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Abstract

We investigate the proposal of Kitaev and Preskill to use non-abelian anyons for quantum
computation. Non-abelian anyons are two-dimensional particles with a topological interaction.
The internal states of non-abelian anyons are intrinsically decoherence free, and may thus serve
as fault-tolerant qubits. We base the description of non-abelian anyons mathematically on a
quantum group: the quantum double D(H) of a finite group H, as described by a discrete gauge
theory. The central topic of this thesis consists of the analysis of various double slit interference
experiments, in particular the double slit experiments named ‘one-to-one’ and ‘many-to-one’.
These experiments can be used to perform a quantum measurement on the internal states of
non-abelian anyons. The result of a measurement is a projection on an eigenspace of some
operator. This projection is a statistical average; we supply an extensive proof for this result.

Through various examples with H = S5 we find evidence that there is a D(H)-symmetry,
acting through a global transformations, that leaves the outcomes of experiments invariant.
Furthermore, we describe an ordering process, that orders a setup with many non-abelian
anyons into piles that are made of identical non-abelian anyons with identical internal states.
This ordering especially works for non-abelian anyons that were pair-created from the vacuum;
these highly entangled vacuumstates can in some well defined sense be described by unentangled
states.

The group S3 does not yield a universal set, as needed for quantum computation. As we have
not considered other larger finite groups explicitly, we do not know if there exists a group H
that may generate a universal set, but this may very well be the case, perhaps for the group
As as suggested by Preskill. Our description of measurements and ordering of vacuumstates
lays a firm basis for the quest for a universal set implemented through non-abelian anyons. We
conclude with a speculative discussion about the pursuit of this quest: one should not stick to
a description in terms of internal states of non-abelian anyons, but rather use a description in
terms of the underlying representation-theory instead.
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CHAPTER 1

INTRODUCTION

The motivation for writing this thesis is to explore the basic features of a rather new and specula-
tive field of research denoted as quantum computation, where the basic hope is to revolutionize
computer science. Central in this development is the idea to directly exploit the quantum
properties of matter on the fundamental level in order to vastly increase our computational
power.

Our work will in particular be concerned with the theoretical possibility to use non-abelian
anyons to build a quantum computer. In this chapter, we mainly give a brief introduction to
quantum computation, concluding with an outline of the contents of the other chapters.

1.1 Quantum Computation (QC)

We briefly summarize the main features and basic ingredients of quantum computation. We
have restricted ourselves to those aspects which are related to our own research. There exist
more extensive reviews, Preskill [1], [2-4], to which we refer the interested reader.

1.1.1 The promise of quantum computation

Quantum computation as an area of physics (or science in general) has been known for quite
some time. Ever since the development of quantum mechanics the idea of manipulating (and
entangling) quantum systems existed. But only recently it has actually caught serious attention
and has become a field of rapidly growing interest. A major impetus was the work of Shor [5, 6]
who derived an algorithm with which prime-factorization could be performed on a quantum
computer faster than on any conventional computer with a conventional algorithm. Since then
the exploration (or ‘colonization’) of this new, rather unfamiliar, area (’territory’) of physics,
computer science and mathematics, has accelerated.

A challenge indeed it is. Though progress has been made, both experimentally and theoretically,
more research is needed, because as of today it is still unknown and even doubtful whether there
ever will be a quantum computer which can demonstrate its miracles. But, even if the answer
will be negative, then the lessons we have learned about quantum states and their manipulation
have been worth the effort.

And mind you, the quantum world can deceive us easily; making us think that (non-classical)
tricks can be done, while in the end this turns out to be impossible. We may recall the Einstein-
Podolsky-Rosen problem of entangled particles at first sight suggested the possibility of faster-
than-light-transmission: yet another ‘would-be’ possibility that turned out impossible. So we
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should be aware, that doing quantum information manipulation ‘almost’, is not good enough.
Handwaving arguments and partial calculations will not do. Only a complete (!) calculation
will. Or, one’s precious eigenvalues may well average out to zero, or one’s faster-than-light
information is purely random, or .......

1.1.2 QC basics

A quantum computer consists of N qubits (qubit = ‘quantum bit’). A single qubit is a state |1)
in a two dimensional Hilbert space!. Using the standard basis {|0),|1)} then every qubit-state
is a complex, normalized superposition of these two basis-vectors:

[¥) = al0) +8I1) o +[8] =1 (1.1)

The value of a qubit can be measured, but this measurement projects the state onto one of the
basis-vectors. So when measuring the value of |¢) from (1.1), with probability |a|? (|3|?) the
state |0) (]1)) is the result of the measurement®. A state may be changed to another through
a unitary transformation, or in other words a U(2) transformation (because the dimension is
two).

The quantum state of the N qubits is the tensor product of the single qubits. This is a 2/V-
dimensional Hilbert space with standard basis |0) ® |0) ® -|0)|0)|0),|1000...),...,[1111...1).
This state may also be manipulated by unitary transformations, but these are now elements from
the group U(2"). Different single qubits can become entangled after such a transformations.
An entangled state is a state which cannot be factorised in a tensor product of single qubit
states.

The unitary transformations are performed by applying a gate. Every gate is a fixed unitary
U(2™) transformation that works on m (arbitrarily chosen by us) qubits and is also called
m-qubit-gate.

To do quantum computation, one should be able to perform the whole range of U (2V) transfor-
mations, or at least a dense subset, so that every transformation in U(2") can be approximated
with arbitrary precision. Although U(2") is a continuous group, such a dense subset can be
generated by a finite number of gates, as we will show shortly. Such a set is called a universal
set. One needs a universal set to perform quantum computation.

1.1.3 Universal sets

There are many ways to construct a universal set. We will work out some particular examples
below.

The set of all 1-qubit-gates is not universal. If we have a set of gates which generate
U(2), i.e. all unitary transformations on one qubit, we could not make U(2"), so this is not a
universal set. This is so, because U(2) ® U(2)... @ U(2) # U(2V). To see this in another way:
with 1-qubit-gates one can not create entanglement between qubits, which U(2") (N > 2) can.

In matrix-language all 1-qubit-gates are of the form:

UeU(Z):U:(Z Z) (1.2)

LA qubit can be thought of as the spinor describing a spin-%-particle. That spinor is also a state in a two-
dimensional Hilbert space.

2To continue with spin-%—particles, the eigenstates of the spin in the z-direction o, can serve as the standard
basis. Measurements on this standard basis are then measurements of o, the z-component of the spin. For spins,
a measurement along another axis is also possible, for instance o,. For generic qubits this need not be the case.
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with a, b, ¢, d arbitrary, but obeying unitarity conditions. In the space of two qubits these look
like (remember, basis is now: {|00), |01), |10),|11)}):

a b 0 0 a 0 b 0
c d 00 0 a 0 b

UeU4): 10U = 00 a b U1 = c 0 d o (1.3)
0 0 ¢ d 0 ¢ 0 d

But with only these matrices one can never get (by multiplying them) a U(4) transformation
like:

1000
0100

W = 00 a b (1.4)
0 0 c d

In other words, one can only generate a U(2) ® U(2) subgroup of U(4), and the operators that
generate entanglement belong therefore to the coset U(4)/U(2) x U(2).

All 1-qubit-gates and CNot are universal. Let us add now to the previous set of 1-qubit-
gates just one particular 2-qubit-gate, which can entangle two qubits and makes the total set
universal. An example of such a 2-qubit-gate is the ’controlled not’ or just CNot.

In Out
qgbl gb2|gb1l gb2
0) 10) | 10) 0)
CNot : | 1.5
o | (-9
1) 10y | 1) [1)
| [0)
As a unitary 4x4 matrix it corresponds to:
1000
0100
CNot=| 0 o o 1 (1.6)
0010

Now, by applying multiple 1-qubit-gates (the U’s) and CNot-gates it is possible to form a gate
like W from (1.4), which one can for instance prove with a straightforward calculation that uses
conjugation properties of SU(2)-matrices. Another, nice, proof is given in Barenco et al. [7].

Gates of the form of W of (1.4) (with a,b,c,d € C and obeying unitarity) do form a universal
set, see Barenco et al. [7] for further references in which this is proven.

All 1-qubit-gates can be approximated by a finite set of gates. We also need to generate
all 1-qubit-gates with a finite set. This is possible in a few ways. To understand one of these
ways, think of SU(2) instead of U(2) which are the same up to an overall (unimportant) phase
factor. And think of SU(2) as the group of rotations. Every rotation can be approximated by
applying two specific rotations with different rotation-axes and with irrational rotation-angles
(meaning nf; # 2mm ¥ n,m € Z, or in other words g—; € R\ Q). Two specific ‘irrational’
1-qubit-gates can thus generate all 1-qubit-gates. However, there are also other universal sets
which do not require such an irrational rotation.

Finite 1-qubit-rotations which generate irrational rotations. It is possible to choose
two rotations R; of finite order, i.e. In : (R;)"™ = 1, such that the product of these two rotations
to be an irrational rotation. If another suitable irrational rotation can be constructed in such a
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way, with two additional finite rotations R!, all 1-qubit-gates can be generated. The collection
of gates {R;, R}} generates an infinite subgroup of U(2). If a gate like CNot is furthermore
added, the total set becomes universal.

Gates of finite order which generate a finite group; with the addition of mea-
surements this set is universal. An even smaller set can be universal when we take the
measurement process into account. If the gates are all of finite order and they generate a finite
group (i.e. a finite subgroup of U(2")), then by measuring some qubits and applying some other
gates based on the outcome of the measurement, the resulting transformation (of the qubits
which have not been measured) can be an irrational rotation; see Preskill [8, p. 17,18] for an
explicit example, which also uses a 3-qubit-gate called ‘toffoli-gate’.

So, when the outcomes of measurements (and proper actions on these outcomes) are considered,
an even ‘smaller’ set of gates can be universal. In fact there might be other possible measure-
ments than just a standard-basis measurement. In spin-language: apart from measuring the
spin along the z-axis, it might also be possible to measure it along the x-axis. This difference
could render a set universal. Perhaps even other measurements, of two spins combined for
example, might be possible.

We come to the following definition. A universal set, needed to perform quantum computation,
in other words a quantum computer, is a collection consisting of:

e 3 finite set of n;-qubit-gates, where each n;-qubit-gate is one specific operation working
on n; qubits. This set of gates generates a, possibly finite, subset of U (2V).

e a finite set of m;-qubit-measurements, where each measurement measures an eigenvalue
of some hermitian operator on m; qubits, and thereby projects the m; qubit state in the
corresponding eigen-subspace.

¢ a (infinite or at least large) source of qubits with a specified initial state.

and these combined can generate any U (2" )-transformation on any initial N-qubit-state.

Usually, only the set of gates is considered when talking about universal sets. But the possible
measurements form a crucial element in the discussion as well and therefore should also be kept
in mind, as should the initial qubit states.

There is not yet a complete classification of which collection is or is not a universal set. Fore
some it is known that they are universal, others are known to be not universal, but given a
collection it is not a trivial job to decide whether it is universal or not. To classify a set, one
can try to figure out if the set can generate another set that is known to be universal.

Another classification within the ‘group’ of universal sets is possible. Some universal sets may
need many more gates and measurements to obtain a specific transformation than other uni-
versal sets. So one could compare two universal sets and conclude which one of the two is faster
than the other (or which one can do it with polynomially many gates and which one cannot).
But also such a classification — to our knowledge — does not yet exists,.

This is basically all we are going to say about universal sets, in fact there are other problems
that are more pressing when trying to do quantum computation.
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1.1.4 The enemy named ‘decoherence’

Unfortunately, the gates and measurements are not the only things that can change the quantum
state. The environment usually also interacts with the quantum-state causing the quantum-
state to change, to ‘decohere’. This is especially known to be able to destroy entanglement. This
decoherence phenomenon is quite dramatic as it is generally held responsible for the emergence
of classical physics from the quantum perspective. But if it is known what error might have
occurred in the quantum state, one can at least try to correct it.

A diverse arsenal has been developed to battle decoherence. Single qubits can be encoded into
multiple qubits. If an error occurs in one of these qubits (usually the environment interacts
locally, thereby disturbing one qubit at a time) the error can be detected and corrected (reversed)
without destroying or changing the original encoded quantum superposition. One’s system
becomes ‘fault-tolerant’ in the sense that if small or local errors do occur, these are corrected
for before they can accumulate and become large errors, which would influence the final result.
Also, in some specific models, subspaces of the N-qubit Hilbert space have been discovered
which were actually decoherence free: when all the local errors are corrected for, quantum
computation can be performed in these (usually) global subspaces.

It is in this hardware-oriented regime of battling decoherence, that a lot of work has been
done (perhaps even most of it) in the field of quantum computation, both experimentally and
theoretically. Almost all experimental setups use electro-magnetic devices to control, manipulate
and measure qubits, and the environment is full of electro-magnetic noise. But suppose one
could do quantum computation in completely different surroundings, without any decohering

1.1.5 Discrete Gauge Theories: decoherence free

Kitaev [9] and Preskill [10] suggested to use non-abelian anyons for quantum computation.
Such anyons emerge for example from discrete gauge theories, as discussed extensively in Pro-
pitius and Bais [11]. A discrete gauge theory is a gauge theory spontaneously broken down
to a (non)abelian finite (discrete) group. These anyons are particles in two dimensions with
topological interactions. These interactions only depend on the topology of the multiparticle
configuration space which in two dimensions is not simply connected. These interactions can
lead to all kinds of entanglements which depend on what type of particles are moved around
each other. The important fact is that the entanglement can only be changed by moving parti-
cles around each other and so can not be destroyed by local (other) interactions with the noisy
environment: there is no decoherence.

So the quantum states, i.e. the internal states of these particles, do not decohere. Also gates
can be constructed by using the topological interaction (pulling pairs through other pairs for
instance). If the interaction is rich enough to be able to perform several different gates then
a universal set is possible. Thus, this intrinsically decoherence-free theory equipped with a
universal set, looks like a very powerful candidate to become a real working quantum computer.
The description of the for quantum computation relevant features of the discrete gauge theories
is given in terms of a so called quantum double group.

1.2 Three problems with Discrete Gauge Theories

For various reasons, however, it is questionable whether a quantum computer based on non-
abelian anyons, can ever be realized, which implies that for the moment it only serves as physical
‘model’ for a quantum computer.
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1.2.1 The physical implementation of this theoretical model

It is fair to point out that non-abelian anyons up to now have never been seen. The discrete
gauge theories are in that sense just an abstract theoretical model with no obvious link to
reality. Indications of non-abelian statistics have appeared in quantum-Hall experiments and
Kitaev [9] suggested a spin-lattice as a possible realization. One may also think of certain types
of defects. Non-abelian anyons suited for quantum computation are thus not complete fiction
but surely far away from actual usage.

1.2.2 H = As: huge group

Another problem is to make the interactions rich enough to be universal. In discrete gauge
theories, the particle contents and their interactions are based upon a finite non-abelian group.
To be universal this group, H, needs to be large enough. Kitaev [9] found the symmetric
group S5 (which has order 120) to be universal, Preskill [10] could do it with only half of it:
the alternating group As (of order 60). This is still a very large group; the corresponding
spin-lattice-model needs to have a 60 dimensional spin on each lattice site. So although non-
abelian anyons may exist, it will be extremely hard to also form a universal set and do quantum
computation.

1.2.3 Quantum measurements

But there is a far more interesting question. If the environment cannot interact with the
quantum states, it is questionable if we, as (thought)experimenters, can manipulate and measure
the quantum states.

The influence of the topological interactions of non-abelian anyons becomes visible in inter-
ference experiments. Quantum interference experiments (like the double slit experiment) with
non-abelian anyons are non-trivial extensions to ordinary interference experiments and to those
based on the Aharonov-Bohm-effect. In the non-abelian case one has to thoroughly deal with
the residual entanglement of the particles. This has to our knowledge never been examined
to the bone, and this is where the emphasis of the present work has been, and where we have
obtained a number of interesting new results.

We will indeed work out these quantum interference experiments and determine what can be
measured of the quantum states (and what cannot).

1.3 Outline

It is our aim to critically analyze the very interesting proposal of Kitaev and Preskill (and
possibly confirm) that non-abelian anyons, as rather abstract entities as introduced by Bais
and De Wild Propitius, can be used for quantum computation. But, as pointed out in section
1.1.3, only when the possible gates, measurements and initial states are known, the question of
universality of the set (of gates, measurements and initial states) can be considered. We will
reach the point of this question, but we will not supply an (the) answer to it: we will describe
double slit interference experiments and describe a process to order non-abelian anyons that
were pair-created from the vacuum; these double slit experiments combined with this ordered
collection of non-abelian anyons allows to identify measurements and initial states; but this is
where this thesis ends, we will not investigate different groups H for universality.

Some aspects of the subject of quantum computation are treated in chapter 1.
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Chapter 2 will introduce the idea of topologically interacting particles (i.e. non-abelian anyons)
and its consequences for a double slit interference experiment. The non-abelian double slit
experiment can be used to actually measure something from the quantum system. There are
however in the non-abelian case many more possibilities to set up such experiments than in the
abelian (Aharonov-Bohm) case. Two different measurement schemes, called ‘one-to-one’ and
‘many-to-one’; are described in chapter 3. A large part of the proof involved can be found in
appendix A.

The discrete gauge theories are described (reviewed) in chapter 4, including an extensive intro-
duction to the quantum double group D(H). From this theory both the non-abelian anyons
and their topological interactions emerge naturally. Possible gates follow from this interaction.
(Fusion of particles, which also might be a tool for quantum computation, is also described.)

We work out various examples with H = S3 in chapter 5, through which we combine the results
of chapters 3 and 4. These examples will not only demonstrate the one-to-one and many-to-one
experiments, but will also indicate (1) the presence of some sort of global D(H) symmetry and
(2) the possibility that non-abelian anyons that were created from the vacuum are sufficient
enough to use for quantum computation. Details concerning D(S3) are covered in appendix B.

In chapter 6, we will add the ingredients of quantum computation from chapter 1 to the examples
with S3; we will construct objects that serve as qubits, gates and measurements. We briefly
consider such a, non-trivial, construction, for general D(H); it is imperative that all objects are
compatible with each-other.

We take a closer, yet also speculative, look at vacuumstates in chapter 7. Vacuumstates, and
their unital density matrices, yield no restrictions on quantum double actions; at least the
examples with D(S3) show such a behavior; unfortunately we have not been able to prove most
of the claims we make to show this for general DH(). Additionally, we describe an ordering
process, through which the highly entangled vacuumstates are mapped on a system of which
the state is completely unentangled, and where truly identical particles are neatly ordered on
piles. However, this ordering process creates a paradox with respect to local gauge theories,
that we will try to explain.

We conclude this thesis with chapter 8. There, we will describe the generic many-to-one double
slit experiment as an extension to the description of chapter 3, that is based on the examples
with S3. We will briefly discuss why we chose for the double slit experiment instead of a
scattering experiment. Last, but not least, we will summarize this thesis.

The outline of this thesis is schematically displayed on the next page.
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CHAPTER 2

TOPOLOGICALLY INTERACTING PARTICLES AND
INTERFERENCE (IN 2D)

In this chapter we will provide the framework for the analysis of double slit experiments with
non-abelian anyons, which are possibly entangled two-dimensional particles. In section 2.1
we will describe free particles and in sections 2.2 and 2.3 we will recall the ordinary double
slit experiment. Abelian anyons, which are particles with a simple topological interaction,
are introduced in section 2.4. In section 2.5 we consider the double slit experiment involving
abelian anyons, which reduces to the Aharonov-Bohm case. We continue in section 2.6 with
a discussion of non-abelian anyons, which have a richer topological interaction. Preliminary
steps for the double slit experiment with non-abelian steps are made in section 2.7. Section 2.8
will summarize this chapter. The problem of actual non-abelian double slit experiments will be
taken up for further analysis in chapter 3.

The properties of a topologically interacting theory are simply postulated or stated in this
chapter. These properties, such as non-abelian braiding for example, will be derived in chapter
4 where they emerge from the discrete gauge theories.

As mentioned before, an entirely different matter is whether nature admits a physical implemen-
tation that exhibits the properties of the theory (as described in this chapter or as in discrete
gauge theories). This question will not be considered here. Therefore, one should keep in
mind that all experiments that are ‘conducted’ in this thesis are actually ‘thought’experiments,
based on assumptions. Though not yet having a realistic analogue, they do pose a fascinating
challenge to both theorists and experimentalists.

2.1 Free particles in two dimensions

Before we begin with interference experiments, let us say something about ‘where’ in physics
things will take place (just to assure that there will be no 341 dimensional or gravity-involving
formulas). Well, we start with nothing more than the quantum mechanics of free particles in
two dimensions.

Everything about free quantum mechanical particles and their wave-particle-behaviour (like
interference in the double slit experiment) can be found in standard textbooks dealing with
quantum mechanics, like Bransden and Joachain [12], Gasiorowicz [13] etcetera.

We then have a two dimensional plane with quantum mechanical particles in it, over which the
(three dimensional) experimenter has total control. Thereby we mean that the particles’ wave

12
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function obeys the, non-relativistic, Schrodinger equation in two dimensions for a free particle
(which is the wave equation in 2D). Furthermore the experimenter can move the particles in
whatever way he likes and can measure its momentum and position. But these measurements are
subjected to the Heisenberg uncertainty relation and project out an eigenstate (so momentum
and position can not be measured simultaneously with exact precision, and measuring the
momentum projects a momentum eigen-state and likewise for the position).

There can be different and identical particles. We assume that different particles have different
mass and the experimenter can measure this mass to distinguish particles that are not identical.

What we have so far looks a lot like a three dimensional experimenter playing a game of billiards
(which is a two dimensional game). To make clear that these particles are of a quantum mechan-
ical nature we also consider an interference experiment in which the particle-wave-behaviour is
observable. This is Young’s double slit experiment.

2.2 The ideal double slit experiment

As a warming-up exercise we start with an ideal double slit experiment (even for a thought
experiment it is ideal), where the interference pattern can be analytically calculated. For a
non-ideal double slit this is not the case, but we will not be needing such an explicit calculation,
as will become apparent in the following sections.

In the double slit experiment a particle is directed at an impenetrable wall with two slits, close
to each other, in it. Far behind the (wall with the) two slits the particle is again observed at an
angle 6. The probability of observing the particle at a specific angle 6 can only be understood
by the wave-behaviour of the particle, because that is the only way to explain the observed
interference pattern (found when repeating this experiment for many particles and making a
plot of the angular distribution).

If the incoming particle from the left can be described by a plane wave and the two slits are
perfectly identical and ideally infinitesimal small so that circular waves are formed at these two
points, then we can calculate this interference pattern easily and exactly.

Let us perform this calculation. Far away from the two slits the amplitude of the two circular
waves is proportional to (with k& the wave number of the incoming plane wave):

ezkr

>

(2.1)

r2

Figure 2.1: The ideal double slit with incoming plane wave and two outgoing circular
waves (I). Double slit geometry (r).
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There is no need for Bessel functions (which are solutions of the time-independent wave equa-
tion) at large distances from the origin; at large distances Bessel functions behave like (2.1).
Also, if the distance r is much bigger than the distance d between the two slits then the difference
in path-length is:

ro —r1 = d sin(f) (2.2)

The quantum mechanical state |¢/) (the amplitude of the wave) becomes proportional to the
sum of two terms. Each term is the contribution from one of the slits:

eilcrl eikT2

|¢>:\/T71+\/TTQ

(2.3)

The probability f(f,r) to observe the particle at coordinates (,r), is equal to the absolute
value squared of the amplitude:

Zkrl Zkrz

o,r) = -
fo.) = P =1+ S
1 1 ezk('rl 72) e—ik(rl—rz)
Tt Ty T2
1(1 + cos(kdsin(0)))
,
2 cos (de sin(6))

r

Q

Which is graphically represented in fig. 2.2.

2.3 The non-ideal case

But, in general, an interference pattern will not look like fig 2.2. This is because in the (general)
non-ideal case:

e the incoming particle’s wave function is not a plane wave, but some wave packet.

e the two slits are not completely identical.

e the slits and not infinitesimally small, so that the description with circular waves becomes
invalid.

rf(0,r)

Figure 2.2: Interference pattern in the ideal case. A = 27“ = 2.2d, so there are two
maxima at both sides of § = 0.
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Figure 2.3: A sketch of a more realistic (than in fig 2.2) interference pattern.

Nevertheless, observed interference patterns (with photons or electron for example) look like
fig. 2.3, which resembles the ideal case rather good.

So also for the general non-ideal case, we assume we can split the wave function into two parts:
one that goes through the upper slit and one that goes through the lower:

|¢> — |¢above> + |¢below> (25>
|¢ab6:e> -
) E T
@ """" - W
|¢bel&{> ~

Figure 2.4: The non-ideal double slit

We can expand these two parts (see fig 2.4) in an orthonormal basis {|6;)} (indicating the angle
@ at a fixed radius r, so it probably is a direction or momentum eigenbasis; a position-eigenbasis
is also possible):

W’above) = Z Cgbove|6t> ijelow) = Z Cgelowwt) (2.6)
t t

Cgbovev C%)elow eC <0t’ |0t> = 5t’t

Where ¢ (which has nothing to do with time) can be continuous (which the momentum-spectrum
is) or discrete (because the number of particle-detectors is probably finite).

The coefficients cf, . and d .., are completely determined by the specific geometry of the
double slit setup, and vary with the angle chosen. In other words, ¢ and cf)elow are fixed
functions of 6;.

t
above

The probability f(6) for the particle to be observed behind the double slit, at an angle 6;, then
becomes:

2
f(et) = |Cgbove + Cltoe10w|
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= |chbovel” + [chetow|” + 2Re(cihove hetow) (2.7)
The functions cgbove and cﬁelow are normalized such that:
L= ) f(6)
t
= > lchbovel” + [cheiow]” + 2Re(chhoveCheton) (2.8)

t

indicating that with probability one the particle is found at some angle.

Furthermore at the moment the particle went trough the two slits, say at time %y, the two parts
|¥above) and |¥pelow) Where at definite different positions in space:

(Yabove|Ubelow) = 0 at time tg

(2.9)

But after that moment tg, all time evolution has been unitary (or explicitly: e**!, where H is

the Hamiltonian of this free theory) meaning that (2.9) still holds for later times, implying that:

1 = Z |c§1b0ve|2 + |C%)elow|2
t

_ tx t
0 = E Cabove Cbelow
t

(2.10)

(2.11)

For a non-ideal double slit experiment the probability f(6;) is then a sum of three terms:

t

above|2 > 0V 6;: the individual contribution from the upper-slit.

o‘c

e | owl? = 0V 60 contribution from the lower-slit.

tx 4 . 3
o 2Re(c} oveChelow): @l interference term that averages out to zero when summed over all
6;.

In the case of the ideal double slit interference experiment of the previous section, we can make

the following explicit identifications for cgbove and cﬁelow, at fixed r:

t etk 17 (pt
Cabove Jor, ri &1+ 5dsin(0°)
t etk 17t
Chelow o ra &1 — 5dsin(6")
ool ¢ 5
haoul? ¢ 5
2Re(ct sveChelow) — cos(kdsin(6"))

Now we turn to the evolution of the state |¢). Let Ey, be the projection operator projecting out
the |6;) state, then the particle’s wave function during the whole measurement process (passing
the two slits, being detected at 6y, thereby projected at the 0;-eigenstate) evolves like:

[v) -

W}I) = |¢above> + W}belovv) —

Ey,[9")

V= B

(2.12)
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We can then also write f(6;) from (2.7) as:

F(0r) = (¥’ | Eg, 1Y) (2.13)

If one repeats this experiment with many particles (say N) then the observed number N; of
particles at an angle 6; approaches the probability distribution (2.7):

N,
lim Nt = f(6y) Z:Nt =N (2.14)

In other words: the observed interference pattern is the probability distribution f(6). And when
talking about the ordinary double slit we use both these two terms to indicate the same thing,
because they are the same. However, we emphasize already at this point that when we study
non-abelian (entangled) double slit experiments, this identification of the interference pattern
with the probability distribution f(#) for the single particle does no longer hold necessarily.

This concludes the section about free particles. We are now able to handle a non-ideal double
slit: without knowing the exact geometry we know what the probability density distribution
f(6) is, (2.7), and that it is build up from two individual slit terms and an interference term.
We know how the state |¢)) changes during the measurement process, when split in |[Yapove)
and |Ypelow) and projected with Ejp,, (2.12). We have to be careful when using the terms
‘probability distribution’ f(6;) and ‘interference pattern’ limy_ oo %, because sometimes they
mean the same, sometimes not.

We are now ready to endow the free particles with an interaction, where we select a very special
one, denoted as a topological interaction. The difference with the free theory can only be seen in
an interference experiment, because as we will show, only the interference term 2Re(c;’{mve cf)elow)
will change.

2.4 Abelian anyons

The topological interaction of abelian anyons manifests itself in extra phase factors. The differ-
ence between abelian anyons and free particles is small, at least compared to the non-abelian
anyons which we will describe later. Perhaps most important now, is the introduction of the
exchange operators R and R ! and the difference between these two.

The two-dimensional particles are now no longer free, because they interact. For we let the
wave-function of the free particle |¢)) change in such a way that it gets multiplied by a phase
factor F' when the particle moves through the plane. This phase factor depends on the taken
path of the particle and all the other particles (P,..., Px). So if particle P, moves from x; to
xo along a path T' then:

|¢7$1> N eiF(F,PZ,...,PN)|¢7x2>

This is an interaction because P, can ‘feel’ the presence of P, in its wave-function.

In general, different paths yield different phase factors. But in the case of a topological inter-
action, there are a lot of different paths that give the same factor. In fact, the phase factor
depends only on the topological class the path belongs to.

The physical effect of topological interactions can be efficiently described in terms of the mon-
odromy operators. Indicate the monodromy operation, which moves two particles counterclock-
wise around each other, by R?:

R2|Py, Py) = ¢MPLP) | Py py) (2.15)
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Moving two particles P; and P, around each other depends only the types of particle P, and Ps.

As the notation suggests, there is also the counterclockwise exchange or braid operation R (with
of course R? = (R)?) of which the operation is well defined in the case of two identical particles:

R|Pi(a), Piy) = PPV Py Prg)) (2.16)

Particles with this exchanging property have been called ‘anyons’, as a generalization of bosons
and fermions for which A\/2 = 0, A/2 = 7 respectively (the state of two fermions picks up a
minus sign when the two are interchanged; nothing happens in the bosonic case).

The clockwise exchange and monodromy are the inverses of R and R2:!
Rclockwise = R_l RR_l = R_IR =1 (2.17)
These operators are linear and also unitary:

RIR=RRI =1 RI=RY) (2.18)

We will use these three operators, the exchangers R and R ! and the monodromy R? frequently
in everything that will follow. See also fig. 2.5.

Figure 2.5: Very important operations: monodromy, counterclockwise and clockwise exchange.

Exchanges of multiple particles commute with each other (because phase factors commute); so
moving particle 1 around 2 and then particle 2 around 3 is equal to first 2-3 and then 1-2:

R%QR%E} = R33R%2 (2-19)

This is also the reason to call this ‘abelian braid statistics’. ‘Braid statistics’ because exchang-
ing two particles is not merely a permutation of the two but involves the exchange-direction;
‘abelian’ because different exchanges commute with each other.

We now turn to a double slit experiment with these abelian anyons. Only then the difference
with the free theory becomes visible, because of the additional phase factors, which ‘shift’ the
interference pattern.

2.5 The Aharonov-Bohm effect

We will again, as in the case of the free theory, first consider the probability f(6;) to find a
particle at an angle 6;, then the evolution of the state during the measurement process and
finally what the interference pattern looks like.

!So R an R™! have opposite phase factors. We just choose one of them to be +X and the other — )\, one clock-
the other counterclockwise, just like we give electrons a negative charge and positrons a positive one: physics will
not depend on this choice.
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The Aharonov-Bohm effect is the description of the famous phenomena of ‘shifting’ interference
patterns when a magnetic flux is put behind the two slits and electrons serve as the incident
particles. Although the original paper, Aharonov and Bohm [14], was about a scattering ex-
periment, Feynman, Leighton, and Sands [15] showed the ‘effect’ also with the double slit and
since then all quantum mechanics’ textbooks, like Bransden and Joachain [12], illustrate the
Aharonov-Bohm effect by means of the double slit experiment. Usually one talks in the context
of the U(1) electro-magnetic gauge symmetry, but it works equally well here, since simple phase
factors can be considered as elements of U(1).

So, in addition to the double slit, we also position a particle, which we will call A, behind and in
between the slits, and then perform the experiment by directing particle B at the two slits. But
now, when the two split parts of the wave function, |¥ahove) and |Ypelow) come together again
to interfere with each other they have not picked up the same phase factor (also illustrated in
fig. 2.6):

[¥B)A) = [¥B)A) = [Yaboven) |4} + [Ybelow ) 4)
W)A) = [A)E) = Mo | A)dhabover) + €20 A) [Ypelow ) (2.20)

Figure 2.6: The Aharonov-Bohm effect: different paths pick up different phases; But
the phase difference is the phase picked up by a closed path around A.

Using again the expansion of |{above) and |Ypelow) Of (2.6), we can compute the probability f(6;)
of finding particle B at an angle 6,:

[ADleh) = D earoechy | A)|6um) + €0 el | A)]6:5) (2.21)
t
f(et) = |ei)\ab°ve Cgbove + eZ'/\belowCltoelow|'2
= |Cgb0ve|2 + |C€)elow|2 + QRe(e_z(Aabove_)\beIOW)Cfﬁ)ovecéelow) (2'22)

This resembles the f(6) from (2.7) very much: only the interference term has changed, by an
extra factor of a phase difference. And we know what the phase difference is (see fig. 2.6):

e~ #(Xabove =Abelow) — @iA(A,B) R2|A)|B) — ei)‘(A’B)|A)|B) (2.23)

It is now convenient to write R, R~! and R? explicitly in our equations. Therefore (see also
fig. 2.7) we rewrite (2.22) with:

|A)|¢i’;> = 7-\)f_1|¢aboveB>|A>“‘7—\)f|¢belowB>|A) (2'24)
E9t|A>|¢%> = CgboveR_lletBHA)+C€)elowR|9tB>|A> (2'25)
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Rfl
|

Figure 2.7: The upper part (wave function going through the upper slit) experiences a
counterclockwise exchange, R, and the lower part a clockwise exchange, R ™!

to:
f(0r) = (UBl(AlEg,|A)|¥) (2:26)
= |Cgb0ve‘2 + |C$3elow|2 + 2Re (Cg)ovecgelowei)\(A’B)) (2-27)
eAAB) = (A(0,8|R?|0,8)| A) = (A|(BIR|B)|A) (2:28)

where Ejy, is the projection operator projecting on |6;).

In the Aharonov-Bohm effect (the electro-magnetic U(1)-gauge case), where an electron is the
incident particle B and a magnetic flux(tube) takes the place of particle A, the R? expectation
value in (2.28) is the extra phase factor the electron would pick up if it went around the magnetic
flux. Because this phase factor can be continuously changed by changing the magnetic flux
the interference pattern f(#) can change continuously, resulting in a shifted? pattern, see for
instance Silverman [16, p. 16]. We note that R? denoted as the monodromy operator will play
an essential role in all discussions to come.

What about state-evolution. After measuring the angle #; the state will be projected:

Eo,|A) V)
V(B (AlEg, [A)[¢)

[ADlve) = [AlE)  |A)YE) = (2.29)

Two notational issues, which we already used in the previous equations:

e because R and R~! are supposed to be exchange operators we will make this exchange
explicit by swapping the two particles in the tensor product after the operation of R or
R L

R: |Byo|4) > [Ae(B) (R |B)e|4)-|d)eB)

e the angle-measurement is a local process on B’s state. So in the tensor product, the
projection operator Ep, only projects in B’s state space and behaves as the identity for
particle A:

Ey, - |A)B) =14)®|B) — (1®Ey,)|A)®|B) = |A)(Ey,|B)) = [A)|0:5)

Let us now turn to the interference pattern. An interference pattern, that is a collection {V;},
can be obtained in several ways. One could position one particle A behind the two slits and

2To see this ‘shift’, write the interference term 2Re (clhoveCheiowe™ 2 ) as 2Re[a(0;) exp(ib(0;) + iN)] =

2a(0¢) cos(b(6:) + \), where a(0),b(0) are real functions. So the function 2a(6:) is modulated by cos(b(6:)) and
this modulation gets shifted by A.
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shoot many B’s at this double slit. One could also have many identical copies of the two
particle experiment, where a new particle A, a new B (and perhaps even a new double slit)
are used with each next experiment (see fig. 2.8). Nevertheless, these two ways of repeating
the experiment and obtaining a set of measured angles {6;} are equivalent and both yield the
probability distribution f(#;). The interference pattern is the probability distribution, or (as
an exact copy of (2.14)):

lim % — £(6) (2.30)

N—o0
But it is important to realize that this is true as a result of a calculation, not by definition. By
definition, the probability density distribution is only obtained when repeating the experiment

with an ensemble of identically prepared systems.
Since the interference pattern, see (2.27), depends only on the phase factor eMAB) we can
define f)(0;) as the interference pattern for this case (and all other cases with the same \):

f(0:) = fA(0:) (2.31)

= f(0r)

Figure 2.8: Different ways to repeat the experiment; either with a bag of identical par-
ticles or with a bag of identical prepared systems. The second one yields the probability
distribution f(6;) by definition.

This ends this section about the double slit with abelian anyons. The (abelian) topological
interaction changes the interference pattern through a phase factor e that depends only on
the types of the used particles (A = A(4, B)).

We will now consider a more complex topological interaction, which arises if the particles have
a higher dimensional internal state space. These internal states can be entangled, and this may
have considerable consequences for the double slit experiment.

2.6 Non-abelian anyons

We now consider the case that every particle has a non-trivial internal space, i.e. the one-particle
wave function has more components, |)) € C". The topological interaction, through the R?
operator, will work only on these internal spaces, and is able to entangle two different particles.
Next we will consider the problem of how to cope with the, now non-commuting, exchanges.
To treat these exchanges consistently turns out to require working with the braid-group By
instead of the symmetric group (or permutation group) S,.

So, let’s make the interaction between the two-dimensional particles more intricate. We will do
it in such a way that the interaction remains topological (in the sense that it only depends on
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the number of times particle A winds around particle B) but let it be more than just a phase
factor.

This is possible in a system with two particles A and B, endowed with internal degrees of
freedom, where we have:

|A> = |Aintern> ® |Aextern> |B> = |Bintern> ® |Bextern> |Aintern> S VA, |Bintern> S VB
The state of the total system is a tensor product of two internal and two external states:

|¢> = |Aintern> ® |Aextern> ® |Bintern> ® |Bextern>

An R? operating on these two particles does not change all factors of this two-particle state,
because after taking the particles around each other they return to their exact original position
in the plane, so R? affects only the internal states:

W') = RZWJ) = |A£ntern>|A8Xtern>|Bilntern>|B€XteI‘n>
= (R2 ® 1 ® ]l) |Aintern>‘Bintern>|Aextern>|Bextern>
= (R2|Aintern>|Bintern>) |Aextern>|Bextern> (232)

R? is a general® linear unitary operator operating on the two particles’ internal spaces (i.e.
R?2 € Un+ m) if dimV4 = m and dimV® = n), and R? depends furthermore only on the
types of particles:

R?: VAeVE ovievE  R2=R%, (2.33)
This means that by acting with R? on A and B, their internal states may become entangled,
since R? works on the combined tensor product, and is more than a phase factor, for R? #
e'MA,B) (in general, that is). And R? can be different when winding different particles, R% 5 #
R

Although phase factors commute with each other (like in the abelian case in the previous section)
unitary operators in general do not. So if there are three particles A, B and C then:

RasRbe # RbcRas (2.34)

We can follow the abelian case by introducing the counter- and clockwise exchange operators
R and R~!. They operate on the internal states, but also swap the particles, which we make
explicit by:

RRV:VAVE S VBgVvAt  RART=RS (2.35)

Topologically interacting particles are distinguishable from free particles because of the oper-
ation of R and R~!. Physical results due to the topological interaction will depend only on
these exchange operators, but we will have to keep track of the exchanges ourselves*. Especially
because of the non-commuting of these exchanges the order of exchanges is important, as are
the positions of other particles. This is illustrated in fig. 2.9.

One way to deal with this ordering-problem is by introducing a branchcut or dirac string: attach
a string to each particle and keep the other end at some point at spatial infinity and say that an
R or R™! ‘s applied’ when a particle crosses another particles’ string. See fig. 2.10. Although
it involves a choice (namely that of the point at spatial infinity, and what to call R or R™!),
physics will not depend on this choice.

3In the discrete gauge theories there will be an extra condition satisfied by R?, namely (R?*)™ = 1 for some
m € Z.

“We have to do it ourselves, in the sense that we simplified the theory and the interaction by assuming the
particles to be almost free, so when two particles exchange we have to apply an R by hand; because no equation
of motion of a free particle will do this for us.
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Figure 2.9: How can you exchange A and B when an ‘asteroid field’ of other particles
lies between? There are many, topologically different, ways to get from A to B and
how can you distinguish between them? In the abelian case this was not a problem
because phase factors commute. This is illustrated by a path from A to B with coun-
terclockwise exchanges with Py, P, and P3 when A is on its way to B and clockwise
exchanges on its way back. These encountered phase factors are opposite and so are
all cancelled (except for the R? of A and B). This happens for any path because
cir(path 1) ix(closed path 2)ix(path 1 back) _ ,ix(closed path 2)

We can make life even easier by mapping all particles in the plane on a horizontal line in such
a way that all strings run to vertical infinity (this rearrangement can always be done; of course
the physical results will never depend on the particular choice one makes to order or label
the particles). Then, if we wish to exchange two particles we should exchange them with all
particles in between, where ‘between’ now has a well defined meaning. All we have to do further,
is to make explicitly clear if an adjacent-particle-pair-exchange is counterclockwise (an R) or
clockwise (R~1).

All possible exchanges of two arbitrary particles have now become a sequence of neighbour-
particle exchanges. To write such a sequence explicitly one can number the positions of the
particles and write R; for an exchange of the particles at positions ¢ and 7 4+ 1, in a counter-
clockwise way. Like in fig. 2.11.

One may show that the successive interchanges form representations of the braid group by their
commutation relations:

RiRi+1Ri = Ri+1RZ’Ri+1 (236)
RiR; =R;jR;  |j—i|>2 (2.37)

These are the celebrated Yang—Baxter relations, which are nothing but the defining relation for
generators of the braid group.

This is also why we say that these particles have ‘non-abelian braid statistics’: they form
representations of the braid group (therefore ‘braid statistics’) and different braidings do not
commute with each other (in general) which makes it a non-abelian group. These particles are
also called ‘non-abelian anyons’.

But note that we, as experimenters, cannot directly observe the internal state of a particle
nor the entanglement of two particles. As for what we can see, we are still dealing with free
particles. Once again we will have to turn to an interference experiment to observe the phys-
ical manifestation of the entanglement due to the non-commuting topological features we just
described.
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Figure 2.10: Branchcut or dirac string put into practice. If a particle crosses a string the
appropriate exchange operator is performed. This solves the problem of which particles
to exchange with which when getting from A to B (once the path has been given).

N
w
1
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\/ —
R_12 7€'3 R4 Rs R 16

Figure 2.11: Put all the particles on a line and give them (their positions) a number.
All exchanges now become combinations of adjacent particle exchanges. R~1¢ is the
clockwise exchange of the two particles currently present at positions 6 and 7.

2.7 The non-abelian, or entangled, double slit experiment

Now we will describe the double slit experiment with the particles that exhibit these non-abelian
braid properties. We will follow basicly the same steps as in the abelian and free case, although

the operation of (for instance) R does change, of course.

Subsequently we will discuss the probability distribution f(6;), the evolution of the state, most
importantly due to the projection Ejp, and finally the interference pattern itself. But here we
encounter a problem, because different ways to get an interference pattern give different results.
That is due to the entanglement, which changes the initial internal state of the particle behind

the two slits. It will only be in chapter 3 that we fully solve this problem.

We start with two particles A and B. A is positioned behind the double slit and B is being

directed from the left towards the double slit. The initial state of the system is:

W}) = |Bintern> |Bextern) |Aintern> | Aextern)
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Since particle A will not be moved, we can forget about its external state:

| Aextern) — T

When B crosses the two slits its external wave function is split into an upper and lower term,
just as in (2.5) and (2.6):

|Bextern> — |¢a,b0ve> + |¢below> — |0t>

The upper part passes particle A in a clockwise way, the lower part in a counterclockwise
fashion, or:
|¢above> — Ril W’below) — R

The new state [¢') just before measuring the angle then becomes (see also fig 2.12):

') = Z [chboveR ™" + ChetowR] | Bintern) | Aintern)|0) (2.38)
t

Figure 2.12: A schematic picture of a (non-abelian) double slit experiment.

Because R and R~! only work on the internal states we only care about the order in which the
internal states appear in the full tensor product. We already stated that the exchange operators
explicitly swap the internal states, meaning that:

|Bintern>|Aintern> S VB ® VA [CgboveR_l + cﬁelowk] |Bintern>|Aintern> S VA ® VB

The probability f(6;) of observing particle B at an angle 6; now becomes:

f(0) = @'|Bg, 1Y) (2.39)
= |Czbove|2 + |C%)elow‘2 + 2Re(cg’l<)ovecéelow<Aint|<Bint|R2|Bint>|Aint>) (2'4())

Notice the resemblances and differences of this result with the free (2.7) and abelian (2.27) case.

During this measurement the state |¢)') is projected on the |6;) eigenstate and thus changes to

4):
Fu )

mn — _r 241

W= E 24
L hove R+ Chetow R

_ “above elow ™1 B VA )6 2.49

ko ) )0 (2.42)

Similar to (2.12) and (2.29) for respectively the free and abelian version of the theory.

Although A is still positioned behind the double slit and B is somewhere at the right of the
detecting device, their internal states are in general entangled right now!



~\J A VI VLUWOLIUVALLL LN 1L IIVACU L LINGg T ALvLIVLE ) AUNDT LIV L vl ivioiN v \11‘4 AL}}

Figure 2.13: A and B are entangled (their internal states) after the observation of B at
an angle 6,.

Now we come to the question of the interference pattern. We mention again that a single
observation does not form an interference pattern. For a real visible pattern many observations
are needed. Therefore the experiment has to be repeated, but the crucial point is now that this
can be done in several ways.

The usual way is to repeat the experiment with a collection of identically prepared systems, so a
new A and B are being used with each next experiment. This gives by definition the probability
distribution f(6;). In that case we can repeat (2.14):

N
lim — = f(é 2.43
Nl_I)noo N f(0r) ( )
And since the eigenvalues of the unitary monodromy operator R? are phases we can write this
(or equivalently rewrite (2.40)) as a weighed sum over f)(6;)’s from (2.31):

FO) =3 pafn(0) Y pa =1 (244)

Where the eigenvalues of R? are the e** and the expectation value for R? is: (R?) = DA e,
This result stresses the essential role which the eigenstates and eigenvalues of the R?-matrix
play in these types of experiments.

Apart from shifting the probability distribution (as in the abelian case), it has now also become
possible to change the amplitude of the interference term. There is even a possibility to lose
interference completely now. This happens if (in|R?|in) = 0 (the two-particle internal state
changes to another state, orthogonal to the original, after applying R?). Then the probability
distribution is the sum of probabilities of two single slit experiments and the interference-causing
term is lost:

(RZim) =0 = F(0) = lekponel? + Icbeton? (2.45)

But if we repeat the experiment in a different way, by using the same A behind the two slits
every time and using many identically prepared particles B, we will find again a collection of
measured angles { N/} but these do, in general, not yield the same distribution f(6;):

!

Jim X = g(0) £ 7(6) (2.46)

This is so, because the internal state of A changes, as it becomes entangled with all the B’s
that already passed the two slits. What this g(6;) will be if it is not f(6;) will be one of the
main questions to be answered in this thesis, and is the subject of chapter 3.

Let us now summarize what we have found so far, focussing on the double slit results.

50f course there are also other ways to lose interference, for example (in the conventional way) when probing
through which slit the particle went.
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Figure 2.14: In the non-abelian case repeating the experiment with a bag of identical
systems is not the same as repeating it with a bag of identical particles, because the
state of the particle behind the slit changes (continuously).

2.8 Summary

The three different theories (free, abelian and non-abelian) and their double slit experiment
results for the probability distribution® are put together in table 2.1.

These results are not new, they’re just shown schematically, and written in a suitable notation
for what still has to come. These results only consider the probability to find particle B at a
certain angle. It does not consider B anymore after it has been detected. In conventional double
slit experiments the projectile (photon, electron) is indeed lost after it has been detected. But
here, in this setup, this is not necessarily the case. Particle B is still part of the total system and
is, especially, entangled with A and a position-measurement or other measurement of external
degrees of freedom cannot break this entanglement!

Remember that we assumed to have complete control over the particles: we can move them
around at will and are allowed to use the same particles in successive experiments if we want to.
Perhaps these are optimistic if not crazy assumptions, nevertheless we make them and should
continue consistently.

Perhaps we should also note that this chapter has been written with the discrete gauge theories
of chapter 4 in mind. The idea of a topological interaction and the entangled double slit can be
introduced without the knowledge of such a (more specific) theory. The new elements were the
R-operators satisfying the braid group relations and those were discrete-gauge-theory-inspired.

6As already stated, the interference pattern results are postponed till chapter 3.
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probability distribution R2: (R%) = | f(6) in terms
16y VAQVE 5 VvA@VE | (in|R?in) of f1(6;)
Free |cfa,bove|2 + ‘Cfoelow‘Q 14®1p 1 f0(0t>
particles
+ 2 Re (cg*{)ovectbelow)
Abelian |t ovel? + 1€ ciow | e?14® 1p e f(6:)
interaction
+2Re (cggovec%)elowev\)
Non- |czb0ve|2 + ‘C{%)e]ow‘Q R2 = Z] ei)\j E)\j Z] p)\jei)\j Z] p)\j f)\j (et)
abelian
interaction | +2Re (2 ol 10w (in|R?in))

) = [¥) = R Wabove) + Rlbaion) = [0 = T2

|wabove> = Zt C;bovewt) |wb910W> = zt C%)elowleﬁ

Table 2.1: Schematic results for this chapter. The non-abelian double slit is a generalization of the
abelian Aharonov-Bohm effect which is a generalization of the ordinary double slit experiment. E);
is the projection operator projecting on the e eigenspace, py; = (in|E),|in) and Ej py =1



CHAPTER 3

TWO DOUBLE SLIT EXPERIMENTS WITH
NON-ABELIAN ANYONS

In this chapter we will answer the remaining questions of chapter 2 about the possible inter-
ference patterns that may arise in double slit experiments for non-abelian anyons. We will
indeed succeed in determining what g(6), from (2.46) on page 26, will be: i.e. what we will
measure, when we direct many particles at a single particle behind the two slits. We will call
this experiment ‘many-to-one’.

But first we will be working out another double slit experiment, one that only requires two
particles (not many). Although this experiment, which we will call ‘one-to-one’, yields yet
another interference pattern h(), its calculations are easier than for the ‘many-to-one’ case,
and it is less technically involved. After treating this ‘one-to-one’ case in section 3.1, which we
will solve completely, we will work out the ‘many-to-one’ experiment, which we will solve under
certain restrictions (so not yet completely), in section 3.2. As the calculations go along it will
also become clear why we need those restrictions. We will summarize our findings in section
3.3, particularly in table 3.1 (p. 46).

We put these two results in a separate chapter, and not in chapter 2 with the other (abelian and
free theory) interference experiments, because the results presented here are new, and obtaining
them requires more technicalities. A large part of the proof involved has been relegated to
appendix A.

Although these kinds of interference experiments have been considered before, in Propitius and
Bais [11] and Preskill [10], the role of the remaining entanglement and its drastic effect on the
outcomes of the experiments with many successive projectiles, will be treated here thoroughly
for the first time.

For both thought experiments, the sequential measurements turn out to lock the system in some
specific state; we measure some eigenvalue of an operator on the particles’ internal states, and
we thus also project our system onto the measured eigenstate. So, although we can not measure
the internal state for a single particle directly (this was one of the important assumptions), we
can probe the internal state indirectly through the one-to-one and many-to-one experiments.

3.1 The one-to-one experiment, where the out-state is the next
in-state

First we will describe what we mean by the ‘one-to-one’ experiment, and we will already tell
what its interference pattern will be, in section 3.1.1. Next, in section 3.1.2, we will work

29
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out the actual problem of projection and eigenvalues. The mathematical part of the proof
has been relegated to the appendix. We will then sum up what we have found and give an
example to illustrate the process of projection through the successive measurements of angles,
in sections 3.1.3 and 3.1.4.

3.1.1 What is ‘one-to-one’ and what is its interference pattern

This experiment requires only two particles: one particle A and one particle B. Both parti-
cles are re-used for each consecutive measurement; where we assume that the out-state of a
measurement is the in-state for the next.

The total experiment then consists of repeated actions: particle B is directed at the double
slit, measured at an angle ', brought back to its original position, directed again at the slits,
measured at 62 ..., as depicted in fig. 3.1. Particle A remains in its position, behind the double
slit, during the experiment. With every next (angular) measurement, the two particles A and
B (can) become more and more entangled.

Figure 3.1: Repeat the experiment with the same two particles after bringing back B to
its original position, which is done by performing an additional R-operation.

Having repeated these steps N times, one can (again) define the ‘observed’ interference pattern:
. t

h(6:) := lim — 3.1

() = Jim (3.1)

Where (again) Ny is the number of times particle B has been measured at the angle 6;.

In this setup, there are two questions one would like to answer:

1. What will be this h(6;) which we will find after N measurements, in the limit N — oo?
2. What can we say about the two-particle internal state, given that we found a specific

h(6,)?

As to the first question, we obtained that:
h(#) = f(6) e eigenvalue of R? (3.2)

This says that the observed pattern, f)(6), is the same ‘shifted’ pattern one would find in the
abelian theory where the shift was caused by a phase factor e**. But this particular phase factor
e is an eigenvalue of the monodromy-operator R2.

Concerning the second question about what happened to the state of the system: the two-

particle internal state will be projected onto the eigenspace corresponding to the eigenvalue
el
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As R? can have distinct eigenvalues, different eigenvalue-patterns f(6), or ‘eigen-patterns’ in
short, can be found in this one-to-one experiment. If F is the projection operator, which
projects the initial two-particles’ internal state |;,) onto the eigenspace of the R2-eigenvalue
e, then the probability p) of observing the eigenpattern fy() associated with a particular
eigenvalue e is:

Pr = (Yin| Ex[Yin) (3:3)
The final internal state |¢ana1) of the two particles A and B, when in the limit of N — oo the
eigenpattern fy(#) has been observed, can be written as:

EAWin)
<¢in|E)\|win>

The square root in the denominator is needed to normalize |1gn,1).

W’ﬁnal) = (3.4)

Now we will verify the above statements by explicit calculation.

3.1.2 The one-to-one experiment in more detail

There is an initial two-particles’ internal state |¢in) € VZ @ V4. Call this state the in-state for
the first ‘run’ of the experiment:

|Yin)1 = |¥in)

This first run yields an observed angle §;, = #' and an out-state |1out)1. We know from chapter
2 (see table 2.1, p. 28) what this out-state looks like:

|w0ut>1 = [Ctl R_l + ctl R] |¢in>

above below

-5~

|:czibove7€_1 + cll)elowR] |¢in> (35)

Here we wrote the normalizing denominator as v/ K, for compact notation.

Next we bring back B to its original position in a counterclockwise way, by performing an R,
see fig. 3.1. The resulting state will be the in-state for the second run of the experiment:

|¢in>2 = R|¢out>1

And this we can continue for every k’th run:

Wjin)k = 7-\)f|¢ou‘c>k—1

So, this means that:

1
|win)2 = [Czlmbove + CllaelowRQ] |win>

|¢in>N+1 - [cé\{)ove + c’t])velowRZ] te [czlxbove + Cll)elowRZ] |¢in> (36>

-5

Furthermore, [i,)n 11 is thus a function of the N observed (somewhat random) angles ' ... 0",

The normalization factors K are now labeled by 1 and N to indicate that K7 # K.

Now let’s rewrite these equations by introducing the projection operator Ey, which projects any
two-particle internal state |¢) € VB ® V4 onto the e** eigenspace of the monodromy-operator
R2.
RZZZQZ)\jE)\j ZE)\j:]lB@]]-A:I[
J J
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The operators E) obey the projector algebra:
E\E, = E,Ex=6\,Ex  (E)\)’=Ey= (B

Then:

k k 2 _ |k k 2| _ 2 : k k i\
[Cabove + CbelowR ] - [Cabove]l + CbelowR ] - [Cabove + Chelow® J] E Aj
J

Now we may recast (3.6) into the following form:

iAj 1

1 ¥
|¢in>N+1 = Z \/— [ Cabove T cbelowe N] ce [cabove + cbelowez Jl] E)\jN T EAjl |¢in>

Ji,J2,- 7.7N
1

_ N N iXj 1 i\j )
o Z \/I{—N [Ca,bove * Chelow® J] ce [Cabove * Chelow® J] E)‘j W}m)
J

1
T > F - F3 Fa By tin) (3.7)
J

We introduced .7-";\“], for compact notation. .7-";\“], is a known function of % and €. The normal-

ization factor, K, can also be expressed with these ffj ’s

‘7:;\6]- = [C]z:bove + Cll;elowei)\j] K’N = Z |F)]\\][ ce Fg]j:)\l] |2<¢in‘EAj W’in) (3-8)
J

To justify the claim of (3.4), it remains to be shown that (up to an overall phase factor):

E,
N 2 1 N
N e ¢— Zﬂj - FRFL B tin) = e ln) (3.9)
This implies that for large N:
VA ot o VS W I D V7 (3.10)

Note that since:

z)\J |2

k |2 k k 2 2 t t EA
|T)\]| = |Cabove + cbelow |cabove| + |Cbe]0w| + 2R‘e ( a‘kb)gvecbkelow ! ]) f)\ (etk)

we have that:
FX o Fa P P = £y (0N) o £y (67) f, (61) (3.11)

We prove (3.10) in appendix A. In this proof we will also need the probability Py of measuring
the sequence of angles 8,62, ... ,6". One can always construct a sequence for which (3.10)
does not hold. But the probability of actually observing such a sequence goes to zero.

The probability Py to find these specific angles is a rather complicated factor. The probability
P®*) to observe particle B at the kth run at a specific angle depends on the outcomes of the
preceding outcomes 0, ...,05~1. When we write Py as the product of probabilities P(¥), the
expression for Py becomes intractable.

The key observation however is that this probability Py turns out to be also equal to the
normalization factor K. This is even true for all &:

P, = Ky,

as is shown in the appendix.



Jo.L. LU0 UULCLTLUTULLD LAPCLLIUICLL, VWWUILLO UL UUuL=otdatbs Lo vUL LHiALv Um0 bdvs JJ

3.1.3 The resulting state is locked in an eigenspace of the monodromy op-
erator

The final state then becomes, as stated in (3.4):

Eul%)
(Vin| B[ tin)
But this will also be the case for finite (but relatively large) N; the sequence of measurements

‘locks’ the two-particle system in a specific state which it cannot escape anymore, at least not
during the one-to-one experiment.

|¢ﬁnal) = lim |'¢}in>N+1 = (312)
N—oo

After reaching projection in N steps, the experiment can be repeated for an infinite number
of times M (well at least M > N), where the probability distribution f(6;) for each next
measurement does not change anymore, and remains equal to f,(6;). Also, the state is then
locked into the state (3.12). And since M > N the contribution of the first N particles in the
interference pattern vanishes and an ‘eigenpattern’ will be found:

lim % = h(0;) = fu(6)) (3.13)

M—00
Each eigenvalue can occur with probability p, as we stated in (3.3).

We make the following observations concerning our results:

e The convergence is fast (roughly exponential), and depends on the observable difference
between fy,(6) and fy,(#) for Ay # A2 (or the difference between eigenvalue patterns).

e Beforehand it is impossible to tell which R?-eigenvalue one will find, unless the two-
particle state is already an R’-eigenstate, which is what one expects for any quantum
system.

e This experiment is the same if the role of A and B are swapped: it does not matter which
of the two is the projectile or the target.

e The choice to use R or R™! to bring back particle B to its original position (i.e. clock-
or counterclockwise) is an arbitrary one and does not affect the result.

e One could also not bring back B to its original position, but just place the double slit to
the right of A and shoot particle B from the right at the double slit. The result remains.

e The result can be easily verified by a numerical simulation on a computer (monte-carlo).

3.1.4 An example

Let’s illustrate the projection process with an hypothetical example. Here, R? has two distinct
eigenvalues: €M = 1 and e*? = —1. The double-slit-geometry is that of the ideal experiment,
as in section 2.2. The ideal eigen-patterns are fux_1(8) = f1(0) = 2cos?(70) and f_1(f) =
2sin?(7f), 6 € [0,1]. As initial probabilities we choose p; = 0.6 and p_; = 0.4. A particular
sequence of measurements is shown in figs. 3.2, 3.3 and 3.4.

This ends our discussion of the ‘one-to-one’ experiment. We are now ready for the ‘many-to-
one’ version, which is somewhat more difficult but in the end will allow us to use the same
convergence-theorem.
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‘f_l(theta)

f_-1(theta) #-----
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05 g

0 - ! ! ! ! s
0 0.2 0.4 0.6 0.8 1

Figure 3.2: The probability of finding e* = 1 is 0.6, that of e/ = —1 is 0.4. The first
measurement is at # = 0.30 (where f_1(6) = 2f1(6)). p1 now changes to 0.43, p_; to
0.57.

2 T T T T
f_1(theta)
f_-1(theta) #-----
f(theta)/-------
15 F J
s i
05 4
0 = 1 1 1 1 S
0 0.2 0.4 0.6 0.8 1

Figure 3.3: The next measured particle is found at an angle § = 0.25, for which f1(6) =
f-1(6). The py,’s do not change now, because this specific point does not favour one
of the two eigenvalues. The third point is at § = 0.49, where f_1(6) = 1000f1(6). This
causes a great change: p; — 0.001, p_; — 0.999
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Figure 3.4: The system is now (almost totally) projected on e* = —1, which could

result from the beginning with chance 0.4. The probability of measuring a lot of points
at f# = 1 or # =~ 0 (which would favour the other eigenvalue) is very small.
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3.2 The many—to—one experiment: probe one particle with many
identical other particles

We will now discuss the 'many—to—one’ experiment which we mentioned in chapter 2. This
involves a more sophisticated analysis than that of the ’one-to—one’, with a lot of, sometimes
even rather large, equations (so be warned, but there are also some cute pictures ...... ). We
will start by describing the experiment in section 3.2.1. Then, in section 3.2.2, it is argued that
there are specific final states that do not change when continuing the experiment. These fixed
final states will be eigenstates of some operator U which will be described. Arbitrary initial
states will be projected onto these U eigenstates, which we will show in section 3.2.3. We will
have to introduce some restrictions on the particles to be able to solve the problem, so in a sense
we have not solved the many—to—one experiment for arbitrary particles in complete generality.

3.2.1 Description of the experiment

In the many—to—one experiment, one uses the same target particle A behind the slits (the ’one’
part), but a whole lot (IV) of identical projectile particles B (the 'many’ part). We furthermore
assume that the B particles have identical internal states!.

So there are NV + 1 particles. One can define this initial multi-particle internal state as:
[Yinitial) € VNG ®@ ... @ V2 @ Vi @ VA

[Yinitial) = Vinieial €y ) - - - l€5y) €5 )|ed) (3.14)
From here on, we will also assume the B’s not to be entangled with each other nor with A, so
that !N can be factorised:

¢z’N...i2i1a_ N 22, 11 .

T TR T T y and x fixed vectors (3.15)

The y% assure that the B particles have identical internal states, z® denotes the internal state
of particle A.

We may schematically represent this as:

B B3 B> B1

A
|¢initial>3 O O .

Now we can start the experiment by positioning A behind the two slits and prepare to direct the
first projectile particle B at the double slit. We will call the state of the system [¢in)1 = |¢initial):

By B3 Ba B1 A

uh: @ - @ © @ o

!The condition that the B particles have identical internal states need not always be physically implementable,
for example if the internal degeneracy is related with a local gauge invariance. We return to this point in our
discussion of the Discrete Gauge Theories in chapter 4.
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Next we direct B; at the double slit and detect By again behind the double slit at an angle 6.
We have a new state now:

Yout)1 € VNG ®...0 VW@ VieW]

[Yout)r = 1V e ) - lefea)lef,) (3.16)
Particle A and B will be entangled, so 1/1%” 82091 £, torizes as:

12 Q1

iN...izajl_ iN
Py =y'V.. . y2z

This resulting out—state is the in—state for the measurement of the next particle, Ba:

Wout)l = |¢in>2 : O O O

We continue this process ......

[Yout)2 = |¥in)3 O - @) {61,602}

W}ﬁnal> = |'¢}out>N . {617025035"-70N}

We end up with a, fairly entangled, final state |1gna1):
[Vfinal) = [Yout)n € Vo? & VN? ®...® VZg ® Vlg

|Vfinal) = (¢N)°‘jN"'j2j1|62)|efN) o leg,)leq) (¢ N)®IN--7271 is no longer factorizable (3.17)
After we have measured the angles 6, ... 60y, we are mainly interested in what we can say about
the internal state of particle A in the multi-particle state |¢gna1). But since the particle A is
now entangled (with NV other particles), it is convenient to look at its density matrix p, instead
of (1))2IN--J2i1,

<pAN)aﬂ = (wN)aJN...le (wN)/BjN~--j2j1 (3.18)

As we will show below, the conclusion is that in a particular basis of the internal state of A,
most of the diagonal elements of the density matrix will vanish. If N becomes large then p, y,
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which is N—-dependent, converges (rapidly) to a final matrix: imy_c0 pany = Pagina Which is
N-independent! So there is indeed a final state. The information can be obtained from the
collection of measured angles 61 ...60y. In this particular basis the matrix U will be diagonal.

We have now described the many—to—one experiment. We are now ready to perform some
calculations. We will determine when a density-matrix p, is final, i.e. when it does not change
anymore after a next particle has been measured.

As announced, we have only been able to obtain the result if a restriction is satisfied by the type
of the B particles: these B particles should have trivial braiding amongst each other (braiding
is then nothing more than a permutation of these particles):

R|B;)|Bj) = R™'|Bi)| B;) = 0|Bi)|B;) = | B))|Bi) (3.19)

= RZ=1 when working on B’s

To simplify notation, we use R as the inverse of R, so:

R'=R (3.20)

3.2.2 Final states

A final state is a state where the outcome of a measurement of an incoming particle By does not
depend on the outcome of the previous particle Bi_;. The outcome—probability of a double slit
experiment depends on the R? expectation value. So for a final state of an entangled particle
A, the expectation value of an R? working on particles By and A should be independent of the
measured angle 0; of the first particle.

Let the three particles A, B, By be unentangled with each other but all possibly entangled with
other particles, and let By and By have the same internal state, i.e. the three particle state can
be written as:

[9) = "y e le) e ea) @ len ) em ™) ep ) (3.21)

Where z°?|e2)|ey ) stands for the internal state of particle A and all other particles A is
entangled with (with multi-particle orthonormal base |e; ™)), and likewise with ™ for B; and
Bsy. The total state |¢) is still factorised in the same way as in (3.15), but the fixed vectors y

and z have now been replaced by fixed tensors y and x.

After the incoming particle B; has been detected at an angle 8; the state has changed to:

t 23 t
Cabove Rl + Chelow Rl

t .
|¢0ut>1 \/IF |¢1n> (322)
K' = |Cgbove|2 + |C{5)elow|2 + 2Re(02€)ovecf)elow <win|(R1)2|¢in>)

K is the normalization factor. We explicitly show the dependence on the measured angle 6 of
|¢out>§ and Kt'

We will count from right to left when numbering both the particles and the exchange operators.
This means that an Ry on the initial state exchanges B; and Bs .... Furthermore, we will use
R? to indicate the tensor (matrix) components of any R?-operator operating on a particle B
and A:

(R1)*[ef)]ef) = (RR), Jepn)]ed) (3.23)

In this way we can discriminate between physically different operators R%Z.) that have the same

tensor components R2.
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The expectation value for (R1)? becomes:

[Ym) = ™y ™| jianmp) (Compact notation)

(Yinl(R1)?[Yin) =

~

Jian ﬁ|yjnyzmxap(R2) iy mxapukﬁnmp)
W yim) (Y ) (3P 5p) (R

Traps) (pn'i) (p4%) (R2)FE,
)

1)(pA B ( ﬂa)

(
(
(
(

where we used the definitions (Tr indicates the trace of a matrix, i.e. the sum of the diagonal
elements):

P’k =Y Ykm  pa% = 3%Pxg,  Tralpa) =1 Trg(ps) =1 (3.25)

UP, = pp' (R = [Trs(psRY), U: VA VA (3.26)

Here we see the U-matrix for the first time, and it will not be the last. U is the R? matrix
traced partially with respect to the internal state of B and B’s density matrix, and so is a
matrix—valued object on A’s internal space.

Now, if |in) = [Vfina) then & (Wous|(R2)%|%out )i should be independent of ¢. Then all the terms
with t-dependence should cancel each other, including the ¢-dependent normalization factor K.

So,

1 ~ -~
L {Wout (R2)*|thout)§ = Tt (<wml7%1 (R2)*Ra|thin) [chpovel” + (R1(R2)*Ra)|cheoiow|” +
+<R1 (RQ)Q,R’l)C;{)ovectbelow + <7§1 (,R’Q)Qﬁl)cgbove cik)telow) (327>

should be independent of .

The expression (3.27) involves four different expectation values of braiding operators, which can
be rewritten using braid relations as illustrated in fig. 3.5. If furthermore a braid of the two B
particles is just the trivial exchange, R|B;)|B;) = o|B;)|B;), and also R = ¢ = R (which we
demanded in (3.19)) then these expectation values simplify to:

<1/)in|R1(R2) R1|¢1n> <¢in|02(R1)20’2|¢1n> ( )
<¢in|7?‘):1(R2) 7?f1|¢1n> <¢in|02(R1)202|¢1n> ( )
<¢in|731(722)2 1Y) = (¢m|[(7i1)2][0 (R1)?02]|¢in) (3-30)
(¥in|R1(R2)* R [tin) (¥in][(R1)?][02(R1)?02] [¢hin) (3.31)

Where the operators at the right hand side are products of maps from Vgg W g ® Vofl to itself.
We can substitute the appropriate R? components for these operators, through:

(R1)?ef) e )ed) = (RHM [eP2)|ef*)]ed)
[02(R1)2 0ol )P )ed) = (RHM lef=)lef*)]ed)

If we use the formal sum notation used in quantum group theory, then:

(R)? = ) 1@RY) @R,
UQ(R]_)QO'Q == Z R%l) & 1 & R%Q)
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BBy A B2B; A BzBl A
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B2B1 A

|

ByB; A

Figure 3.5: Identities for (representations of) the braid group. All relations can be found

using RleRl =

Let us write the in-state again as |y,) = y/"y""x?|jianmp). Then (3.28)...
(5" i) (5" i) (2 ) (R?)*7,
= pn kpB ipa%(RHY
= TfA(UPA)

in im ap RZ kB RZ
(57" k) (" i) (2P 24) R?)™ (R
= pe’yps"1pa% (RHY, (R,
— UP  pa ’YU7
= TrA(UUpA)
= ps’pps'ipa 7(R2)kﬁ (RfQ)hw
= U aPa 'y(UJ() B
= Tl“A(UTUPA)

(Yin|o2(R1)202|tin)

(¥in][(R1)?][o2(R1)?02] [thin)

(¥inl[(R1)%[02(R1)? 02 [9bin)

We can now reformulate equation (3.27) to:

i(djout | (R2)2|wout>§ = % (

Tra(Upa)|chpovel® + Tra(Upa)|cheiow|® +

RoR1Ro. The relations are valid for arbitrary particles, i.e. without
writing explicitly the labels A, By and B;. Recall that we number from right to left.

(3.31) become:

(3.32)

(3.33)

(3.34)
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TrA (UUpA ) czf)ove c{)elow + TIﬂA (UT UpA ) cgbove cigtelow) (335>

And (3.35) becomes independent of ¢ if:
Tea(UUps) = Tea(Upa) Te(Ups)  Trea(UTUps) = Trea(UMpa) Tra(Upa) (3-36)
Because then, with K explicitly given:
K" = |caovel” + |chetow!” + 2Re(CiboveChetow Tra(Upa)),

the t—dependent terms in the nominator and denominator of equation (3.35) cancel each other:

|czta,bove |2 + |cf3elow|2 + TrA(UpA)CZ.ﬁovecfoelow + TrA(UpA)*cgbovecEilow

L out|(R2)*[Yout)t = Tra(Upa)
= TrA(UpA)

Kt

So the remaining question is: when is Tr, (U?p,) equal to (Tr,(Up,))?? Because p, is a density
matrix, we can reformulate the question to one for expectation values, for an arbitrary operator

A:
.

(4%) = (4)*  (4) =Tx(4p)
The answer: this is true if and only if the system is in an eigenstate of operator A.

This means that for |¢i,) to be a final state, [tgna1), the diagonal of the matrix P4y, written in

an eigenbasis of the matrix U’ga, should have only nonzero elements in an eigenspace of U with
eigenvalue , so that:
TI‘A(UpA) = K;rPI'A(pA) =K (3.38)

Note that U, because of its definition (3.26), depends explicitly on the chosen internal state of
the B particles, and so do its eigenvalues.

So we have determined U eigenstates to be 'fixed’ or ’stable’ states, we will now prove that
arbitrary initial states, will be projected on such an eigenstate. In that sense, one can think of
an arbitrary density matrix p, to be a superposition of U eigen—density—matrices.

3.2.3 Every initial state will end up on a final state in some U eigenspace

We will now prove that every initial state will converge to a final state, which is a U-eigenstate.
This is not so hard to see if we work with the initial state in the U-eigenbasis. In this base
the matrix U is diagonal with entries k1, k2, - .., Ky, where m is the dimension of particle A’s
internal state:

K1 0 .. 0

0 Ko ... 0
Udiag = . . 0

0 0 0 &y

In this basis, the density matrix p, has the form:

P1 * ... *
* P2 ... * m
Padiag = . . Tr(pa) = Tr(pading) = D pi =1
S =1
¥ %X ... Dm

Although pagiag 18 not a diagonal matrix, we are only interested in its diagonal elements p;.

(3.37)
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In this basis, the trace of U and p, becomes equal to a trace over two ’diagonal’ matrices:

m
Tr(Upa) = Tr(UdingPadiag) = P Pifii
i=1

Let us write p, for the initial internal state of particle A, i.e. its initial density matrix, before
we start the experiment. Then the expectation value of the operator R? operating on A and
the first particle, By, becomes:

(Uin|(R1)?*|%in) = 1(in]|(R1)?*|%in)1
= Tr(Upag)

= Tf(Udiag (,OA())diag)

m
>k (3.30)
=1

nox *
* pg *
(Pag)diag = .
*
£ % P

Now we plug in (pa1)diag via the expectation value of R? operating on A and the next particle,
BQZ

2 (Vin|(R2)*[Yin)2 = Tr(Udiag(pa1)diag) (3.40)

m
= > kip (3.41)
i=1

But, according to (3.35), this expectation value is also equal to:

— ok

2<¢in|(R2)2|win>2 = <¢0ut|(R2)2|¢out>§
1

= 07 (TP el + T a0 e +
Tr ( UUpA 0 ) )c;&)ove cf)elow + Tr ( UT UpAO ) cgbove cik)telow)

1 " m

_ 0. .t 2 0. .t 2

- F(Zpiﬁlkabove‘ +Zpi’€l|cbelow| +
1=1 i=1

m m
0, 2 xt t 0, x t *t

E :pi K5 Cabove Chelow + E :pi Kik; Cabovecbelow)

i=1 =1

m
1
_ 0 t 2 t 2 o xt t * 1 *t
- F E :Kipi (‘Cabove| + ‘Cbelow| + KiCabove Chelow + Ki Cabovecbelow)
=1

m 0
D; t 2 t 2 t t
= Z Hifzt <|Cabove| + |Cbelow| + 2Re(C;boveCbelow”@i)) (342)
=1
And now we can identify p} as:

0
p.
p’l - th (|C§Lbove|2 + |C£elow|2 + 2Re(czltaovecéelowﬁi)) (3'43>
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Let us rewrite PZ-1 with:

f"’vi(gt = 91) = fﬁz(el) = |Cgbove|2 + |C%)elow|2 + 2Re(cz;¥)ovec€)elow’<’i) (344)

m
E' = Y plfu(t) =K
=1

to:
Of. (0 n
ph = Ll Y pi=1 (3.45)
> p)fr, (01) =
j=1
Now we can also apply this method to arbitrary many other particles Bs,..., By:
0f (01)f (6 i
pZZ — pzf z(Il()ZfK/z( 2) K2 — Zp?fnz(el)fnz(02>
i=1
a8 (8) S O) 5 o7
;01 A02) . Tk (OUN
Pl = e Ky =Y p) [ /s (00 (3.46)
i=1 =1

If all the x; are different, then with probability pg one projects out the corresponding eigenstate
when the number of probing particles N becomes large:

lim p =1  pY=0 Vj#i (3.47)

N—o00

If some of the x; are the same, i.e. the eigenvalues of the matrix U are degenerate: k;, = k;, =
... = Kj, (but s;, # Kj, if i # j), then, with probability prgxz

. N N _ . .
ngnoozpim =1 py=0 Vj#i (3.48)
xr
pY P

So in the degenerate case one projects onto an U eigenspace (instead of an eigenstate) with the
associated probability.

The proof of (3.47) and (3.48) is the same as that of the convergence in the ’one-to—one’
experiment. The only difference lies in the eigenvalues: these no longer need to be roots of
unity, but the proof (see appendix A) does not depend on that. One can replace each e’ by
a k; and see that every statement in there remains true. In the end, the coefficient pY of one
of the eigenpattern fy(6) will become infinitely (at least much) larger than the coefficients of
the other eigenpatterns, and this specific eigenpattern will then ’rule’ the observed interference
pattern.

The final state, or final density matrix psq,, is thus (in the limit of N — co):

EwpaEy

= Palk 3.49
PAfinal T‘I'(En)pA ( )

where E,; is the projection operator projecting in the vector space V4 onto the k-eigenspace of
the matrix U. The probability p, to find a specific eigenvalue k is then:

pr = Tr(Eyxpa) (3.50)
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And this eigenvalue x will become apparent in the observed interference pattern g(6), which is
the eigen—pattern f(6):
9(0) = fx(0) (3-51)

This almost concludes the part of the many—to—one experiment. We will now investigate what
the eigenvalues U look like, and relax the condition on the braiding of the B’s, from (3.19).
In the end we will summarize the results concerning (non-abelian) double slit experiments
presented in this chapter.

3.2.4 Eigenvalues of the U-matrix

We have been refering to the eigenvalues of the matrix U defined in (3.26). For the unitary R?,
we know that all eigenvalues are phase factors. What can we say about the eigenvalues of U?

Well, although U is neither unitary nor hermitian, it is 'normal’ in the sense that it commutes
with its adjoint:
vut =utu (3.52)

this is so, because every unitary operator can be written as an imaginary exponential of a
hermitian operator:

R? = ¥ St=g
U = TfB(eiSPB)
And then (3.52) follows:
UUT = Trp (e’ pp) Tra(e ¥ ps) = Tra(e ™" py) Tra(e"pp) = UTU

The spectral theorem for normal matrices states that U can be diagonalized by a unitary
(basis) transformation. So, U can be completely diagonalized, but its eigenvalues have no
further restrictions due to 'normality’, as eigenvalues of hermitian and unitary operators have.
In appendix D we present an alternative proof by using a graphical notation.

Since U is constructed from R?, the expectation value of R? for a final state is equal to both:
(R%) =Try(Upa) = & (3.53)

and:
(R?) = TraTrs(R*(pa © ps)) ZPA e' ZPA]- =1 (3.54)
J

This means each eigenvalue  of the matrix U can be written as a weighed sum of eigenvalues
of the R?-operator. Furthermore, since the py; are normalized:

k| <1, (3-55)
which assures that the eigenpattern f,(#) is non—negative for all §:

fu(0) >0 V. (3.56)

The U-eigenpattern can be written as the weighed sum of R%-eigenpatterns, in the same way
as the corresponding eigenvalues:

0)=> pry0)  w=> pre (3.57)
J J
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3.2.5 Relaxing the constraint R = R~!

When examining the equalities in (3.28)...(3.31) and the braid relations in fig 3.5 we conclude
that we can relax the demand of (3.19), namely that of the B particles having trivial braiding,
to B’s having abelian braiding, or:

RIB)B;) = eolBi)|B;) = o¥|Bj)|B) (3.5)
RUB)IB;) = e o|B)|B;) = |B;)|By) (3.59)

Now R # R~1, but (3.28)...(3.31) remain valid, because the opposite phase factors et cancel
each other.

This means that the statements about the many-to—one experiment are also true for all B
particles that have the property that they cannot become entangled with each other by braiding
amongst each other (of course one B could be entangled to another B, but this entanglement
is then due to other reasons than braiding of these two B’s).

The general case of the many-to—one experiment, with no constraint on A nor on B nor on
their specific internal state (possibly terribly entangled) remains an unsolved problem for the
moment. The answer to this question, whatever it may turn out to be, should of course be
compatible with the answers in this chapter. We will, later, come back to this question of
restrictions on the many-to-one experiment, but this will be for non-abelian anyons described
by the quantum double D(H); since D(H) is to explained in chapter 4, this is not the good
place to treat this subject; therefore, this discussion of the generic many-to-one experiment is
postponed to section8.1, p. 94.

3.3 Summary

The results for this chapter are conveniently summarized in table 3.1.

Also the name ‘many-to-many’ is introduced for the experiment where the probability distribu-
tion f(#) is determined, with the use of many identically prepared systems with both an A and
a B. (So this name fits naturally in between ‘one-to-one’ and ‘many-to-one’.)

The most important operator is the monodromy operator R?, working on both A and B, and on
which there are no constraints (well to ‘enjoy’ all the different outcomes the R?-matrix should
be something more than an identity-matrix). It is R? that supplies the possible outcomes and
eigenvalues (directly or indirectly).

The average of the outcomes of the three experiments is the same, namely (R?). This is nice
in two ways, because:

e it resembles the case of the abelian theory (Aharonov-Bohm) and the free theory (ordinary
double slit) where the results for these three are always the same.

e it is a kind of probability conservation: the probability f(#) for the first particle B to go
through the double slit and be detected at an angle 6 is the same in all three experiments
(when using the same internal states of course).
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@ o | 4
00000 00000 L
50 17, ®—-I0 0Qe® o—i0
@—I10 B | B
| |
#B-#A many-to-many one-to-one many-to-one

(name of experiment)

Pas = Pa & P
R|B)|B) = e'*1|B)|B)

Interference pattern

f(9) = Ez p)\if)\i(e)

h(8) = fx(0)

9(0) = fx; (0)

In terms of (R?) ethi Kj
eigenvalues = (Vin|R?|%in) is e.v. of R?: is e.v. of U = Trp(R%p5)
(e.v.s) = Tr(R*paz) VAQVE 5 VAgQVE U: VA vA
Probability for 1 P = (VYinl B, |¥in) Pr; = Tra(Ex;pa)
each value = Tr(E), pan)
Expectation value 1-(R?) (R%) =3, pae™ (U) =22, px;Kj
(average) =Tr,(Upa)
= TryTrs(R?[ps @ pa))
= (R = (R = (R
E\; |Yin By By
Change of system not relevant |%in) — #)\wam) pa — ﬁiﬂli)
(projection) ps not relevant
Abelian Theory F(8) = fA(0) h(0) = fr(0) g(8) = £r(0)
R?2=e1,® 1
Free Theory f(6) = fo(0) h(0) = fo(0) g(0) = fo(0)

R2=1,®1,

Table 3.1: Schematic results for this chapter. When particles can entangle there is a great difference
in what way the experiment is performed (or repeated). The ‘one-to-one’ measures a combined
property of two particles. The ‘many-to-one’ measures the internal state of a particle, but in a
specific basis, depending on the internal state of the probing particles. The ‘many-to-many’ does
not measure anything about the internal state of the particles. It is only in the non-abelian theory
that these three experiments yield different results; in the free and abelian theory (the original
double slit, and the Aharonov-Bohm case) these would give the same result. Only when averaging
the measurements in the non-abelian case they all return the same value (R?).




CHAPTER 4

DISCRETE GAUGE THEORIES

In this chapter we will give some physical and mathematical background on topologically in-
teracting particles. We base the behaviour of these exotic particles in this thesis mainly on the
mathematical structure D(H), the quantum double of a finite group H. We will describe D(H)
extensively in section 4.2. To support the usage of D(H) physically, we will glance at a specific
case of spontenaously broken gauge theories, in which the structure of D(H) can be identified.
We will look at these discrete gauge theories in section 4.1. The identifications with D(H) will
be made in section 4.2.

To describe double slit experiments as in chapters 2 and 3 we also require, apart from an
internal state on which the topological interaction acts, a description of an external state. We,
as thought-experimenters, want to be able to manipulate this external state, for instance to
move particles. This cannot be done with D(H) alone. This external state is supplied by the
discrete gauge theories though. On the other hand we will often omit the external states.

At first sight then, topological interaction follows from D(H), and D(H) follows from discrete
gauge theories, but on second thoughts this is not a strict one-way direction.

Discrete Gauge Theories | " | Quantum Double D(H) | " | Topological Interactions

There may be other physical theories than the discrete gauge theories, from which the structure
D(H) emerges. Results of this thesis will probably be also valid for such theories. Perhaps
even, the possible physical implementation for these may be more realistic.

Although D(H) can be viewed separately from discrete gauge theories, this chapter is named
‘discrete gauge theories’, after the title of Propitius and Bais [11] which treats both the gauge
theory and D(H ), and on which most of this chapter is based.

4.1 Spontenaously broken discrete gauge theories
We will now present, briefly, some aspects of spontaneously broken gauge theories which produce

a non-abelian discrete gauge theory. We will step over many non-trivial details. For any
questions concerning these details, one should consult Propitius and Bais [11] and references

47
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therein. Reference [11] is a review of discrete gauge theories, based on Bais [17], Bais, van Driel,
and de Wild Propitius [18, 19].

We will show that, for this specific case in two spatial dimensions, such broken gauge theories
yield stable solutions that behave as point-like particles: fluxes, charges and dyons. These
particles are labeled by conjugacy classes of a finite group H and the irreducible representations
of their centralizers.

4.1.1 Yang-Mills Higgs action

The 241 dimensional model of the gauge theories that break to a finite group, has an action of
the form:

S = SYMH + Smatter (4-1)
First, we will focus on the Yang-Mills Higgs part of this action:!

1
SvyMH = /d3a: (—ZFG 'WF,g,/ + ('DKQ))T DD — V(CI)))

The Higgs field ® transforms as a higher dimensional representation of a continuous non-abelian
gauge group G. The potential V' (®) breaks the symmetry to a finite group: there is a degenerate
set of ground states which are invariant under a finite, or discrete, non-abelian subgroup H of
G. The ground state manifold is isomorphic to the quotient G/H.

4.1.2 Classifying vortex solutions: fluxes

In the low energy regime of this theory, stable vortices can be formed, which behave as point-like
particles. They are labeled by the fundamental group of G/H:

m(G/H) ~H (4.2)

Which is isomorphic to the discrete group H itself. This means different vortices, which are
called fluzes, can be labeled by the elements of H.

O

i
heH
Figure 4.1: We associate an element h of the discrete group H with each (global)
counterclockwise loop that we draw. A product-loop is assigned the group-product of

the elements of the individual loops. (We are actually using the Wilson loop operator
here; we will not explain the Wilson loop operator.)

This label is not gauge-invariant though. Under a residual global gauge transformations g € H
a flux h changes to:

g: h+—>ghg! (4.3)

!"We will not use the explicit form of this action any further, neither will we use the field-strength F2, and

the covariant derivative D,. Actually, in two spatial dimensions one may add the so-called Chern Simons action
which does affect the topological interactions between the particles.
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The action of g conjugates h. So a better, gauge-invariant, label is the conjugacy class 4C,
where h € 4C. Each vortex solution has — apart from an external state — an internal state
which changes under a residual global gauge transformation. An orthonormal basis for this
internal space, which we will call V4, is {|h), h € A4C}. The action of a residual global gauge

transformation g on these basisvectors is equal to the action of (4.3). We still call these particles
‘fluxes’.

There can be multiple vortices. If we locally exchange two vortices, their internal states change.
If we call this exchange-operation R, which we choose to be a counterclockwise exchange, then:

R|h1,7)|ha, Z) = |hihahy Y, 7)1, ) i/, Z denote the external states (4.4)

Effectively, the flux of the particle at the right gets conjugated by the flux of the particle at
the left and then they are interchanged. The operation of R has the form as in (4.4), because
it should conserve the ‘total’ flux (hiha) of the two-vortices-state: (h1)(ha) = (hihaohy')(hy).
This ‘conservement-of-flux’ can be illustrated if we assign a flux to a global loop. The local
exchange cannot change this global flux, see figs. 4.1 and 4.2.

Bl O—@ - WC-

VY

hlhg

hiho = = = (h,lh,zhl )(h1)

Figure 4.2: The total flux is invariant under a local exchange of two vortices.

One can now also define a clockwise exchange R !, which also is the inverse of R:
R7hs, §)|h1,Z) = |he, 7) IR thshy, 2) hs = hahahi' = RTIR = 1 (4.5)
A counterclockwise monodromy R? is the result of two successive R-exchanges, thereby moving
one particle counterclockwise around the other particle and returning it back to its original
position:
R2|h, i) |h2, Z) = [(hiho)hi(hiha) ™", §)|(Rih2)ho(Rihe) ™, 2)
= |(hih2)hi(h1ho) ™, §) | hihohit, Z) (4.6)
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Effectively, both fluxes have been conjugated by the total flux (hihs).
We will omit the external states, ¥/ and 2, from now on.

The action of a residual global gauge transformation ¢ is a conjugation of both fluxes by g:

gt |h1)lh2) — |ghig™")lghag™") (4.7)

4.1.3 Other particles: charges and dyons

If we add to the Yang-Mills Higgs action a matter term Spatter, Which describes additionally
matter fields minimally coupled to the gauge fields, then this gives rise to charges. Charges are
particles transforming as irreducible representations (irreps) of the finite gauge group H. These
charges also behave as point-like particles.

A residual global gauge transformation g changes the internal state |v) of a charge according to
its irrep:

g+ |y — lghg )T (g)v) (4.8)
Where T'(g) is the irrep matrix associated with g € H.

One can argue that if a flux h is moved around a charge, the internal state of the charge is
changed by I'(h):
R?|h)lv) = [h)|T (h)v) (4.9)

One can check that the operator R?, when operating on fluxes and/or charges, commutes with
residual global gauge transformations, indicating that R? expectation values are invariant under
the action of a residual global gauge transformation g:

R?*g = gR? (4.10)

g:  {ug|(ug|R?ug)|ug) — (ua|{ug [R?|u1)|us) |u;): flux or charge (4.11)

Apart from fluxes and charges there can also be dyons: particles with both flux and charge.
The flux of a dyon is, still, labeled by a conjugacy class 4C' of H. The charge of a dyon is not

an irrep of H, but an irrep of the centralizer? AN of that conjugacy class 4C. A residual global
symmetry transformation effects this particle’s internal state |h,v) through:

gt |hov)— |ghg” ,T(Gv)  §=3g(g) € N4 (4.12)

where T is the centralizer irrep-matrix and g is an element of the centralizer; we will specify §
later.

Theories like this have been called discrete gauge theories, for obvious reasons.

The complete spectrum of this discrete H gauge theory then consists of particles labeled by:
(AC, ) (4.13)

where A runs over the different conjugacy classes of H and o = a(A) stands for the different
irreps of the centralizer 4N of the conjugacy class 4C. ‘Pure’ fluxes are dyons where the
centralizer irrep is the trivial irrep (i.e. the identity matrix). ‘Pure’ charges are dyons of which

2The centralizer "N of an element h of a group H is the subgroup of H consisting of all elements that
commute with h: "N = {g € H|ghg~! = h}. The centralizers of different elements in the same conjugacy class
are isomorphic. Therefore we can assign one centralizer AN to each conjugacy class A0,
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the conjugacy class is the identity element e € H. The centralizer of e is the whole group H.
Although all particles are dyons, we will mainly use the term ‘dyon’ to indicate particles which
are neither a pure flux nor a pure charge.

We will show later what the effect of exchanging dyons is, i.e. the explicit operation of R, R?
and R ! on states of multiple dyons. The dyons affect each other only by these exchanges,
and the effect depends only on the number and order of exchanges (or braids, or windings).
Therefore these particles exhibit a topological interaction, but this was presumably already
clear.

We should note that we will use the operators R, R~ and R? as dynamical operators that
can be used to actually exchange two particles, while the discrete gauge theories are merely a
statical theory; in the discrete gauge theories the operators R, R~ and R? indicate the change
of the wave-function if one particle is adiabatically transported around another particle, there
is not yet a description of dynamical processes. But we will use the exchange operators as if
they are the correct dynamical operators.

It turns out that there is an algebraic structure in which we can identify both the same spectrum
as that of (4.13) and the same exchange operations R, R? and R ™! as described in this section.
This structure is the quantum double D(H) of the finite group H. We will give an extensive
description of D(H) in the following section.

4.2 Quantum double D(H)

Here we will describe many aspects concerning the quantum double D(H) of a finite group H.
It will be more thorough compared to the brief review of spontenaously broken gauge theories
in the previous section. The quantum double D(H) of a discrete group H is a quantum group.
Here we will describe what D(H) is: its algebraic structure, its irreducible representations, its
universal R-element, its braid group representations and many more. The quantum double of
a discrete group was introduced by Roche, Pasquier, and Dijkgraaf [20].

As many of the available textbooks on the subject of quantum groups are very mathematically
involved, we attempt in this section a rather pedestrian but also hamhanded introduction to
the subject. One of the from the physicist’s point of view more accessible books is Majid [21].

Though D(H) is a quantum group, D(H) is not a group, it rather is an algebra.

4.2.1 Algebras

An algebra A is a vectorspace V4 (there is abelian addition of vectors, scalar multiplication,
there is a null-vector) equipped with a linear associative, possibly commutative, product m and
a unit® 14 with respect to this product:

m: VAgvAsvA m(a,b) =a-b a,be A (4.14)

a-1p=14-a=a Ya€eA (4.15)

One can completely specify the product by its operation on basisvectors. Let {|e;)} be an
orthonormal basis for V4, then:

m(|ei),lej)) = mflex) (4.16)

3In fact some similar structures that do not have a unit are also called algebras. A Lie algebra, for instance,
does not have a unit. We will always demand, that what we call an algebra, has a unit.




S 4100Vivi 1l L oAUV UOL 111Ul

m(a'ler),’lej) = a'ymiler) Y a'le), i’ lej) € A

Associativity means:
a-(b-c)=(a-b)-c m;?mék = MMy, (4.17)

One can always make an algebra out of a finite group H, the group algebra C[H]. An
orthonormal basis for VEUH] is {|h)},h € H, meaning (h'|h) = dpp. The multiplication of
basisvectors of the algebra is the product of the group:

|h1) - [ha) = |hiho) h1), |ha), [h1ho) € VEIH]

and this extends naturally to all complex linear combinations of basisvectors. Of course, |e)
is the unit-element of the group algebra. If H is non-abelian then also the group algebra is
non-commutative.

An example of an abelian algebra is F(H), the algebra of functions on H (or functions on
VCH) | Tts basis is {P,},h € H. F(H) is further specified by:

f:H — C
(fi+f2)(h) = fi(h) + fa(R) [y f1, fo, Py € F(H)
(fi-f2)(h) = fi(h)fa(R) g,h € H
Pg(h) = 5gh
Py-Py, = 6bppPy

1= > B
h

From two algebras A and B one can create another algebra C, the tensor product of A and B:
C = A®B
ve = vigv®
(a1 ® b1) - (GQ & bQ) = (a1 . a2) ® (b1 . b2) ai,ag € A;b1,bp € B
Where the product on C is just the tensor product of the multiplications on A and B.

The quantum double D(H) looks like the tensor product of C[H] and F(H), but its is so only

as a vector space:
VPH) — yF3H) g yClH] (4.18)

For it has another product than that of the tensor product:
(Pr@19)) - (Pw @19") = (Ongnrg—1) Pa®1g- ') (4.19)

where we used {P, ®|g)} as the orthonormal basis for D(H). This also implies that if the group
H has order |H|, then D(H) is a |H|?-dimensional algebra. We can adapt a shorter notation:

Py®lg) = Pug (4.20)

Lran®9g=Y Pg = g (4.21)
h

P, ® :H-C[H] =FPe = P, (422)

The unit element of the algebra D(H) is the tensor product of the two units of the subspaces:

Lpa) = 1rm) © Logm] (4.23)
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Algebras can act on other structures. Algebras usually only become physically interesting when
they act on other structures. The ‘action’ of P, g can be thought of as a residual global symmetry
transformation g, followed by a projection onto the flux h. Crucial is that these two separate
actions do not commute:

gPn = Pypg-19 (4.24)
D(H) is more than just an algebra, but we will come to that later. Let us now first classify the
irreducible representations of D(H) as an algebra.

4.2.2 Irreps of algebras

A n-dimensional representation of a group G is a map from G to GL(n,C), the group of non-
singular n x n matrices. It is a homomorphism, which means that the product of the group is
mapped onto the product of GL(n,C), i.e. the matrix multiplication. Shown explicitly, with
T'(g) the matrix-representation of an element g:

T(g-h)=T(g)-T(h) (4.25)

Now the group G has no addition and no scalar multiplication, but GL(n,C) does have ad-
dition of matrices and scalar multiplication. So there is no problem of extending the idea of
representations to algebras: a map from the algebra to GL(n,C) which not only respects the
product but also addition and scalar multiplication.

Groups have irreducible representations (irreps): basic building blocks for all other representa-
tions. Also algebras have irreps, which means practically that the representation matrices of
an irrep cannot be turned into block-diagonal matrices for all basisvectors of the algebra when
performing orthonormal basis transformations. Every algebra-representation is a direct sum of
irreps of the algebra.

For instance, consider the irreps of the group algebra C[H]. These are the same as the irreps
of the group H itself. The sum of the squared dimensions of the irreps is equal to the order of
the group H and is thereby also equal to the dimension of the group algebra (let {7%} denote
the set of irreps):

3 [dim(T))* = |H| = dim(C[H]) (4.26)

i

The irreps of D(H) are, not to our surprise, labeled by the conjugacy class AC' and the irrep
« of the centralizer AN, just as in (4.13). Also now, the sum of the squared dimensions of the
irreps is equal to the dimension of the algebra (we use |1C||*N| = |H|):

> dim(2)* = 37 [[*0] dim(a)]”
Ao

Ao
= Y [o*S dim(a)?
A o
= Y1l 1N
A
= [HIY_|C|
A

= |H? (4.27)

4 As in the case of groups, where this statement is true for finite and compact groups, we will restrict ourselves
to finite dimensional algebras. Generalizations of the quantum double to the case of continuous groups have been
given by Koornwinder, Bais, and Muller [22]
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Here we already used IT4 to indicate the different irreps of D(H). Let us explicitly write the
matrix entries for these irreps:

Hé(Phg) |Ahi7 an) = 5h,g Ap;g—1 |g Ah’igila a(g)mjavm> (428)
where
{|Ahi’ avj ) };illy,......,,lzlim o (429)

is a basis for the vector space Vof1 on which the irreps act. The v; are basis vectors of the
centralizer irrep . The group elements, or fluxes, h; are elements of the conjugacy class 4C
which contains k elements:

AC = {1, ha, ..., A} (4.30)

We will now specify §. If one chooses a set of k elements {Axl,Amg, .. ,A:ck} such that 4h; =

Az Ahy Az ! (with Az1 = e) then one can express § as:
g="27"g%; " =g"hig™" (4.31)

The element § is constructed in such a way, that it will be an element of the centralizer of 4h;.
Different choices for ordering of the “4h; and choices of the A:Ej give equivalent representations.

One can and should check that TI2 of (4.28) forms a representation of D(H).

We can also consider the character of the representation II2: the trace of the matrices IT24(Pyg).
If we do this, we can conclude that:

% > T (1 (Pag)) Tr (15 (Phg))” = 645605 (4.32)
h,g

This result, see Roche et al. [20], implies that the set {ITI4} is the complete set of irreps of
D(H).

The irrep Hﬁ also induces a, possibly reducible, representation T of the group H by:

Ta(g) =Y Ta(Pag) =T4 (D Prg) = Ta(9) (4.33)
h h

We will from now on identify different particles of the discrete H gauge theory with the different
irreps of D(H), and label them accordingly. The vector space V. on which the irreps act, serves
as the internal space of the particles.

The operation of T4(g) = IT4(g) of (4.33) on a particle IT4 is that of the residual global gauge
transformation g. A pure flux, for instance, gets conjugated by g: TIA(g)|h) = |ghg~!), where
« should be the trivial irrep to make sure that Hé is a pure flux.

Let us now consider a system of two particles (at least more than one), where the two particles
are labeled by Hﬁ and HBB . Then we want the combined internal state |¢), i.e. the tensor
product of T4 and Hg: lv) € VA @ VE, to also be a representation of D(H). This will
probably be a reducible representation.

For irreps T'(g) and T?(g) of a group G the tensor product representation M (g) is the tensor
product of the 7% M(g) = T*(g9) ® T?(g). But such a construction is not possible for algebras,
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because it is contradicted by the scalar multiplication. Let 7" and T2 be two irreps of an algebra
A, let a be an arbitrary element of A, and M the tensor product of T and T2, then:

M(a) = TYa)®T?(a)
=

M(2a) = T(2a)®T?(2a)
= 4T a) ® T*(a)
= M(4a)
# M(2q),

indicating that M is not a representation of the algebra A.

For algebra A with basis {|e;)}, the representation M of the tensor product T ® T2 should
have the general form:

M(les)) = MI*T(le;)) @ T?(|ex)) (4.34)

which is a linear map from V(f ® VﬂB to itself and is a representation of A. This property,
indicated by (4.34), actually requires the algebra A to be a bialgebra.

Indeed, D(H) is a bialgebra. But to understand what a bialgebra is, one needs to know what
a coalgebra is.

4.2.3 Coalgebras, bialgebras

A coalgebra C is a complex® vectorspace V¢ equipped with a linear co-associative, possibly
cocommutative, coproduct (or comultiplication) A and a counit e.

A:C—-CxC (4.35)
The operation of the coproduct can be written in the basis {|e;)} as:
Ales) = M[e;) @ lex) (4.36)
But A is usually written without an explicit basis and in a short notation:

Ale) = Z Ci(1) @ Ci(2) c,cp €C

= Z c1) @ ¢2) (4.37)

Coassociativity means:
(I1@A)oA()=(A@1)oA(c) =) cn) @ cp) g (4.38)

ijaslk _ aginasik
Mz M, _MmMg

Notice the difference between the unit-element of an algebra 1 and the identity map or unit-
matrix 1, which operates on the same algebra. There are more occasions where the difference
between elements and operators tends to fade.

SWe will only consider algebras, coalgebras and bialgebras etcetera over the field of complex numbers. But
one can replace C by R in all the definitions to obtain the real counterparts. One could also replace it by a
general field K.
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The counit is a linear map from C' to C:
e:C—->C e(le;) =g € C (4.39)
It is called a counit because it has to obey:
(I®e)oAlc)=(e®@1)oA(c)=c Vecel (4.40)
M,ijejzéli M,ijsizéi

One can write something similar for an algebra A with unit 14 = n'|e;), then: mfml = 6% and

If C is cocommutative, then, with 7 as a swapping operator on C ® C"
A(C) =TO A(C) = Z (1) ® C2) = Z C(2) ® (1) (441)

For a structure B to be an algebra and a bialgebra at the same time, in a compatible way, it
needs to be a bialgebra. So B has a unit, counit, product, coproduct, that are compatible
with each other in the sense:

A(hg) = A(h) - A(g) All)=1®1 e(hg) = e(h)e(g) e(1)=1 Vg,h € B (4.42)
Where the product A(h)-A(g) is the true tensor-product multiplication of the bialgebra B ® B.

The quantum double D(H) is a bialgebra. Its coproduct and counit are:

A(Phg Z Ph,’g %) Phug E(Phg) = 6h,e (443)
h!-h"=h

The action of the quantum double D(H) on the system of two particles IT4 and TIZ, or the
representation M on the combined internal states in other words, thus becomes:

M(Pyg) : VieVe-sViev) (4.44)
M(P,G) = (i ®15) A(Pyg) (4.45)
= Y TI(Pyg) @5 (Pyyg) (4.46)
h!-h''=h
We observe that:
Alg)=g®g (4.47)

This means that the action of a residual global gauge transformation g of the group H on
the combined internal states, is the usual tensor-product-representation action for groups (see
(4.33)):

M(g) =T5(9) © 11§ (g) = Ta(9) © T5 (9) (4.48)

A residual global gauge transformation g on a system of two pure fluxes conjugates both fluxes
separately, which it should do as explained in section 4.1.

We can decompose the tensor product representation M (Pyg) of D(H) in irreps of D(H):

A AB
M) o g =@ N0 s (4.49)
Cyy

Nl = [H] Z (M4 ®TE(A(Pyg))) Tr (IS (Phg)) (4.50)
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This decomposition of the tensor product is also referred to as the fusion rules. We will use
fusion later as an additional tool to the double slit measurements of chapter 3 and the exchange
operators R, which we will come to in a moment, to manipulate the internal quantum states of
particles.

By fusion we mean we can bring two particles IT4 and Hg close together and merge them to find

another particle 1'[,(yJ . Possible outcomes for (C,~) are given by the fusion rules. Probabilities
for specific outcomes require detailed knowledge of the quantum states.

Bialgebras can be (co)commutative or non(co)commutative. We are especially interested in
those which are ‘almost’ cocommutative, like quasitriangular bialgebras.

4.2.4 Quasitriangular bialgebras
A bialgebra where there can be found an invertible element R of B ® B with the properties:
ToA(b)=RAMBR ' VbeB 7 as in (4.41) (4.51)
(A® 1)R=Ri3Rs;  (1®A)R = Ri3R1» (4.52)
R=> RYeR® Riy=) RYe@19R® R;=.....

is called a quasitriangular bialgebra, and R is its quasitriangular structure. Equation (4.51)
indicates that B is ‘almost’ cocommutative, i.e. it is cocommutative up to conjugation by the
element R. Further properties of a quasitriangular bialgebra are:

e@l)R=(1®e)R=1 (4.53)
RiaR13R23 = RosRi3 R (4.54)
Where (4.54) is known as the quantum Yang-Baxter equation.

For the quantum double D(H) the quasitriangular structure R € D(H) ® D(H) and its inverse
are:

R=) P®g R'=) Pog'=> Poyg (4.55)
g g g
Let us check that these indeed yield the right cocommutation-relations:
TOA(Phg) = Z Phug®Ph/g
e
RA(Phg)R_I = Z Pka’gPl & kaugl_l

k.f!-f"=h,

= Z Pka’Pglg—lg ® Pk:f”lc—l k‘gl_l
k1 f1=h.l

= Z PfIPglg—lg & Pglg—lf”gl—lg—lg
ffr=h

= Z Poig-19 @ Pyig-1(g1-1g-1h)g1-1-19
1

= ZPmQ®th*19
m

— Y Pug®Pug

m’-m/' =h

= TO A(Phg)
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The element R of a quasitriangular bialgebra is not unique. For a given R, we can always
construct another quasitriangular structure R’, which is:

R =70R7! (4.56)

Sometimes, the element R is refered to as the ‘universal R-element’ or ‘universal R-matrix’.

4.2.5 Exchange operators R

We will now construct some linear operators that map a tensor product of two vector spaces,
Vofl, VﬂB , to the swapped tensor product:

Vievi>vievs

A relatively simple operator with this property, is the permutation operator ¢, which only
exchang es left and right, or, when it operates on basisvectors:

o |ef*) @ [eF?) — [el7) @ [ef*) (4.57)

Let us define another map which we call R. We use the operator ¢, the quasitriangular structure
R and the irreps IT4, Hg of the quantum double D(H) in its construction:
R = oo (IIZ®15)(R) (4.58)
= 09 Znﬁ(Pg) ® Hg(g)
9

Remember that R is an element, but R is an operator. This operator R has exactly the same
effect on a state of two particles as the counterclockwise exchange operator we introduced in
section 4.1.

But the quasitriangular structure R is not unique, what happens if we use R’ = 70 R™! instead
of R?
ogo(MieNf)(roR ) =R" (4.59)

Then we find that this operator is equal to the clockwise exchange operator R ™!, the inverse of
R.

Although we have to make a choice of which R-element to associate with a counterclockwise or
clockwise exchange, physics is independent of this choice.

As an example to explicitly check the correct® function of R, according to (4.4), let R work on
two pure fluxes, |hi) @ |ha):

R(|h)ha)) = o0 T(Py)|h) @ T1(g)|hs)

= 0Y Ggn|h1) @ |ghag ")
g9

= |hihohy ') |ha) (4.60)
Apart from the three exchange operators o, R, R ™! there is the monodromy operator R?, which
is not truly an exchange operator, because it maps a tensor product-space to itself:
2.1/ A B A B
RV, @Vy =V ®@Vy

S Correct’ according to the physically irrelevant choices that we made.
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R*=(R)? = (M3 @Mf) [ hPy@Pug | =) (I @MEF) (Pygp-1h @ Pag) (4.61)
h,g h,g

We will now study some of the braid-aspects of the exchange operators.

4.2.6 Truncated braid group representations

Because the R element obeys the quantum Yang-Baxter equation, there is a similar equation
for the R operators, when they work on three (or more) particles:

R1RyR1 = RoR1Ro (4.62)

Ri=R®l1 Ro=10R

Equation (4.62) is the (ordinary) Yang-Baxter equation. The exchange operators define, thus,
representations of the braid group B,,. Therefore the operators R and R ! are also called braid
operators.

The braid operation also commutes with the action of the quantum double because of To AR =
RA (as in (4.51)):

Ro [(I2 @ TI5) A(Pyg)] = [[T5 @ T3)A(Prhg)] o R (4.63)

Here, we used this extended form, instead of just AR = RA, to once more discriminate clearly
between elements of the algebra, Prg, operators on the algebra, A, representation-matrices of
the algebra, Hﬁ//g, and operators on the representation-space, R.

To be concrete, systems containing n particles are (reducible) representations of both the quan-
tum double D(H) and the braid group B,. Because the actions of these two commute, the
multiple particle state can be decomposed into a direct sum of irreps of both D(H) and B,
at the same time. And it is this all important property which makes D(H) into a powerful
mathematical tool in the analysis of topological interactions.

When H is a discrete group, to which we always restrict ourselves, there exists an m such that:
R"=1®1 m €N (4.64)

This means we are actually working with a representation of a subset of the braid group B,.
These subsets, generated by the braid operators with the extra relation of (4.64), are called
truncated braid groups. Truncated braid groups can be finite, whereas the braid group itself has
infinite order. So we are dealing with irreps of truncated braid groups rather than irreps of the
full braid group.

Appendix C describes the braid group, the truncated braid group and also the (partially) colored
braid group.

4.2.7 Hopf algebras

It turns out that we can assign to every element b in the quantum double D(H) another element
S(b) € D(H) with the following properties:

(S@1) o A®D) =-(1®58) o0 Ab) =noe(b) (4.65)

D " S(bay) by =D bay - Slb)) = n(e(b) = exb*n'le) = e(b)1
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S(ibs) = S(b:)S(1)  S(L)=1 (S©S)oAB) =10A0SD)  e(SOb)) = e(b) (4.66)

This map S, which is linear, is called the antipode. Its role is like that of an inverse (although we
do not demand that S = 1). A bialgebra B with such an antipode is called a Hopf algebra.
For the quantum double D(H) the operation of the antipode is:

S(g)=9g7"  S(P)=Pyr  S(Pag)=S(9) - S(Pu) = Pyip-199”" (4.67)

If there exist a universal R-element in B, then B is called a quasitriangular Hopf algebra, and:
R'=S®1)R (1®S)R'=R (S®S)R=R (4.68)
For our purposes with the quantum double D(H) we do not need the antipode explicitly, so

although D(H) is a quasitriangular hopf algebra we will only use the properties it has as being
a quasitriangular bialgebra.



CHAPTER 5

AN EXAMPLE: MANIPULATION WITH D(S53)

We will give various examples of thought experiments, including the one-to-one and many-to-
one double slit experiments, in this chapter. The non-abelian anyons we use for this purpose
are based on the discrete gauge theory with D(S3) as the associated quantum double.

The examples will not only show the one-to-one and many-to-one experiments in ‘practice’,
but other interesting results as well. After some preparations in section 5.1, we will walk
through a sequence of experiments based on a single particle with initially known internal state
in section 5.2. It turns out, that the outcomes of this sequence is independent of the initial
internal state, as we show in section 5.3, and especially the vacuum-state is also allowed as
initial state. In section 5.4 we introduce a global quantum double transformation to understand
the similarity between the sequence of experiments for different initial states. The end-result of
the described sequence is some kind of ordering of the particles. We can label such a collection
of ordered particles by unentangled basis-states, even if the particles were originally created
from the vacuum. This relabeling, which cannot be directly described by a global quantum
double transformation, is introduced in section 5.6. Along the way, we find evidence to relax
the restrictions on the many-to-one experiment. Furthermore, we also introduce a pictorial
language to illustrate the various worked out examples.

5.1 Preliminaries for experiments with D(Ss)

The examples of experiments in this chapter can only be understood by using results of other
parts of this thesis. The measurement-aspect of experiments is described in chapter 3. Quantum
doubles and its global transformations are treated in chapter 4. The complete spectrum and
further properties of D(S3) are combined in appendix B. We will not explicitly refer to these
chapters anymore in the following sections.

The spectrum of D(S3) consists of eight particle types. We will use the following of those:

particle type dimension graphic basis for the internal state

/

|1) vacuum 1 Z 1)
B) chage 2 O balboys orlashlas) or [esheley or |By). 1B
[(12))  flux 3 % [12), 13),]23)
(123))  flux 2 @ 1123), [132)

61
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Notice that we use a ket |...) to indicate both the particle and the state it is in. In the table
above, we also introduce a graphical representation for D(S3)-particles. We will sometimes
explicitly display entanglement of particles in the upcoming pictorial descriptions. Although in
the ‘real’ thought experiment there is of course no direct way to ‘see’ entanglement of particles,
we will indicate it with dotted lines between particles as indicated below:

In the following sections we will be conducting various one-to-one and many-to-one experiments.
One-to-one projects on an eigenspace of the monodromy operator R?. Many-to-one project the
density-matrix of particle A on an eigenspace of the operator U, where U = Trg (RQpB).

A first experiment with D(S3) particles

We begin with a simple thought-experiment of which the results are not interesting, but which
is nevertheless representative for the other upcoming experiments.

Let us create a pair of [(12)) out of the vacuum, which we indicate by:

1) = [(12))[(12))

The state |1)) of the total two particle system is as follows:

%) H12) +[13)[13) +[23)(23)]

1
= %Hm

In the pictorial language, this pair-creation is indicated by:

[(12)> (12)>

We continue by pulling a pair of |B) from the vacuum, and we do this often.

1)~ |B)|B) [9) = <5 (162110 + =)o)
2 e (122

(12>

Now we will commence a many-to-one experiment where we will use one |(12)) as the ‘A’
particle and | B)’s as the ‘B’ particles. Note that | B)’s are charges and they have trivial braiding
amongst each-other, and these ‘B’ particles are not entangled with each other, so they satisfy
the restrictions from chapter 3 to perform the ‘many-to-one’ and to calculate its result using
U = Trg(R?ps).
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B> B> | 12>

OO0 O0Q 12 Z
may-toone |

Let us specify p4, ps, R? and the U-matrix. The |ay)|12) etc. indicate the basisvectors of the
basis in which the matrix-elements of R? are written!.

10 a)]12)
0 0
0 -1 la_Y[12) 0 0 o
1 1 10 16, )]13)
=1 = — 2: =
pa=gl =51 R 0 0 -1 0 by Y 888
)123)
)123)

(5.1)
So, U has three zero eigenvalues. Since there are no different eigenvalues, there is no further
projection nor measurement. This is also observed in the interference pattern g(#) which always
will be:

9(0) = Fuzol8) = 51(6) + 5 F1(60) = Ieboonel? + Iebetonl? (52)

Our first try did not bring us any ‘success’. So we will try something else and we will begin
with a particle which is not pair-created from the vacuum.

5.2 Special |13) flux state as a starting point of a sequence of
experiments

We will perform a different thought experiment now, actually a sequence of experiments. It is
more interesting, but perhaps physically impossible, because we assume we know a particle’s
internal state?.

Step 0: one particle in a specific state

We will begin this sequence of experiments with a particle |(12)) of which we know its internal
state and it happens to be |13). We say nothing whatsoever about how we obtained this
knowledge or this particle.

113>

—

Step 1: a ‘one-to-one’ experiment

We will draw a pair of |B)’s from the vacuum and perform a ‘one-to-one’ experiment on the
|(12)), with internal state |13), and one of the |B)’s.

'So, we are actually using the same notation “R*’ for the monodromy operator R* and the matriz elements
of R? when it operates on two particles of known type.

2This naturally depends on how the quantum double symmetry is realized physically. A pair-creation from
the vacuum is generally supposed to be ‘possible’ in theory. But there might be other realizations in which the
internal state of a particle is known. However, in the forthcoming sections the states which were created from the
vacuum, show the same properties as the particle with specified internal state which we are about to describe.
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[13> | [B> B>

5,0~ -0
one-to1one

Its R2 is the same as that of (5.1) but now there are two possible outcomes:

Probability ‘ Observed pattern ‘ Resulting state
‘ £1(6) ‘ 113)[b4) b+

N[—= N

f-1(0) [13)[b-)b-)

So there are two distinct results. If we find f_;(0) as the interference pattern we move the two
|B) charges, which we now know to be in the state |b_), to the far right. If we find the ‘41’
pattern we will also move the |B)’s to the right but not so far away. We will repeat this process
often: drawing a pair of |B)’s from the vacuum and performing a ‘one-to-one’ on one of the |B)
particles and the |(12)) probability. The probabilities to find either fi() or f_;(f) remain the
same.

When we are done with this, we still have a particle [(12)) in the state |13) on the left. On the
right we have first a pile of |B)’s in the state |b1) and more to the right we have a stock of
them with internal state |b_). There is no entanglement between the |b_) and the |b;) because,
although they exchanged with one another, they are charges and thus have trivial braiding.
The systems total internal state is now:

[13)[b1)[b4) - - [b4 ) [b4)[b-)[b-)[b—) ... |b-) (5.3)
> | B> > +> +> > >
113 B b b (& [b-
2 | O—=a—0 OOO0O OO0 000

oneto—fne

Step 2: a ‘many-to-one’ experiment

We will use a number of the charges |B) with internal state |b4) to perform a ‘many-to-one’
experiment, where they will of course serve as the ‘many’-side. Just to the right of the |13) we
will pull a pair of |(12)) from the vacuum and use the right one of these two as the ‘one’-side.

13> 12)> ((12)> b+> o> b-> b->
5 & ~4 0080 000050

| many-to-one

Although R? is the same as in (5.1) we will write it in another basis, pp is certainly different
now:

SRR . by 12)

V3 4 bo)12)

_ (1 0\|b4) 2 _ 1 0 b4)[13)
; (0 0)\b_> R= ! 0 -1 ! b_)[13)
. . R N B L)

Y T S A9 P
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The associated U-matrix is:

-3 0 0 \[12)
U= 1 0 |[13) (5.5)
0 0 —3 /|23)
U is diagonal and has two distinct eigenvalues:
Probability | Observed Resulting state Resulting
pattern density matrix
0 0 0)]12)
3 f1(6) [13)[b+) - [b)[13)[b1) .- b4) | pa=| 0 1 0 [[13)
0 0 0 /]23)
. 10 0)\/[12)
2 f_%(e) ~ Z512)[ . 0[12) + <5123)[ . ]123) | pa=35| 0 0 0 |[13)
0 0 1 /]23)

With a chance of two-third we will find a ‘one-half’-pattern. The resulting state is entangled
and is best described by the density matrix. We do not want to use the particles associated
with this outcome further (not yet at this stage that is). The collection of two fluxes and used
charges, i.e. [(12))|B)...|B)|(12)) combined (or even fused) is a charge (it has no flux). We
can safely move charges in a way that does not change the internal state of other dyons. We
will move this collection beyond the stack of |b_) particles to form a charge-waste-bin of some
sort at the far right.

If the outcome is the ‘one’-pattern we are left with a pure (i.e. a non-entangled) state and we
can move the charges |by) safely back to their pile without changing any internal state. In that
case we are left with: [13)|13)|13)[b4) ... |b4)[b=) ... |b=).

We will also repeat this process. If we find f; /2(9) we put our particles on the charge-dump,
else we add the fluxes to the |13) set. Now we have a total system of the form:

[13)[13) ... |13) |b4)[b4) ... |b4+) [b=)|b—)...|b—) |charge — waste) (5.6)

[13> 13> lo+> lo+> > o> Waste

ez 0000 0000 200z

Step 3: another many-to-one experiment?

Can we also use the |b;) to measure the internal state of another flux than [(12))? Let us try
it with a particle |(123)), of which we pull a pair out of the vacuum:

|1) = [(123))[(123))  [¢) = %[I123>I132> +[132)]123)]
P I(132)> 132>  Ib+> [or> Ib-> W*’ﬂ‘;
z22 00,0000 000 B0E@

| \

many-to-one
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We try a many-to-one with the |b,) charges onto one |(123)); pa, ps, R? and U are:

e?mi/3 g 0 0 1123)| By )
1 _1 (1 1\|By) 5 0 e300 0 123)| B)
pa=3l P =3 ( 1 1 )|By) RE= 0 0 e300 132)|By)
0 0 0 /3 J[132)|Bs)
-1 0 \[123)
— 2
o= i 6

But U is a multiple of the unit-matrix, so we cannot measure anything we do not know yet. We
will pretend® we never did this step and we certainly will not repeat it.

Step 4: fusion

We will look closer at the previous step where we measured with |b;) at a pair |(12))](12)) from
the vacuum. We use the one at the right as the ‘one’-side of the ‘many-to-one’ measurement.
But suppose we fused the left |(12)) particle with one of the already present |13) particles during
(just before, during, or after) the ‘many-to-one’ experiment.

1
[13)[(12)) - [v) =|13) ® 7 [112) + [13) + |23)] (5.8)
. [13> |133,—;\\|(12)> |(12)>| b+>  |o+> lb-> Waste
g8~ 210000 000 2008

Fusion

Before starting the experiment we would find with probability % a charge (|1) or |B) to be
precise) as the fusion product. With probability % we would find a particle that does have flux
(1(123)), |D), or |E)). At the end of the ‘one-many’-experiment, if the outcome was f;(#) with
100% chance a charge will be found when fusing the two particles. If the outcome were f;(6)
then with complete certainty a particle with non-trivial flux is found after fusion.

So, the fusion probabilities completely follow the outcome-probabilities of the ‘many-to-one’-
experiment.

Step 5: a forbidden ‘many-to-one’?

Until this point we have only conducted thought-experiments as explained in chapter 3 and
under the restrictions as we put them there. This meant, for instance, that when doing a
‘many-to-one’ the ‘many’ particles should have trivial braiding. We will now deviate from this
rule.

We will use |(12))-fluxes as ‘many’ particles; these fluxes will in general have non-trivial braiding.
But the fluxes we will use, have a specific internal state, which gives them trivial braiding
nonetheless. So, with this restriction on the internal states, these particles have trivial braiding.

> 13> [13> | B> B> Ib+> Q ’ 2
22 ez 0.0 0000 L %QQ%
many-to-one | Z

3This is one of the benefits of doing thought-experiments.
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These particles are the |13) particles, of which we have created quite a lot in the steps above.
As the ‘one’-side we will pull a pair of |B) particles from the vacuum. Then p4, ps, R? and U
become (where we still use the same R? as in (5.1) but in a suitably reshuffled basis):

-1 0 0 V3 0 0 \[12)b)

001 0 0 0 0 |[13)by)

[0t 0\ meo| 00 b 00 4vE e
przan P 00 0] 1o o L3 0o o [n2p-)
00 0 0 -1 0 [[13))

0 03 0o o L J23)p)

U= ( (1) —01 ):Zji (5.9)

From which we conclude that in 50% of the times we will end up with a new |b;)|b4) and in the
other case with |b_)|b_). This creates no new states, but we can also ‘make’ |b;) particles by
doing a ‘many-to-one’ with |13)’s instead of a ‘one-to-one’ with a |13) particle. So the resulting
particles (and their internal states) are not new, but the fact that we performed a ‘many-to-one’
with fluxes is a new result. Remember though that we started this section with the assumption
that we already had a |(12)) particle with specific internal state |13).

We will next assume that we have a particle of type |(12)) but its internal state can be arbitrary.
We will then perform ezactly the same steps as we did here, where we base actions, like putting
particles on specific piles, on the observed interference patterns.

5.3 Arbitrary |(12)) state as a starting point of the same se-
quence

We will repeat all the steps of the previous section. Also here, we start with a single particle
|(12)) with known but arbitrary internal state. It turns out that in this sequence of experiments
the observations, i.e. the interference patterns, do not depend on this initial internal state.

Step 0: a single particle with arbitrary state

Now we start with a |(12)) with arbitrary initial state which we will denote by:

Cl..)12) 4+ 7| ...)[13) + 6]...)|23) ICP+ 2 +102=1 (5.10)

[(12)>

Since this particle might be entangled (with particles we assume to lie at the left) it is perhaps
even better to talk about an arbitrary initial density matrix. Notice that the case that [(12)) has
internal state [13) and the case that it is pulled from the vacuum are covered by this arbitrary
initial state.
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Step 1: one-to-one with charges from the vacuum

[(12)> [B> B>
8105
0ne~to—1>ne

Step one is to draw a pair |B)|B) from the vacuum and to perform a ‘one-to-one’ with the
particle |(12)), just as before. The internal state of the vacuum-pair is:

9) = 5 llala) +lala)] = 2 [be)lb) + -5 = = llesdlex) +le)e-)] (511)

The density matrix for both of the |B) particles is:

L,

D=

p:

and it obviously has this form in each basis. The probability of finding eigenpattern f;(6) is
(see chapter 3):
p1 = Tr(E1pas) = TraTrp [E1(pa @ pp)] (5.12)

We calculate p; after writing down Ej in the basis in which it is diagonal:

1 |a)[12
0 la_)|12
1 |b4)[13

)

)

)

Ey

)

)
0 b |13§ (12)) = pa [B) = p5 (5.13)

1 |c+)123)

0/ |c)|23)

p1 = TryTrp [E1(ps @ pp)] = %TTA(pA]l) = % (5.14)
)

So, this probability p; is independent of the (arbitrary) density matrix of particle |(12)). Like-
wise for the eigenvalue —1.

We repeat this step and we move all the charges which yielded f1(6) to the ‘4+1’-pile, and the
minus-ones to the ‘—1-mountain. All particles are now entangled with each other. We can
explicitly write the total systems state:

¢l )12) Jag)ar) .. Jas) Jas)a) ... Jaz)
Y= I8 (b be) . [by) [b)Ibo) - [bo) (5.15)
+0.123) fepler) o fer) fedes) . feo)

12)> B> B> R
8] 0—=2-0 0000 000000

oneto—1>ne
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Step 2: ‘many-to-one’ with the ‘+1’ charges

The next step is to use the particles from the+1-pile to perform a ‘many-to-one’ on one member
of a pair [(12))|(12)) from the vacuum. This is something which we have not done before.
Although the particles |B) do have trivial braiding the density matrix pp for each consecutive
particle of the ‘many’-side is not a constant any more. Both p, and pg will change with each
measurement of the angle. We nevertheless do the experiment in this example, which we worked
out by hand. The outcomes do not depend on the initial state.

& & -8 codo 000000

| many-to-one

We will find the same patterns as before, when we started with |13):

Probability ‘ Observed pattern
f1(6)
f1/2(0)

WIN W=

If the ‘plus’ pattern is found, the (not yet normalized) state has become:

%|--->|12> 12)]12) [ay)as) .. fas) Ja_)a_)...Ja_)

+ DI13) [13)]13) [b3)1bo ). by ) [b)Ib-) ... [b-) (5.16)

N
2.
+ %|...>|23> 123)123) [ex)les) .- fes) leYe ). le)

The ‘minus-one-half’ state is really ugly, and contains terms like (with ¢ and # some unknown
and uninteresting values):

¢|12) (|13>|13> +ei¢|23>|23>) 1.} nl3) (|12>|12> +ei<13|23>|23>) )

which are some sort of ‘cross-terms’, because |12) is not entangled with another [12) but with
the other two of the basis-vectors, |13) and |23).

Just like in the previous section, we move the to eigenvalue —% associated particles to the
charge-dump. After repeating this often, the normalized total internal state becomes (pretty
entangled):

Cl..)[12) [12)]12)...[12) |ay)|ay) ... |as) Ja—)|a=)...|a_) |waste)
Wy =" 4+ n|..)13) |13)[13) ... |13) [bp)|bs) ... |bs) [6-)]b—) ... |b_) |waste) (5.17)
+ 0]...)|23) [23)]23) ... |23) |eg)|eq) .- et) |e=)e=) ... |e—) |waste)

(2> 112> Waste

geoos 0000 0000 eo08
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Step 3: still nothing

We could again try to use the +1 charges to scatter of a |(123)) particle from the vacuum. But
also in this case this will give one possible eigenvalue (—%) and thus no real measurement. We
totally skip this step.

Step 4: fusion results also remain the same

If we consider again to fuse a [(12)) particle, which forms a pair with another that is used in a
‘many-to-one’, with an already present |(12)) particle, then we will find the same probabilities
as in the previous section. So, also with an arbitrary initial state, the fusion probabilities follow
the outcome of the many-to-one experiment of step 2.

112> (12>~ (12> 12 | Waste
& ;; ’|oooo 000
‘h\

| many-to-one
Fus on

Step 5: many-to-one with fluxes

This experiment creates, not to our surprise, again plus and minus eigenpatterns and ditto
charges, although this result is obtained after explicit calculation by hand.

~ |(1g)> |(12)> |(12)> | B> B> I , - Q | |
22 s2gs 0.0 0000 L7 o}
\>/ | . ’ =z
many-to-one >

By now, we have probably illustrated enough the fact that the outcomes of measurements do
not depend on the initially chosen internal state of the first particle [(12)). They are, of course,
the same if we start with |13) as the initial internal state, but the measurements are also the
same if we pull the first [(12)) in a pair from the vacuum.

Let us know search for a (mathematically supported) reason to explain the peculiar similarity
between the outcomes of the experiments with different, even arbitrary, initial conditions. We
will find an answer to this question in global transformations of the quantum double.

5.4 Global D(Ss) transformations explain similarity

It seems rather peculiar that the results of sections 5.2 and 5.3 are exactly the same. That is,
the interference patterns we would find are the same; their internal states are not. The state of
the first is completely unentangled, the other more entangled than one can ever get, in a way
of speaking.

|1) = |13)|13) ... [13) |by)|by) ... b4) |b=)|b—)...|b—) |charge — waste) (5.18)

¢l..)2) |1
lba) = + ml..)[13) |1
+ 0...)]23) |2

2)[12)...[12) |ag)|ay) .. |ay) |a—)|a_)...|a_) |waste)
3)13)...13)  |byp)|by) .. |by)y b)) |b=)...|b=) |waste) (5.19)
3)[23)...123)  Jepdex) - -ler)  fesYem)...|e)  |waste)
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And the only difference at the beginning was in the internal state of one particle of type |(12)):
[initial 1) = [13)  |Winitial 2) = % [112) +[13) + [23)] (5.20)
if wetake (=n=60= % for simplicity.

We can relate these two initial states to each other by some unitary transformation. But there
is another transformation that turns |¢initia1 1) Int0 |¥initial 2)- This transformation is:

II(g) geD(S3) g (13) +

g= T (12) + 2-(23) (12), (13),(23) € S3 (5.21)

\/E? V3

T(g)[13) = 75 [112) + [13) + [23)]

When doing a residual global gauge transformation, one uses II(g) where g € S5 is an element
of the discrete group. Here, we take a linear combination of elements of the group, which of
course are contained in D(S3).

This transformation II(g) is not unitary. As a matrix it has the form:

(g) = =

g fixed as in (5.21
7 g (5.21)

—_ =
—_ =
—_ = =

Nevertheless, we assume for now that II(g) is some sort of allowed global transformation. Let
this global transformation now work on the state |13)|b4)[b4):

g:  1B3)by)by) —» (Melled) (A 1)A(g)) [13)[b+)|b+) (5.22)
Ag) = 75(13) ® (13) + 72(12) ® (12) + 75(23) ® (23)
(A DA@G) = 5(13) @ (13) @ (13) + 55(12) ® (12) ® (12) + 7(23) @ (23) @ (23)
~5113)[b+) 1)
g:  13)|ba)by) » + f|12>|a+>\a+> (5.23)

+ 5l28)es)les)

This means g is a global transformation and it transforms |¢1) of (5.18) into |¢2) of (5.19), with
proper adjustments for (,n,0 of course. This transformation is linear, but it has no inverse,
since g has no inverse in the algebra. Since all group-like elements of D(H) act on the vacuum
as the identity, this also means that the global g transformation leaves the vacuum intact, up
to a constant factor:

I(9)|1) = 1) (5.24)

All elements of D(H) commute with all R?, especially group-like-elements like g; therefore the
action of g also commutes with all R%2. All measurements with one-to-one and many-to-one
experiments depend only on expectation values of R? and are thus invariant under the action
of g.

So, we found a way to transform a simple problem, i.e. experiments with unentangled particles,
into a more complex problem, i.e. experiments with initially entangled particles. The simple
problem we can solve using techniques as described in chapter 3, using the U-matrix for instance.
The complex problem cannot be handled by these techniques, but the outcomes are the same
as that of the simple problem. The corresponding total system’s internal state of the more
complex problem can at any time be calculated after the global transformation under g.
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5.5 A similar ordering with the flux |(123))

The sequence of experiments as described in section 5.3 is some kind of ordering process, in
which we make piles of particles with equal internal states, i.e. outcomes of experiments are
the same for these particles. We are not restricted to the use of particles of type |(12)) in this
ordering process. There is also a flux [(123)) in the spectrum of D(S3), on which we can base
our ordering.

The flux |(123)) has a two-dimensional internal space and has trivial braiding with other |(123))
particles independent of internal states. If we start with an initial state:

Y =al..)123) + 8]..)132)  |o* + 8P =1, (5.25)

we can, after doing ‘one-to-one’ and ‘many-to-one’ experiments similar to those in section 5.3,
make a collection of particles ordered on outcomes of measurement. This collection exists out
of: initial fluxes of type |(123)), ‘anti-fluxes’ of the same type |(123)), €2™*/3 charges of type |B)
and e*™/3 of type |B). The total system’s internal state is:

al...) |123)...[123) [132)...[132) |B1)...|B1) |Ba)...|Bs)

VY= By [32)...1132) [123)...1123) |B)...|Bs) |Bi)...|B1) (5.26)
initial anti N . " AT
o |(123)? "71(123)> o » exp(z*p‘mr/3) . _exp(4*p'_f'/3)
0000 0000 - QQBQ QO 000000
I

But, if we built collections with only particles that were pulled from the vacuum, we cannot
combine this ordering based on [(123)) with the one based on the [(12)) flux of section 5.3: if
we use the ¢2™/3 charges to do a ‘many-to-one’ on a |(12)) flux, there is but a single outcome
of the experiment, just like in step 3 of sections 5.2 and 5.3. Other possible measurements also
yield no particles with different internal states than the ones we already obtained.

ordered
collection
based on |(123)> O

ordered
collection
based on [(12)>

2

many-to-one experiments
in both directionsyields a

single eigenvalue and thus
no real measurement

There is, however, a way to build a collection in which there are both |[(123)) and [(12)) fluxes.
This ordered collection is built from (highly entangled) vacuum-pairs, but can equally well be
described by unentangled particles, as we will now demonstrate.

5.6 Identifying unentangled basis-states by relabeling

Let us pull a pair of |(12)) fluxes from the vacuum, which we know is in the state:

5 [112)[12) + [13)[13) + [23)|23)]

but we label this state with:
[13x)|13%)
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I12)> 1a2)> 130> 130>

where we use the star x to indicate that we use another ‘basis’ than the standard one, although
this label is certainly not the result of a basis transformation. Basis transformations cannot
change an unentangled state into an entangled one or vice versa.

We pull multiple pairs of |B) particles from the vacuum, in the state |b,)|b;) + |b-)|b—), and
perform a ‘one-to-one’ on the |13x) and one of the | B) particles. The corresponding eigenvalues
can be plus or minus one. If we find plus we call the state |by*), and |b_%) for the minus-case.
The total, unentangled state becomes:

[13%)  |byx)|bpx) ... |byk) |b_*)|[b_*) ... |b_%) (5.27)

B>
137> {3 ‘ B> l o> Ib- >

z g |0—=a_-20 OO0O0O0 0000

one-to-one

Next, we pull a new pair of |(12)) particles from the vacuum. And we perform a ‘many-to-one’
on one of them with the |b;*)-charges. If U-eigenvalue +1 is found (with probability %), we
know that these |(12)) particles have internal state equal to [13%). If we find eigenvalue —3 this
internal state is not |13%) but some other. This, eigenvalue —%, was the outcome we threw on
the charge-waste-dump in sections 5.2 and 5.3. Here, we will use it further and we will call the

internal state of this particle |12x).

[120> o> O
130> 130> lo+o> lo-

22 0000 0000 20000

We can pull more pairs of |(12)) and |B) from the vacuum and do more ‘one-to-one’ and ‘many-
to-one’ experiments and create a total state of the form:

[13%) ... [13x)|bypk) ... [bpk)|[b_k) ... [b-*)®
®[12%) ... |12%) [ay*) . .. |apx)|a—x) ... |a—*)® (5.28)
®[23%) ... [23%) [cy*) . .. [epx)|e—x) ... |e—*)

This state is unentangled in the relabeled basis, even though we only used particles pulled from
the vacuum. In terms of the |12),|13),|23) basis this state is extremely entangled and almost
impossible to write on one sheet of paper. But in terms of the basis [12x), |13x), |23x) it can be
written on one line (but we used three...... )-

Although this relabeling is very close to the global g transformation which transforms an un-
entangled state into an entangled one, as described in sections 5.4 and 5.2, 5.3, this relabeling
cannot be described by a global D(H) transformation alone*.

What about particles of type |(123))? We create them by merging already existing starred
fluxes: If we fuse one |13x) with one |12%) we obtain the state: |123x) of particle type |(123)).
If this has been done we can create more |123x) and also |132%) by pulling pairs of |(123)) from
the vacuum. But it is important that the first |123%) is created by fusion, for only this state
acts correctly with the other starred basis-vectors.

“This is because global D(H) transformations cannot create crossterms which occured in the ‘ugly’ charge-
waste-terms of sections 5.2 and 5.3. The relabeling is however very close to a global D(H) transformation.
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130> [120> [1230>
fusion

We note already at this moment, that pairs pulled from the vacuum usually have a density
matrix which is a multiple of the identity matrix and thus have the same form in any basis,
including the ‘starred’ basis. Meaning for instance, that a vacuum-pair |(12))|(12)) also has the

form:
% [|12%)[12%) + |13%)|13x) + |23x)|23%)]

We will come back to this later, in chapter 7.



CHAPTER 6

QUBITS, GATES AND MEASUREMENTS WITH
D(H)

There is but one reason why this chapter, of such modest size, should stand on its own and
not merely figures as a section somewhere else. For in here, we make a start with unifying the
contents of all previous chapters: Quantum computation, double-slit experiments and discrete
gauge theories. With non-abelian anyons emerging from D (H )-symmetries we want to construct
qubits, gates on those qubits and measurements of those qubits. Although this subject is crucial
to quantum computation with non-abelian anyons, our main efforts have not been concentrated
on this aspect. It is certainly a non-trivial subject, that deserves an in depth analysis on its
own.

In section 6.1 we construct a qubit with D(S3)-particles from a pair of fluxes of which the total
flux vanishes. These qubits can be measured on the standard basis. We construct a Not-gate
in section 6.2. If we work in a ‘relabeled’ basis, we can create two superpositions of |0) and |1),
as shown in section 6.3. This is all that can be achieved with the particular content of D(Ss).
So, for this example the resulting set (of gates, measurements and qubits) is certainly not a
universal set, but it is all we have been able to investigate in detail up to this moment. From
this exercise it does become clear however, that much more can be achieved for larger groups.

We continue in section 6.4 by giving an example of how one should not mix definitions of qubits
and gates. In section 6.5 we state that gates, qubits and measurements with D(H)-particles,
with H # S3, should at least be compatible with each other; but we can say little more about
a general D(H)-theory at least as universal sets are concerned.

6.1 Fluxless pairs as measurable qubits

As suggested by Preskill [10], it might be clever to work with pairs of fluxes of which the total
flux vanishes!. A pair [13) ® |13), or |123)[132) (where we dropped the ‘®’), or a|123)|132) +
[|132)|123) are all good examples, as are the pairs which we pull from the vacuum.

If we make the following identifications:

[123)[132) = [0)  [132)[123) = |1), (6.1)

'Fluxless pairs are nice, because as a total they behave as charges; charges do not influence (do not interact
with) each other when they are moved around (exchanged) in the two-dimensional setup. Working with charges
relieves us of the job to keep track of every particle and how it affects and is affected by the other particles.
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then we may consider this as a qubit, because the internal state of flux-less pairs of two [(123))
particles is two dimensional®. Since the two fluxes combined have zero flux, if we call one of
them ‘flux’ the other may be called ‘anti-flux’.

We can measure such a qubit, with arbitrary® state a|0) + 3|1), by performing a many-to-one
experiment with for instance |B) charges that were taken from the pile labeled by €?™/3 (as in

section 5.5). This experiment uses only one of the pairs out of which the qubits is made, but
projects the qubit on either |0) or |1), with the proper probability.

6.2 The Not-gate

We can perform an operation on these qubits, by doing an R?-operation with an arbitrary
|(12))-particle.

The result is:

R?(10)](12))) = R* (|1)](12))) (6.2)

R? (11)](12))) = R* (|0)](12))) (6.3)

[(123)>  |(123)>

N 2> 129> a2
’ \ /
Q008 )— © =
flux ~ antiflux antiflux gy

|0> >

So this is a linear operation, because R? is linear, that interchanges |0) and |1). This operation
is also called the Not-gate. So, when the Not-gate operates on a linear combination of |0) and
|1), then:

Not (al0) + 811)) = al1) + 5/0) (6.4)

But there is another way to achieve the same thing: by just interchanging the flux and its
anti-flux, in either direction.

123 123
azs> 129> [(123)>  |(123)>

‘@@ — 0 ©

flux  antiflux At flux

|0> [1>

The Not-gate is nevertheless a real, and our first, 1-qubit-gate, although the Not-gate does
not gain us anything, in the sense that it does not create new states that we cannot create
otherwise.

2The flux-less pair of two |(12)) particles is three dimensional and thus not directly useful to function as a
qubit.

3At this point we do not have the ability to create arbitrary states, we can only prepare states with o and 3
equal to 0 or 1.
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6.3 Creating combinations of |0) and |1) in the relabeled basis

But what if we put a pair, a qubit, behind the double slit and perform a ‘many-to-one’ experi-
ment with many |(12)) fluxes?

o
g2 SoBues

fIUX antiflux

The associated U-matrix has two distinct eigenvalues £1. Then we can ‘make’, apart from |0)
and |1) also the following superpositions:

1 1
i 1)) il
vl vz
Where we can discriminate between the two by the observed interference pattern: f;(#) for the

‘+’-result and f_;(f) for the minus-result. The probabilities for either eigenvalue do however
depend on the internal states of the particles.

) +11)] [10) = [1)] (6.5)

Furthermore, this many-to-one requires both a |(12)) and a |(123)) flux. This is not yet a
problem, because we can create two separate collections, one based on a pair of |(12)) particles
drawn from the vacuum and another collection based on a [(123))-vacuum-pair. We will use
|(12)) particles from the first collection and a [(123)) particle from the second. But we will
always find f1(0) as the interference pattern. This means that we can actually create only
qubits with internal states |0) or |1), which is not really interesting.

ordered
collection
based on |(123)>

ordered
collection
based on |(12)>

—

O

222 0O

Figure 6.1: If the |[(12)) and the |(123)) come from two different collections, but both
created from the vacuum, then no new qubit-state can be created.

But as showed explicitly in chapter 5, we could order our particles in another way, and after
relabeling to the ‘starred’ basis obtain basis-states for both |(123)) and |(12)) types of particles.
So, let us continue in the relabeled, ‘starred’, basis.

We now identify a qubit as the flux-less combinations of two |(123)) particles in the starred
basis:
10) = [1234)[132%)  [1) = |132%)]123%) (6.6)

The Not-gate stays the same: an R?-operator with any particle of type |(12)) and the qubit or
just an exchange of the two fluxes that form the qubit; both change |0) into |1) and vice versa.
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Let us now do the ‘many-to-one’ with these states with many of the |13%) and the pair
|123x)|132%) = |0). With this experiment, the two plus/minus states from (6.5), which are
additional states, can now be observed, with equal probability of %

Note that these states were created by measurements, not by unitary transformation. Apart
from the Not-gate, there is no other possible transformation in the scala of D(S3)-operations
to operate on these qubits.

ordered O

collection
based on |(12)>

—

~—22Z2 0

Figure 6.2: In the relabeled basis, all particles are aligned to one initial particle that may
have been created from the vacuum. The plus/minus qubit combinations from (6.5)
can be obtained in this setup.

6.4 Example of a suggestive mistake

We will now give an example of how one can make errors in defining gates, qubits, etc., which
shows the subtlety of the subject we are dealing with. The example we use here continues using
fluxless pairs of particles of type |[(123)) as a qubit. A basis for the internal state of such a pair
is {|123)]132),]132)|123) }. We still use these basisvectors as qubit-basisvectors |0) and |1), but
we write them as a primed qubit-basis: {|0),|1')}.

We can measure the state of the qubit in this primed standard-basis by performing a many-to-
one experiment with an appropriate | B) charge on one of the members of the pair. Furthermore,
we know? that in this particular basis we have the ability to make from a state of one qubit
al0’y + B|1') a state of two qubits of the form: «|0')[0") + 3]1)[1').

Let us now consider another choice of basis for these qubits and define the qubits 0 and 1 in
the hat basis by |0) = (|0') 4 [1'))/Vv/2, |1) = (|0') — [1"))/V/2. We can measure the state of the
qubit in the hat basis {|0),|1)} by doing a many-to-one experiment with |(12)) fluxes and both
particles that form the fluxless pair. Furthermore, in the hat basis, if we have two pairs, i.e.
two qubits, we can consider this as a single qubit state under the following identifications:

10)10) = 10)  [0)]1)

1R

Doy =) min =0 (6.7)
so this is some kind of merging® process.

If we would mix up these two bases, and both call them {|0),|1)} by dropping the hat and the
prime, we would think we could perform a controlled not. For let there be two unknown qubits,

4We know this from thought-experiments that are similar to the examples in chapter 5. Here, we will not
show or prove this explicitly.

5This ‘merging’ might be understood as some kind of fusion process of the two pairs. However, the merge-
identifications in the ‘hat’-basis do not depend on the kind of fusion, as the measurement of the qubit in the
‘hat’-basis uses the whole pair (or pairs) between the double slit, and not a single particle.
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a|0) + B|1) and ~|0) + §|1), then their combined state becomes:
|00)

a|0) 70) _ +87/10)
= 6.8
+81) © +5)1) T +aslol) (6:8)
+/34]11)
Now, we start with the same two qubits; from the first qubit, we make a two-qubit state:
a|0) 7(0) |00) 7(0)
o) @ sty T s © o) (6.9)
and then we merge the second and third qubit:
ay|00)
+p|11) +4|1) +a6]01) ’
+/4]10)

If we compare (6.8) and (6.10) we see that the latter is equal to the first state to which a
Controlled Not5-gate has been applied, with the first qubit as the control-qubit.

But this is not possible, since we mixed operations that are valid in only one particular basis.
For example, although two pairs, and thus two qubits, both in the state |O) may be considered
as a single qubit in state |0), this latter state is not equal to (|0') 4 |1’))/+/2. For this qubit
exists out of four |(123)) particles and such a state is not measurable in the basis {|0'),|1)}.
Measurement in the basis {|0),|1’})} can be done with one member of a pair, not with one
member of four particles and certainly not with two members of two pairs.

We hope that the example in this section has been an instructive one but also sufficient warning.

6.5 Constructing compatible qubits, gates and measurements
is non-trivial

If we want to do quantum computation with non-abelian anyons, we need qubits, gates and
measurements as we explained in chapter 1. What we have shown is that non-abelian anyons
are governed by the quantum double D(H); that particles are described by D(H)-irreps, that
internal states can be changed by exchanging particles through the operators R and R~!, and
that the internal state can be measured through double slit interference experiments. Further-
more we have described a way of creating particles with a known internal state by the ordering
process (which will be described in more detail in section 7.6). The question remains, how to
turn these non-abelian anyons into a quantum computer, because there seems to be no one to
one correspondence.

Most likely, each qubit, gate and measurements will be a fized combination of some particles and
actions with these particles. Qubits, gates and measurements will then be some sort of higher-
level objects or boxes, where the boxes are made of the non-abelian anyons and R operations
and measurements. For example let the box labeled by ‘qubit’ be made of a fluxless pair of
particles of type [(123)):

S

qubit -

5The ‘Controlled Not’ is discussed in chapter 1.



ouv \oéUDllO’ AL L) AUND WVIDAODUIVLIVILIIIN 1O YY1 11l L/\_ll.)

A gate is a box that operates on a qubit box and returns a qubit box. We could graphically
represent the Not-gate of the previous example of section 6.2 and its operation on a qubit as
follows:

'//<_—;‘\”\
Z = | auit & Q \‘.‘ 3 g qubit 5
- - . OF —

What is really important in such a framework is that all bozes have to be compatible. If some
box returns a qubit, this qubit should behave as a qubit for all other boxes. In the example of
the previous section, 6.4, the merging of two qubits into one in the hat-basis was obviously not
compatible with the measurement of a qubit in the prime-basis.

6.6 Does D(H) become universal for some H?

Still unanswered, at least in this thesis, is if there exists a finite group H, for which the particles
in the D(H)-spectrum supply a universal set with which quantum computation is possible. For
H = S5, which is a very small group, we never expected to find a universal set. It is reasonable
to assume that for larger groups, more gates can be constructed, and probably also more types
of measurements. Whether the set of qubits, gates and measurements will become universal for
sufficiently large H is not known.

Of course, Kitaev and Preskill have claimed that the groups S5 and As allow the construction of
a universal set. But their initial assumptions, especially concerning the ability to measure the
internal state of particles, seem different from ours’, and may thus not be directly applicable
to our setup; This, however, does not rule out that their results are correct.

It will be an entirely different story if there exists a global analogue of the Aharonov-Bohm
effect. If that is the case, then the internal states of the non-abelian anyons are measurable for
sure. We can then skip the whole problem of initial states or how to measure states and only
concern ourselves with gate construction. But as for now, a local gauge description is all we
have.

"Mostly due to the fact that both Kitaev and Preskill refer to unpublished work; details concerning the
underpinning of their claims is therefore hard to get at.



CHAPTER 7

DO VACUUMSTATES EXHIBIT THE WHOLE
STRUCTURE OF D(H)?

The examples with D(S3) in chapter 5 show that if we do experiments with vacuumpairs alone,
non-trivial outcomes of the experiments can be obtained, even stronger: the same results are
found if we begin with a particle in a specific, unentangled, internal state. But strictly, the
vacuumstate is a singlet state. It is reasonable to think that a system consisting only of vacu-
umpairs will be restricted to some ‘substructure’ of D(H), in the sense that only some facets of
the full, unrestricted, quantum double D(H) can be seen, perhaps even a trivial substructure.
Nevertheless, the examples with D(S3) show otherwise. Furthermore, the examples show a kind
of ordering process, where identical particles with equivalent internal states were put on piles.

The behaviour of non-abelian anyons in the D(S3)-examples lead us to believe that some of
it should be true for general D(H). But it is not completely clear yet what ‘some of it for
general D(H)’ is, so we will not make a statement about ordering and behaviour of outcomes
of experiments for general D(H) vacuumpairs. In this chapter we will present some smaller
claims; these, more simple, claims support, when they are combined, the description of the
ordering process as a whole. These smaller claims are mainly concerned with the assumption
that particles in a vacuumstate have a unital density matrices (this is the first claim). We
have been unable to solve our claims (except one) for general D(H), which turns these claims
into conjectures. So, this chapter mainly consists out of conjectures for general D(H) that are
checked for D(S3). In that sense, this chapter should be considered as being speculative.

At the end, in section 7.7, we briefly turn to a paradox that rises in the ordering process for
vacuumstates: as the non-abelian anyons are described by a local gauge theory it seems odd
that we can determine their internal states. We apparently solve this paradox by stating that we
do not need the description with known internal states of non-abelian anyons: physical results
depend rather on the representation-theory of the underlying model.

Although we are not ready yet to make a solid statement about the ordering process as a whole,
the conjectures of the following sections are concrete statements; we regret that we have not

been able to prove them. But, there is another known theorem, which we failed to prove by
ourselves. This is the fact that the exchange and monodromy operators are of finite order:

R"=1®1 for some m € N
Techniques to prove this statement might also be useful to prove the conjectures in this chapter.
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7.1 Vacuumstates have a unital density-matrix

In the spectrum of particles of the quantum double of a finite group H, the members of a pair
drawn from the vacuum have a density matrix which is a multiple of the unit matrix 1. A pair
is ‘in the vacuum state’ when, upon fusing the two particles, the vacuum channel will appear
with unit probability.

For pure fluxes it is easily shown that the density matrix is equal to A1. The state |¢) of the
two particles, of which the first is labeled by the conjugacy class 4C, has the following form:

1
= hY|h ! 7.1
[v) Mh§c| MNhT) (7.1)

This state |¢/) has all the properties of the singlet vacuum state and therefore is the vacuum
state. The density matrix for both particles is p = ‘7&7‘]1.

We could use a similar construction for pure charges to show that a vacuum-pair has p = AL.
For dyons however, such a construction is perhaps less obvious, but always possible given an
explicit finite group H. We will now try a more general way by considering the behaviour of the
density matrix under the action of the quantum double D(H). But let us first look at density
matrices for particles labeled by irreps of a group, instead of a quantum group.

Let there be particles labeled by irreps of a finite group G. Furthermore there exists a ‘vacuum’
state which is invariant under the the action of the group G. This means that for a single
particle labeled by irrep D, in the (pure) state |¢):

D(g)ly) =l¥) Vge& (7.2)

The density matrix is given by p = |¢)(¢)|. Because the action of the group D(g) leaves the
state |¢) invariant, it should also leave the density matrix invariant, which implies that:

D(g)pD(9)t =p VgeQ@, (7.3)

since the action of g € G sandwiches p between D(g) and its adjoint. But G is a finite group,
therefore D(g) can be chosen to be unitary. We multiply (7.3) from the right by D(g) and
obtain:

D(g)p=pD(g) Vg€eG (7.4)

Now, Schur’s lemma tells us that p is a multiple of the unit matrix, because D(g) is an irreducible
representation of the group G:

p=2Al (Trp=1 = A=1/dim D) (7.5)

The density matrix has this form also, if there is more than one particle. With two particles,

one labeled by irrep D4, the other by D, the vacuum state |¢) is invariant under every g in
G, which operates as the tensor product of the two irreps:

D4(g) @ DP(9)l) = 1Y) Vge@ (7.6)

The density matrix p, for the first particle is given by:

pa = Trg|) (Y| (7.7)
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Because the trace has the cyclic property, p, changes in the same way under the action of G as
in the case of the single particle:

pa S Tv, DA(g) B<>|¢><¢| DA(9)' @ DB(g) (7.8)
= T, DA(g) @ [DP(9)'DP(g)] 1) (w| DA(g)' (7.9)
— Tr, D(g) |¢>< |DA<> (7.10)
= DA(g)paD(9)' (7.11)

Because of Schur’s lemma, if p, is invariant under the action of G, it should be a multiple of
the unit matrix.

Now for the quantum group D(H). If a particle in the spectrum of D(H) is labeled by irrep
14, and this is a vacuum state |¢), does this mean that for the density matrix p:

?
p=TIA(Pog) p TA(Pyg)' ¥V Pug € D(H) (7.12)

and does this imply that p = A1? Does Schur’s lemma exist for algebra irreps? At first sight no
positive answer to these three questions can be given. As for (7.12), there are many elements
Py,g for which IT4(Py,g) = 0 and thus the equation fails. But let us examine this problem closer.

If a system |¢) of multiple particles is the vacuum state, then the action of the quantum double
on this multi-particle state is:

Phg: [9) — [¢') = TIG(Pag)|¥) (7.13)
5 (Pyg) = { (1) iz ; ) (7.14)

Let us call one particle A and label the other particles by B (so multiple particles are labeled
by a single B). The density matrix p, for particle A is:

pa = Trp|yh) (Y] (7.15)
Let Png operate on p,
ifh=e
Pagipa— o =Tl = { 0 02 (7.16)
We can sum over h:
> Pugipa— pa =Trs > W)W = pa (7.17)
h h

But since ), P,g = g, g € H this is the action of the finite group group H itself, by the
induced representation 74 (g):

o = Ty ST @TP)(A(Pag)) [0)(] [(IT* @ TI%)(A(Pwg))]' (7.18)
h,h

= Tr, T(g) ® TB(g) [¥) (0| TA(9)' @ TB(g)' (7.19)

— TA(g) pa TA(g)' (7.20)

= Pa (7.21)
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However, since T4 (g) is in general reducible we cannot claim p, as a multiple of the unit matrix.
We can, of course, decompose! T (g) in irreps D(g) of the group H. If we look at p, in this
particular basis, we find p, to be block-unital:

ML 0 -0
0 Xoly -+ 0 "
pa=1 . ST T7(g) = D1(9) ® D2(9) @ ---© Dulg)  (722)
0 0 0 Ml

We obtained this result by applying both the Schur lemmas?. The ); € [0, 1] have to obey the
unit trace of a density matrix:

> NidimD; =1 (7.23)
%

The states with density matrices like in (7.22) are invariant under a residual global gauge
transformation g € H, but are not neccesarily vacuum states. A nice proof of the fact that
pairs pulled from the vacuum have a unital density matrix still lacks, which implicitly makes
this fact a conjecture.

Although we found no true proof, we did gain something. For we let B, in (7.15) and (7.18) ,
indicate an arbitrary number of particles. This leads to the conjecture that not only vacuumpairs
have a unit density matrix, but all particles of a multi-particle vacuum state have a density
matrix equal to a multiple of 1. This is illustrated in fig. 7.1.

Figure 7.1: No matter how entangled particles can be with each-other, if their total
system state is the vacuum state, then all these particles have a density matrix which is
a multiple of the unit matrix 1. This is especially true for pairs which are pulled from
the vacuum.

Let us for clearity, repeat the conjecture that we make in this section:

!Perhaps a more proper notation for this decomposition is 74(g) = @, niD*(g), but the notation of (7.22) is
suitable enough for the moment.

*The first lemma is well known: for an irrep D(g) of a group G, if D(g)A = AD(g) for all g € G, then the
operator A is a multiple of the unit matrix. The second lemma states that, for inequivalent irreps D(g) and
D'(g), if BD(g) = D'(g9)B, for all g € G, then the operator B is a zero operator.
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Given a system with n particles, n > 2, of which the total system’s state |¢)) can be written,
with basisvectors |ig) for particle k, as:

) = P12 in) @ lig) © -+ © Jin)
If under global transformations P,g € D(H) the total systems transforms as the vacuum:

Prg: [¥) — O(Prg)|¥),

then the density matrix p; for each particle j is a multiple of the unit matrix:

1
pi=Tr [)W[=X1; Vi (} ).

i kA ] " dimj

7.2 Fusion of, or R? on two vacuumstates yields all channels

If we use two particles, which are not entangled with each-other and both have a density matrix
proportional to the unit matrix, to perform an one-to-one double slit experiment or a fusion of
the two particles, all possible outcomes have equal probability. We will begin with the one-to-one
experiment.

In the one-to-one double slit experiment we measure the eigenvalue e’* of the mondromy oper-
ator R2. We can write R? as a sum over projection operators F) and eigenvalues:

R2 _ Zei)\E)‘
A

We perform the one-to-one experiment for two particles, A and B, in a multiple-particles state
labeled by [¢). The probability p) to observe eigenvalue A is equal to the expectation value of
E\:

px = (YIEAY) (7.24)
dim A ) . .
- m lprB—]].A®]].B/dlmA'dlmB (726)

Where dim A = dim E, = TrE). So, if p,5 is factorisable into p, ®pp (A and B are unentangled)
and p, and pg are propprtional to the unit matrices, we find that each eigenvalue A\ has weighed
equal probability, weighed with respect to the dimension of the eigenspace of A.

For fusion processes this, (7.26), is also true, but A and E) are different now. We now indicate
by A the type of the resulting particle after fusing A and B; usually we use C (or H,? ) to indicate
the observed fusion result. We construct E from the Clebsch-Gordan coefficients C(;\f I {|a)}
is a basis for the internal state of particle A, {|i)} a basis for B, and {|\,)} a basis for particle
A, then:
IR W 187 .
[@)li) = CoflAu)  [Au) = C75,18)19) (7.27)

The projection operator E) which projects onto the eigenspace of X is the product of C~! and
C for fixed A:

B = (TN (O (7.28)
The probability py to observe particle X is again evenly spread:
dim A
Py =Tr(papEr) = — 2 if pap=14®1p/dimA - dim B (7.29)

~ dimAdim B



ouv 4V vALUUWNMOILIALLO LALILILIDLI 1 1111 YWvilIlVLL 11w uldl Ul UL L/\ll.}.‘

Since vacuum states exist out of particles with unital density matrices, this means that if we do
experiments with particles drawn from the vacuum, we are not restricted to a subset of possible
outcomes: even with vacuumstates, the full spectrum of experiment-outcomes for quantum
double particles is observable. Let us repeat our statement:

Let the fusion product of particle (A, «) and (B, 3) be given by (i.e. the Clebsch-Gordan series):
) @I = N2joms

The probability p(c ) to observe Hg (i.e. particle (C, 7)) upon fusion is given by:

Pcry = Tr (pasEic,y)

If (A, @) and (B, 3) are not entangled with each-other and both have a density matrix that is
the multiple of the unit matrix, then the probability p(c ) is:

Picy) = dim(A, ) dim(B, 3)

if pap = pa @ pp pa=Aala, ps = ABlp.

This is (naturally) only true if NfﬂB(? is non-zero.

7.3 Projection £y commutes with group-action, but not always
with action of D(H)

Until this point, we have not considered the compatibility of experiments (fusion or double slit)
with for instance residual global gauge transformations. Of course these are compatible, since
R? commutes with a residual global gauge transformation ¢ € H and R? is build out of Ej:
R?2=3, e*E\. Given the fact that E) is a projection-operator and that the R? eigenvalues
are roots of unity it is not difficult to show that F) also commutes with every residual global
gauge transformation g € H.

One could also view the many-to-one double slit experiment as a large sequence of different E).
So, all experiments, as described in this thesis, commute with residual global gauge transforma-
tions. But what about the action of the full quantum double D(H)? If a multi-particle system
|¢) has a total has the following decomposition into D(H )-irreps:

W)~ DTS  Pag: |[v) — @IS (Pag)le), (7.30)
Cyy

Cyy

does the local projection E) operator (operating on two particles) change this decomposition?
The answer to this question is yes, but with a few exceptions. One of the exceptions is when
the total state is a single, pure, irrep (and not a sum):

W) ~T5 = Ex:|¢) — |y') =~ TIY (7.31)

Especially, if the total system is the vacuum state, then (local) E\ projections leave the total
state as a vacuum. In other words, we can use particles that we draw from the vacuum for all
kinds of experiments while if we fuse them in the end they will with complete certainty return
to the vacuum, as depicted in fig. 7.2.

Perhaps it seems almost natural that local experiments should not change the systems’ total
decomposition if it is pulled from the vacuum, but since there are examples of states (not
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(vacuum)

Figure 7.2: If we do experiments with particles originally drawn from the vacuum, the
total multi-particle state remains in this vacuum state. We abbreviated one-to-one and
many-to-one with 1-1 and oco-1.

vacuum states of course) for which the decomposition does change?, this is not a trivial point.
Nevertheless we also do not work out this problem any further and regard it as a conjecture,
which we now repeat:

If the state |¢) of a multiple particle system behaves as the vacuum:

Prg: [9) — T5(Prg) )

then a local non-zero, normalized, projection E(c ) on two particles in the system, which
operates as follows:

Ec i) ® lir)
Tr(priEc,))

By ik) @ i) — Py 7 0,

changes the state [¢) to |¢'), but the new state still behaves as the vacuum:

Ecyl) =10"y  Pag: |¢) — Oi(Pag)|d’).

7.4 All channels are possible if only one particle is a vacuum-
state

In section 7.2 we showed that if we use two particles with unital density matrix for a one-to-one
or fusion experiment, all possible outcomes (channels) could occur with ‘equal’ probability. If
only one of the two particles has a unit density matrix, then this seems also to be the case, in
other words the conjecture is:

— Te(E __dmA
dmp  — D=TEweas) = g g

3For example in D(S3), consider the tensor product of [13) and (|12) + |13))/v/2, and the fusion- or one-to-on
experiment on these two particles.

(7.32)

PaB = Pa X P P =
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What needs to be proven is that Tr,(psFy) =

dim2 for all p,. Here F) is defined by:
Fy :=Try(E)) (7.33)

This F) is a hermitian and positive operator, it has trace Tr,F\ = dim A and it is complete,

in the sense that ), F)\ = 14. Unfortunately, these properties of F are not enough to prove
(7.32).

Residual global gauge transformations might be the missing link. A residual global gauge
transformation leaves p) invariant but changes p, (one can also say that after the action of
g € H, E) changed and p, remained the same). Nevertheless, a closer examination is needed.
This conjecture resembles the statement from section 7.2 (but that wasn’t a conjecture):

Let the fusion product of particle (A, «) and (B, 3) be given by (i.e. the Clebsch-Gordan series):

A B __ atAByyrC
IT;, ®H[3 _Naﬂ(;’H,’

The probability p(c ) to observe Hg (i.e. particle (C,~)) upon fusion is given by:

P = Tr (pasE(c,y))

If (A,«) and (B, 3) are not entangled with each-other and one of them, we choose (B, 3), has
a density matrix that is the multiple of the unit matrix, then the probability p(c ) is:

B dim(C, )
Py = dim(A, «) dim(B, )

if Par = Ppa @ pr, pp = ABlp.

(If Nfﬂ%y is non-zero.)

7.5 Relabeling leaves unital density-matrices invariant

We introduced a relabeling of particles in section 5.6. This relabeling is not a basistrans-
formation because the relabeling can change unentangled states into entangled ones, which
basistransformations cannot. There is however a common property: both this relabeling and

basistransformations leave density matrices which are a multiple of 1 invariant.

In other words, in a setup after relabeling, one can pull again pairs from the vacuum and these
pairs have a density matrix which is A1 in either basis, especially the relabeled basis.

Let us repeat the example we already gave in chapter 5, with two |(12)) fluxes that ere created
from the vacuum. Before relabeling this pair has a state |¢/) given by:

W) = 75 [112)[12) + [13)[13) + |23)23)]

This vacuumpair is part of a large system with state |¥), which can be factorised into |¥) =
|¢) @|1). After relabeling, which relabels the |¢)-part of the total system, the |¢))-part becomes:

[v) = % [[12%)[12%) + |13%)|13%) + [23x)[23%)] ,

and this vacuumpair still has a unital density matrix after relabeling.
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7.6 Ordering process for particles pulled from the vacuum

Let us now combine the properties of particles in the spectrum of D(H) which were all drawn
from the vacuum once. So, there are multiple particles and we allow for exchanges of particles
by means of R, R™! and/or R? and furthermore experiments like many-to-one, one-to-one and
fusion. At a certain moment we can schematically represent this situation as in fig. 7.3.

Figure 7.3: A sketch of a possible situation of a system with particles in it that were
originally pulled from the vacuum but afterwards have been manipulated with, either by
exchanges or by experiments.

One can always divide such a system in parts based on entanglement. Particles that are entan-
gled with each-other are in the same part, particles that are not entangled with each-other reside
in different parts. The total system is the tensor producst of these parts, which are genuine
subsystems. Each subsystem total decomposition in D(H) irreps is the vacuum, see fig. 7.4.

But, as stated in section 7.1, particles in a (sub)system which behaves as a whole as the vacuum,
have a density matrix p which is a multiple of 1. This means that for all experiments of a particle
A in one subsystem with particles B from other subsystems, the combined density matrix p,p is
factorisable into psp = p4 ® ps. In our setup, particle B can only come from another subsystem
with the vacuum-decomposition which leaves its density matrix pp = A1, and the density matrix
pap which governs the outcomes of all experiments is:

Pag = Pa @ pg = 1la®1g (7.34)

1
dim Adim B
For the one-to-one experiment and the fusion experiment, this means that all outcomes are
possible with ‘equal’ probability, as explained in section 7.2. For the many-to-one experiment
the U-matrix has only one eigenvalue, or equivalently is a multiple of the unit matrix?, which
means no extra information can be gained.

In each subsystem we can do a relabeling. This relabeling within a subsystem has the advantage
that the highly entangled state describing the subsystem may be ‘converted’ to an unentangled

“This statement is also a conjecture. It is furthermore assumed that all B particles have pp 1, so the
next B particle has to come from a different subsystem than the first. The matrix U is then proportional to the
partial trace of the monodromy operator R?: U o< Trg(R?) = 3, T4 (hPy)- M7 (Prg), where M§ = Trpll§ as

explained in appendix B. Perhaps some equivalent to the Schur lemma can prove Trb(RQ) proportional to 1 4.



4V vALUUWNMOILIALLY LALILILIDLI 1 1111 YWvillVLL o1 1hvZwuldl Ul UL L/\ll.}.‘

Figure 7.4: Every such system can be divided in parts or subsystem, where different
subsystems are unentangled, whereas all particles in a subsystem are entangled with
each-other. Each subsystem as a whole behaves as the vacuum; if all particles in a
subsystem are fused the vacuum will come out with unit probability. To the outside
world, each particle has a density matrix which is a multiple of the unit matrix. The
outside world consists of all particles which are not in the first particle’s subsystem.

state. The outcomes of experiments with only particles from within this subsystem should yield
the same result in both bases, the one before and the one after relabeling. The relabeling may
also cause the decomposition into D(H) irreps of a single subsystem to be different from the
vacuum state. But the relabeling is only valid within the subsystem. On the level of subsystems,
each other subsystem still behaves as the vacuum! See also fig. 7.5 for an illustration.

Figure 7.5: In each subsystem one can perform a relabeling. This relabeling changes
the entangled state of a system into a completely unentangled state, which nevertheless
gives the same results for outcomes of experiments as the previous entangeled state.
However, the relabeling is bound to the subsystem, and so are the experiments based
on the relabeled state. Other subsystems still behave as the vacuum and its particles
have a unital density matrix.

As stated in sections 7.4 and 7.5, this leaves us no problem if we concern ourselves with the
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relabeling of only one subsystem. We can now also perform experiments with other subsystems
that give the same result as before relabeling. Before relabeling both particles had a unital
density matrix, but the outcomes of experiments are the same if only one othe two particles has
a unital density matrix. After relabeling one subsystem, particles from the other subsystems
still have a unital density matrix, since this is also true after relabeling.

What we are effectively doing is a process where we align or gauge® all subsystems to one
subsystem, as shown in fig. 7.6. The relabeling within this subsystem then, is probably based
on one particle. So we are aligning all particles to one single particle. All aligned particles are
unentangled with each-other in the relabeled basis, while in the basis before relabeling they are
all entangled with each-other, beacuse alignment is only possible by doing experiments with the
particles. These experiments naturally entangle the particles, at least in the standard basis.
Particles that have not (yet) been aligned, form a subsystem with other unaligned particles.
The fusion of all unaligned particles always yields the vacuum and each unaligned particle has
the unit density matrix with respect to all aligned particles.

Figure 7.6: We relabel one of the subsystems, which becomes unentangled. The other
subsystems are still internally entangled in the new relabeled basis. All outcomes of
experiments are the same as they would be without any relabeling.

So, we can align all the different particles and label them by unentangled states. But we are
not restricted to unentangled states. Certainly, if we want to do quantum computation, we
like to be able to create and work with sates of entangled particles. It is only in the ordering,
or alignment process, that we like the particles to be unentangled, because this simplifies the
description of the outcomes of manipulation with these particles. To show this schematically:

particles from vacuum | alignment exper. | ordered particles quantum | entangled state(s)
. —> —_—
highly entangled state relabeling un-entangled state | manipulation

If there were an ordering (relabeling) that simplifies the outcomes of quantum manipulation
with these particles, this ordering would ofcourse be preferable to the one described above
which uses unentangled states.

SPerhaps the word ‘gauge’ is too confusing to be used here, although its meaning is correct.
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It is important that the ‘first’ particle, to which the other particles are to be aligned, is chosen
with care. For example with H = S3, as in chapter 5, if we start the alignment with a flux of
type [(123)), we can not identify after ordering a flux of type |(12)) with internal state |13).
While if we start the ordering process with a flux of type |(12)), we can identify all fluxes |12),
|13), |23), |123) and |132). This seems due to the fact that the members of the conjugacy class
{(12),(13),(23)} generate the whole group Ss, while the conjugacy class {(123), (132)} fails to
do so.

When we continue the ordering process further, we discover that we are building piles of parti-
cles, where each pile consists of equivalent particles; for all experiments it does not matter which
particle of a pile we use, all particles of a pile yield the same result. This means especially that
many-to-one experiments use particles of one pile as the many part of the experiment! We can
also add the comment that within each pile the canonical spin-statistics connection (section B.2)
is restored.

Figure 7.7: In the end of the ordering process, piles have formed of identical particles
with identical internal states; these particles are truly equivalent or indistinguishable.
There may be particles on other piles of identical type, but these particles have another
internal state. Many-to-one experiments use particles from a single pile as the ‘many’
particles.

7.7 Representation-theory instead of description with states

At this point we have created a paradox. The discrete gauge theories are local gauge theories.
With a local gauge, it is impossible to determine the internal state of a particle. Quarks are the
obvious analogue: it is not possible to determine the color of a quark; neither can you pretend
that one quark is red and that therefore another one should be green. One does need colors
to describe the quarks consistently, but in calculations the colors are always summed out. But
here, with non-abelian anyons that were created from the vacuum in a local gauge theory, we
seem to be able to determine the ‘color’ of the particles after all. So, what is wrong?

Well, we do not suspect the quarks to be in error. So it is our description of the internal state of
the non-abelian anyons. If we look closer, we see that we make a choice of ‘color’ for one particle,
say ‘red’; but the results of the following experiments are independent of this color, a choice of
‘green’ would have yielded the same results; we could as well sum over all possible choices of
colors for the particular particle. In other words, the results of experiments can be described by
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choosing the ‘color’ of one non-abelian anyon, but this is just a coincidental side-effect of what
is really important: the experiments can be described without colors by representation theory
alone, for example through calculations with the different channels of the braid-operators or of
the fusion rules; a small demonstration of where we are pointing to, is given in fig. 7.8.

Figure 7.8: We can view the resulting system of the ordering process as some eigenstate
of many exchange operators R. If we indicate the total system’s state by |¢), then [¢))
is, because of the abelian braiding, an eigenstate of R12, Ras3, R34 and therefore also of
R13 and R§4, and likewise for R 45, RZ}B etc. Furthermore, the expectation value for
a monodromy on particle ‘1’ and particle ‘A’ is the same as that of particle ‘3" and 'B’
etc.:(R?,) = (R3g) = (R2g) = ---. The state |¢)) is a specific state in the space of all
vacuumstates. In such a way, we work only with eigenstates of braid-operators and we
do not need to specify the internal states.

The quest for a universal set for quantum computation should therefore also be pursued in the
context of representations, instead of a description with dyons in specific internal states. The
mathematical framework will probably also be more solid with representation-theory. As we
have no experience with computational problems and representation-theory, we do not know
where this quest may lead: there are representations of the group H itself, representations of
the quantum double group D(H) and there are the (truncated) braid group representations.
Together, they form a very non-trivial team. Even if all our speculations in this chapter turn
out to be wrong.



CHAPTER 8

CONCLUSIONS

This chapter concludes this thesis. Some discussion already took place at the end of chap-
ters 6 and 7, especially about the ability of non-abelian anyons for quantum computation and
the role of states that were created from the vacuum. Here we will discuss two subjects that are
not directly connected to the quantum computation aspect of non-abelian anyons. Afterwards,
in section 8.3, we will summarize our findings, as described in this thesis.

We start in section 8.1 by describing some aspects of the many-to-one experiment. The re-
strictions to the many-to-one experiment, as we put them in chapter 3, may be loosened a bit,
for which we saw indications in the examples with S3 in chapter 5. This leads to the concept
of a generic many-to-one experiment, part of which is a conjecture. In section 8.2 we explain
why we used double slit interference experiments throughout this thesis instead of scattering
interference experiments.

8.1 The generic many-to-one experiment

The many-to-one experiment as discussed in section 3.2 was solved under certain restrictions.
With the example manipulations of chapter 5 it became clear that these restrictions may be
relaxed a bit. We will now present the relaxed restrictions, under which we believe! the many-
to-one experiment can always be solved and produces physically sensible output?. However,
under the new restrictions (in short: the ‘many’ particles need to be ‘truly indistinguishable’
particles) we have not yet found explicit answers to all valid inputs, i.e. an answer in the sense
of the eigenvalue-pattern that will be observed and the associated projection. We also lay a link
with the canonical spin-statistics connection.

The generic many-to-one experiment is performed with N particles of type (B, /3), or B for short,
and one particle of type (A, a), or A. These N + 1 particles may be part of system containing
more particles. The total system should be ordered in such a way that the B particles are next
to each-other; the A particle should be next to the ‘pile’ of B particles. In other words, for the
total systems internal state |1)):

R1
e oz}iiircles B [P B B B A Oz};:;cles BN
|¢> € Ve ®V,8 ® ®V,6 ®V,6 ®V,6 ®Va ®Vr (81)
———

Ra

!This believe is based upon countless explicitly worked out examples.
2There may exist input for the many-to-one experiment which is un-physical, but which is not rejected by the
new restrictions.

94
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We number the exchange operators R; in such a way that R, exchanges particle A and the first
adjacent particle B. The first and second B particles are exchanged by Rs, etcetera.

The N particles have to have abelian braiding, i.e. exchanging two B particles in a counter-
clockwise fashion, via the R-operator, should yield the spin factor e2™*8.8. This should be true
for all V particles.

Rj|v) = ™ P8 gslp) = 2™ BAp) ¥V j>2 (j <N) (8.2)

Rjlp) = e 2™ 885,|y) = e 2™ mely)y  (RT=R™'=R) (8.3)

The B particles should also have the same internal state, in the sense that moving a B particle
around the A particle should yield the same result for all B particles. This means that the
expectation value for all these operation should be equal:

(B; around A) = (B; around A) for all 7 and j

If we exchange particle B; with particle A we should first move B; close to particle A, perform
the monodromy R?, and then move the B particle back to the ith position, but along the same
way. We indicate this operation by T';:

T; =Ri...RsRaRIRsRs ... R; (8.4)

In the context of partially colored braid groups, as discussed in appendix C, this operation is
similar to the 7;; operation.
7 — R Y(i+1)1 +— T

We can then formulate the requirement of identical internal state as follows:

(0[Tilg) = (@[T5l¢) Vi,j (1 <ij <N) (8.5)

We could alternatively work with the tensor-components of |¢) for some basis and demand that
this tensor is symmetric in all B-indices, of which there are N.

This, abelian-braiding of (8.2) together with identical expectation values of (8.5), means that
all B particles are really equal or even indistinguishable, in the sense that even the order in
which we use the B particles for experiments does not matter, since all expectation values are
equal, for instance:

([Taly)) = (W(RaRIRa|W) = ($loaRicalt)) = (Y|RE|) = ([T [v), (8.6)

but because of the abelian braiding this is independent of the exact path. We could also have
defined I'y by: T'y = RgR%fég; this yields the same expectation value. In other words, it does
not matter how we pick any particle from the B pile: all different paths and particles give the
same result, as illustrated in fig. 8.1.

We replace R; by 258, o; in other expectation values also. We assume that this is allowed,
but have not yet proven this. For instance, we use the following ‘equality’:

(D|(RIRYRIR|) =(|R20aR 30| ) (8.7)

So, the restrictions for the system’s state 1)) of a generic many-to-one experiment are that the
B particles should have abelian braiding and an ‘identical’ internal state to the extent that they
give equal expectation values. The various ways to solve the generic many-to-one experiment
can be divided in three ‘classes’ depending on the mutual entanglement:
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Figure 8.1: The B particles in the many-to-one experiment form a pile of truly identical,
i.e. indistinguishable, particles when interacting with particle A.

(i) All particles are not entangled with each-other: The many-to-one where the parti-
cles are not mutually entangled, i.e. in terms of density matrices:

PBEBA = PB ® P ® P & Pa,

is actually the problem that has been solved in section3.2. Possibly observed eigenpatterns
are associated with eigenvalues p of the matrix U:

U = Trp(R?ps) (8.8)
The density matrix p, is projected onto the eigenspace of eigenvalue u:
E,p,E
uPatop
N 8.9
7 TeEyp) (&)

(ii) The B particles are entangled with each-other, but not with A: If the B particles
are already entangled, which does not contradict the given restrictions, the density-matrix
can be written as:

PBBBA = PBBB & PaA
At the end of the experiment however, particle A will be entangled with all remaining B
particles. This means we end up with a density matrix pppps that cannot be factorised.

If the initial p, density matrix is a multiple of the identity:
pa = AL, (8.10)

then we can possibly obtain the result by a global quantum double D(H) transformation
G, which changes the (unentangled) tensor product of pg’ density matrices to pppp:

gEDH):ps' @ ps' @ ps' @ pa— poss @ pa (8.11)
We then compute the U-eigenvalues relative to pp’:
U = Trs(R?ps") (8.12)
Next, we project p, onto the u-eigenspace and then transform back by g to obtain pggga:
E,p.E, 3 |.
PeBB & Pa — pBI @ pBI ® pBI & #f;pj) i> PBBBA (8-13)

If ps # A1 the problem is also solvable, but we do not have a ready-to-use scheme to do
this.
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(iii) All particles are entangled with each-other: For the case that pzpp4 is not factoris-
able at all, we have no direct solution. At the end of the experiment the resulting final
density matrix will still be unfactorasible. Our best clue is that the initial density matrix
peepa Will probably be a sum of such final density matrices:

PeBBA = PBBBA + PBBBA + - °*

The statements above that we have not solved or proved explicitly, should therefor be considered
conjectures.

The formulation of ‘allowed’ particles for the ‘many’-side of the man-to-one experiment may
also be interesting from the point of view of the discrete gauge theories, as the canonical spin-
statistics connection, see section B.2 of the appendix, is concerned; the state of the ‘many’
particles is such that it obeys the canonical spin-statistics connection. This is worth mentioning
and perhaps even of physical significance as well, since arbitrary states usually violate the
canonical spin-statistics connection.

8.2 Scattering versus double slit experiments

One good question not considered until now is: why do other articles about measurements with
non-abelian anyons always use a scattering experiment and is the double slit experiment used
in this thesis? Well, for various reasons:

e the scattering experiment is often used because it is easy to solve when there is an incoming
plane wave. For experiments involving only one incoming particle it is invalid to assume
an incoming plane wave.

e the calculated cross sections are a first order effect: the main part of the incoming beam
passes the scatterer without being disturbed. Only a small percentage gets scattered and
is measured; this happens at angles ‘far away’ from the direction of the main beam (for
which § = 0). The double slit experiment, on the contrary, uses a zeroth order effect and
especially measures at angles around 6 = 0.

e the many-to-many experiment is good to compare a scattering with a double slit exper-
iment. Observed patterns for both experiments depend on (R?), but for scattering only
the amplitude of the pattern can change, while for the double slit the pattern both can
shift and change amplitude.

e the double slit guarantees that the incoming particle never comes in contact with the
target particle between the two slits. For Aharonov-Bohm double slit experiments with
electrons and magnetic fields etcetera this requirement turned out to be unnecessary, but
for particles of the D(H) spectrum there exists no description how to deal with such a
situation, which we therefore happily avoid where we can.

¢ finally there is the problem that particles need to be re-used after they have been detected.
In all ‘regular’ scattering experiments detected particles are lost. Introducing ‘particle-
recycling’” may encounter less resistance from physicists when doing it in a less known
experiment like the double slit instead of scattering. Another similar question is what
would happen to the incoming particle if it would not pass the double slit, but bounce of
the wall; is it re-usable then or does it stuck to the wall?
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The above arguments do not rule out useful scattering experiments with non-abelian anyons.
Cross sections also have, in the many-to-many experiment for example, a decomposition in eigen-
patterns. Let o) indicate the cross section measured for an eigenstate of R? with eigenvalue
M. Then for another state, with (R?) = D1 PaA, o is the same weighed sum of eigenpatterns:
0 = Y, Pr0x. Preskill [10] applies a Mach-Zender interferometer, which is yet another descrip-
tion of an interference experiment that will probably yield the same results as the double slit
experiment.

So, the above arguments just try to explain why the double slit experiment was preferable to
the scattering experiment in this thesis.

8.3 Summary

In this summary, we will stroll through all preceding chapters in ascending order. We will
highlight important aspects, specify our own contributions and indicate some directions for
future research.

Quantum computation is a fascinating field of research, with the perspective of vastly increased
computational power. Chapter 1 figures as the introduction to both this thesis and relevant
aspects of quantum computation. A quantum computer is made of a few elementary objects
and operations on those objects: qubits, gates and measurements. Together they form a set
and if the set allows quantum computation it constitutes a universal set (see page 7 were we
give the definition of a universal set). The major difference with conventional computers, is
that quantum computers use quantum properties of nature at the fundamental level. Building
a quantum computer in practice is very difficult, because carefully prepared quantum states
tend to decohere, due to interactions with the noisy environment. Any practical set-up that is
decoherence free is a very good candidate to become a real quantum computer. A decoherence
free abstract model for a quantum computer is suggested by Kitaev and Preskill through using
non-abelian anyons. It is a promising set-up, although many aspects remain unclear (also
because both Kitaev and Preskill abundantly refer to unpublished work). An important question
of principle is what properties of the internal state of non-abelian anyons can be determined and
how we can measure the internal states. Another practical problem is that non-abelian anyons
as such have never been observed in nature, but indications do exist. Preskill has claimed that
the quantum double of the group As yields a universal set. In chapter 6 we continue on quantum
computation; first we treat non-abelian anyons and various interference experiments.

We analyzed the double slit experiment for non-abelian anyons in chapter 2. We started with
merely two-dimensional free point-particles, which were used in an idealized interference exper-
iment. We introduce a notation that hides the details that depend on the practical set-up of
the double slit experiment. The observed pattern and probability distribution can now easily
be written as a sum of separate contributions from each slit and an interference term. We
already distinguish between the interference pattern and the probability distribution, although
these two are still equal at this point. We introduce abelian anyons, which are particles with a
topological interaction via phase factors. Anyons are a generalization of bosons and fermions
and emerge from theories like the discrete gauge theories that are described in chapter 4. The
interaction is topological, because it only depends on the topology of the multiparticle config-
uration space, or in simple words, it depends on the number of times that the particles are
wound around each-other. This winding is efficiently described by the braid operators R, R~}
and R?, the monodromy operator. The phase factors resulting from the interaction cause the
interference term for the double slit experiment to change. The double slit interference experi-
ment with abelian anyons is equivalent to the well-known Aharonov-Bohm effect. Non-abelian
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anyons, however, do not interact via mere phase factors (the interaction is still topological
though); these particles have non-trivial internal degrees of freedom on which the braid op-
erators act, which can cause the particles to become entangled. For double slit experiments
with non-abelian anyons, the probability distribution and the interference pattern are certainly
not equal anymore in general, due to the entanglement of particles in the experiment. In the
probability distribution, it is again only the interference term that is changed by the topolog-
ical interaction, through the expectation value of the monodromy operator. Table 2.1 (p. 28)
efficiently summarizes this chapter on topologically interacting particles and interference in two
spatial dimensions. As for the interference pattern, there are various inequivalent schemes that
produce one, and these are treated in the subsequent chapter.

We develop two different schemes for a double slit experiment with non-abelian anyons in chap-
ter 3. We call the first ‘one-to-one and the second ‘many-to-one’. The one-to-one experiment
describes a set-up with two particles: one of which is located behind and between the two
slits, while the other is directed at the double slit, and detected at a specific angle behind
the double slit, after which it is returned to its original position where it will be re-used as
incident particle. In other words, the two-particle out-state of one measurement (of the angle
of the incoming particle) is the two-particle in-state for the next measurement. The combined
sequence of angular measurements results in some interference pattern. We derive an expression
for this interference pattern and conclude that the two-particle system becomes projected onto
an eigenspace of some eigenvalue of the monodromy operator R? during the experiment. The
eigenvalue can be determined through the observed interference pattern, that may carry the
name of ‘eigenpattern’. This result of projection is the statistical average over the sequence
of angular measurements, which apparently locks the two-particle system in an eigensubspace.
Which eigenvalue of R? is determined by the usual probabilities for quantum measurements
(via expectation values of the eigenspace-projection operators). The major part of the rather
elaborate proof is given in appendix A. The second double slit experiment we describe, is the
many-to-one experiment. Here we direct many identically prepared particles at the double slit,
behind which one other particle resides. We measure the angle of the ‘many’ particles as they
show up behind the double slit. This sequence defines an interference pattern. We determine
the interference pattern to be an eigenpattern of an operator that we call the U-matrix. The U
matrix is defined as the partial trace over the monodromy operator R? and the density matrix of
the incoming particle (and since all incoming particles are identically prepared, the U-matrix is
the same for all these particles) and may operate on the internal space of the ‘one’ particle that
sits between the two slits. The result of the many-to-one experiment is also a projection: the
density matrix of the ‘one’ particle becomes projected onto the eigenspace that is associated
with the eigenvalue (and eigenpattern) of U. It turns out that we can use almost the same
proof for the many-to-one experiment as that of the one-to-one experiment. However, we can
solve the many-to-one experiment only if we pose a restriction on the ‘many’ particles, which
should have abelian braiding amongst each-other. We have summarized the results for both the
one-to-one and the many-to-one experiment in table 3.1 (p. 46), where we introduced the name
‘many-to-many’ to indicate the double slit experiment that yields the probability density distri-
bution as the interference pattern. Obviously, the theory of non-abelian anyons embraces that
of abelian anyons; since abelian anyons have a trivial internal state there is nothing to measure
of it. Only with non-abelian anyons, the double slit experiments one-to-one and many-to-one
can be used as quantum measurements.

We leave the double slit experiment for a while in chapter 4. Here, we briefly review discrete
gauge theories, from which non-abelian anyons emerge naturally. This leads mathematically
from a spontaneously broken gauge theory (broken to a discrete finite group H) to the use of the
quantum double D(H) of that finite group H. The non-abelian anyons, traditionally divided into
fluxes, charges and dyons (which have both charge and flux), can be labeled by the irreducible
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representations of D(H). The topological interaction, i.e. the braid-operators, is implemented
through the quasi-triangular structure on D(H). We supply a pedestrian introduction to quasi-
triangular hopf algebras, in particular D(H), thereby discussing algebras, irreps of algebras,
coalgebras, bialgebras, quasitriangular bialgebras and the fusion rules. The braid operators
form representations of truncated braid groups. Braid groups, and its colored, partially colored,
truncated and partially colored truncated variants, are described in appendix C. The discrete
gauge theories also give a description on how to create non-abelian anyons; they can be created
from the vacuum in entangled pairs, where the total pair still has the quantum numbers of the
vacuum, but its individual members need not of course.

We combine the one-to-one and many-to-one double slit experiments with the quantum double
D(H) through various worked out examples in chapter 5, where as example we use the quan-
tum double D(H) of the smallest non-abelian group H, which is S3. Details concerning the
construction of the spectrum of D(H), and particularly the spectrum of D(S3), are relegated
to appendix B. In the examples, we basically perform the same sequence of experiments twice.
The first time we start with some flux in a specific given unentangled state, the second run we
allow the initial state to be arbitrary, which includes an entangled particle like a particle created
from the vacuum. Both sequences seem very different but yield the same observable result, i.e.
the same interference patterns. We explain this resemblance between the sequences by a global
quantum double transformation, which indeed leaves the observable outcomes of experiments
invariant. Furthermore, the examples with D(S3) will provide evidence for more general D(H)
properties: (1) the many-to-one experiments seems possible under more relaxed restrictions;
(2) vacuumstates, i.e. particles that were once created from the vacuum, seem equally useful
for quantum manipulation as the special unentangled initial states; we construct a ‘relabeling’
of the particles which maps the highly entangled vacuumstates to a completely unentangled
system. Although this relabeling looks like a basis transformation, it cannot be one, since basis
transformations cannot change an entangled system into an unentangled one.

We describe the link of non-abelian anyons with quantum computation in chapter 6. We con-
struct a qubit with the non-abelian anyons that are described by D(S3); this qubit exists out of
two particles, which together are fluxless. We can measure the value of a qubit on the standard
basis, through a many-to-one experiment. We can apply a simple gate, the Not-gate, to a qubit
by acting with the monodromy operator, and we can create a simple plus or minus superposi-
tion of the states |0) and |1) by measuring the qubit in another basis than the standard one.
The quantum double D(S3) obviously does not supply a universal set, but D(H) may very
well become universal for some larger group H. As we have not considered other groups, we
can not make a decisive statement about this question. It is clear however, that qubits, gates
and measurements can be constructed as objects that are build of combinations of particles,
measurement experiments and monodromies. These objects should be completely compatible
with each other, which is not a trivial point, as we demonstrate with an example of a subtle
mistake. We would have liked to compare our results with those of Kitaev and Preskill on this
matter of universality, but we did not get to that point.

Multiparticle states in the vacuumchannel form a special subset in the theory, as for now they
form the only description on how to create non-abelian anyons, but vacuumstates behave roughly
the same as particles with other internal states as became clear in the examples with D(S3).
In chapter 7 we speculate on some of these seemingly remarkable properties of vacuumstates.
We state several conjectures, which are mainly concerned with the density matrices of particles
in vacuumstates that are a multiple of the unit matrix. Unital density matrices can no doubt
simplify certain expressions, for example the fusion probabilities, that can be written as a trace
over projection operators and the two-particle density matrix. We also describe an ordering
process, that starts with particles that are pair-created from the vacuum and ends with piles of
particles with ‘truly identical’ internal states that can be labeled by unentangled states. We have
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not been able to prove our conjectures for general D(H), however they are correct for D(S3).
Furthermore, the conjectures (if they are true) seem to be in conflict with well-known results
for local gauge theories (one cannot determine a quark’s color). We do offer an explanation for
this paradox, by saying that we are really using only the representation-theory. This statement
actually renders the description via explicit states, either vacuumstates or unentangled states,
obsolete. But as for now, this chapter 7 is a chapter of speculations.

The final chapter of this thesis, chapter 8, treats two subjects on double slit interference ex-
periments. The first deals with the generic many-to-one experiment, which is the many-to-one
experiment with more relaxed restrictions, as already indicated by the examples with D(Ss3); In
the generic many-to-one experiments, the ‘many’ particles need to be truly equivalent or truly
identical particles (for which the canonical spin-statistics connection is restored) and that is the
only restriction. This allows for many-to-one experiments with initially highly entangled parti-
cles. We present some hints to solve the generic many-to-one experiment; solving the problem
can be divided in three classes, based on the initial entanglement. We fail to solve all three
classes explicitly. On the second subject, we discuss a matter which could as well have been put
at the start of chapter 2, namely why we chose to use the double slit interference experiments
instead of ordinary scattering experiments. Next, and finally, we present an extensive summary
of the thesis, which is about to end with some remarks regarding future research.

Perhaps the question one most urgently wants to be answered, is for which group H the quantum
double D(H) supplies a universal set, in particular, if there exists such a group at all. But just
trying a few groups (which of course would include A5 or S5 and Ds 3) and eventually finding
such a group may not directly lead to new insights (although it may very well indicate how
the complexity of gates may grow with the order of the group). It is probably preferable to
continue the quest for universality through representation-theory. The link between the theory
of quantum doubles D(H) and that of computational complexity (like the ability for universal
quantum computation) might be far more clear or obvious, than if we would continue using the
description with specific internal states. Hopefully, the construction of compatible qubits, gates
and measurements may also become less dependent on small details, although it will probably
remain a non-trivial job. Of course, a description in terms of representation-theory should of
course include examples of D(S3) (and probably also of D(As), D(D>)).

A starting point for future research might be to prove the conjectures of chapter 7. Although
this is a speculative chapter, the conjectures therein are concrete enough to be proven or be
discarded. We are rather confident that the manifestation of a quantum double of a finite group
through non-abelian anyons yields more nice properties than we were able to reveal (prove) in
this thesis, especially in terms of expectation values of braid operators. In this context, also
the global quantum double transformations that leave the outcomes of experiments invariant,
deserve a closer look. An almost trivial but nevertheless useful starting point, is rewriting
the discrete gauge theories (e.g. fusion probabilities) in terms of density matrices, since the
description of an entangled particle via the density matrix is superior.

The two double slit experiments, one-to-one and many-to-one, yield remarkable results. But
these results were solved in a semi-classical context; apart from the assumption that the mea-
surement of the angle projects on a momentum-eigenstate, the non-abelian anyons are treated as
classical, dynamical, point-particles. Under these conditions the results for the one-to-one and
many-to-one are perfectly valid.But the discrete gauge theories do not yet supply a dynamical
description of non-abelian anyons. So, it is an interesting question, if these conditions are still
valid in a proper dynamical theory of non-abelian anyons, and how this change would affect the

3The group D2, which is a non-abelian group of order eight (so it is a small group), is taken as example to
illustrate discrete gauge theories in Propitius and Bais [11]
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results for double slit experiments. In other, impatient, experimental, words, let us search for
a physical realization of non-abelian anyons where we can put the double slit experiments into
practice, and compare the result with the theory. Anyway, a theoretical model for non-abelian
anyons including a dynamical description could be useful. Another, more simple, question is, if
there are other schemes for double slit experiments than the one-to-one, the many-to-one and
the many-to-many experiments, that yield interesting results.

The research on non-abelian anyons and there application for quantum computation definitely
deserves further study.
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APPENDIX A

PROOF OF PROJECTION (LOCKING) FOR DOUBLE
SLIT EXPERIMENTS

This appendix is denoted to the proof of the projection and convergence statements of chapter
3, and while it is purely mathematical, it certainly should be considered as a core element of
this thesis. The proof is rather elegant, for it involves no tricks or conditions on the eigenvalues,
for instance. The results of the proof can be illustrated easily, which of course we will do. In
section A.1.1 we will recast our problem and claims in a notationally suitable form and we will
try some (unsuccessful) ways to solve our problem. Subsequently, in section A.1.2, we will create
a new probability density distribution, with which we will solve our problem for two eigenvalues
in section A.1.3. We will supply plenty of examples and pictures in section A.2. Finally we will
consider the case for arbitrary many eigenvalues in section A.3, but this follows straight from
the case of two eigenvalues.

We will not explicitly summarize our findings for this chapter, as we have done so already in
the main text.

Perhaps the most interesting thing of the whole proof is that a quantum mechanical measure-
ment of an eigenvalue accompanied by a projection on the eigenspace of that eigenvalue, is the
statistical result of an experiment which is repeated often. So the quantum measurement does
not happen instantenaous, but is the average over many single observations.

We worked it out ourselves, so there are no references to others. Techniques used are found
in mathematical textbooks (analysis, statistics). Our own efforts to accomplish this proof will
probably accentuate the style in which this chapter has been written.

A.1 Solving the problem for two eigenvalues

A.1.1 Translating the problem from physics to mathematics

Let us first restate what we will proof but thereby change notation a bit. Let:

p)\j = <win|E)\j|¢in>
Then the statement is (see (3.9), p. 32) that with unit probability up to an overall phase factor:

) fg...ffjfij 1
lim E), = —E, (A1)
N S S FLFL P, Nir
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for some p. Each p has a probability p,. This expression (A.1) is independent of [¢;,). Prop-
erties and definitions of the above arguments, which have been introduced in chapters 2 and 3,

are:

ZP,\j =1
J

k Y
F)\j above + Cbelow !

k|2 2 2 t t i\
|‘7:)\j| | above| + |Cbelow‘ + 2Re( alf:)*OVerI:ﬂOW e' ) f)x (etk)

2 _ t .
Z |Cabove| + |cbelow| =1 z calf;)vecbelow =0

= S i) =D IFE P =1 V)
tr

(23

The probability to observe the sequence 6!,..., 8" is:

Py(0Y,...,0M) =D |FY L FRFA P = D S (08) o (6,
? J

With probability one the particle will be detected at some angle, or:

1 = Z PN ,..., )
= Z P (8Y) o (01 )pa
N j

01

= Zp,\jzl
J

(A.2)

(A.3)

Now let’s for convenience change notation, and furthermore, for simplicity, assume that there

are only two eigenvalues: A; and As.

6, — z (continuous)
fa@) — Al)  Alx)>0 Vaz
f2(0) = B(x) Bx)>0 Vz
Py, — a2
e — B2 P4 p2=1
@ =1 — /A(x)dle
0
S ha®)=1 — /B(a:)dx:l
0
N — n
Py@',...,0N) = p(z1,...,2)

= a?A(z)A(x2) ... A(zy) + B2B(x1)B(x3) . .. B(zy)

//.../p(acl,xg,...,xn)dmldwz...dmn:a2+52:1
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We define a2 and (2 by:

9 . O6214(;101)14(;102)...A(xn)
ay (1, T9,...,2Ty) = Y E——— (A.4)

9 . o B(z1)B(z2) ... B(xy)
Bo(x1, 22,y xn) = fB P E———" (A.5)

Here one can consider a2 to be that part of the wave function that is in a \; eigenstate after n
observations. Where a2 + 82 = 1 of course.

Then the claim states that in the limit of n to infinity projection takes place:

either ap =1 =0 with probability a?
or al =0 21 with probability 32

But the problem remains to prove this. We start with some instructive attempts:

1. We calculate the expectation value of o and see if it contradicts projection.
(a2) = /p(fn)ag(fnmfn (Za) = (21,22, 2n)
= /a2A(x1)A(x2)...A(mn)dfn =a?* (Vn) (A.6)

This is the same answer as in the case of projection, because then:

(@2y=a® 1+ p%-0=0a" (n — o0)

This contradicts neither confirms projection.

2. Let’s construct a function that is 1 if a2 = 0 or a2 = 1: the function f = (22 — 1)? for
example. We calculate its expectation value (it should be 1 for n — o00):

) = / P21, @9, ., 20) (202 — 1)2di,
2 —p(@
_ /p(fn)(za Alw)A(ws) .. Alea) = pln)

= T

p(Zn)
_ / (052A1A2...An —BZBIBQ...B:,L)
N a?A1As .. Ay +BQBlBQBn

2
dzy,

One can evaluate this integral numerically (with A = cos? and B = sin? for example)
and it tends to 1, but this is still no analytical proof; dependence of o and 52 does not
become clear either. Besides, there is a better way:

2
3. One can also say that in the end o2 > (2 or 82 >> o2, so why not look at g—g This is not
yet good enough, because the denominator could become zero. Instead, one should look
at the logarithm:

2 A(z1)A(z2)...A(zn)

2 2 2
% _ p($1,$2,...,$n) — Oé_AlAQ...An — a_ é ﬂ
In 52 =In 523(531)3(552)---3(%) =In 7B B,... B, =In 7 +1n B, +...4+1In B,
n p(z1,22,....Tn)
This has some advantages: the normalization factors p(x1,xs,...,x,) cancel each other;

it now becomes a sum of terms, where each term depends on only one z-variable. It is
‘symmetric’ for 52 > a2 or a2 > B2 (gives a minus sign, so perhaps anti-symmetric would
be more correct). So the logarithm is clearly preferable and will be used.
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A.1.2 A new probability distribution: P,(z)

With the probability that ln = z we associate the probability density distribution P, (z)
(z € R). In other words, with the old probability distribution, p(¥,), we create a new one by:

a/an(z)dz = /.../p(a':’n)H (a < ln% < b> dz,, H(true) =1 H(false) =0 (A.7)

and define P,(z) itself (in the usual way in statistics) by:

z+Az

[ Pue)az

This gives:

= [ ... [ p(@)d( z—ln—2)da:n (A.8)
/-] i

2
= 2 2 @ g Arde A
P,(z) = //(a A1Ay .. Ay 4+ B°B1By...B,)d(z — In 7 In BlBg...Bn)dm"

Which can be expanded into:

2

= o’PA(z—In B—)—f—ﬂQPB(z—ln 5

) (A.9)

Here, we introduced two new functions, PA(z) and PP(z), which are truly independent of a?
and (2.

AjAy. A,
= [ .. | AjAy.  AS(z—In 22z Al
/ /12 (z-Ingm—3 )07 (A-10)
AjAg. . Ay
PB(z) = /.../BlBQ...Bné(z—lnﬁ)dmn (A.11)

The dependence of P,(z) on o and 2 enters the equation (A.9) only in a, a?- and 3%-dependent,
scaling of P4(z) and PB(2).

To achieve projection, the probability that o2 and 32 are roughly equal, or o2 =~ /32, should
tend to zero, so P, (z) should vanish in an environment of z = 0 when n grows larger:

n—oo: P,(2)

10

2=0

Tt would be nice to know P2 (z) for all n (as an explicit function of z). Let’s start with P{(2),
which can be determined using:

_ (z:) o) =

P(z) = /A d(z —In ((i;)d:v

= Z/ A’B B'A|dx

) Az Bz)
= LA B - Bl A (A12)
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Alxi) _
B(zi) B(z;)

z;: z-—In

When A(z) and B(z) are given, the x;(z) can be determined and with it the explicit z-
dependence of P{}(z). Having found P{(z), one can continue with Pj:

A(z)
B(z)

Pi(z) = /A(a:)PlA(z —1In )dx (A.13)
And likewise for arbitrary n .... But this is an integral-equation and is not easy to solve, even
when A(z) and B(z) are explicitly given. One can verify this using Maple (for instance) for
various examples; troubles start when n > 2. For such examples, with n = 1 or n = 2, we found
that PA(z) was definitely not even near zero. So proof of projection is still far away.

A.1.3 Scaling of P#(z) and P?(z) with n yields solution

PA(z) and PB(z) can both be considered as probability density distributions, in the sense that
(which one can easily check):

One can calculate mean values (expectation values) associated with these probability distribu-
tions:

()14 = / PAG) zdz=pa>0 (g = / PE(2) zdz = —pp < 0 (A.14)

o0 o0
()14 = / PAR) 2dr= 0% + 12 (g = / PP(:)2dz=0% + 1% (A.15)
—0o0 —00

These integrals can also be solved in x-space:

o0

= [

—0oQ

PA(2)zdz = / /A(:c)é(z —1In gii; Jzdrdz = /A(:c) In gg; dz >0

Aln% +Bln§ — (4= B)(ln%) — (A=B)InA—1nB) >0
One also determines the other ‘means’ by first performing the z integral. For example:

A(z)
B(z)

(2)4 = / A(z) 2 A& 4o (A.16)
Next, we calculate (z),4:

o0

(2)na = / PA(2) zdz = n{z)14 = npa (z2)nB = / PB(2)zdz = —nup (A.17)

—00 —00
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o0 o0
(2%Vpa = / PA(2) 22 dz = no?y +n?p} (2B = / PB(2) 2% dz = no% +n’u% (A.18)
—0oQ —0oQ

Now we found that both the mean and the variance scale with a factor n:

(2)na = n(z)14 (2)nB =n(z)1B (A.19)

ota = (z")1a — ()14 ot = (2B — (215 (A.20)
L = N (A.21)

opa = (*)na — (2)pa = N0ty onp = N0ip (A.22)

Let us show this explicitly for (z),a:

(2)na = /OOP;;l(z)zdz

— //.../A(:I:l)A(:vg)...A(:cn)(ln g(”“) +1n gg”; o ARy

- n//.../A(a:l)ln g((gdxlA(xQ)...A(xn)dfn_l
)

= p-1"1L. /A(x) In gg)dx

When doing the other mean (z2), 4 one encounters (In ggig +1n ggz% .eot+1In %)2. This

yields a total of n? terms (when expanding), of which n are of the form [ A(z)ln? ggg dx;

2 — n in number, are of the form ([ A(z)In ggg dz)([ A(y) In? %dy).

the others, which are n
Combined, these yield:

(#")na = n(2*)1a + (n* = n)((2)14)* = noj + n’p}

What has been found is that the peak (when plotting the function) of PA(z) moves to the
right and PP(z) moves to the left, and P,(z) becomes zero in a neighbourhood of z = 0.
While (the mean of) the peak moves (scales) with n, the width of the peak (width~standard
deviation= o = \/0_2) scales with \/n. So for n = 100, the peak of the function lies a hundred
times more to the right (or left for P?(z)) whilst the width has only increased by a factor ten.

Projection has been proved.

We can consider a2 and 32 as explicit functions of z. Since:
2

a
_ﬂg =é€* a2+ B2 =1, (A.23)
this means that o2(z) and 82(z) are of the following form:
1 1
2 2
= = A.24
A= B =i Vn (A.24)

By plotting a2(z), 82(z) and P,(z) in the same figure we can illustrate the projection-process,
as shown in fig. A.1.
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Figure A.1: The real axis can be divided into three parts: one where a2 and /32 are
roughly the same and two where o2 = 0 (1) and 82 = 1 (0). Pi(z) might “fool’ you
because it lies in the ‘roughly the same’ part. When n grows, P,(z) appears to be a
sum of two peaks, which both move away from the origin, and projection becomes a
fact. The area under the right peak is o, under the left peak 2.

Rate of projection

How fast is projection? For the variety of examples we have considered, it is extremely fast.

The answer to this question is not easy. It involves integrals of tails of probability distribu-
tions, and even in the simple case of gaussian normal distributions this becomes analytically
unsolvable, and typically involves the error-function (erf). Nevertheless we can estimate it.

Let the probability that after n steps the system has not been projected yet be given by Q.
Then:

Qn < c16a = exp(CQ%) (A.25)

where ¢; and ¢y are constants, y and ¢ are the mean value and width of the PlA B(2), or in
x-space:

w= /A(a:) In g((g dx o? = /A(a:) In? gg; dx — p?

So the rate of convergence is likely to be exponential, possibly faster. This is a conjecture
however, since this is not a calculated estimate, but it’s a really estimated estimate.

Perhaps this is not a relevant question. What is relevant is that the rate of convergence depends
on the ‘difference’ between A(x) and B(x), of which y is a measure.
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Figure A.2: A(x) and B(z) (1), P{(z) and P;'(z) (r), from example (1)

0.29

A.2 Examples and more for the case of two eigenvalues

We will give some examples and corresponding figures of typical functions for A(z) and PA(z2)
etcetera. These examples give rise to other general properties which will be discussed.

Example (1)
For this example we used the following form of A(z) and B(x):
A= 2(:082(%:5) B= 25in2(gm) x € [0,1]

We explicitly calculated p, 02, P{(z) and P (2):

Q=2 o? =72 — 2 o~ 2,42

3

3 3
P\(z) 2_ev Pi(z) = 4 e2(ze” —2e" +2+2)

B N Rk

These results are plotted in fig. A.2. For higher values of n than two, P2 (z) is hard to solve
analytically; therefore we computed P{‘(z), n > 2 by numerical integration. Figures A.3 and A.4
plot PA(z) for some values of n.

Furthermore, we found a kind of symmetry between P and PP:
PA(—2) = PP(2)

This is not a coincidence, because A(x) and B(x) resemble each other. In most of the following
examples A(z) looks like B(x): translation or mirroring of A(z) yields B(z). For such cases
one usually finds that PA(—z) = PB(z).
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Figure A.3: Numerical calculation (Monte-Carlo) of P¢(z) from example (1)
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Figure A.5: A(x) and B(z) (1), P{(z) and P;'(z) (r), from example (2)

Example (2)
Instead of using sines for A(x) and B(x), we use straight lines in this example:
A=2x B=2-2x

Explicit values of u etcetera differ from example (1), but the overall from is the same:

1
u=1 02:§7r2—u2 o=1,51

e2? PzA(z) _ 462Z(262Z — 3e% + 4ze* + z + 3)
(14 e2)3 (e —1)°

Also now, there is the symmetry between P;L“ and PB:

PA(-2) = P3(2)

PA(z) =2

This example is illustrated in fig. A.5.

Example (3)

In this example, we return to cosines for the functions A(x) and B(z), but both are shifted
compared with example (1):

1 1 2
A =2cos?(n(z — 2)) B =2cos’(m(z — = — 2))
2 2 3
Characteristic values for this example are:
3
w== o + u? =~ 6,959 o~2,17

2

Expressions for i /B (z) are not nice to write down. Therefore we plotted them in fig. A.6.
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Figure A.6: A(x) and B(z) (1), P{*(z) and PE(2) (r), from example (3)

Example (4)
Now, we choose different forms for A(x) and B(z):
A=2 B=1

B is now the most simple probability distribution one can imagine: a constant one. This is no
obstruction whatsoever, and we calculated P{(z):

1 1
Pi(2) = 5622 -6(In2 — 2) PB(z) = 562 -0(In2 — 2)

With 6 as the Heaviside step-function. For higher n this step becomes smoothened. P (z)
and PB(z) have different, i.e. not opposite, means now:

1
,uA:1n2—§z0,19 pp=In2—-1=—-0,31

1
0124:1 o4 =1

Pi(2) = %622(2 In2—-2)0(2In2 — z2) PB(z) = %62(2 In2—2)6(2In2 — 2)

See fig. A.7 for PAA(z) and PP(z).

Example (5)

In the previous examples we only showed P2 (z) or P2(z), but not P,(z) itself. In fig. A.8
we do show P,(z) and its dependence on o and 2. For simplicity, We used gaussian normal
distributions for PA(z) and PP (z).
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Figure A.7: A(x) and B(z) (1), P£(z) and PE(2) (r), from example (4)

0.4

r0.2

Figure A.8: This is what P,(z) looks like, for n = 8 and a? = 1; 0,2 and 0,04 (used
PA(z) and PB(z) are gaussian normal distributions, with z = 42 and o2 = 4)

10 20 30 40
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Figure A.9: Numerical calculation of nPz (%) for n = 1, 3, 8 from example (1); it
approaches a delta-function.
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Having seen a few examples, there seem to be further general properties for PA(z) and P2 (z)
than just the fact that sometimes P2 (—z) = PP(z). We will work out some of these properties
now.

Limit n — oo 1s a delta-function

We like to rescale P/(z) to make its mean value a constant. Because (z),4 = npua, and
(£)na = pa one should try P!4(z) = P2(£); this function has a mean of pi4 for all n, but is
not yet normalized, so we use instead:

. z
A=) =nP(2) (A.26)
This function is normalize and has constant mean:
o0 o0
/ PA(2)dz =1 / PA(2) zdz = pa (A.27)
o0 o0

When n goes to infinity, this becomes a delta function:

~

. . z
nh_)rlgo PA(z) = nll)rgonpf(ﬁ) =0(z — pa) (A.28)

In terms of A(z) and B(z):

. z Al A2 A'n _—_— A
nh—>nolon/A1A2 . ..Ané(; - lnB—1 - lnB—2 ...—In B—n)d:vn =6(z — /Aln de) (A.29)

As there is no proof as yet, this is a conjecture. Figure A.9 clearly shows the basic idea.
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P]_ yieldsPQ: P2:P10P1

Intuitively one may think that P»(z) is somehow a combination of P;(z)’s. This appears to be
the case for P4(z) and P?(z) (but not for P(2) itself):

= /PlA(z—w)PlA(w)dw (A.30)

because (the righthandside is equal to):

_ 70 //A(xl)J(z —w =10 2 4 V5w — 10 AT ) 4 daadu

B(x1) B(x2)
B A(z1)A(z2)
= // (z1)A(z2)d(z — In Bz )B(xQ))dxldm = Pi(z)

In the same way one can form P2 (z) out of P/’s and of course this is also true for P?(z) and
PB(%). But this is not true for P,(z).

The P(z) are thus of a form to which the central limit theorem (from statistics) applies, which
also supports the conjecture of taking the form of a delta-function.

P4 and PP have more similarity: P4 = e*PB

PA(z) and PP(2) have the, seemingly peculiar, property that:
PA(z)=¢*PB(2) Vn (A.31)

With z ~ ln this says that roughly P4 = APB.

Proof:
) A(wi) B(z;)
Pi(z) _ 2w A Ay B Be A
B A(z;)B(z;)
B(2) 2a; B(@) ta;y By B yAG )
A(zy)
e? = Yk
B(xy)

z A(ml)B(wl)
20 ¢ B(%i) Ay B BayAGy

) e, B B By A -
For arbitrary n, using P{(z) = * PE(2):
PAG) = /A 1) ... A(zn)PA(z — In gi‘;i; e.—In ggz;)dfn
= /Al. Ape I EPB(: —1n ggig ..—In gEzZ;)dfn
_ ez/B(xl) B(z,)PE(z —In ggi; —In giii;)d:fn
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This also implies that we can write P,(z) in terms of only PA(z) or P2(z):

Oé2

2
Py(z,0%,82=1-0a%) = o*PA(z—In %) + B2PB(z —In @)
o2
= B*1+4+e)PB(z—In E)
o2
= o?(1+e*PHz—1n F> (A.32)
Furthermore, if we use the z-dependent forms for a2 and 2:

2 1 2 1

= Ties T iye

we can easily calculate their expectation values:

(a2) = / 02 (2) Py (2, 0, ) dz

—00

= 0z2/P;:1(w)dw=0z2 (A.33)

A.3 The case for arbitrary many eigenvalues extends easily
from that of two eigenvalues

We now solve the problem, i.e. give the proof, for more than two eigenvalues, but this is almost
a trivial job.

A.3.1 Three eigenvalues

Let’s tackle the problem with three instead of two eigenvalues. This requires A(z), B(z) and
C(z). And o2 (&), B2(Z,) and 72(Z,) and a probability density distribution py, (Z,):

pu(Ty = P A(z))A(x2) ... Azy) + B2B(x1) ... B(xy) + v2C(x1) ... C(xy) (A.34)
As a reminder:

22 = C(x1)...C(zp)

(A.35)

-

pn(mn)

Again we will create a new probability distribution, but it will now be dependent of two variables,
2
z and w, instead of only z, and it indicates the probability that at the same time g—g = ¢e* and

:—z‘” =e¥:
. a2 a2,
P,(z,w) = P(%n)6(z —In —3)6(w — In —)dZy, (A.36)
n Tn
2 pA ? 2pB o ?
= a"Py(z—In—,w ln?) +B°Py (2 —In —,w lnﬁ)
o? a?
+92PY(2z —In —,w — In —) (A.37)
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With of course:

P (z,w) = /A(:E1)A(x2) ... A(zp) 6(z — In A(z1) ... Alzn)

B(z1)...B(zy)

For PB(z,w) and PY(z,w) one should replace some of the A(x)’s with B(z)’s or C(x)’s. We
continue as in the case of two eigenvalues:

Pz, w) //P1 — 2w —w) P{(2,w) d2 dw (A.38)

and similar for P8 and PC.

(z)A = //P;;‘(z,w) zdzdw =n(z2)$ >0 (A.39)
(w)a = n{w)i >0 (A.40)
UAz(z) —nUAz( 2(2) = (%) = (2)? A4l
n (2)=noi (z)  07(2) = (") — (2) (A.41)
and likewise for w, and B and C, with the exception of:
()7 <0 (w)f > ()7
(w)f <0 ()7 > (w)f
which one should be able to show using previous techniques.
1 1 1
2 2 2
- = A .42
oz w) = l+e?4ew Fn 1+e*+erw T T ew f ew—z ( )

Projection can again be made visible as in fig. A.10.

z—w=0

Figure A.10: The two dimensional z —w—plane becomes divide into three parts. In each
part one of a2, 32,72 becomes 1, the other two vanish. P,(z) is a sum of three terms,
PA(2), PB(z), P¢(z) which all ‘float’ in their own direction, away from the origin. For
the precise directions, A(xz), B(z), C(x) have to be known.

One can also rewrite P, (z,w,a?, 32,42 = 1 — a? — 3?) to:

Py(z,w) =a’(14+e 4+ e )Pz —In—,w—In ?) (A.43)
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A.3.2 M eigenvalues

The extension to M eigenvalues becomes almost trivial now: this requires M coefficients afﬁ
and M functions A*(z) (i € {1,2,... M} ). Next, we define a new probability distribution as

the chance that:
o= Vie{2,3,...,M}

We call this probability distribution P, (29, 23,...,2yp) = P,(2).

M 5 a12 a12
Py(2) =) o Pi(Z-17) 7=(n—5,....,In —s)
i=1 @ «

and furthermore:

So much for that.

The conclusion remains that projection will take place, if and only if the functions A(x), B(z), C(x)
etcetera (the eigenvalue ‘patterns’) are different.



APPENDIX B

THE SPECTRUM OF D(H), WITH H = S5 AS AN
EXAMPLE

In this appendix, we discuss the spectrum and structure of a the quantum double D(H) of a
finite group H. We use H = S3 as a model; the choice for S3 has not been because of the
relation between the braid group and the permutation group, but because S3 is the smallest
finite non-abelian group.

B.1 The group Ss, irreps of D(Ss)

The group that we will use to show the structure of a D(H) explicitly is S, which is the
group of permutations on three objects. It is also isomorphic to D3. S3 contains six elements.
Elements of S3 are written using the so called cycle notation. For instance, (123) means: move
the object on the first position to position two, that of two to position three, and move the
object of position three to the first position.

S3 = {e, (12), (13),(23), (123), (132)} = D3 = {e,r,% ¢, qr,qr”} (B.1)

Multiplication of cycles, i.e. the group multiplication, is easy in cycle notation.
(13)(12) = (123) e=() (12)(12) = e = (1)(2) (B.2)
We will not give a complete multiplication table, because this is not necessary for D(Ss).

The conjugation table however, is important. It describes how group-elements change when
conjugated by another element.

Table B.1: Conjugation table of S3: vuv™?!

v\u e (12) (13) (23) (123) (132)
ele 12 13 23 123 132
(12) |[e 12 23 13 132 123
(13) |e 23 13 12 132 123
(23) |e 13 12 23 132 123
(123) |[e 23 12 13 123 132
(132) |e 13 23 12 123 132

120
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Table B.2: Conjugacy classes and centralizers.

10 = {e} °N = {e, (12), (13),(23), (123),(132)} | IN = S3
(2N = {e, (12)}

0 ={(12),(13),(23)} | (3N = {e¢, (13)} N ~ 7y = {e,a}
2N = {ev (23)}
(BN — {¢

3C = {(123), (132)} (132)§ - ie: EE;;: gzig 3N ~ Z3 = {e, z, 2%}

When the conjugation table is given, one can determine the different conjugacy classes 4C' and
centralizers "IN of elements h € H and centralizers 4N of classes 4C.

Next, we calculate the character-tables for the centralizers of the conjugacy classes. These
centralizers are probably isomorphic to other well-known finite groups, of which the character
tables are also known.

Table B.3: Character-tables for S3, Zo and Zs, with w = 27/3.

Ss3 ‘ lc 2¢ 3¢ Zio ‘ e a 73 ‘ e z 22
1] 1 1 1 11 1 1|1 1 1
All -1 1 cl|1 -1 D|1 w w?
B| 2 0 -1 E|ll w? w

We can now classify the different particles in the spectrum of D(S3) by combining a conjugacy
class with one of its centralizer irreps. We can conclude that there are eight different particles
in D(S3)

Table B.4: Particles in the spectrum of D(S3): (4C, irrep of 4N).

1) = (e 1) — |(123)) = (°C,1)
|B) = (e, B) E) = (°C,E)

B.2 Character matrices for D(H) irreps, spin

We now construct the character tables for the different irreps I of D(S3), i.e. the traces of
irreps of the algebra D(S3). Let us write the matrix-components of 12 (Pyg) once more:

TI5 (Phg)|*his ®v;) = 0 g an,g-119 “hig ™", (@) m;®vm) (B.3)

We observe that quite often the matrix T2 (P,g) is equal to the null matrix. This is when £ is
not an element of the conjugacy class 4C. Then, also the character of II2(P,g) vanishes.

MA(Phg) =0if: h¢gC = Tr (2 (Pug)) =0 (B.4)
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But the trace of Hé (Ppg) is equal to zero at more occasions, namely if A and g do not commute.

Tr(IT4(Phg)) = 0 (also), if: gh # hg (B.5)

So, there are a few h and g for which Tr (Hﬁ(Phg)) is non-zero. In those cases it is equal to a
particular value of the character table of the irrep a.

helC, ge™ = Tr(T4(Prg)) = Trla(g)] with « irrep of "N ~ AN (B.6)

The character-table for the irreps of D(S3) can be conveniently written as character-matrices
MA.
h

Mg (Prg) = Tr (T3 (Pag)) = (Mg)",

(B.7)

We will now give these character-matrices for D(S3). We use a -’ to indicate that II4(P,g) is
the null matrix, of which the trace is of course also zero.

P\g| e (120 (13) (23) (123) (132)
ellc ¢ ¢ 3¢ %
a |- - - - . .
MysBo= G| DT T L
@) |- - - - - -
) | - - - - ] ]
S, P, | }C ¢ X 2 33 %
P\g|e (12) (13) (23) (123) (132)
@1 « 0o 0 0 o0
|1 0 a 0 0 0
MyclPh) = o331 0 0o o 0 0
@) - - - - - -
(132) | - i ] ]
b |3 a a a 0 0
P\g|e (12) (13) (23) (123) (132)
N
MyopPe) = Gy |l T T T T
(123) |1 0 0 0 2 22
(132) |1 0 0 0 22 z
oPul2 0 0 0 =2+2° z+2°

If we sum up all rows of the matrix M (f, we find the the character for the induced representation
T(f(g)of the group Ss3, induced from the quantum double irrep Hé. The decomposition of Hﬁ
in irreps of S3 can now be easily calculated using the character-table of S3 and orthogonality of
characters.

T(9) = ) T3 (Pag) (B.8)
h
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Tr (T4 (g)) = Tr (Z Hﬁ(Phg)) =" M Pug) (B.9)
h h

4 we find a multiple of the spin e?™4.« of the particle Hé. Each
centralizer "N has a central element: h commutes by definition with all other elements of the
centralizer. The "N-irrep-matrix for h is therefore always a multiple of the unit matrix. This
multiplicity-value is the spin of the particle Hé.

If we trace the matrix M4

Te(M) = 3 MA(Pyg) = [0 misae (B.10)
g

It is called spin, because if we rotate particle Hﬁ counterclockwise over 360 degrees, its wave-
function gets multiplied by the factor e**4.«. Also if we exchange to identical particles T4
counterclockwise then the two-particle wave function obtains this phase factor. However this
last equality turns out to be only true for specific internal states of the identical particles
Hé. For such cases, it is called the canonical spin-statistics connection, see Propitius and Bais
[11][p. 52], and the two particle state |¢)) usually is entangled:

[y = > cil®hi)l M) ZIC¢|2=1 (B-11)

i:4h; €AC

Rlyp) = e*To4ay) (B.12)

Bosons have integral spin, fermions have spin 1/2, anyons (both abelian and non-abelian) have
any fractional spin.

We will now state both the induced H = Ss-group-representation decomposition and the spin
of the particles II%. We also give the dimension of the internal states of the eight different
particles

Table B.5: Spin and group-irrep decomposition for the particles of D(Ss).

particle dimension e?™* spins H irrep decomposition
B i i 0 B
1A) 1 1 0 |A)
|B) 2 1 0 IB)
1(12)) 3 1 0 1)+ |B)
C) 3 IR 4) + |B)
1(123)) 2 1 0 1) + | A)
|D) 2 e?mi/3  2/3 |B)
|E) 2 etmif3 43 |B)

B.3 S-matrix, fusion rules and R?-eigenvalues

We would like to calculate the fusion rules now. This calculation is simplified by using the so

called S-matrix: )
SaF = ﬁﬁ(nﬂgg) (B.13)

For H = 53, Sﬁg is thus a 8 x 8 matrix.
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It turns out that the S-matrix itself can easily be calculated with the character-matrices M, (f.
Traces of D(H)-irreps are the same for P,g and gP), although these are not the same elements

in D(H):
Prhg # 9P (B.14)
Tr(IT (Phg)) = Tr(IT (P ghg-19)) = Tr(Tly (9P1)) (B.15)
With this relation, S4# is the trace of the product of M2 and Mf:

|H[S3E = Tr(R7)a5) (B.16)
_ nrahy (B.17)
= Te(l; ®TF (Y hPy ® Prg))* (B.18)
h,g

= |3 T (hPy)) Te (115 (Pag)) (B.19)

| h.g
= Do (MM (B.20)

| hog
= T(Mg M) (B.21)

We can also write the orthogonality relations for the characters of D(H)-irreps in matrix-form:

1

A

but this is not relevant at the moment.

The S-matrix now takes the following form:

Table B.6: S-matrix: |H|SQA§

B,
1) 14) |B) [(12)) |C) [(123)) |D) |E)
1 1 2 3 3 2 2 2
Ayl1 1 2 3 3 2 2 2
BY| 2 2 4 0 0 2 2 2
Ao |12y 3 3 0o 3 3 0 0 0
cy|3 3 0o -3 3 0 0 0
(123 2 2 -2 0 0 4 2 -2
Dy|2 2 2 0 0 2 2 4
Ey| 2 2 2 0 0 -2 4 -2

With the S-matrix, the fusion rules, i.e. the coeflicients NA ,6() 7 follow from multiplication of its
rOwS:

M) @ If = P N0 s (B.23)
Cyoy
SADSBD(S*)CD
ABy __ ad ¥B6 )
Naﬂc - Z SeD (B'24)
D6 14
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Table B.7: Fusion rules for D(S3).

AxA=1
AxB=B BxB=14+A+B
Ax (12)=C Bx (12)=(12) + C (12) x (12) =1+ B+ (123) + D+ E
AxC=(12) BxC=(12)+C (12)xC=A+B+(123)+D+E
Ax(123)=(123) Bx(123)=D+E (12) x (123) = (12) + C
AxD=D BxD=(123)+E (12) x D = (12) + C
AxE=E BxE=(123)+D (12) x E = (12) + C
DxD=14+A+D (123)x(123)=1+A+(123) CxC=1+B+(123)+D+E
DxE=B+(123) (123)xD=B+E Cx(123) =(12) + C

(123) x E=B+ D CxD=(12)+C
ExE=14+A+E CxE=(12)+C

We calculated the fusion rules for S3. Fusion of IT4 with the vacuum |1) always yields II4.

The fusion rules in this form are just a blob of information. However, the fusion rules can be
written more compact, if we make the following identifications:

1 = 1
A = A
Kb .= (12),C
Julelv/z .= B (123),D,E
The fusion rules now compactify to:

AxA=1
Ax Ke=T1"b
Ax JV=J%¥

KixK'=1+JY+J"+JY+ J*
KxKP=A+JY+J%+ JY+ J?
K*x K¥ =K%+ K°

JUX TV =14+ A4 Jv
JO % J = JY + J?

Of real interest are the various R%-matrices. With the fusion rules and the spin of the particles,
we can determine the eigenvalues for R2-matrices. The eigenvalues for R? operating on IT4
and Hg are the spins for the particles Hg appearing in the fusion channel, corrected for the

spins of T4 and HﬂB :
R*Maa88) = MAaapg) A =emiomsamss) (B.25)

Most of the different possible R? operators are equal to the identity operator. Those that are
not are combined in the following table:
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particles on which
R? operates

n - A: n fold degeneracy
of R?-eigenvalue \

A, K°
Ko | Ka/b
Ko, Jv
Ju | Jw
Ju | Je

2- -1
5-1+42-e¥/3 4 2. etmi/3
3-1+43--1

2:142- e—27risw
{4 . 1} or {2 . e2m/3 +2. e47ri/3}

depending on w and x
—9. eQwi(sy—sw—sz) +2. eQwi(sz—sw—sw)

Explicit forms of matrices, of both the irreps I14(P,g) and R>?-operators have to be worked
out further, and this cannot be done genericly. One can use a computer-program and the
construction with g (see (4.31), p. 54) to do this. One can also construct these matrices by
hand, where the decomposition into group-irreps is a valuable tool.

However, both methods, by computer and by hand, require the explicit forms of irrep-matrices
of the centralizers “N. One-dimensional irreducible representations are equal to the characters,
but higher-dimensional irreps are not, of course. For H = S3, there is one two-dimensional
irrep, which we will give now, written in various different bases:

Table B.8: The 2-dimensional irrep of S3 (B) in explicit matrices and some basis transformations.

(12) (13) (23) (123) (132)
by (43 1 g 1 WE) ([ <h BB) (3B
b-) 3V3 3 (03) -3V3 3 ~iv3 -1 V3 -1
B 0 4mi/3 0 27i/3 2mi/3 () ari/3 ()
IBzg [62”/3 0 ] [(1)(1)] [e47ri/3 0 ] [eo e47ri/3] [eo e?ﬂ'i/B]
ja) 10 -3 —3V3 —3 V3 —3 3V3 —3 —3V3
la-) (6%) —-3V3 3 1v3 1 ~1v3 -1 13 —1
le+) —3_—3V3 -3 3V3 10 ~3 V3 -3 —3V3
S (W W (53) N Sl I W

[b+)  lo-) lb+)  [b-) b+)  1b-)
lat) = ( 3 3\/5) le+) = ( 3 —%x/??) BY=(7% &
o) = \-4v3 '} = 3 By =\ % -3

B.4 An alternative D(H) character-table

It is possible to construct a character-table for D(S3) that differs from the character-matrices
M2, We already observed that the character of IT4(P,g) is zero when h and g do not commute.
Let us then restrict ourselves to P,g with hg = gh. If such a pair (h, g), or (hq, ha), is conjugated
by another element, then the resulting pair is still a commuting pair:

gt (h1,h2) — (gh1g™ ', ghog™") (B.26)

hihs = hohi = (gh1g™")(gh2g™") = (ghag™")(gh1g™") (B.27)
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But under this conjugation-action of g, the trace of the matrix TI4 (P, hy) is invariant:

Tr (I3 (Phy ho)) = Tr (T3 (Pyp, g-19h2g™t)) (B.28)

Some sort of conjugation classes of commuting pairs can be formed:

Cchhz) = L(gh1g™! ghog™") | g € H} (B.29)

A character-table of D(H) is a matrix, where the rows are labeled by the irreps of D(H) and
the columns by the different conjugation classes of commuting pairs. The order can always be
chosen in such a way, that this is a block diagonal matrix, where the blocks are the character
tables of the centralizers.

Table B.9: Character-table for D(Ss).

e, e(12) e,(123) (12),e (12),(12) (123),e (123),(123) (123),(132)
1 11 1 - - - - -
A 1 -1 1 - - - - -
B |2 0 -1 - - - - -
2 |- - - 1 -1 - -
C - - - 1 -1 - - -
(123) | - - - - - 1 1 1
D - - - - - 1 w w?
E - - - - - 1 w? w
o9 |1 3 2 3 3 2 2 2

The rows and columns of the character-table are orthogonal, when taking the number of elements
|C’(h’9)‘ in each conjugacy class of commuting pairs in account.

Calculating the S-matrix is simplified as well. Let P be the matrix that permutes the conjugacy
class of a pair, in the sense that it exchanges its members:
P: (h1,he) ¥ (he, h1) (B.30)

Let furthermore D be the diagonal matrix with the number of elements ‘C(h’g)| in each conju-
gacyclass, then, with C' as the character-table, then:

S* = CcPDCT (B.31)
s4F = (c, P D (CT)BE) (B.32)
[P,D]=0,P" =P, P?=1,D"=D = S§=45T (B.33)

For H = S3 the orthogonal symmetric ‘permutation’-matrix P is:

e,(12) e,(123) (12),e (12),(12) (123),e (123),(123) (123),(132)

o
@

e,(12)
e,(123)
(12),e
(12),(12)
(123),e
(123),(123)
(123),(132)

(B.34)

cC O O O O O O =
S O o o = O ©oO <
S O = O O O o ©
S O O O o o = o
c O O = o O o ©
S O o © o = o <
S = O O © O o ©
= o © © © © o <

Although the S-matrix can be calculated easier with the character-table C, the decomposition
into group-irreps can not. So, both methods, with character-matrices M, &4 or character-table C,
have their advantages.



APPENDIX C

BraiD GRrROUP B,

The braid group B, is a discrete group of infinite order. It is generated by n — 1 elements

Ti, T2, .., Tn—1 and their inverses. The generators are subject to the relations:
TiTi+1Ti = Ti+1TiTi+1 1=1,...,n—2 (1)
TiTj = TiTg i — 7] >2 )

These relations are well known as the Yang—-Baxter equation. The generators can be presented
graphically by counterclockwise (for the 7;) and clockwise (for the 7, ') braids of n ‘strings of
rope’, as is shown in figs. C.1 and C.2

Figure C.1: A graphical representation for generators Ti,Ti_l, with from left to right:
1, 75+ and 75 tr375 174 which is equal tors 7374. The pictures themselves have to be
read up-down to ‘see’ the associated clock- or counterclockwise directions of the braids.

The braid group is frequently used for describing exchanges of objects or particles in a two-
dimensional space. Particles may be distinguishable or not. In physics of two-dimensions, n
indistinguishable particles can behave as some representation of the braid group B,. Distin-
guishable particles are more likely to be described by a subgroup P, of the braid group B,,. This
subgroup is usually called the colored braid group. It is generated by the monodromy operators
7i; and their inverses, defined by:

Yij =Ti--- Tj_QT]'QflTjgil . 7';1 with1 <i<j<n (C.2)

The monodromy operator 7;; takes particle 7 around particle j and follows a specific path to
‘bring’ 7 next to j and the same path for the ‘way back’, which is illustrated in fig. C.3. There can
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Figure C.2: These braids represent the Yang—Baxter relations: 717971 = 77172 and 7173 = 7371.

also be partially colored braid group, which describes a system of particles formed by different
subsystems of identical particles. The many-to-one experiment as described in chapter 3 fits
this description: there is one particle of type A, and n identical particles of type B.

Figure C.3: The operations 7; and ~;; in the context of the ordinary and colored braid
group with indistinguishable and distinguishable particles respectively.

Usually there are more restrictions or relations than just the Yang-Baxter equation (C.1). If
we for example add the relation 7; = Ti_l, we restrict ourselves to a subset of the braid group
which is the permutation group on n objects Sy; for the permutation group the direction of
exchange is not relevant. But S, is a finite group. Such groups (subsets, factor groups), which
are generated by the generators of the braid group subjected to extra relations, have been called
truncated braid groups. Truncated braid groups can be either of finite or infinite order. The
particles in the spectrum of the quantum double D(H) of a finite group H, from representations
of a truncated braid group, because 7;"* = e for some finite m and all 7. Since truncated braid
groups of this form, with generators 7; of finite order, occur often, they have notation of their
own: the associated ordinary braid group has been called B(n, m)and the colored counterpart
P(n,m).



APPENDIX D

(GRAPHICAL NOTATION FOR THE U-MATRIX

In this small appendix, we create some feeling for what the matrix U, as defined in chapter 3,
‘does’ by representing it graphically, as shown in figures D.1 and D.2. In these figures, traces
are performed by closing loose ends into loops, which obviously preserves the cyclic property of
the trace: Tr(ABC) = Tr(CAB) = Tr(BCA).

This way of notation resembles illustrations used in both quantum computing and braid group
theory (or even knot theory). As for now it is only useful to represent two, already known,
identities: (U) = (R?) (if we assume that pss = ps ® pg) and UTU = UU' (the proof given in
3 needed that R? be unitary; here only braiding is used, so perhaps it is complete nonsense to
picture it like this).

It is useful to recall that pf = p and R2' = R=2. Arrows are added to make it easier to ‘see
3D’, but are somehow also needed to distinguish U from UT.

U — TI'B(RQpB) : R2

A Ey v

(R?) : R2 Pam Tr(p) =1: =1= Pan

Figure D.1: Every line represents a vector space. Multiple lines denote the tenor product
of the associated one-line vector spaces. The trace is performed by closing a line to a
loop.
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Figure D.2: ‘Proof’ of the fact that U is normal, i.e. UUT = UTU.
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