 4.1.

4.2.2 The real Klein–Gordon equation

We will now look for real solutions ρ of the free Klein–Gordon equation.
Since we have a differential equation which is second order in time we have
two real degrees of freedom. So a real Klein–Gordon field can be transformed
into one Schrödinger field. For example take

ψ = α [βρ+ i∂tρ] (4.47)

with β real. We can again solve this by first taking α = 1 and then look for
restrictions to be imposed on general α. First write ρ and i∂tρ in terms of ψ
and ψ∗:

ρ =
1

2
β−1 (ψ + ψ∗) (4.48a)

i∂tρ =
1

2
(ψ − ψ∗) (4.48b)
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Notice that these equations look exactly the same as the complex Klein–
Gordon expressions if we make the following substitutions:

ψ ↔ φ+ (4.49a)

ψ∗ ↔ φ− (4.49b)

η ↔ ρ (4.49c)

Therefore we can immediately write down the Schrödinger equation:

i∂tψ =
1

2

[
β +

(
−∇2 +m2

)
β−1
]
ψ

1

2

[
−β +

(
−∇2 +m2

)
β−1
]
ψ∗

(4.50)

We do not want mixing between the wavefunction and its complex conjugate
since this leads to decaying and growing states. So we again find:

β2 = −∇2 +m2 (4.51)

and we find two possible Schrödinger equations:

i∂tψ = ±
√
−∇2 +m2 ψ (4.52)

for ψ = ±
√
−∇2 +m2 ρ+ i∂tρ respectively.

We see that we have to choose between only positive energy solutions or
only negative energy solutions, but the two choices are equivalent. This is a
consequence of the fact that a real Klein–Gordon equation describes particles
which are their own anti-particles. So we can describe them as particles —
i.e. as positive energy solutions — and as anti-particles — i.e. as negative
energy solutions.

In this case H is hermitian itself (i.e. without a σ3) and we get the usual
Schrödinger conserved norm

∫
d3r |ψ|2. H must stay hermitian if we sub-

stitute ψ̃ = αψ. Of course this again leads to the restriction that α†α must
commute with H = ±

√
−∇2 +m2 .

Notice that it is not possible to derive a conserved norm for real Klein–
Gordon fields like we did for complex Klein–Gordon fields. This is a direct
result of the fact that the real Klein–Gordon Lagrangian only has a discrete
symmetry and not the continuous U(1) symmetry. However we have seen
that we can reduce the Klein–Gordon equation to a Schrödinger equation
with a hermitian Hamiltonian and therefore with a Schrödinger conserved
norm

∫
d3r |ψ|2.
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4.3 The frame-dragging Hamiltonian

Let us now return to our original problem of the coupled Klein–Gordon
equations (4.20):

−∂2
t

(
ρ1

ρ2

)
=

(
−∇2 + µ2

1 + 1
4r2 − 1

r2∂ϕ
1
r2∂ϕ −∇2 + µ2

2 + 1
4r2

)(
ρ1

ρ2

)
(4.53)

where we have dropped the tildes on ρ1 and ρ2.
We will use the results of the previous section to obtain a non-relativistic
Schrödinger equation. Of course now two coupled Schrödinger wavefunctions
are needed. Before we proceed we will first prove an important lemma:
Lemma 4.1 We cannot take the Schrödinger solution ψ1 as a linear combi-
nation of the Klein–Gordon solution ρ1 and i∂tρ1 alone and likewise for ψ2,
but we need combinations of ρ1 and ρ2 to form ψ1 and ψ2 if we do not want
terms involving the complex conjugate solutions ψ∗1,2.

Proof: The most general linear combination ψ1 of ρ1 and i∂tρ1 can be written
as:

ψ1 = α1 [β1ρ1 + i∂tρ1] (4.54)

where α1 and β1 are some (complex) operators. We will write similar expres-
sion for ψ2 with operators α2 and β2.
ρ1 and i∂tρ1 can now be expressed in terms of ψ1:

ρ1 = [β1 + β∗1 ]−1 [α−1
1 ψ1 + (α−1

1 )∗ψ∗1
]

(4.55a)

i∂tρ1 =
[
β−1

1 + (β−1
1 )∗

]−1 [
β−1

1 α−1
1 ψ1 − (β−1

1 )∗(α−1
1 )∗ψ∗1

]
(4.55b)

and likewise for ρ2 and i∂tρ2.
If we now differentiate ψ1 to t we find only one term containing ψ∗2 coming
from ∂2

t ρ1:

i∂tψ1 = · · · − α1

r2
∂ϕ
[
(β2 + β∗2)−1 (α−1

2 )∗ψ∗2
]

(4.56)

So we see we cannot get the complex conjugate fields disappear from the
Schrödinger equation if we take combinations of the form (4.54) which proves
the lemma.

Having terms involving ψ∗1,2 would result in a Hamiltonian which is no
longer hermitian and all kinds of decaying and growing states would have
to be considered. So in the expressions for ψ1,2 we need terms connecting
the two Klein–Gordon fields. Writing out the equations like we did before
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will give a lot of difficult equations involving many unknown parameters and
therefore we will follow a different approach.

We can always write the Klein–Gordon equation as:

−∂2
t η = Kη (4.57)

where η can be a vector or a scalar, real or complex and therefore K can be a
matrix or a scalar operator. The free scalar Klein–GordonK will be−∇2+m2

but a more general K like the matrix on the right-hand side of equation (4.53)
is also possible. Now notice that the squares of all the effective Hamiltonians
we have found so far are equal to their corresponding K. Further notice that
every time we wanted the Schrödinger equation diagonal, that is without
mixing between φ+ and φ− or between ψ and ψ∗, we could find a splitting of
the form

ψ = Hρ+ i∂tρ (4.58)

So define a vector ψ with components ψ1 and ψ2 and a vector ρ with compo-
nents ρ1 and ρ2. We can then indeed show that this ψ satisfies a Schrödinger
equation of the form:

i∂tψ = Hψ (4.59)

if only H2 = K and ∂tH = 0. To prove this differentiate (4.58):

i∂tψ = Hi∂tρ+ (−∂2
t ρ)

= Hi∂tρ+Kρ

= Hi∂tρ+H2ρ

= H [i∂tρ+Hρ]

= Hψ (4.60)

So we can always find a Schrödinger equation by only looking for a time
independent root of the Klein–Gordon operator K. Of course it is not always
possible to find a hermitian root. For example in the case of a complex Klein–
Gordon field we cannot take the simple hermitian root(√

−∇2 +m2 0

0
√
−∇2 +m2

)
since this would make the two fields φ± equal. In the case of two coupled
real Klein–Gordon fields we do not have this problem of making the fields
equal.
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Notice that if we can find a hermitian root or a root which forms a her-
mitian matrix after multiplying with some other matrix (like the third Pauli
matrix) we also have a conserved norm, since every solution to a Schrödinger
equation with such a Hamiltonian, has a conserved norm. So our task now
is to find a hermitian root of the matrix on the right-hand side of equation
(4.53): (

−∇2 + µ2
1 + 1

4r2 − 1
r2∂ϕ

1
r2∂ϕ −∇2 + µ2

2 + 1
4r2

)
Since the two fields have different masses a linear combination of them cannot
have a definite mass. But we are using a first quantized i.e. a non relativistic
theory and in the limit where the mass splitting and all other energies are
much smaller than the mass m it will turn out that it is no real problem if
the two masses are not equal in the original Klein–Gordon equation.

One root of a matrix can be found by inserting the matrix in the standard
Taylor expansion

√
1 + x ≈ 1 + 1

2
x− 1

8
x2 +O(x3). Writing our matrix in the

following way:

m2

{
1+

1

m2

(
−∇2 + Γ + 1

4r2 − 1
r2∂ϕ

1
r2∂ϕ −∇2 − Γ + 1

4r2

)}
we find the following root:

H ≈ m1+
1

2m

(
−∇2 + Γ + 1

4r2 − 1
r2∂ϕ

1
r2∂ϕ −∇2 − Γ + 1

4r2

)
+O(m−3) (4.61)

Notice that the order O(m−2) terms are zero.
We see that we have found a hermitian (approximate) root of the Klein–
Gordon operator K. Since

1

µ1,2

=
1

m
√

1± Γ
m2

≈ 1

m

1

1± Γ
2m2

≈ 1

m
(1∓ Γ

2m2
) =

1

m
∓ Γ

2m3
(4.62)

we could also write the Hamiltonian in the following non-hermitian form:

H ≈

(
µ1 + 1

2µ1

[
−∇2 + 1

4r2

]
− 1

2µ1r2∂ϕ
1

2µ2r2∂ϕ µ2 + 1
2µ2

[
−∇2 + 1

4r2

])+O(m−3) (4.63)

which is the form March–Russell et al. [10] find, but according to them ρ1

and ρ2 satisfy the obtained Schrödinger equation instead of their linear com-
binations ψ1 and ψ2.
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Let us conclude this Chapter with the main results: We have found a
non relativistic Schrödinger equation which describes the two particles upto
order 1/m3, while the wavefunctions of the particles can be derived from the
Klein–Gordon solutions using the relation:(

ψ1

ψ2

)
= (H + i∂t)

(
ρ1

ρ2

)
(4.64)

where H is the Hamiltonian of the system given by equation (4.61).



CHAPTER 5

Calculation of the Cross Section

In this Chapter we will calculate the differential scattering cross section for
the “internal frame dragging” Hamiltonian, which we derived in Chapter 4.
We will first look at the solutions for Γ = 0, before calculating the cross
section up to second order using a perturbative method.

5.1 The basic equations

Notice that every wavefunction which satisfies the Schrödinger equation also
satisfies the corresponding Klein–Gordon equation since the Hamiltonian is
time independent and therefore:

−∂2
t ψ = i∂ti∂tψ = i∂t(Hψ) = Hi∂tψ = H2ψ = Kψ (5.1)

Further note that by taking H = +m(1 + 1
2
K) in equation (4.61) we have

taken a positive root of K so that we should consider only positive en-
ergy solutions. This eliminates half of the solutions to the complex Klein–
Gordon equation and we see that instead of looking for all solutions to the
Schrödinger equation we could equally well look for all complex solutions to
the corresponding Klein–Gordon equation with the condition that their time
dependence is of the form e−iωt. Therefore we will look for solutions of the
original coupled pair Klein–Gordon equations with such a time dependence.
Notice that the solutions we then find are not the the fields ρ1,2 but ψ1,2,
linear combinations of them. It will be practical to define the operator L as

L = −∇2 +
1

4r2
+m2 = −(∂2

r +
1

r
∂r +

1

r2
∂2
ϕ) +

1

4r2
+m2 (5.2)

35
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Together with the condition that the time dependence of the two fields is of
the form e−iωt we get the following equations to solve:

ω2

(
ψ1

ψ2

)
=

(
L+ Γ − 1

r2∂ϕ
1
r2∂ϕ L− Γ

)(
ψ1

ψ2

)
= 0 (5.3)

The case of Γ equals zero can be solved exactly and therefore we will start
with that.

5.2 The spectrum for Γ = 0

We can find the solutions by performing a mode expansion:

ψ1,2 =
∞∑

n=−∞

ei(n+ 1
2

)ϕR
(n)
1,2 (r) (5.4)

The factor exp(iϕ/2) is necessary to account for the boundary condition:
ψ1 and ψ2 are both equal to this factor times a single valued function. By
putting these solutions into equation (5.3) with Γ = 0 and integrating out
the ϕ dependence we get

r2(ω2 − L̃)R
(n)
1 (r) = −i(n+

1

2
)R

(n)
2 (r) (5.5a)

r2(ω2 − L̃)R
(n)
2 (r) = i(n+

1

2
)R

(n)
1 (r) (5.5b)

where L̃ is equal to L with ∂2
ϕ replaced by −(n+ 1

2
)2:

r2(ω2 − L̃) = r2∂2
r + r∂r + r2 (ω2 −m2)︸ ︷︷ ︸

=: k2

−
[
(n+

1

2
)2 +

1

4

]
(5.6)

Inserting the first equation into the second one we find an equation in R
(n)
2

only: [
r2(ω2 − L̃)

]2

R
(n)
2 = (n+

1

2
)2R

(n)
2 (5.7)

This single fourth order differential equation can of course be reduced to two
second order differential equations by taking the square root of the operators
on both sides:

r2(ω2 − L̃)R
(n)
2 = ±(n+

1

2
)R

(n)
2 (5.8)
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and therefore

(r2∂2
r + r∂r + r2k2 − ν2

n)R
(n)
2 = 0 (5.9)

This is a Bessel equation1 for R
(n)
2 of order νn which is equal to (n + 1) for

the positive root and equal to n for the negative root. For a Bessel equation
of integer order the two independent solutions are the Bessel functions of the
first and second kind J|n|(kr) and Y|n|(kr). The Bessel functions of the second
kind are not finite near the origin and so only the J|n|(kr) and J|n+1|(kr)
solutions remain. If we now combine the equations (5.5b) and (5.8) we see

that the most general form for R
(n)
1,2 equals:(

R
(n)
1

R
(n)
2

)
=

An√
2

(
1
i

)
J|n+1|(kr) +

Bn√
2

(
1
−i

)
J|n|(kr) (5.10)

where the factors
√

2 are included just for practical purposes and where An
and Bn are unknown complex coefficients depending only on n.

We will now show that there is indeed no scattering in the Γ = 0 case.
Since we know the wave function solutions we can determine the differential
scattering cross section by taking an incident plane wave and using the well-
known relation

ψtot = ψin +
f(ϕ)√
r
ψscat (5.11)

where ψin is the incident plane wave, while ψscat is the scattered (radial)
outgoing wave, proportional to exp(ikr).
The most general incoming plane wave can be written as:

ψin = ei(k·r+ϕ/2)

(
C
D

)
(5.12)

where the factor exp(iϕ/2) is necessary to account for the multi-valuedness
of the solution and where k is parallel to the negative x-axis as usual.
We can now determine the unknown coefficients An and Bn by matching
the incoming parts — the terms with r dependence exp(−ikr) — onto each
other. Using the large r behaviour of the Bessel functions

Jn(kr) ≈
√

2

πkr
cos

[
kr − π

2
(n+

1

2
)

]
(5.13)

1See appendix C
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and the usual expansion

exp(−ikr cosϕ) =
∞∑

n=−∞

e−iπ
2
|n|einϕJ|n|(kr) (5.14)

the incoming parts now become

e−iπ
2
|n|eiπ

2
(|n|+ 1

2
)

(
C
D

)
=

An√
2

eiπ
2

(|n+1|+ 1
2

)

(
1
i

)
+
Bn√

2
eiπ

2
(|n|+ 1

2
)

(
1
−i

)
(5.15)

where we have divided out the obvious common factors, and integrated out
the ϕ dependence which removes the summation.
We have found the two equations:

√
2C = Aneiπ

2
|n+1| +Bneiπ

2
|n| (5.16a)

−i
√

2D = Aneiπ
2
|n+1| −Bneiπ

2
|n| (5.16b)

By taking the sum and the difference of these two equations it is clear that
An and Bn must be of the form:

An = Ae−iπ
2
|n+1| (5.17a)

Bn = Be−iπ
2
|n| (5.17b)

where A and B are some constants.
The outgoing parts are now equal to

f(ϕ)

(
E
F

)
+

1√
2πk

∞∑
n=−∞

(−1)neinϕe−iπ
4

(
C
D

)
=

1√
2πk

∞∑
n=−∞

(−1)neinϕe−iπ
4

[
− A√

2

(
1
i

)
+

B√
2

(
1
−i

)]
(5.18)

where we divided out the common factor exp(ikr)/
√
r .

So f(ϕ) is proportional to:

f(ϕ) ∼
∞∑

n=−∞

(−1)neinϕ (5.19)

=
1

e−iϕ + 1

∞∑
n=−∞

(−1)n
(
einϕ + ei(n−1)ϕ

)
(5.20)

= 0 if and only if ϕ 6= π (5.21)
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To see that the expression between parentheses is zero write the lower and
upper limits as −N and M . The only terms that remain are of the form
exp(iMϕ) and exp(−i(N+1)ϕ). Furthermore note that the differential cross
section actually is a mean over a small interval [ϕ − ε/2, ϕ + ε/2] around a
certain ϕ. But since the exponentials are oscillating very fast, the mean is
zero. A more rigorous proof can be given by first integrating ϕ over the afore
mentioned interval, then taking the limits M and N to infinity, and finally
dividing by ε and taking the limit of ε to zero. The integration gives a factor
of 1/M or 1/N and therefore the expression is zero in the limit of M and N
to infinity.

We will now look some more at solutions which match onto incoming
plane waves. We have seen that the most general solution can be written as:

ψ =
iA√

2
e−iϕ/2

(
1
i

) ∞∑
n=−∞

ei(n+1)ϕe−i|n+1|J|n+1| +

−iB√
2

eiϕ/2

(
1
−i

) ∞∑
n=−∞

einϕe−i|n|J|n|

= Aeik·rei(π−ϕ)/2 1√
2

(
1
i

)
+Beik·re−i(π−ϕ)/2 1√

2

(
1
−i

)
=:Aψ+

k +Bψ−k (5.22)

where we have redefined A and B by extracting factors ±i just to make
the expression simpler for general wave vectors where k does not point in
the negative x-direction. We will show that these ψ± form a complete and
orthogonal set of solutions, i.e. a basis of eigenfunctions of the free Hamilto-
nian.

For all k and k′ ψ+
k and ψ−k′ are orthogonal since the inner-product

(
1
±i

)† ·(
1
∓i

)
vanishes. Furthermore the ψ±k and ψ±k′ are orthonormal with respect to

a Dirac normalization:∫
d2r

(2π)2
(ψ±k )†ψ±k′ =

∫
d2r

(2π)2

[
e±i(θ−ϕ)/2eik·r 1√

2

(
1
±i

)]†
· e±i(θ′−ϕ)/2eik′·r 1√

2

(
1
±i

)
= e±i(θ′−θ)/2

∫
d2r

(2π)2
ei(k′−k)·r

= δ(2)(k− k′) (5.23)

where θ and θ′ are the angles k and k′ make with the x-axis.
To show that the solutions form a complete set, notice that

(
1
±i

)
form a
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orthogonal basis for two component vectors while plane waves form a basis
of eigenfunctions of the free Schrödinger equation. So together they will form
a basis for the solutions to a two component Schrödinger equation. This is
shown directly by the fact that we can form the 2× 2 identity operator with
them:∫

d2k

(2π)2
ψ+

k (r′)
[
ψ+

k (r)
]†

+ ψ−k (r′)
[
ψ−k (r)

]†
=

∫
d2k

(2π)2
e−i(ϕ′−ϕ)/2eik·(r′−r) 1

2

(
1 −i
i 1

)
+

e+i(ϕ′−ϕ)/2eik·(r′−r) 1

2

(
1 i
−i 1

)
= 1δ(2)(r′ − r) (5.24)

We end this section about the Γ = 0 case with an overview of the results:

• For each value of k the Schrödinger equation has two independent so-
lutions.

• For neither of these solutions scattering occurs.

• The solutions that can be matched on an incoming plane wave form a
complete and orthonormal set, i.e. a basis for all solutions to the two
component Schrödinger equation.

5.3 The general case Γ 6= 0, a perturbation

approach

We will now determine the differential scattering cross section in second
order perturbation theory using the S-matrix formalism as described in ap-
pendix B. We will use the Γ = 0 Hamiltonian as the unperturbed Hamilto-
nian. So we will split the Hamiltonian (4.61):

H = H0 +HI (5.25)

where

H0 =

(
m+ 1

2m

[
−∇2 + 1

4r2

]
− 1

2mr2∂ϕ
1

2mr2∂ϕ m+ 1
2m

[
−∇2 + 1

4r2

])

= 1

[
m+

1

2m
(−∇2 +

1

4r2
)

]
− σ2

1

2mr2
i∂ϕ (5.26a)
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and

HI =
Γ

2m

(
1 0
0 −1

)
= σ3

Γ

2m
(5.26b)

The solutions to the unperturbed Hamiltonian are the ψ±k of section 5.2.
Since we have shown that these solutions form a complete set, every solution
can be written as a linear combination of them and so they are the only
solutions we have to look at. The results however will be valid only for
k2 > Γ since H0ψ

±
k = (m + k2

2m
)ψ±k and as mentioned in appendix B any

constant multiple of the identity is irrelevant so it is clear we should compare
k2

2m
with Γ

2m
.

We will calculate the matrix elements tfi for scattering from an initial
state |i〉 into a final state |f〉 in second order. From equation (B.21) it
follows that we will need the matrix elements

〈f |HI(t) |i〉 and 〈f |HI(t
′)HI(t

′′) |i〉

Notice that HI transforms
(

1
i

)
into

(
1
−i

)
and vice versa. We can therefore

immediately see that the matrix elements 〈+|HI |+〉 and 〈−|HI |−〉 vanish.
So only the cross terms 〈±|HI(t) |∓〉 remain in the first order. The scattering
cross section for both possibilities will of course be equal since it depends only
on the absolute square of this matrix element. In second order the only terms
which will remain are those involving 〈±|HI(t

′)HI(t
′′) |±〉 since HI(t

′)HI(t
′′)

will leave the two orthogonal vectors
(

1
±i

)
invariant. So for scattering from

± states into a state of the same type we only need the second order while
for scattering into a state of the other type we only need the first order.

5.3.1 The first order matrix element

We will now start with the first order term in tfi for scattering from an initial
state |i,−〉 into a final state |f,+〉. According to equation (B.21) the first
order term is equal to

−2πiδ(Ei − Ef )t(1)
fi = −i

∫ ∞
−∞

dt′ 〈f,+|HI(t
′) |i,−〉 (5.27)
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which we can write out using the explicit form of the ψ±k :

−2πiδ(Ei − Ef )t(1)
fi = −i

∫ ∞
−∞

dt′
∫

d2r

[
e+ikf ·rei(θf−ϕ)/2 1√

2V

(
1
i

)]†
· eiH0t′

Γ

2m

(
1 0
0 −1

)
e−iH0t′

· eiki·re−i(θi−ϕ)/2 1√
2V

(
1
−i

)
= −i

Γ

2m
e−i(θf+θi)/2

∫ ∞
−∞

dt′ ei(Ef−Ei)t′
∫

d2r

V
ei(ki−kf )·reiϕ

(5.28)

where a factor 1/
√
V is included since the wavefunctions should be normal-

ized to 1 particle in the whole space. The t integral gives an energy δ-function
and we find

−2πiδ(Ei − Ef )t(1)
fi = −i2πδ(Ei − Ef )

Γ

2m
e−i(θf+θi)/2

∫
d2r

V
ei(ki−kf )·reiϕ

(5.29)

By choosing ki parallel to the negative x-axis (θi = π) and using the fact that
since E = k2

2m
the delta function ensures that kf = ki we find the following

expression:

t
(1)
fi = − Γ

2m
e−iθ/2

∫
d2r

V
eikr[cos(θ−ϕ)−cos(ϕ)]eiϕ (5.30)

where we have introduced the scattering angle θ := θf − θi = θf − π.
The expression between square brackets can be written as K(θ) sin(ϕ−α(θ))
where α(θ) can be found by substituting ϕ = α(θ), while K(θ) can be found
by substituting ϕ = α(θ) + π/2. We then find:

cos(θ − ϕ)− cos(ϕ) = 2 sin
θ

2
sin(ϕ− θ/2) (5.31)

We can now use the standard integral representation for the Bessel functions
(see appendix C)

Jn(z) =
1

2π

∫ 2π+α

α

dϕ ei(nϕ−z sinϕ) (5.32)

and find the following expression for t
(1)
fi :

t
(1)
fi =

Γ

2m
e−iθ/2

∫ ∞
0

rdr

V
2πJ1(2kr sin

θ

2
) (5.33)
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where we have used J1(−z) = −J1(z).
As long as sin θ

2
6= 0 we can rewrite the integral as:

Γ

2m

1

V

2πe−iθ/2

(2k sin θ
2
)2

∫ ∞
0

rdr J1(r) (5.34)

(notice that sin θ
2
≥ 0 since 0 ≤ θ/2 ≤ π).

This remaining integral can be evaluated by inserting an extra factor e−εr

and by taking the limit ε ↓ 0 after the calculation. According to appendix C
we get ∫ ∞

0

rdr e−εrJ1(r) =
1

(ε2 + 1)3/2
(5.35)

So we have found

t
(1)
fi =

Γ

2m

1

V

2πe−iθ/2

(2k sin θ
2
)2

(5.36)

Using

δ(Ef − Ei) =
δ(kf − ki)∣∣dE

dk

∣∣
k=kf

=
m

kf
δ(kf − ki) (5.37)

we can (for k2 > Γ) calculate the differential scattering cross section (B.20)

dσ

dΩ
=

1

v

∫ ∞
0

kfdkf
(2π)2

2πδ(Ef − Ei)
∣∣∣∣V Γ

2m

1

V

−2πe−iθ/2

(2kf sin θ
2
)2

∣∣∣∣2
=

2π

v

(
Γ

2m

)2 ∫ ∞
0

dkf
m

kf
δ(kf − ki)

kf

(2kf sin θ
2
)4

=
2πm2

k

(
Γ

2m

)2
1

(2k sin θ
2
)4

(5.38)

It is clear that this is not the Aharonov–Bohm cross section. In fact it looks
more like the Rutherford cross section for the three dimensional Coulomb
scattering. In Chapter 6 we will give an extensive discussion of this result.

5.3.2 The second order matrix element

We will now determine the second order matrix element, that is we will
determine the cross section for scattering where the initial and final states
are both ψ+

k or both ψ−k states.
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The second order matrix element for scattering from a ± state into a ±
state is equal to:

−2πiδ(Ei − Ef )t(2)
fi = −1

2

∫ ∞
−∞

dt1dt2 〈f,±|T (HI(t2)HI(t1)) |i,±〉

= −
∫ ∞
−∞

dt1dt2 θ(t2 − t1) 〈f,±|HI(t2)HI(t1) |i,±〉

(5.39)

where θ(t) is the Heaviside step function.
We will again take the incident wave vector parallel to the x-axis while the
outgoing wave vector will make an angle θ with the x-axis. The complete
expression will therefore look like:

T (2)
fi = −

∫ ∞
−∞

dt1dt2 θ(t2 − t1)

∫
d2r

[
eikf ·re±i(θ−ϕ)/2 1√

2V

(
1
±i

)]†
· eiH0t2

Γ

2m
σ3e−iH0t2eiH0t1

Γ

2m
σ3e−iH0t1eiki·re∓iϕ/2 1√

2V

(
1
±i

)
= −

∫ ∞
−∞

dt1dt2 θ(t2 − t1)ei(Ef t2−Eit1)

(
Γ

2m

)2 ∫
d2r

V
e−ikf ·re∓i(θ−ϕ)/2

· 1√
2

(
1 ∓i

)
σ3e−iH0(t2−t1)σ3eiki·re∓iϕ/2 1√

2

(
1
±i

)
(5.40)

It is clear that we need expressions of the following form:

σ3(H0)nσ3 = σ3

(
L1−

1

2mr2
iσ2∂ϕ

)n
σ3 =

[
σ3

(
L1−

1

2mr2
iσ2∂ϕ

)
σ3

]n
where we have introduced L := m+ 1

2m
(−∇2 + 1

4r2 ) and used the fact σ2
3 = 1.

It is easy to show that

σ3

(
L1−

1

2mr2
iσ2∂ϕ

)
σ3 = L1 +

1

2mr2
iσ2∂ϕ

= H0 +
1

mr2
iσ2∂ϕ (5.41)

We now need the action of this operator on ψ±ki :

iσ2∂ϕψ
±
ki

=

(
0 −i
i 0

)
i∂ϕ

[
e−i[kir cosϕ±ϕ/2] 1√

2V

(
1
±i

)]

= ±[−kir sinϕ± 1

2
] e−i[kir cosϕ±ϕ/2] 1√

2V

(
1
±i

)
= −[±kir sinϕ− 1

2
]ψ±ki (5.42)
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So we have found:

σ3e−iH0(t2−t1)σ3ψ
±
ki

= e−i
[
Ei−

±kir sinϕ− 1
2

mr2

]
(t2−t1)ψ±ki (5.43)

and therefore

T (2)
fi = −

(
Γ

2m

)2

e∓iθ/2

∫ ∞
−∞

dt1dt2 θ(t2 − t1)ei(Ef t2−Eit1)e−iEi(t2−t1)

·
∫

d2r

V
ei(ki−kf )·rei

[
±kir sinϕ− 1

2
mr2

]
(t2−t1)

= −
(

Γ

2m

)2

e∓iθ/2

∫ ∞
−∞

dt2 ei(Ef−Ei)t2
∫

d2r

V
ei(ki−kf )·r

·
∫ ∞
−∞

dt θ(t)ei
[
±kir sinϕ− 1

2
mr2

]
t (5.44)

where we have substituted t2 − t1 by t.
We see that the integral over t2 gives the factor 2πδ(Ef − Ei) and thus we

have found the following expression for the reduced matrix element t
(2)
fi :

t
(2)
fi = −i

(
Γ

2m

)2

e−iθ/2

∫
d2r

V
ei(ki−kf )·r

∫ ∞
−∞

dt θ(t)ei
[
±2kir sinϕ−1

2mr2

]
t (5.45)

As mentioned in section B we should include a factor exp(−εt) in HI(t) and
take ε to zero after the calculation. We then get:∫ ∞

−∞
dt θ(t)ei±2kr sinϕ−1

2mr2
te−εt =

1

i±2kr sinϕ−1
2mr2 − ε

[
ei±2kr sinϕ−1

2mr2
te−εt

∣∣∣∞
0

=
i2mr2

±2kr sinϕ− 1 + iε̃
(5.46)

In the rest of the calculation we will assume that we can take the limit
ε̃ := 2mr2ε to zero, that is that we can take ε to go to zero faster than r goes
to infinity. We will drop the tilde from now on. Using equation (5.31) again

we can now write t
(2)
fi as:

2m

(
Γ

2m

)2

e∓iθ/2

∫ ∞
r=0

∫ 2π

ϕ=0

rdrdϕ

V

r2ei2kr sin θ
2

sin(ϕ−θ/2)

±2kr sinϕ− 1 + iε
(5.47)

As long as k 6= 0 we can rewrite this double integral as

1

(2k)4

∫ ∞
R=0

∫ 2π

ϕ=0

RdRdϕ

V

R2ei[(sin θ
2

cos θ
2

)R sinϕ−(sin2 θ
2

)R cosϕ]

±R sinϕ− 1 + iε
(5.48)
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If we now return to Cartesian coordinates x = R cosϕ and y = R sinϕ we
have to solve the integral:∫ ∞
−∞

dxdy
(x2 + y2)e−i(ax−by)

±y − 1 + iε
=

∫ ∞
−∞

dxdy
x2 + 1 + y2 − 1

±y − 1 + iε
e−i(ax−by)

=

∫ ∞
−∞

dx (x2 + 1)e−iax

∫ ∞
−∞

dy
eiby

±y − 1 + iε
+∫ ∞

−∞
dx e−iax

∫ ∞
−∞

dy (1± y)eiby (5.49)

where we have introduced the symbols a = sin2 θ
2

and b = sin θ
2

cos θ
2

and
already taken the limit of ε ↓ 0 in the second term.
The x-integrals are equal to respectively

−d2δ(a)

da2
+ δ(a) = 0 and δ(a) = 0 (5.50)

provided that a is not zero.
The second y-integral is equal to

−i
dδ(b)

db
± δ(b) = 0 (5.51)

provided that b is not zero.
To evaluate the first y-integral we can close the contour in the upper half
plane if b is positive and in the lower half plane if b is negative. We have a
simple pole at y = ±(1− iε) and therefore we find this integral to be∫ ∞

−∞
dy

eiby

y − 1 + iε
=

{
0 for b positive

2πieib(1−iε) for b negative
(5.52)

for the + scattering case and∫ ∞
−∞

dy
eiby

−y − 1 + iε
=

{
2πie−ib(1−iε) for b positive

0 for b negative
(5.53)

for the − scattering case.
Taking the limit of ε to zero we see that these expressions do not diverge as
long as b 6= 0. To conclude: we have seen that t

(2)
fi is equal to zero, provided

sin2 θ
2
6= 0 and sin θ

2
cos θ

2
6= 0. So for all θ not equal to a multiple of π we

have found that scattering from a ψ+
k into a ψ+

k′ and scattering from a ψ−k
into a ψ−k′ results in a differential cross section which is zero upto second
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order. Since the zeroth order of S vanishes too if kf is not parallel to ki,
we suspect that all even orders may be zero (as long as the scattering angle
differs from some finite number of angles). We are not able to prove this in
general however and we will not go into it any further.

In the next Chapter we will discuss the obtained results. We will also
discuss other previous papers written about this subject.



CHAPTER 6

Discussion and comparison of the results

In this Chapter we will start with a discussion of our own results of Chapter 5
followed by a comparison with the results obtained in previous papers written
about this subject.

6.1 The results

Looking at the cross section formula (5.38) it is clear that we do not find the
Aharonov–Bohm cross section but instead find one with exactly the same
θ dependence a three dimensional Coulomb potential would give. To examine
where this result comes from, we will start with a discussion of the important
ingredients of the model and their effects on the cross section.

Let use first mention however that the result we found is only valid for the
energy region where k2 > Γ since the interaction Hamiltonian HI should be
smaller than H0. Unfortunately this is not the region on which all previous
papers where focusing: they focused on the adiabatic limit in which k → 0.
There are some previous results about this “upper energy” region however
and we will discuss them in the next section.

The model has three important ingredients: the half integer phase factor
eiϕ/2 and the vector potential Aϕ = σ2

r
ϕ̃ both coming from the redefinition

of the fields and the additional potential Γ
2m
σ3. The effects of the first two

ingredients can be seen most clearly when we neglect the Γ potential. As we
have already seen, no scattering occurs in that case. But if we look at the
effect of only the phase factor, so temporarily neglect the whole potential, we
see that the two coupled equations (5.5) reduce to two independent Bessel
equations for ψ1,2 of order n+ 1

2
(the 1

4
disappears as well as the right hand

sides of the coupled equations). The most general solution in the case of only

48
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a double valued phase factor can therefore be written as(
ψ1

ψ2

)
=
∑
n

(
an
bn

)
J|n+ 1

2
|(kr)e

i(n+ 1
2

)ϕ (6.1)

If we compare this with the most general solution for the maximal Aharonov–
Bohm effect

ψ =
∑
n

anJ|n+ 1
2
|(kr)e

inϕ (6.2)

we see that the Bessel functions are of the same order. The only difference is
the phase factor. However in these expressions the phase factor is irrelevant
since if we would have solved the maximal Aharonov–Bohm problem using
a multi-valued wavefunction instead of a vector potential we would have
found the same solution (6.2), but with the extra phase factor present. It is
therefore clear that the effect of a multi-valued phase factor is to shift the
order of the Bessel functions with a half and thus to result in a maximal
Aharonov–Bohm effect.

If we now look for single valued solutions of our problem but with the
vector potential we see that the coupled equations (5.5) remain two coupled
equations, only all factors n + 1

2
are replaced by n. We therefore get two

different possible orders of the Bessel equation:√
n2 +

1

4
± n = |n± 1

2
|

So in this case of only the vector potential, the most general solutions can
be written as: (

ψ1

ψ2

)+

=
∑
n

an

(
1
+i

)
J|n+ 1

2
|(kr)e

inϕ (6.3a)(
ψ1

ψ2

)−
=
∑
n

an

(
1
−i

)
J|n− 1

2
|(kr)e

inϕ (6.3b)

We see that the result of including only the vector potential, is the maximal
Aharonov–Bohm effect as well, but it also gives rise to a doubling of the
number of possible solutions; this is caused by the off-diagonal terms. Notice
that both the diagonal and the off-diagonal parts of the vector potential
contribute to the maximal Aharonov–Bohm effect. By neglecting only the
off-diagonal part we therefore get an approximate Aharonov–Bohm effect.
When we combine the vector potential with the multi-valued phase factor
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but still neglect the Γ potential we see that the Aharonov–Bohm scattering
disappears since the orders of both the Bessel functions are shifted twice over
one half1. There remain two solutions however, which we have already used
in section 5.2 as a starting point for our perturbative calculation.

We will now check that instead of redefining the fields — as we did in
section 4.1 — we could equally well have used the original fields η, which
satisfy the equation

−∂2
t η = (−∇2 +m2)η + Γeiϕη∗ (6.4)

or in terms of ρ1,2

−∂2
t

(
ρ1

ρ2

)
=

[
(−∇2 +m2)1 + Γ

(
cosϕ sinϕ
sinϕ − cosϕ

)](
ρ1

ρ2

)
(6.5)

This leads again to a non-relativistic Schrödinger equation and again we can
use the two vectors

(
1
±i

)
as a basis for the vectorial parts of the free solutions.

Notice that again one of the effects of the Γ potential HI is to transform a(
1
±i

)
into a

(
1
∓i

)
:(

cosϕ sinϕ
sinϕ − cosϕ

)(
1
±i

)
=

(
cosϕ± i sinϕ
∓i(cosϕ± i sinϕ)

)
= e±iϕ

(
1
∓i

)
(6.6)

So we see that we find exactly the same form for 〈f |HI |i〉 as we derived
in our previous calculation using the redefined fields η̃. Only this time the
phase factor in the matrix element comes directly from the Γ potential and
not from the states.

Using the original fields instead of the redefined ones makes it easier to see
what changes in the cross section if we consider a vortex of the more general
form <λ(r, ϕ)> = veiαϕ, where α is some general real constant: in equation
(5.30) the phase factor exp(iϕ) changes into exp(iαϕ). The phase factor in
front of the integral vanishes if we use the original fields so no changes occur
in this factor. According to appendix C the integral is equal to a Bessel
function for integer values of α. For non-integer values it diverges2. Non-
integer values are also forbidden for the simple reason that the λ vacuum
must be single valued. So for integer values α = a we find that the effect is
to change the first order Bessel function in an ath order Bessel function:

t
(1)
fi = − Γ

2m

1

V

2π

(2k sin θ
2
)2

lim
ε↓0

∫ ∞
0

rdr Ja(r)e
−εr︸ ︷︷ ︸

=a

(6.7)

1We get orders 0 and 1 which result in a vanishing cross section.
2We did not prove this in appendix C.
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and therefore the effect of a vortex of the form v exp(iaϕ) is a factor a2 in the
cross section. We now immediately find that the cross section vanishes for
the trivial configuration <λ> = v = v exp(i0ϕ) as expected: the scattering
is an effect of the vortex.

It is also interesting to look at the more general case where we imagine
that the Γ potential has an r dependence of the form rm. We see that in
that case the integral in expression (5.33) becomes:∫ ∞

0

dr r1+mJ1(2kr sin
θ

2
) =

1

(2k sin θ
2
)m+2

∫ ∞
0

dr r1+mJ1(r)

Since the integral is equal to a finite constant (if m ≥ −1) only depending
on m, the cross section will be equal to

dσ

dΩ
∼ 1

(2k sin θ
2
)2m+4

(6.8)

The fourth power in the cross section is therefore an immediate result of the
constant Γ potential. The second power occuring in the Aharonov–Bohm
cross section would be obtained by a factor 1/r in the potential. Let us
check that the Aharonov–Bohm Hamiltonian indeed satisfies this condition
although this perturbative approach will not be very useful because it will
turn out that the higher order terms diverge. According to equation (2.10)
the Aharonov–Bohm Hamiltonian is equal to

H0 +HI = −∇
2

2m
− −i2α∂ϕ + α2

2mr2
(6.9)

Since the free solutions are equal to e−i(ωt−kr cosϕ) we see that i∂ϕ → kr sinϕ.
The first term of the interaction Hamiltonian therefore reduces to αk sinϕ

mr
.

The second term is proportional to 1/r2, but it is actually a higher order
term since it comes from A2. To lowest order the reduced scattering matrix
element can now be calculated by

t
(1)
fi = −

∫
rdrdϕ

V
eikr(cos(ϕ−θ)−cosϕ)αk sinϕ

mr
= −i

2πα

2mV tan θ/2
(6.10)

which yields a lowest order cross section equal to

dσ

dΩ
=

π2α2

2πk tan2θ/2
(6.11)

We see that for small angles and small α this looks just like the Aharonov–
Bohm cross section but the typical Aharonov–Bohm α dependence is not
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visible: we cannot see that for α = n + 1
2

the cross section is maximal.
This is caused by the perturbation theory approach, in which α is assumed
to be small. Much more important however is that the second order di-
verges: the full Aharonov–Bohm cross section with the important sin2πα
cannot be calculated in perturbation theory. This is a possible risk for all
potentials with a 1/rm dependence. Interesting is that the factor a in our
vortex <λ(r, ϕ)> = veiaϕ plays the same role as α in the Aharonov–Bohm
effect, which one would perhaps expect from the fact that both cross sections
can be calculated using a multi valued phase factor exp(iaϕ/2). However if
the extra factor 1/r would have been present in the interaction Hamiltonian
resulting in the Aharonov–Bohm sin2θ/2 in the denominator, the a2 would
disappear from the cross section.

Now let us look at the connection with the Coulomb potential. As we
have seen, the sin θ/2 dependence comes solely from the power of r and since
for a three dimensional Coulomb potential we have one factor of r more in
the Jacobian: r2 sinϕ drdϕ versus rdrdϕ but also one factor of r more in
the denominator of the potential, we see that we will find the same power of
sin θ/2. The physical origin however is totally different. It is interesting to
notice that if we would take the three dimensional Coulomb potential in two
dimensions, that is if we would take a 1/r potential in two dimensions we
find the Aharonov–Bohm cross section. Normally one thinks of a logarithmic
potential when talking about a Coulomb potential for two dimensions since
the field strength should have a 1/r dependence to satisfy Gauss’ law. We
can however also think of a three dimensional problem where all particles
are confined to a plane like for example the Aharonov–Bohm effect or the
Quantum Hall effect. In fact for such a system the cross section is calculated
by Law et al. [13] and indeed it yields the Aharonov–Bohm cross section
(plus some extra terms).

6.2 Previous literature

We will start this discussion with the first paper written about the subject,
i.e. that of March–Russell et al. [10]. They found an approximate maximal
Aharonov–Bohm scattering cross section:

dσ

dΩ
=

1

2πk

1

sin2θ/2
[1 + C(θ)] (6.12)

where C(θ) is a small correction depending only on θ (i.e. not on k). We
have calculated C(θ) numerically and plotted it in figure 6.1. This result
was obtained by ignoring the off-diagonal terms of the Hamiltonian (4.63).



6.2 Previous literature 53

According to March–Russell et al. a calculation in which they are included
in second order perturbation theory would show that they can be ignored for
small incoming momenta: (2k sin θ/2)2 < Γ.

One of the main arguments for ignor-

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 π/2 π

C(θ)

Figure 6.1: The correction C(θ)

ing them is that the masses of the two
particles are different. This is how-
ever only the case for ρ1,2 in the origi-
nal Klein–Gordon equation, but as we
have seen, to derive the non-relativ-
istic Schrödinger equation it was nec-
essary to take linear combinations of
them, resulting in two particles with
effectively the same mass. This can
also be seen directly from the fact that
we can equally well use the hermitian
Hamiltonian (4.61) in which the two

masses are equal.
The fact that the off-diagonal terms cannot be taken into account per-

turbatively can also be seen from the first order term of the S-matrix:
〈f |HI(t) |i〉. The wavefunction contains a factor ei(ϕ/2−kr cosϕ). The deriva-
tive of this term to ϕ gives us

− i∂ϕ
2mr2

|i〉 =

[
1

2

k sinϕ

mr
+

1

4

1

mr2

]
|i〉 (6.13)

Notice that these two terms are almost equal to the two terms we found in
our naive perturbative calculation of the Aharonov–Bohm effect: again the
first term can be calculated but the second term diverges. The reason we find
almost the same two terms as in the Aharonov–Bohm case is that the off-
diagonal terms play an important role in the cancellation of the Aharonov–
Bohm cross section as we have shown in section 6.1. The second (divergent)
term equals twice the second term in the Aharonov–Bohm case, but combined
with the diagonal potential 1/(4r2) they become equal, except for an overall
minus sign. So by neglecting the off-diagonal terms we neglect a part of the
vector potential which is essential for the cancellation of the sin−2 θ/2 cross
section. Taking these terms into account perturbatively therefore means
taking into account the Aharonov–Bohm effect perturbatively which is bound
to fail. This argument is of course only qualitative since we ignored the effects
of Γ, but still, it makes visible the main problem - the 1/r2 term.

We now turn to an other paper, written by Robert Navin [14]. He has
made a very extensive calculation which I will briefly recapitulate. He looks



54 Discussion and comparison of the results

for complex solutions with time dependence e−iωt of the Klein–Gordon and
tries to solve it without ignoring the off-diagonal terms by making a mode
expansion and looking at the large r behaviour. The first step is to make the
assumption that both ψ1 and ψ2 have the asymptotic form

rγ(α1eik1,2r + α2e−ik1,2r)

By substituting these into the coupled differential equations and retaining
only the highest powers in the large r expansion we find the most general
solution

ψ =
∑
n

ei(n+ 1
2

)ϕ

 2Γ
i(n+ 1

2
)

β1eik1r+β2e−ik1r

r1/2 +
i(n+ 1

2
)

2Γ
α1eik2r+α2e−ik2r

r5/2

α1eik2r+α2e−ik2r

r1/2 + β1eik1r+β2e−ik1r

r5/2

 (6.14)

where ω2 = k2
1 +m2 + Γ = k2

2 +m2 − Γ.
There are four complex parameters left. Notice however that since k1 is
imaginary for energies m2 − Γ < ω2 < m2 + Γ, there are two energy regimes
to look at. Navin tries to find the unknown coefficients by taking the limit
of Γ → 0 in the upper energy regime since we know we should find Bessel
functions then. He claims to find pure transmission for the upper regime
and the exact maximal Aharonov–Bohm cross section for the intermediate
regime. However the aforementioned limit is ill defined since we see that the
second term of ψ1 blows up unless α1,2 are of the order of Γ, but then only
the r−5/2 terms remain and those functions cannot be matched onto Bessel
functions which is necessary to finally calculate the cross section. There
is another more transparent argument to see why this matching cannot be
done: If we match in the upper regime and want to know the solution in the
intermediate regime we should assume that the coefficients have the same
form. But if they do, the coefficient of ek1r will be nonzero which means
that the solution is not bounded for large r. The conclusion must be that we
cannot determine the unknown coefficients and therefore cannot make any
further calculation of the cross section.

The article we will discuss next is that of C. R. Hagen [15]. He makes
roughly speaking two remarks. First of all he points out that the gradient
energy of the λ field diverges logarithmically since the energy density

|∇λ|2 = |∇(veiϕ)|2 =
v2

r2
(6.15)

cannot be integrated over the whole space. Notice that this problem is linked
to the fact that we have only a global gauge symmetry: a local gauge sym-
metry makes it possible to gauge away the nasty gradient term at infinity,
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i.e. the gauge field must approach a pure gauge for r → ∞. For an excel-
lent discussion of local vortices - the so called Nielsen-Olesen vortices - see
J. Preskill [16]. For the present global vortex we can overcome the problem
by cutting off the large r behaviour. In fact in calculating the cross section
we already used an extra factor exp(−εr) which essentially does this. Ha-
gen worries about the fact that a cut-off would obscure the sin−2 θ/2 cross
section, since the large r behaviour corresponds to small k, which is the
momentum regime where March–Russell et al. in their original paper were
looking at. As mentioned before our calculation focuses on larger k, since
only then a perturbative approach can be successful as the Aharonov–Bohm
example has shown to us. Further notice that that v must be much smaller
than g according to the remark in section 4.1 below equation (4.19). This
means that the energy of the λ field is much smaller than other energies: we
can take all limits in such a way that there is no problem with a divergent
gradient energy. The second remark Hagen makes is about the fact that
we can find an Aharonov–Bohm cross section by taking a 1/r potential, i.e.
when <λ> ∼ const/r for large r (see also the article of Law et al. [13]). We
have discussed this already in section 6.1.

We now turn to the review article of A. C. Davis and A. P. Martin [17].
They use the same method as March–Russell et al. in neglecting the off-
diagonal terms since these would connect terms with different masses. They
also claim to make a relativistic calculation but they only use the Klein–
Gordon equation in the way we mentioned in section 5.1: looking for all
solutions to the Schrödinger equation is equivalent to looking for all com-
plex solutions with time dependence e−iωt to the Klein–Gordon equation.
Indeed they also use equations (2.17)–(2.18) which are only applicable for
non-relativistic situations to calculate the differential cross section. Very in-
teresting however is their discussion of the article of Khazan [18], which is
about certain line defects in liquid 3He in the A phase. To be more precise it
is about the dynamics of the so called collective clapping mode near a vortex
with half integer quanta. The equation of motion of this clapping mode is a
Schrödinger equation with a vector potential A = 1

2r
ϕ̂ and a scalar potential

U = 1
4r2 . The vector potential is exactly of the Aharonov–Bohm form leading

to half integer Bessel functions. The effect of the diagonal scalar potential is
just as in the paper of March–Russell et al. to shift this order:√

(n+
1

2
)2 →

√
(n+

1

2
)2 +

1

4

They (M.–R.) obtained this result by neglecting the off diagonal terms which
leaves them with only the multi-valued phase factor and this scalar potential,
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while Khazan has a single valued function with an Aharonov–Bohm vector
potential and this scalar potential, without ignoring any terms (Khazan actu-
ally has missed the scalar potential and therefore finds the exact Aharonov–
Bohm cross section as Davis and Martin point out). The result of Khazan
is due to an actual Aharonov–Bohm vector potential while March–Russell
et al.’s vector potential is an artifact of the “gauge” transformation. In the
latter experiment all real effects come from Γ. So in spite of the fact that the
two cases look very alike they are completely different. For the 3He case the
vector potential really is of the form March–Russell et al. claim it to be, i.e.
without the off-diagonal part. Therefore the cross section for this experiment
is equal to equation (6.12) with C(θ) given by figure 6.1.

So we observe that our results do not agree with most of the work dis-
cussed in this section; the 3He problem however is of a different type and
does deserve further study.



CHAPTER 7

Conclusions and outlook

In contrast with the results presented in all of the previous literature we have
found very strong indications that the so-called frame-dragging model does
not lead to an Aharonov–Bohm cross section. Instead we obtained that to
lowest order in the level splitting parameter Γ

2m
it leads to the cross section

dσ

dΩ
=

2πm2

k

(
Γ

2m

)2
1

(2k sin θ/2)4

which has the same θ dependence as Coulomb scattering in three dimensions,
but we have seen that this is merely a coincidence. An Aharonov–Bohm cross
section would have been obtained if the the vacuum expectation value of the
Higgs field λ had a factor 1/r in it.

Because of the perturbative approach our result is only valid for the en-
ergy regime k2 > Γ, while all previous literature focused on the adiabatic
limit where k is small. The odd orders contribute to the cross section only
for scattering from a ψ± to a ψ∓, while the even orders contribute only for
situations where the initial and final state are of the same kind. However
the second order contribution vanishes completely as long as the scattering
angle is not equal to an integer multiple of π.

A more general vacuum expectation value of the form eiaϕ would lead to
a factor a2 in the cross section from which it is clear that the effect we have
found really is linked to the vortex configuration, since a = 0 results in a
vanishing cross section.

One of the main difficulties is the off-diagonal part of the Hamiltonian
which connects the two different particles. In the previous literature it was
claimed that these two have different masses, but as we have shown this
claim is mistaken. This is one of the main reasons why our result differs
from previous ones: the off-diagonal parts are not suppressed for small mo-
menta which was a key assumption used before. Maybe a fully relativistic
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calculation would prevent some of these difficulties. Further research on this
model will be interesting, especially in the adiabatic limit since there are
still no good results for this regime, while it is clear that although not of an
Aharonov–Bohm form the vortex still does induce scattering.

So our result does not support the expectation that the Aharonov–Bohm
effect could be obtained in a theory with global gauge invariance only. Sur-
prisingly enough there is a physical system different from the one we have
studied, where this effect is claimed to occur nevertheless. This is the case of
liquid 3He which is indeed very different from this “frame dragging” model
since it has approximately the Aharonov–Bohm potential without the multi-
valued phase factor to cancel it off. Therefore an Aharonov–Bohm cross
section can be found in it.

Let me conclude by saying that so far we have only looked at this problem
from a theoretical perspective, but that in the end experimental evidence in
support of these ideas would be as desirable as exciting.



APPENDIX A

The covariant derivative

In this appendix we will describe how one can obtain the correct signs for the
covariant derivative using the metric and the Lorentz force law. Throughout
this thesis we will use the metric Diag(1,−1,−1,−1) and therefore ∂µ∂

µ =
� = ∂2

t −∇2.

A.1 The covariant derivative

Since in Gaussian units E is equal to −1
c
∂A
∂t
−∇V and B is equal to ∇∧A

the Lorentz force looks like

FLor = q

[
−1

c

∂A

∂t
−∇V +

v

c
∧ (∇∧A)

]
(A.1)

Now we want to know the value of the unknown constant α in

H =
(p + αqA)2

2m
+ qV (A.2)

Using the Hamilton equations

ṙ =
dr

dt
= ∇pH (A.3a)

ṗ =
dp

dt
= −∇rH (A.3b)

combined with A = A(r, t) we get

ṙ =
p + αqA

m
(A.4a)

ṗ = − [∇ (p + αqA)] · p + αqA

m
− q∇V

= −αq (∇A) · p + αqA

m
− q∇V (A.4b)
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So combining these two we get

v = ṙ =
p + αqA

m
(A.5a)

ṗ = −αq (∇A) · v − q∇V (A.5b)

Now use these expressions in the Newtonian equation of motion

FLor = mr̈ (A.6)

to get

FLor = mr̈ = m
d

dt
v = ṗ + αq

dA

dt
(A.7)

Again using A = A(r, t) we get

dA

dt
=
∂A

∂t
+

dr

dt
· ∇A =

∂A

∂t
+ v · ∇A (A.8)

and therefore the Lorentz force is equal to

FLor = ṗ + αq

(
∂A

∂t
+ v · ∇A

)
= −αq (∇A) · v − q∇V + αq

(
∂A

∂t
+ v · ∇A

)
= q

[
α
∂A

∂t
−∇V − α [(∇A) · v − v · (∇A)]

]
(A.9)

Since we can write out v ∧ (∇∧A) as

v ∧ (∇∧A) = (∇A) · v − v · (∇A) (A.10)

we can simplify equation (A.9) to

FLor = q

[
α
∂A

∂t
−∇V − αv ∧ (∇∧A)

]
(A.11)

Using the expressions for E and B we conclude that α must be equal to −1/c
and we get for the Hamiltonian H

H =
(p + αqA)2

2m
+ qV =

(p− q
c
A)2

2m
+ qV (A.12)

We are now able to generalize this to a relativistic expression. We have seen
that the momentum p must be replaced by p− q

c
A so the four-momentum pµ
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will be replaced by pµ− q
c
Aµ. We want p and A to be the spatial coordinates

of the contravariant four vectors pµ and Aµ, i.e. pµ = (E/c,p) and Aµ =
(V,A). The correct factor c can be found by a simple dimension analysis.
Furthermore we have that ∂µ = (1

c
∂t,∇) and therefore ∂µ = (1

c
∂t,−∇).

Since p = }

i
∇ we must conclude that pµ = −}

i
∂µ = i}∂µ. This is indeed in

agreement with the fact that E = H = i}∂t. So since we have established
that pµ becomes pµ − q

c
Aµ we see that we must substitute ∂µ by ∂µ + i q

}c
Aµ

where Aµ = (V,−A). So to sum up we have found the following relations:

pµ → pµ − q

c
Aµ (A.13)

p→ p− q

c
A (A.14)

∂µ → ∂µ + i
q

}c
Aµ = Dµ (A.15)

∇ → ∇− i
q

}c
A (A.16)

Now we finally need to know the signs and factors in a gauge transforma-
tion. We want to know the transformation behaviour of Aµ when ψ transform
as

ψ → ψ′ = eiλψ (A.17)

where λ is a function of t and r.
The gauge field Aµ must behave in such a way that the covariant derivative
of a field or wavefunction transforms as a covariant vector, i.e. the following
holds

Dµψ → D′µψ
′ = eiλDµψ (A.18)

Writing this out leads to

D′µψ
′ =
(
∂µ + i

q

}c
A′µ

)
eiλψ

= eiλ
(
∂µ + i∂µλ+ i

q

}c
A′µ

)
ψ

= eiλ
(
∂µ + i

q

}c
Aµ

)
ψ (A.19)

where we have used equation (A.18) in the last step.
Since this must hold for all ψ we see that A′µ must satisfy

A′µ = Aµ −
}c

q
∂µλ (A.20)
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It is customary however to absorb the pre-factor in λ and we get the following
two relations for a general gauge transformation:

ψ → ψ′ = ei(q/}c)λψ (A.21a)

Aµ → A′µ = Aµ − ∂µλ (A.21b)

In terms of the vector potential A this reads

A→ A′ = A +∇λ (A.22)



APPENDIX B

The S-matrix formalism

In this appendix an expression for the differential scattering cross section is
derived using the S-matrix formalism. We will do this following Sitenko [19]
Chapter 2 and Gross [11] Chapter 4.

B.1 Introduction

The S-matrix formalism is used when the total Hamiltonian can be split
into two parts: the free Hamiltonian H0 and the interaction Hamiltonian
HI , where HI is assumed to be much smaller than H0, so that its effects
will be small perturbations around the free solutions. Furthermore for the
calculation of the S-matrix it is convenient to use the interaction picture
instead of the Heisenberg or Schrödinger picture. In the interaction picture
the time dependence corresponding to the free Hamiltonian is in the operators
while the time dependence of the interaction Hamiltonian is in the states. So
the interaction Hamiltonian will be equal to:

HI(t) = U−1
0 (t)HI(0)U0(t) (B.1)

where U0(t) = e−iH0t is the free evolution operator while H0 and HI(0) are
the operators as used in the Schrödinger picture. Notice that H0 looks the
same in both pictures.

B.2 The S-matrix

In scattering experiments it is assumed that at t = −∞ the particles are
free, then they approach and interact with each other, while at t = ∞ they
are free again. Calling the initial state ψ(−∞) and the final state ψ(∞) the
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scattering operator S is defined by

ψ(∞) = Sψ(−∞) (B.2)

It is clear from the normalization of ψ that S is unitary. Furthermore if the
final and the initial state are the same no scattering has occurred. Scattering
is therefore characterized by the difference of the initial and final state:

T ψ(−∞) := Sψ(−∞)− ψ(−∞) (B.3)

Notice that this is the same reasoning as used in the previous section where
the scattering amplitude was defined by the difference between the total wave
function and the incoming plane wave.

Since the initial and final states are assumed to be free they can be
expanded in the complete orthogonal set of solutions to the free Hamiltonian:

ψ(−∞) =
∑
n

cnψn (B.4a)

ψ(∞) =
∑
n

dnψn (B.4b)

where the sum is to be read as an integral over k and a sum over the + and −
states. Substituting these into definition (B.2) and using the orthogonality
of the ψn we obtain:

dn =
∑
m

cm 〈n|S |m〉 =:
∑
m

cmSnm (B.5)

and therefore if we assume the initial state is a certain eigenstate such that
only one cn 6= 0 we see that the S-matrix elements are equal to the expansion
coefficients dn of the final state. The probability of finding the system in the
final state ψn if it was initially in the state ψm is therefore equal to |Snm|2.
From the unitarity of S it immediately follows:∑

n

|Snm|2 =
∑
n

S∗nmSnm =
∑
n

(S†)mnSnm = (S†S)mm = 1 (B.6)

So indeed the total probability is unity.
The total transition probability as a result of scattering is equal to

Wm→n = |Tnm|2 (B.7)

where Tnm is the matrix element of T between the states ψn and ψm. The
total transition probability per unit time wm→n can be found by dividing



B.2 The S-matrix 65

Wm→n by the time T in which the transition takes place. To find an expres-
sion for this wm→n we write Tnm in terms of a new quantity tnm, the reduced
transition matrix element:

Tnm = −2πitnmδ(Em − En) (B.8)

With this definition we find

wm→n = 2πδ(Em − En)|tnm|2 lim
T→∞

2πδ(Em − En)

T

= 2πδ(Em − En)|tnm|2 lim
T→∞

∫ T/2
−T/2 dt ei(Em−En)t

T
= 2πδ(Em − En)|tnm|2 (B.9)

Our next task is to find an expression for Snm in terms of the interaction
Hamiltonian HI . For this purpose we introduce the time evolution operator
U(t, t0):

ψ(t) = U(t, t0)ψ(t0) (B.10)

In the interaction picture the time dependence of the wave functions is solely
due to the interaction Hamiltonian:

i∂tψ(t) = HI(t)ψ(t) (B.11)

and therefore

i∂tU(t, t0) = HI(t)U(t, t0) (B.12)

which is valid since equation (B.11) applies for arbitrary ψ(t).
It is clear that the evolution operator should also satisfy the boundary con-
dition U(t0, t0) = 1. We can now write down an integral equation

U(t, t0) = 1− i

∫ t

t0

dt′ HI(t
′)U(t, t′) (B.13)

which can be iterated to yield

1− i

∫ t

t0

dt′ HI(t
′) + (−i)2

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI(t

′′) + · · · (B.14)

It can be shown that this can also be written as

U(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn T
(
HI(t1)HI(t2) · · ·HI(tn)

)
= T e

−i
∫ t
t0

dt′ HI(t′)
(B.15)
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where we have introduced the time ordering operator T which orders its
argument chronologically:

T
(
HI(t1)HI(t2)

)
=

{
HI(t1)HI(t2) t1 > t2

HI(t2)HI(t1) t2 > t1
(B.16)

and similarly for more than two arguments.
By comparing definitions (B.2) and (B.10) we see that we can define the
S-matrix by

S = lim
t0→−∞
t→∞

U(t, t0) = T e−i
∫∞
−∞ dt′ HI(t′) (B.17)

A few remarks about the derivation of this expression should be made.
In the first place the interaction Hamiltonian HI(t) = eiH0tHI(0)e−iH0t gen-
erally does not vanish for t = ±∞ which is needed because the initial and
final states should be free states. We can however insert a factor exp(−ε|t|)
and after the calculation take ε→ 0.
Secondly the result is independent from any constant multiple of the identity
in H0 since this part commutes with everything and therefore vanishes from
HI(t).

B.3 The scattering cross section

We can now derive an expression for the differential scattering cross section in
terms of the reduced transition matrix elements. The differential scattering
cross section is defined by

dσ

dΩ
=

# particles scattered into dΩ per sec.

# particles incident per sec. · # scatterers per area
(B.18)

where:

• The number of particles scattered into dΩ per second is equal to the sum
of wm→n over all final states |n〉 which have their momentum vector in
the solid angle dΩ. In the continuum limit this sum goes to an integral
as follows: ∑

n in dΩ

∆n wm→n → V

∫
k in dΩ

d3k

(2π)3
wm→n (B.19)

where V is the total space which is infinite, but we will see that in the
final result all factors V will cancel.
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• The number of incoming particles per second is equal to the volume
swept out per second Av times the density of the beam which is equal
to 1/V since we consider one incoming particle in the whole space.

• The number of scatterers is also assumed to be one and therefore the
number of scatterers per area is equal to 1/A.

In two dimensions areas should be substituted by line elements, total volumes
by total areas and solid angles by angles.

We can now write down the differential scattering cross section:

dσ

dΩ
=

1

v

∫
dΩ

d2k

(2π)2
V 2wm→n

=
1

v

∫
dΩ

d2k

(2π)2
2πδ(Em − En)|V tnm|2 (B.20)

where the reduced transition matrix tnm was defined in equation (B.8):

−2πiδ(Em − En)tnm = Tnm = 〈n|T e−i
∫∞
−∞ dt′ HI(t′) − 1 |m〉 (B.21)

Notice that the effect of using T instead of S is to remove the zeroth order.



APPENDIX C

Bessel functions

In this appendix some important properties of Bessel functions are stated
together with the proofs of used relations involving Bessel functions. We use
the convention that Roman indices are integer while Greek indices are real.
All citations are taken from Watson [20]; we will indicate the appropriate
Chapters between square brackets.

C.1 Basic relations involving Bessel functions

Bessel functions are solutions to the Bessel equation:

z2 d2Jν(z)

dz2
+ z

dJν(z)

dz
+ (z2 − ν2)Jν(z) = 0 (C.1)

The constant ν is called the order. For non-integer order all solutions can
be written as a linear sum of Jν and J−ν while for integer order all solutions
can be written as a linear sum of Jn and Yn, the Bessel functions of the first
and second kind respectively.
Bessel used as definition of Jn [§2.2]:

Jn(z) =

∫ 2π

0

dϕ cos(nϕ− z sinϕ) (C.2)

which Hankel has generalized to

Jn(z) =

∫ 2π+α

α

dϕ ei(nϕ−z sinϕ) (C.3)

For general order the Bessel functions of the first kind can be defined by a
series solution:

Jν(z) =
∞∑
m=0

(−1)m (1
2
z)ν+2m

m! Γ(ν +m+ 1)
(C.4)
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These are the Bessel functions of the first kind. The Bessel functions of
the second kind of integer order are all defined from the zeroth order Bessel
function of the second kind Y0 [§3.57]:

π

2
Y0(z) := Y (0)(z) + (γ − log 2)J0(z) (C.5)

where γ is Euler’s constant, and Y (0) is Neumann’s function of the second
kind defined by

Y (0)(z) := J0(z) log z − 2
∞∑
n=1

(−1)nJ2n(z)

n
(C.6)

The higher order Bessel functions can be found using the recurrence relations

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z) (C.7a)

Jν−1(z)− Jν+1(z) = 2J
′

ν(z) (C.7b)

Yν−1(z) + Yν+1(z) =
2ν

z
Yν(z) (C.7c)

Yν−1(z)− Yν+1(z) = 2Y
′

ν (z) (C.7d)

The small z behaviour of Jν(z) follows immediately from equation (C.4):

Jν(z) ≈
(1

2
z)ν

Γ(ν + 1)
+O(zν+2) (C.8)

and we therefore see that the negative order Bessel functions of non-integer
order all diverge near the origin while the positive order Bessel functions all
go to zero. The negative integer order Bessel functions are finite near the
origin which follows from the original definition (C.2) given by Bessel. It
is also clear from the fact that they are linearly dependent on the positive
integer order Bessel functions:

Jn(−z) = (−1)nJn(z) (C.9a)

J−n(z) = (−1)nJn(z) (C.9b)

Yn(−z) = (−1)nYn(z) (C.9c)

Y−n(z) = (−1)nYn(z) (C.9d)

These relations follow immediately from the relations in [§3.61] and [§3.62].
The Bessel functions of the second kind Yν all diverge near zero. For non-
integer values of ν this follows from the relation connecting Yν with J±ν
[§3.61]:

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
(C.10)
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For integer order we will determine the leading behaviour near zero in section
C.2.
The large z asymptotic expansion of Jν(z) [§7.21] is

Jν(z) ≈
√

2

πz

[
cos
[
z − π

2

(
ν +

1

2

)] ∞∑
m=0

(−1)m · (ν, 2m)

(2z)2m

− sin
[
z − π

2

(
ν +

1

2

)] ∞∑
m=0

(−1)m · (ν, 2m+ 1)

(2z)2m+1

]
(C.11)

where (ν,m) is defined using the Gamma function:

(ν,m) =
Γ(ν +m+ 1

2
)

m! Γ(ν −m+ 1
2
)

We end this section with the expansion of exp(−iz cosϕ) in terms of
Bessel functions. According to Watson [§2.22]:

e−iz cosϕ = J0(z) +
∞∑
n=1

[
ein(π

2
−ϕ)(−1)n + e−in(π

2
−ϕ)
]
Jn(z)

= J0(z) +
∞∑
n=1

[
e−inπ

2 e−inϕ + e−inπ
2 einϕ

]
Jn(z)

=
∞∑

n=−∞

e−iπ
2
|n|einϕJ|n|(z) (C.12)

C.2 Some proofs

First we will prove that the Bessel functions of the second kind Yn(z) behave
like

Yn(z) ≈

{
2
π

log z for n = 0

−2n(n−1)!
πzn

for n > 0
(C.13)

For n = 0 we can use definitions (C.5) and (C.6) combined with the series
expansion (C.4) from which it follows that J0(z) log z ≈ log z is the only
term in Y0(z) which diverges near zero. So the small z behaviour of Y0 is
determined by the first term in the Neumann function. The higher order
behaviour can be found by adding the recursion relations (C.7c) and (C.7d):

Yn+1(z) =
n

z
Yn(z)− Y ′n (C.14)



C.2 Some proofs 71

For n = 0 we find

Y1(z) = −Y ′0 (z) ≈
(
− 2

π
log z

)′
= − 2

πz
(C.15)

which satisfies (C.13).
By induction it is now easy to prove the general formula.

We continue with the proof of relation (5.35). Instead of proving the
relation directly we shall prove a much more general relation from which
many similar relations can be derived:∫ ∞

0

dz Jν(z)e−εz =
1√

ε2 + 1
(
ε+
√
ε2 + 1

)ν (C.16)

which is valid for if ε > 0 and if Re(ν) > −1 or ν ∈ Z.
We shall prove it only for the special case ν ∈ Z. See also [§13.2] and reference
[21]. Notice that this integral is not equal to∫ ∞

0

dz e−εz
1

2π

∫ 2π

0

dϕ ei(νϕ−z sinϕ) (C.17)

since equation (C.3) is valid only for integer order.
The only integral we really need is the above integral for n = 0, which we
will evaluate using Bessel’s original definition (C.2)

J0(z) =
1

2π

∫ 2π

0

dϕ cos(z sinϕ) =
1

2π
Re

∫ 2π

0

dϕ e−iz sinϕ (C.18)

We see we have to calculate

Re

(
1

2π

∫ 2π

0

dϕ

∫ ∞
0

dz e−z(ε+i sinϕ)

)
(C.19)

The z-integral is easy to evaluate since its integrand is analytical:∫ ∞
0

dz e−z(ε+i sinϕ) = −
[

e−z(ε+i sinϕ)

ε+ i sinϕ

∣∣∣∣∞
0

=
1

ε+ i sinϕ
(C.20)

where the factor exp(−εz) ensures the vanishing at the upper boundary.
We have therefore found∫ ∞

0

dz J0(z)e−εz = Re

(
1

2π

∫ 2π

0

dϕ
1

ε+ i sinϕ

)

=
ε

2π

∫ 2π

0

dϕ
1

ε2 + sin2ϕ
(C.21)
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Since the integrand is symmetrical under the substitution ϕ→ ϕ+π we can
also take the boundaries from 0 to π:

2ε

2π

∫ π

0

dϕ
1

ε2 + sin2ϕ
=
ε

π

∫ π/2

−π/2
dϕ

1

ε2 + cos2ϕ
(C.22)

By dividing the numerator and the denominator by cos2ϕ we find:

ε

π

∫ π/2

ϕ=−π/2

d tanϕ

ε2(1 + tan2ϕ) + 1
=

1

π

1√
ε2 + 1

∫ ∞
−∞

du

u2 + 1

=
1√

ε2 + 1

[
atanu

π

∣∣∣∣∞
−∞

=
1√

ε2 + 1
(C.23)

where we have made the substitution u = ε√
ε2+1

tanϕ in the first step.

To prove the general relation (C.16) (for integers) it will be convenient to
introduce the notation

Gn(ε) :=

∫ ∞
0

dz Jn(z)e−εz (C.24)

Using the recursion relation (C.7b) we find

1

2

[
Gn+1(ε)−Gn−1(ε)

]
= −

∫ ∞
0

dz J
′

n(z)e−εz

= −
[
Jn(z)e−εz

∣∣∣∞
0︸ ︷︷ ︸

δ0n

−ε
∫ ∞

0

dz Jn(z)e−εz

= δ0n − εGn(ε) (C.25)

It is clear from the definition of Gn(ε) that G−n(z) = (−1)nGn(z) and there-
fore

G1(z) = G1(z)−G−1(z) = 1− εG0(z) =

1− ε√
ε2 + 1

=

√
ε2 + 1− ε√
ε2 + 1

=
1√

ε2 + 1
(
ε+
√
ε2 + 1

) (C.26)

For general integer ν formula (C.16) can now be proven using induction from
the recursion relation (C.25) combined with the expressions for G0(ε) and
G1(ε).

Using this general formula (C.16) it is easy to derive a general expression
for the important set of integrals∫ ∞

0

dz zJν(z)e−εz (C.27)
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by differentiating Gν(ε):∫ ∞
0

dz zJν(z)e−εz = − d

dε
Gν(ε) =

1

(ε2 + 1)3/2

ε+ ν
√
ε2 + 1(

ε+
√
ε2 + 1

)ν (C.28)

It is clear that for ν = 1 we find equation (5.35). Taking the limit of ε ↓ 0,
we find the important relation

lim
ε↓0

∫ ∞
0

dz zJν(z)e−εz = ν (C.29)

By using the recursion relation (C.7a) we can also find expressions for
another important set of integrals∫ ∞

0

dz
Jν(z)

z
e−εz =

1

2ν

∫ ∞
0

dz
(
Jν−1(z) + Jν+1(z)

)
=

1

2ν

(
Gν−1(ε) +Gν+1(ε)

)
=

1

2ν

1
√
ε2 + 1

(
ε+
√
ε2 + 1

)ν+1

[(
ε+
√
ε2 + 1

)2
+ 1
]

︸ ︷︷ ︸
2
[√

ε2+1+ε
]√

ε2+1

=
1

ν

1(
ε+
√
ε2 + 1

)ν (C.30)

It is clear that this integral diverges if ν = 0.
We end this section with a derivation of a recursion relation for the most

general form of all these integral expressions:

Fm
ν := lim

ε↓0

∫ ∞
0

dz Jν(z)e−εzzm (C.31)

Together with the previous results (C.16) and (C.27)

F 0
ν = 1 (C.32a)

F 1
ν = ν (C.32b)

we can then find expressions for all ν and m. Since Jν(z) ∼ zν for ν /∈ Z and
Jn(z) ∼ z|n| for n ∈ Z it is clear that we have the restrictions ν + m > −1
|n|+m > −1. From the recursion relation (C.7a) it follows

1

2
(Fm

ν−1 + Fm
ν+1) = νFm−1

ν (C.33)



74 Bessel functions

and from relation (C.7b)

1

2
(Fm

ν−1 − Fm
ν+1) = lim

ε↓0

∫ ∞
0

dz J
′

ν(z)e−εzzm

= lim
ε↓0

[
Jν(z)e−εzzm

∣∣∣∞
0

+

lim
ε↓0

∫ ∞
0

dz (ε− m

z
)Jν(z)e−εz

= −mFm−1
ν (C.34)

where the vanishing of the boundary term follows from the fact that we have
already taken |ν| > −m. We have furthermore assumed that Fm

ν is finite so
that the first term - involving ε - in the remaining integral vanishes.
By adding and subtracting these two relations we find

Fm
ν−1 = (ν −m)Fm−1

ν ⇒ Fm+1
ν = (ν −m)Fm

ν+1 (C.35a)

Fm
ν+1 = (ν +m)Fm−1

ν (C.35b)

By combining these two relations we find

Fm+1
ν = (ν2 −m2)Fm−1

ν (C.36)

which is valid as long as |ν| ≥ −m.
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