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Abstract

We analyze the modes (excitations) of phases that arise via spontaneous global
symmetry breaking from the isotropic phase. We focus on ordinary and liquid
crystals. The modes can be classified into three categories: regular or electric
modes, which refer to regular excitations of the ground state; topological or
magnetic modes, which have a core in which the symmetry is (partially) re-
stored; and dyons, which carry both electric and magnetic quantum numbers.
We study their interactions, in particular their fusion and braiding properties.
These interactions can be captured by a mathematical structure called a Hopf
algebra, which we analyze in detail. Once the Hopf symmetry of a phase has
been established, we study symmetry breaking induced by the condensation of
electric, magnetic or dyonic modes. The use of Hopf symmetry breaking to
analyze the phase structure of media with topological excitations was pioneered
by Bais, Schoers and Slingerland. In this thesis we use a novel more refined cri-
terion to define the residual symmetry, which in certain cases leads to a richer
analysis of the physics of the broken phase.

Some of the excitations are confined, meaning that they cost an infinite
amount of energy to create. These confined excitations may form unconfined
”hadronic” composites, in analogy with the hadrons in the theory of strong
interactions of quarks. We determine the unconfined symmetry algebra of the
broken phase, and develop a method to analyze the hadronic composites in con-
densed matter systems. We apply our symmetry breaking analysis to ordinary
and liquid crystals, and predict a wealth of new phases, in particular phases
resulting from nonabelian defect condensates.
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Chapter 1

Introduction

The enormous usefulness of mathematics in the natural sciences is
something bordering on the mysterious and there is no rational ex-
planation of it.
- Eugene P. Wigner

One of the major drives of modern day theoretical physics is the search for uni-
fying principles. An important tool in this search is the concept of symmetry.
Over the past century physicists have had to generalize the concept of symme-
try, from global to local, from the Lorentz group to supersymmetry, and from
ordinary groups to Hopf algebras. In this thesis we will study new applications
of Hopf symmetry to condensed matter systems, in particular to describe the
rich variety of interactions and phase transitions in liquid crystals.

When the temperature of a condensed matter system is lowered, a common
phenomenon is the development of order in the system. The system enters a
phase with less symmetry than the high temperature phase. To characterize
symmetry breaking phase transitions, physicists introduce order parameters,
which determine the symmetries which are broken of manifest.

The spectrum of systems with the same symmetry breaking pattern share
important properties. The spontaneous breaking of global symmetries implies
the existence of low energy excitations called Goldstone modes, and of excita-
tions called topological defects. The Goldstone modes are labelled by quantum
numbers that characterize their transformation properties under the residual
symmetry group in the broken phase. The topological excitations carry so
called ”topological quantum numbers”, which are quite different from the quan-
tum numbers of Goldstone modes. However, using the extended symmetry con-
cept of Hopf algebras both types of quantum numbers can be treated on equal
footing. The Hopf algebra captures the transformation properties of ordinary
and topological modes under symmetry transformations, and their topological
interactions. Recently it has been discovered that many physical systems can
be described using Hopf algebras, from crystals to Quantum Hall states to 2+1
dimensional gravity. Our application to liquid crystals is novel.

11



12 CHAPTER 1. INTRODUCTION

Liquid crystals are systems with a symmetry in between that of a liquid and
a crystal. In nature a wide variety of liquid crystals have been discovered, and
they have subsequently found important applications in industry, in flat screens.
In theoretical physics, they offer an ideal testing ground for certain models of
the early Universe. Namely, as the early Universe expanded it cooled down and
went through a sequence of phase transitions that are analogous to phase tran-
sitions in liquid crystals. Liquid crystals are particularly convenient materials
to analyze phase transitions because they are relatively cheap compounds, their
phase transitions occur at temperatures that can be reached with a common
kitchen oven, and they can be observed with a simple microscope.

Our goal is to study symmetry breaking in crystals and liquid crystals using
the Hopf symmetry. The most common phase transitions in crystals and liquid
crystals are associated with the development of order, and thus the breaking
of symmetries. These are described by order parameters. There are also phase
transitions induced by topological defects, which break no conventional sym-
metries. It is possible to introduce disorder parameters to study these phase
transitions, but until now it has not been possible to treat defect-mediated phase
transitions in terms of symmetry breaking. In this thesis, we will see that the
defect-mediated phase transitions break Hopf symmetries, and thus we can treat
these phase transitions as Hopf symmetry breaking phase transitions. The Hopf
symmetry description allows one to unify the description of conventional and
defect-mediated phase transitions, and it allows for a systematic investigation
of all the possible phase transitions from a given phase.

The Hopf symmetry approach to symmetry breaking was pioneered by Bais,
Schoers and Slingerland [6]. We will carry out the analysis of the Hopf symmetry
description, and of Hopf symmetry breaking in liquid crystals and crystals. We
choose these phases because they exhibit a rich variety of symmetry breaking
patterns and defect-mediated phase transitions, so that they provide the perfect
testing ground for the Hopf algebra description of symmetry breaking.

Outline

Chapter 2

In chapter 2 we study the physics of condensed matter systems with sponta-
neously broken symmetries. We introduce order parameter fields, and explain
how to set up the free energy of a system. We distinguish between global and
local symmetries, and in both cases analyze the mode content. We discuss con-
tinuity modes, Goldstone modes, massive gauge bosons, topological defects and
dyons, and we analyze their interactions. We analyze the transformation prop-
erties of these modes under residual global symmetry transformations. Finally
we describe the tools used to study conventional phase transitions: Landau’s
theory of phase transitions. We introduce correlation functions, and use them
to characterize the order of a phase. We illustrate this with the XY model.
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Chapter 3

In chapter 3 we classify the different types of liquid crystals, and study their
mode content, using the tools described in chapter 2. The most important
categories of liquid crystals are nematics and smectics. We discuss the different
types of nematics and smectics, and analyze the dynamics of the modes. In
particular, we explain why the Goldstone modes are diffusive in these systems
(i.e. they decay in time). We study the free energy of liquid crystals, and find
an effective gauge theory in smectics, which leads to massive Goldstone modes.
We also comment on the energetics of defects.

Finally, we discuss the hexatic phase. This liquid crystal phase is obtained
from a two-dimensional crystal by the condensation of defects. The defect con-
densate restores translational symmetry, while rotational symmetry remains un-
broken. In order to understand defect condensates, we also treat the Kosterlitz-
Thouless phase transition, which is a simpler example of defect condensate, in
the XY model.

Chapter 4

In chapter 4 we introduce the Hopf symmetry description of condensed matter
systems. We give the generic name electric modes to low energy excitations
of the order parameter field, such as Goldstone and continuity modes. The
topological defects are called magnetic modes. This denomination is borrowed
from Quantum Electrodynamics. We show that the representation theory and
fusion rules of electric and magnetic modes is reproduced by a Hopf algebra
called quantum double. Then we show which Hopf algebra is appropriate for the
liquid crystals phases discussed in chapter 3. We find that we need to slightly
modify the quantum doubles, thus we define generalized quantum doubles.

Then we discuss the braiding of modes: when one mode is adiabatically (i.e.
slowly) transported around another mode, it may return in a slightly different
state. The most famous example of this behaviour is the Aharonov-Bohm effect :
an electron braiding with a infinitely long coil carrying a current picks up a phase
factor, even though the electric and magnetic fields outside the coil are zero.
The Aharonov-Bohm effect is an example abelian braiding, because the gauge
group U(1) of electromagnetism is abelian. In the case of non-abelian gauge
theories, the outcome of braiding may be more complicated than a simple phase
factor. Once we’ve described braiding in local theories, we will discuss what
the analogous phenomenon is in a global theories. Adiabatic transport in global
theories also leads to a change of the state of a mode, but the interpretation
is different. The mode is being frame dragged, meaning that it is following a
geodesic in a curved space. We analyze the braiding of modes in liquid crystals

The braiding can be captured by the Hopf symmetry description. Part of
the Hopf structure is a universal R-matrix, which acts as a braid operator of
the modes. A Hopf algebra with a universal R-matrix is called a quasitriangular
Hopf algebra. We introduce the universal R-matrix of the quantum double, and
show that it reproduces the braiding of modes in liquid crystals.
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Finally we analyze the braiding in a uniaxial nematic. We find a rather
interesting phenomenon: the defects actually have a continuous label, and we
can define coherent sums of defects, thereby obtaining a set of magnetic states
with U(1) charge. We show how charge can be transferred from these defect
states to electrically charged particles by braiding the electric particle around
the magnetic state. This phenomenon is the global analogue of Cheshire charge.

Chapter 5

In the final chapter we study we study symmetry breaking in a phase with
Hopf symmetry A. A phase transition is accompanied by a condensate |φ >,
which is a particle that fills the ground state. We define a residual symmetry
algebra TR, which is the set of operators that are well defined with respect to the
condensate particle |φ >. Excitations of the ground state are irreps of TR. We
show that there are two types of irreps of TR: confined irreps, whose excitation
requires introducing a half-line singularity in the condensate. The state |φ > of
the condensate is different to the left and right of this half-line. This implies
that the half-line costs a finite amount of energy per unit length. Thus in
an infinite system a confined excitation costs and infinite amount of energy to
excite. However, the half-line may end on another confined excitation, thus
giving it finite extent. We call such an combination of confined excitations a
hadronic composite, in analogy with hadrons in Quantum Chromodynamics.

The other type of irreps are unconfined excitations, and they are not con-
nected to a half-line singularity. We will show that there is a Hopf algebra called
the unconfined symmetry algebra, whose irreps are precisely the unconfined ex-
citations. We work out U for electric condensates, and defect condensates in
liquid crystals. We find what we expect for electric condensates, namely that
Landau’s theory of phase transitions is reproduced. We also find natural answers
for the defect condensates, and we show that these results reproduce the defect
condensates discussed in chapter 3. As an example, we work out all electric and
defect phase transitions from a tetrahedral nematic.

We then take a closer look at the confined excitations, and at TR. TR is not
always a Hopf algebra, which is due to the fact that the tensor product of irreps
of TR is not associative. We discuss how to deal with this.

Finally, we study a simple example of dyonic condensate. The calculations
are rather involved in the case of dyonic condensates. We work out TR and U
for a relatively simple dyon in a dihedral nematic.



Chapter 2

Ordered systems

In this chapter, we describe the physics of ordered condensed matter systems.
We first discuss how to capture the state of a system using fields. Then we
discuss the symmetries of a phase, and the phenomenon of spontaneous sym-
metry breaking to an ordered phase with less symmetry. At high temperatures,
the symmetry of the state of the system is G. As the temperature is lowered,
the state may change to a state with less symmetries. The symmetry group of
the ordered phase is called the residual symmetry group H . We introduce order
parameters which determine which symmetries are broken, and which symme-
tries are unbroken in the ordered phase. To describe excitations in the ordered
phase, the order parameters are allowed to vary in space, thus becoming order
parameter fields.

Once the fields that characterize the state of the system have been estab-
lished, we can study low energy excitations of the state. We consider plane
wave excitations of the fields, and using the equations of motion of the fields
we can determine the dispersion relations of the plane wave excitations. By lin-
earizing the equations of motion, we obtain the long wavelength, low frequency
behaviour of the excitations. Plane wave excitations that satisfy the linearized
equations of motion are called modes. We will discuss continuity modes and
Goldstone modes.

In an ordered phase, there are also excitations called topological defects,
which are configurations of the fields that are stable for topological reasons.
These defects are classified using homotopy theory.

Finally, it is also possible to have dyonic excitations, which are a combination
of topological defect and low energy excitation.

2.1 Description of ordered systems

States and fields

The configuration of a condensed matter system at some time t is called the state
of the system at time t. The state of the system is determined by the positions,

15



16 CHAPTER 2. ORDERED SYSTEMS

velocities and configurations of all its constituents. Since we cannot keep track
of every constituent, we consider local averages of certain quantities to describe
the state, such as mass density. We introduce fields which describe these local
averages. Examples of fields are the mass density field ρ(#x, t) in a fluid, the
average local magnetization field #m(#x, t) in a magnet, and the displacement
field u(#x, t) in a crystal.

In a quantum mechanical treatment, the state of the system at time t is
a vector |φ(t) > in a Hilbert space, and the fields are expectation values of
operators in this state. We denote operators with a hat .̂ For example, ρ̂(#x)
is the local density operator at position x, and in the state |φ(t) > the density
field ρ(#x, t) is given by

ρ(#x, t) =< φ(t)|ρ̂(#x)|φ(t) > .

Hamiltonian and symmetries

The time evolution of a d-dimensional condensed matter system is determined by
its Hamiltonian. The Hamiltonian is an operator H acting on the Hilbert space
of the system. The state of the system |φ(t) > at time t satisfies Schr odinger’s
equation:

∂|φ(t) >

∂t
= −

i

"
H|φ(t) >,

whose solution is 1

|φ(t) >= e−
i
!
Ht|φ >, (2.1)

where |φ >= |φ(0) > is the state of the system at time t = 0. We say that H
generates time evolution.

A ground state of the system is an eigenvector of the Hamiltonian with the
smallest eigenvalue of H. According to (2.1), a system that starts in a ground
state stays in the ground state (the state picks up an irrelevant phase factor).

The Hamiltonian is invariant under the transformations of some group G,
called the symmetry group of the system. For example, the Hamiltonian of an
ideal gas is invariant under time translation, time reversal, and the Euclidean
group ISO(3) = 3 ! O(3) in three dimensions consisting of translations, ro-
tations and reflections. We assume that G is a Lie group, so that it is fully
characterized by its generators2 La, which are infinitesimal symmetry transfor-
mations that can be exponentiated to give elements of G.

In quantum theory, these symmetry transformations are operators, called
symmetry operators, that commute with the Hamiltonian. The states |φ >
in the Hilbert space of the system transform under a representation of the
symmetry group G. We denote the action of g ∈ G on |φ > by g · |φ >.

Since the symmetry operators commute with H, and H generates time evo-
lution, an eigenvector |φ > of g ∈ G with eigenvalue λg evolves into a state

1We assume the Hamiltonian is not explicitly dependent on time.
2In mathematical terminology, the generators form a basis of the Lie algebra of the Lie

group G.
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|φ(t) > with the same eigenvalue under the action of g:

g · |φ >= λg|φ > and [H, g] = 0 ⇒ ge−iHt = e−iHtg ⇒ g · |φ(t) >= λg|φ(t) >
(2.2)

where we used (2.1) in the last line.
Thus we can label eigenstates of symmetry operators with the eigenvalues

under the action of the corresponding symmetry operators. These eigenvalues
are called quantum numbers of the state, and are conserved in time. It is not
possible to choose states that are eigenstates of all the symmetry operators,
unless the symmetry operators commute.

We distinguish between different types of symmetries. Symmetries can be
spacetime or external symmetries, which means that they act on the space in
which the system lives, or they can be internal, meaning that they act on some
internal space. External symmetries act on the coordinates #x. If g ∈ G is some
external symmetry, then there is a matrix Γij(g) associated to it that transforms
#x according to xi $→ Γij(g)xj . Then the field φ(#x, t) transforms into a new field

φ
′

(#x, t) under the action of g as follows:

φ(#x, t) $→ φ
′

(#x, t) = φ(Γ(g)−1#x, t) (2.3)

The reason for the appearance of Γ(g)−1 is that we are transforming the space
”from under” the field. For example, if we translate the space in the x-direction
by one unit, The value of the new field at x = 1 is equal to the value of the old
field at x = 0. This is called an active transformation of space3.

Internal symmetries act on some internal label i of the fields. An internal
symmetry transformation g ∈ G acts on φi according to a matrix Γ(g)i

j :

φi $→ Γ(g)i
jφ

j . (2.4)

We denote the action of g on φ by g · φ.
We further subdivide internal symmetries into global symmetries and local

symmetries. Global symmetries act uniformly on the system, while local sym-
metries can act differently on different parts of the system4. Therefore, while a
global symmetry is set by an element g ∈ G, a local symmetry is defined by a
spacetime dependent g(#x, t) ∈ G, i.e. a map:

g : d+1 $→ G, (2.5)

where d is space. To write down a Lagrangian that is invariant under lo-
cal symmetry transformations, we must introduce a gauge field, of which the
electromagnetic field Aµ is the paramount example.

3Note that when some authors refer to external symmetries, they mean an external sym-
metry coupled to an internal one. For example, a rotation of a space with a vector in it not
only rotates the starting point of the vector, but also the vector itself! We will not adopt this
point of view. Instead, we will describe such a transformation as a simultaneous internal and
external rotation.

4This is actually a subtle distinction. For example, it is known that general relativity can
be treated as a theory with the Lorentz group SO(3, 1) as local internal symmetry. But the
Lorentz transformations act on the tangent space at every point! Therefore, in some cases
external symmetries may be treated as internal. The same applies to crystals. We will discuss
this later.
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Spontaneous symmetry breaking and order parameter fields

A condensed matter system is said to be in equilibrium when we can identify a
ground state, such that the configurations of the fields of the system as a function
of time only deviate slightly from the configuration of the fields corresponding
to the ground state.

We denote the ground state at high temperatures by |0 >. |0 > is invariant
under the full symmetry group G:

g · |0 >= |0 > ∀g ∈ G. (2.6)

As the system is cooled down, the ground state may change to a new ground
state that is only invariant under a subgroup H of G. The low temperature
phase is then called an ordered phase, or a broken phase, and the symmetry is
said to be spontaneously broken. Spontaneously symmetry breaking is different
from explicit symmetry breaking, where a term is added in the Hamiltonian that
is only invariant under H .

In the case of spontaneous symmetry breaking, the Hamiltonian is invariant
under all of G, but the ground state isn’t. Spontaneous symmetry breaking is
ubiquitous in condensed matter physics. It appears in a wide variety of phases,
such as ferromagnets, crystals, liquid crystals, superfluids, and superconductors.
In this thesis we will significantly extend the notion of spontaneously broken
symmetry to include so called Hopf symmetries.

The difference between the high and low temperature phases is characterized
by a change in the expectation value of an operator φ̂. φ̂ may have a label i.
For example, if φ̂ is a vector operator: φ̂ = (φ̂1, φ̂2, φ̂3). We will usually omit
this label, and write it down when necessary.

We label states with the expectation value of φ̂. For example, |φ > corre-
sponds to a state that satisfies

< φ|φ̂|φ >= φ. (2.7)

The state may have other labels, such as electric charge, but we neglect these for
the moment, since we are only interested in the phase transition to the ordered
phase.

We always choose our operators φ̂ such that < 0|φ̂|0 >= 0, i.e. their expec-
tation value is zero in the high temperature phase. Thus our notation of |0 >
for the ground state of the high temperature phase is consistent with (2.7).

In the ordered phase, the ground state is |φ0 > with φ0 =< φ0|φ̂|φ0 >=
φ0 '= 0. Thus the expectation value φ0 of φ̂ is nonzero in the ordered phase.
The expectation value of φ̂ is called an order parameter. Its expectation value
distinguishes the high temperature phase from the ordered phase.

As we saw in (2.4), the order parameter φ transforms under a representation
Γ of the symmetry group. Generally the representation Γ can be decomposed
into irreducible representations, which are disjoint subsets of φi’s that are only
transformed into combinations of each other under the action of G. It is advan-
tageous to work with order parameters in an irreducible representation.
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The symmetry group H in the ordered phase is the subgroup of G whose
elements leave φ0 invariant:

h · φ0 = φ0 ∀h ∈ H. (2.8)

H is called the stabilizer of φ0. Note that H is also the the subgroup of G whose
elements leave the ground state invariant. Namely,

h · |φ0 >= |φ0 > ⇐⇒ h · φ0 = φ0. (2.9)

To study fluctuations of the ground state, we allow for a spatial dependence
of the operator, so that we can compute its local expectation value φ(#x) =<
φ̂(#x) > at a point #x. φ(#x) is then called an order parameter field.

Free energy

Once the order parameter fields have been established, we can set up the free
energy of the system. The free energy captures the competition between energy
and entropy in a system, and it is minimized when the system is in thermal
equilibrium. The ground state is a configuration that minimizes the free energy.
We can find such a configuration using standard techniques from the calculus of
variations. This is analogous to field theory, where the free energy is replaced by
an action, and the equations that the fields have to satisfy in order to minimize
the action are called the Euler-Lagrange equations. There is one minimizing
equation for every field. In general, the free energy will be of the form

F [φ] =

∫

d3x f [φ](#x) =

∫

d3x ( fel[φ](#x) + V [φ](#x) ) (2.10)

where f is called the free energy density. fel is called the elastic free energy
density, and all its terms contain derivatives of the order parameter fields. V
is the potential term, and contains no derivatives5. fel and V depend on the
coupling constants of the theory. In thermodynamics a system has at least two
coupling constants, which can be taken to be pressure P and temperature T .

All the terms in the free energy respect the symmetries of the Hamiltonian.
We use this fact to write down the possible terms in f : we seek combinations
of the fields φ that are invariant under the symmetry group G. For example, if
φ is a vector and G = SO(3), then we could include φiφi in the free energy.

The elastic free energy and potential term are separately invariant under G.
For any configuration φ of the fields, and any g ∈ G, we have

∫

d3x fel[g · φ] =

∫

d3x fel[φ]

∫

d3x V [g · φ] =

∫

d3x V [φ]. (2.12)

5The free energy may depend on other fields χ than order parameter fields, such as mass
density. We will assume that the total free energy Ft can be split into two parts

Ft[φ,χ] = F0[χ] + F [φ]. (2.11)

We will only study F = Ft − F0. There may also be several order parameter fields, in which
case we would include a sublabel φa.
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This implies that

fel[g · φ] = fel[φ] +∇ · gel[φ] V [g · φ] = V [φ] +∇ · gV [φ], (2.13)

where ∇ ·gel[φ] and ∇ ·gV [φ] are total derivative terms, that disappear when we
the take the integral over all space (neglecting surface effects). We will ignore
eventual total derivative terms.

The potential term plays a crucial role in spontaneous symmetry breaking.
Namely, the ground state is a configuration of the fields, which we denote by
φ0, that minimizes the free energy. We assume the ground state is uniform, i.e.
the fields are all constant in the ground state6. Since the terms in fel contain
derivatives, fel[φ0] ≡ 0, so that to minimize f , φ0 must be a minimum of V [φ0].
At high temperatures, the minimum of V [φ] occurs at φ0 = 0. To obtain
spontaneous symmetry breaking, V [φ] must change shape as the temperature is
lowered, so that below some critical temperature Tc (at fixed pressure) the global
minimum occurs at nonzero values of φ0. This signals that we have entered the
ordered phase.
Say the system is in the ordered phase with ground state φ0 and symmetry
group H . Then φi

0 is a global minimum of V [φ], the elements of H are defined
as those h ∈ G that satisfy

h · φ0 = φ0. (2.14)

H is called the stabilizer of φ0.
Since, according to (2.13), for any g ∈ G we have V [g · φ] = V [φ], if φ0 is a
minimum of V [φ] then so is g · φ0. By letting all of G act on φ0, we obtain
a continuous family of ground states, called the ground state manifold. We
assume that all the minima of V [φ] are obtained by acting with elements of G
on a chosen minimum φ0. Then G/H is equal to the order parameter space,
since the order parameter φ0 takes value in the ground state manifold. Since H
leaves the ground state invariant, the ground state manifold is equal to7 G/H .
There is one type of term in V [φ] we would like to mention: if 1

2m2C(φi)2 is
present in V [φ], with m2 some constant and i fixed, then we say that φi is
massive, and m is the mass of φi. There can be different masses for different i.
The story until now applies equally well to spontaneous symmetry breaking in
a theory with global and local symmetries. The only difference in a local theory
is that the derivatives in fel are covariant derivatives Di, which means that
we redefine the derivatives so that fel energy is invariant under local symmetry
transformations. To show how this is done, pick one field φ that transforms
under a representation Γ of G. For g ∈ G, the matrix Γ(g) can be written as

Γ(g) = exp(iεaT a) (2.15)

where the T a form an n×n matrix representation of the generators of G, and the
εa are real numbers. In a local symmetry transformation, the εa are dependent

6The ground state can be nonuniform, given certain boundary conditions. We impose the
boundary condition ”the ground state is uniform at infinity”.

7Elements of G/H are left cosets gH, defined by gH = {gh|h ∈ H}. Given that G is a Lie
group and acts smoothly on the order parameter space, the G/H is a manifold.
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on position. Now we introduce a gauge field

Ai(#x) = Aa
i (#x)T a, (2.16)

where the Aa
i (#x) are real numbers. Ai(#x) is an n × n matrix at every point

in space. Under a local symmetry transformation g(#x) = exp(iεa(#x)La), we
postulate that Aµ transforms according to

Ai(#x) $→ Γ(g)(#x)Ai(#x)Γ(g(#x))−1 +
i

q
Γ(g)(#x)∇iΓ(g(#x))−1 (2.17)

φ transforms as
φ(#x) $→ Γ(g(#x))φ(#x). (2.18)

Now if we define the covariant derivative as

Dj = ∇j − iqAµ, (2.19)

then we verify that under the local transformation g(#x), Dj has a simple trans-
formation law:

Dj(#x) $→ Γ(g(#x))Dj . (2.20)

We can now construct a free energy density that is invariant under local sym-
metry transformations:

fgauge = Djφ · Djφ− V [φ] (2.21)

where the dot ”·” is an inner product that satisfies

(Γ(g)Djφ) · (Γ(g)Djφ) = Djφ · Djφ. (2.22)

for any g ∈ G. We will see examples of such an inner product later on.
Since the potential term contains no derivatives and it is invariant under

global symmetries, it is also invariant under local ones. Therefore this free
energy is invariant under local transformations. If G is a nonabelian group,
then we are dealing with a nonabelian gauge theory.

In analogy with the global case, if the order parameter acquires a nonzero
ground state expectation value φ0, and the stabilizer of φ0 is H , then the residual
local symmetry transformations are those that take values in H everywhere:

g : d → H

#x $→ g(#x) ∈ H, (2.23)

where Rd is space. A special case that will occur frequently in this thesis is the
case of a discrete8 H . In this case, for the map g : d → H to be continuous,
it must be constant, since there is no way to ”move around” continuously in H ,
since H is discrete. Thus we are only left with global symmetry transformations
h ∈ H . A gauge theory that is spontaneously broken to a discrete H is called a
discrete gauge theory.

8H is discrete if it is countable. There are no ”infinitesimal” transformations, arbitrarily
close to the identity.
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2.2 Excitations and modes

Once the symmetries of the ground state of a phase have been determined, we
can study the low energy excitations of the ground states. Given the ground
state φ0, we write

φ(#x, t) = φ0 + δφ(#x, t), (2.24)

where δφ(#x, t) is the excitation from the ground state φ0. Note that we’ve
included time dependence in the fields here, while in the free energy we had no
time dependence in the fields. In thermodynamics, the free energy is obtained
by integrating out time, and time evolution is determined by the second law
of thermodynamics. However, when we study excitations we are interested
in their time evolution. If we have the Hamiltonian of our system, we can
determine the Hamiltonian equations of motion for every field φ. Then we fill in
φ(#x, t) = φ0+δφ(#x, t) into the equations of motion for φ, and linearize them (i.e.
we only consider first order terms in δφ). The ensuing equations are called the
linearized equations of motion. Solutions to the linearized equations of motion
for φ are called the modes of φ.

We don’t always know the exact Hamiltonian of our system. It may be very
complicated, involving interactions of atomic orbitals. We may, however, have
an expression for the free energy in terms of coarse grained variables. The free
energy has no explicit time dependence, so we don’t have equations of motion if
we only have a free energy. In that case we need a separate analysis to determine
the time evolution equations.

2.2.1 Dispersion relation

The common prescription to study the modes of a field φ is to consider a plane
wave configuration of the excitation δφ of the field from the ground state φ0:

δφ(#x, t) = (δφ)0 ei!k·!x−iωt (2.25)

where (δφ)0 is constant configuration of the field. We can justify studying only
plane wave excitations by noting that any field configuration can be written as
an integral of plane waves, using a Fourier transform.

To obtain the dispersion relations of the modes of φ, we need an equation
that determines the time derivative of δφ(#x, t). This is a nontrivial problem.
In this equation, we have to write down all terms that contribute to changes
in time of the field φ(#x, t). We will see a simple example when we discuss
continuity modes. Once we have obtained this equation, we plug in the plane-
wave configuration, to obtain the dispersion relation of the mode, which gives
ω as a function of #k:

ω(#k) = a(#k) + ib(#k) (2.26)

From the form of the dispersion relation we learn a lot about a mode. We can
distinguish between different cases:
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• b(#k) '= 0, a(#k) '= 0
The mode oscillates, and the oscillations damp out exponentially as a
function of time. This is called a diffusive mode. It signals that our mode
is losing energy to the incoherent degrees of freedom of the system.

• b(#k) '= 0, a(#k) = 0
The mode is then overdamped. It will not oscillate, but simply die out
exponentially.

• a(#k) = c|#k|, and b(#k) goes to zero faster than a(#k) as k $→ 0
c is a constant. This is called a sound mode, or a phonon. c is called the
sound velocity of the phonon.

• b(#k) ∼ |#k|2
This is called a heat mode.

• a(#0) '= 0
This is a massive mode. There is an energy gap for such a mode: it can
only be excited if a minimum finite amount of energy is put into it. The
energy gap is of order a(#0).

The precise form of the dispersion relation of the modes has dramatic conse-
quences on the physics of the system. For example, as Landau first pointed out
[36], the existence of a sound mode in a superfluid accounts for the superfluidity!
In superconductors, the massive photon is responsible for the Meissner effect.

2.2.2 Continuity modes

A condensed matter system satisfies certain conservation laws. For example,
in a simple fluid, mass, energy and momentum are conserved. The variables
associated with these conversation laws are called conserved quantities, and are
measured by operators that commute with the Hamiltonian. Analogously to the
order parameter fields, we introduce continuity fields that correspond to local
expectation values of these operators. In a simple fluid, the continuity fields are
the mass density ρ(#x, t), the energy density ε(#x, t), and the momentum density
ρ#v(#x, t). In the ground state, all these fields are constant. These fields satisfy
continuity equations that express their local conservation:

∂ε

∂t
+∇iJ

ε
i = 0 (2.27)

∂ρ

∂t
+∇iρ#vi = 0 (2.28)

∂ρ#vj

∂t
+∇iΠij = 0 (2.29)

There are five conservation laws: one for energy, one for mass, and three for mo-
mentum. The modes associated to these equations are called continuity modes,
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and there are five of them in a simple fluid9. The latter two equations are cou-
pled, but the first equation is independent, so we can treat it independently.
We will heuristically derive the dispersion relation associated to this equation.
To do this, we need an equation for Jεi . If the energy density is constant, the
current should be zero. If it is nonuniform, then Jεi should try to reestablish
equilibrium, so to lowest order the simplest expression we can write down is

Jεi (#x) = −DT∇iε(#x) (2.30)

where DT is called the heat diffusion constant. Plugging this into (2.27) we get

∂ε

∂t
= DT∇2ε, (2.31)

which is the famous diffusion equation. Note that this equation is not invariant
under time reversal t $→ −t. This signals that the flow determined by this
equation is irreversible. We use this criterion in more general flow equations to
see if the flow is reversible or not.

The diffusion equation yields the following dispersion relation:

ω = −iDT k2, (2.32)

which is, as defined above, a heat mode.
We can Fourier transform this equation back to position space, to see what
happens. Given an initial configuration φ(#x, t = 0) = δ(x) (an excitation at the
origin), at later times φ is given by

φ(#x, t) =
1

(4πDT |t|)
d
2

e−
!x2

4DT |t| (2.33)

where d is the number of space dimensions (here d = 3). The time evolution
shows that the initial excitation broadens and decays.

We have four modes left to discuss. The derivation can for example be found
in [15]. We will only describe the dispersion relations.

Two of these four modes are diffusive transverse momentum modes, cor-
responding to excitations of ρ#v(#x). Transverse means that the momentum is
perpendicular to the wave-number #k of the plane wave. In other words, the

plane wave excitation is of the form ρ#v⊥ei!k·!x−iωt with #v⊥ ·#k = 0. There are two
transverse directions, thus two modes, with the same dispersion relation:

ω = −i
η

ρ
k2 (2.34)

9These conservation laws follow from the external symmetries of the system! Namely, time
translation invariance implies conservation of energy, spatial translation invariance implies
momentum conservation, rotational invariance implies angular momentum conservation, etc.
This is a consequence of Noether’s theorem, which states that there is a conserved quantity
associated to every global symmetry of the Hamiltonian. Mass is a special case: in a relativistic
theory it is not conserved (since it can be converted into energy), but mass is approximately
conserved in the nonrelativistic limit.
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where η is a viscosity parameter.
Finally, we have two diffusive sound modes, which correspond to combined

excitations of the mass density and longitudinal momentum. Their dispersion
relations are:

ω = ±ck − i
1

2
Γk2 (2.35)

where Γ and c are constants. Thus given a momentum #k, the sound mode can
propagate in the negative or positive #k direction.

Note that our analysis of the energy mode was rather simplified. Actually
the energy density is coupled to the mass density. The energy mode and sound
modes are coupled excitations of the mass density, energy density and longitu-
dinal momentum. Still, our simplified analysis does give the right dispersion
relation.

The mode structure is already quite intricate in a simple fluid, and when we
add order parameter fields it will become even more complex. In liquid crystals,
we will see that the Goldstone modes, corresponding to the order parameter
fields, couple to the continuity modes, thereby forming composite modes.

2.2.3 Goldstone modes and massive gauge fields

We’ve seen that after spontaneous symmetry breaking, the ground state man-
ifold is G/H . Now we will discuss Goldstone’s theorem, which states that for
every broken generator of G there is a massless mode of the order parameter
field. After that, we will discuss the Higgs phenomenon, which is the analogon
of Goldstone’s theorem in a gauge theory.
The ground state is φ0. Expand the potential V [φ] around φ0 to second order:

V [φ] = V [φ0] + (φ− φ0)
iMij(φ− φ0)

j (2.36)

where Mij is the mass matrix defined by

Mij =
∂2V

∂φi∂φj

∣

∣

∣

∣

∣

φi=φi
0

(2.37)

There are no first order terms in the expansion, since φ0 is a minimum of V [φ],
so that

∂V

∂φi

∣

∣

∣

∣

∣

φi=φi
0

= 0 (2.38)

Denote the generators of H by tb. These are a subset of the generators T a of G
(see 2.15), that satisfy

(tb)i
jφ

j
0 = 0, (2.39)

and are called the unbroken generators. The other generators are said to be
broken.
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We will now prove that for every T a that is not a generator of H , T aφ0 is an
eigenvector of Mij with eigenvalue zero. This corresponds to a mode with zero
mass, called a Goldstone mode. Since it is massless, we learn from the free
energy that it costs no energy to uniformly excite such a mode, i.e.

f [φ0(#x)] = f [φ0(#x) + T aφ0]. (2.40)

Nonuniform excitations, however, will cost energy because of the derivatives in
fel.
The proof runs as follows. An element g of G can be written as10 g = exp(iεaT a),
with εa real numbers. From (2.13) we know that for any configuration φi of the
fields

V [g · φ] = V [φ]

Take small εa, so that we can expand g: g = 1 + iεaT a. Plugging this into the
previous equation, and Taylor expanding, we get

V [φ] + εa(T a)i
jφ

j ∂V

∂φi
= V [φ]

⇒ εa(T a)i
jφ

j ∂V

∂φi
= 0 (2.41)

(2.42)

Now derive this equation with respect to φk, and evaluate the equation at φi =
φi

0. Using (2.38) we obtain

εaMki(T
a)i

jφ
j
0 = 0 (2.43)

For the unbroken generators tb this equation is trivial. For the broken genera-
tors, (T a)i

jφ
j
0 '= 0, so that (T a)i

jφ
j
0 is a zero eigenvalue eigenvector of Mij . There-

fore the Goldstone modes form a vector space, the zero-eigenvalue eigenspace
of Mij . We diagonalize Mij in the free energy, and we see that the Goldstone
modes do not appear in V [φ]. They are only present in derivative terms in fel.

We will now briefly discuss what happens in a spontaneously broken local
theory. The Goldstone modes are unphysical degrees of freedom that can be
gauged away. The gauge bosons associated to the would-be Goldstone bosons
(i.e. the Aa

i T a with T a broken) become massive, while the other gauge bosons
remain massless. This is the celebrated Higgs mechanism, and it is the only
mechanism we know that gives mass to gauge bosons. It plays a crucial role in
Glashow-Salam-Weinberg theory of weak interactions, where the local symmetry
is sopntaneously broken from SU(2) × U(1) to U(1). Three generators are
broken, leading to three massive gauge bosons W+, W−, Z that mediate the
weak interaction. The unbroken U(1) corresponds to a massless gauge boson,
which is the photon. In superconductors, the U(1) of electromagnetism is broken
to 2, which leads to a massive photon. The Meissner effect ensues: magnetic

10This is only true for group elements that are connected to the identity. For the analysis
of the Goldstone modes we only need to study such transformations.
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fields aimed at the superconductor only penetrate a finite depth, and decay
exponentially inside the superconductor. Later on we will see analogs of the
Higgs mechanism in liquid crystals and crystals, without a gauge theory!

2.3 Topological defects

Topological defects are a special type of configuration of the order parameter
fields. To obtain such a configuration in our d-dimensional space, remove a
manifold C of dimension n < d from the space. For example, remove a line or
a point in three dimensions. Then there may exist continuous configurations of
the order parameter field, that it take values in G/H everywhere outside of C,
and cannot be given a value in G/H on C such that the overal configuration
is continuous. Sometimes we can smoothly vary the order parameter field close
to C such that the configuration is continuous everywhere, in which case the
singularity is said to be removable. It this is not possible, then the configuration
is called a topological defect of dimension n, and C is called the core of the defect.
Close to the core, the order parameter can be defined continuously if we allow
it to leave G/H . For example, we can have φ = 0 at the core, and φ increases
smoothly from zero to its value in G/H outside the core. Some authors refer
to the area around C in which φ is still outside of G/H as the core. There is a
length scale in the system, associated to the size of this core.
Defects are given names according to the dimensionality of their core. For
example, a defect with a one-dimensional core in a three-dimensional space is
called a line defect, and if the core is a point (a zero-dimensional manifold) it
is called a monopole. More generally, in a d-dimensional space, the names of
defects are given in table 2.1.

Dimension of the core Type
d− 1 Domain wall

1 Line defect Flux, vortex
0 Point defect Monopole

Table 2.1: The different defects in a d-dimensional space. We give the dimension
of the core in space.

2.3.1 Classification of topological defects

For an excellent review on the theory behind topological defects in condensed
matter, see [42].

Homotopy groups

We study a defect by surrounding the core by Sk, with an appropriate k. A line
defect in three dimensions is surrounded by a circle S1, for example. More gen-
erally, an n-dimensional defect in d-dimensional space is surrounded by Sd−n−1.
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On every point of this Sk we have a value of the order parameter field in G/H .
Thus this gives a map from Sk to G/H . We are interested in the homotopy
classes of these maps. A homotopy between two maps h0 and h1 from Sk to
G/H is a continuous family Ft of maps from Sk to G/H , with t ∈ [0, 1], such
that F0 = h0 and F1 = h1.

One can prove that if the map around the core of a defect is homotopic to
the map around the core of another defect, then we can smoothly change the
configuration of the field around one core so that it becomes the other core. We
say that the cores of homotopic defects can be turned into each other by local
surgery. This local surgery only costs a finite amount of energy. If the maps are
not homotopic, then to turn one defect into the other we would have to change
the configuration of the fields out to infinity, which would cost an infinite amount
of energy. Thus nonhomotopic defects are separated by infinitely high energy
barriers, and we say they belong to different topological sectors.

Homotopy theory studies these embeddings of maps. Πn(G/H) is called the
n-th homotopy group, and classifies the homotopy classes of embeddings of Sn

into G/H . Remarkably, Πn(G/H) can always be given a group structure. The
multiplication of homotopy classes corresponds to the composition of homo-
topies. For examples, two loops in Π1(G/H) are composed by traversing both
paths in succession. One can similarly define the composition of maps from Sk

for any k. We call the group element corresponding to the homotopy class of
the defect the topological charge of the defect.

Note that we can only compose loops if one loop ends where the other one
starts. Thus we are actually studying based homotopies, which means that we
pick a distinguished point x of Sk, and a distinguished point y of G/H , and
require that for all our mappings x gets mapped to y. If the space G/H is
connected, then the homotopy groups for different basepoints are isomorphic,
so it doesn’t matter which basepoint we pick. For convenience, we pick H as
the basepoint in G/H (remember that ”points” in y are left H cosets).
Homotopy theory gives us isomorphism between homotopy groups of different
dimension. We will need two of them. We state them first, and then explain
them.

Theorem 1. If G is a connected and simply connected Lie group, then

Π1(G/H) - Π0(H) (2.44)

Π2(G/H) - Π1(H0), (2.45)

where H0 is the component of H that is connected to the identity11.

Π0(H) is the set of connected components of H , which also has a group
structure.

G is called simply connected if all loops in G are contractible, i.e. Π1(G) =
0. If this is not the case for a group we are interested in, then there is a
theorem which tells us that we can always enlarge G to G, called the universal

11It can be shown that H0 is a normal subgroup of H, so that H/H0 is a group.
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covering group of G. This group covers G, which means that there is a surjective
homomorphism ρ : G $→ G, whose kernel consists of a finite set. Therefore
G should be thought of as a number of copies of G. A famous example is
ρ : SU(2) $→ SO(3) with kernel {1,−1}, so that SU(2) is a double cover of
SO(3). Once we’ve enlarged G to G, we must also enlarge H to H . This has
no effect on the ground state manifold, because = G/H = G/H . Using this
covering group, we can rewrite the two theorems without assuming that G is
simply connected:

Π1(G/H) - Π0(H) (2.46)

Π2(G/H) - Π1(H0). (2.47)

There is a convenient to picture these isomorphisms. Assume G is simply con-
nected. Take a representative f of a homotopy class in Π1(G/H), which is a
map from S1 to G/H that starts at H . To this f we can associate a path f̃ in
G called a covering path, that starts at the identity e and ends in a point in H ,
such that f̃(modH) = f . Studying homotopies of loops f in G/H is equivalent
to studying homotopies of paths in G that end in H . From fig.2.1 (a), it is clear
that two paths in G that end in H are homotopic if and only if12 their endpoints
are in the same connected component of H . Therefore Π1(G/H) = H/H0.
An analogous analysis applies to monopoles. In this case, we first note that
instead of embedding S2 into G/H with a distinguished point mapped to H , we
can equivalently consider embeddings of I2 = [0, 1]2 to G/H with the surface
∂I1 of I2 mapped to H . This is equivalent because S2 is topologically equiva-
lent to I2 with the boundary identified to a point. Take a representative α of a
homotopy class in Π2(G/H). This is a map from I2 to G/H with the boundary
taken to H . To this α we can associate a map α̃ from I2 to G, called the cover-
ing map of α, such that a distinguished point x on the boundary is mapped to
e. The boundary ∂I1 is then a loop in G that is connected to e, so that it sits
in H0. Call this loop fα. Given two maps α and β from I2, respective covering
maps α̃ and β̃, and corresponding loops on the boundary fα and fβ, one can
prove13 that α and β are homotopic if and only if fα and fβ are homotopic
loops in H0.

An important example is when the residual symmetry group H is discrete,
meaning that H0 = {e}. In this case, we get

Π1(G/H) - Π0(H) - H (2.48)

Π2(G/H) - Π1(H0) - 0. (2.49)

So the line defects are characterized by elements of H, and there are no monopoles.

12Here we use the fact that G is simply connected. All paths in G are homotopic, but under
the restriction of the endpoint ending in H, two loops with endpoints ending in disconnected
components are not homotopic, because the homotopy would contain loops that don’t end in
H.

13The theorem follows from the lifting property of homotopies[23]. The same theorem is
used to prove the theorem for Π1(G/H) discussed above.
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(a) Representation of a homotopy class
in Π1(G/H), as a path f̃ in G that
starts at e and ends in some discon-
nected component hiH0 of H.

(b) Representation of a homotopy
class in Π2(G/H), as a map α̃ from
I2 to G, with a distinguished point
x on the boundary mapped to e.

Figure 2.1: The isomorphisms of homotopy theory. The maps from In to G/H
can be replaced by maps from In to G, with appropriate boundary conditions.

If we drop the assumption that G is simply connected, then Π1(G/H) - H , and
Π2(G/H) - 0.

In three dimensions, line defects are divided into two categories: Dislocations
are defects whose characteristic loop is a noncontractible loop in the translational
part of the symmetry group. They only occur if the translational group is broken
Disclinations are defects whose loop is noncontractible in the rotational part of
the defect. This may be the external of the internal rotational group.

Defect multiplets

If the group Π1(G/H) is non-abelian, then the defects are organized in multi-
plets, and the different defects in different multiplets are separated by infinitely
high energy barriers. In other words, the cores of the defects in the same mul-
tiplet can be interchanged, which means that we can turn one defect into the
other by local surgery, with only costs a finite amount of energy.

To see which defects are part of the same multiplet, we must act on the
defect with global symmetry transformations. We’ve seen that a line defect can
be characterized by a path f̃ in G that starts at e and ends in an element hi of
H . The homotopy class is set by the left coset in H/H0 to which hi belongs. A
global symmetry transformation h ∈ H conjugates the path 14, turning it into
f̃ ′: f̃ ′ = hf̃h−1. This is again a loop that starts at e and ends in a new element
of H , namely hhih−1. Therefore the charge of the defect has been conjugated.

14A global symmetry transformation h actually multiplies the loop by h from the left, since
h at acts on every point of the space. This gives a loop that starts in h and ends in hf̃(1).
We can multiply this loop by h−1 from the right, because we are actually studying loops in
G/H, which are defined modulo multiplication by elements of H from the right. This gives
the loop f̃ ′, which starts at e and ends at hf̃(1)h−1. Therefore its charge is given by the left
coset in H/H0 to which hf̃(1)h−1 belongs.
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So line defects whose charges are in the same conjugacy class of H/H0 are in the
same multiplet. For these multiplets to consist of more than one defect, H/H0

has to be non-abelian: If H/H0 is abelian, then the conjugacy classes consist of
single elements.

We’ve already discussed that defects with the same charge are homotopic.
We now further specify that defects whose charges are in the same conjugacy
class are freely homotopic 15. The defects in different classes are separated by
infinitely high energy barriers in configuration space, thus they correspond to
different topological sectors.

The cores of defects in the same conjugacy class can be interchanged because
the global symmetry transformation h is connected to the identity (we assumed
G was simply connected). Thus we have a path h(t) in G going from e to h:

h(0) = e h(1) = h.

By conjugating f̃ with h(t), we obtain a family of paths:

f̃t = h(t)f̃h(t)−1.

This is a continuous family of paths, that starts at f̃0 = f̃ and ends at f̃1 =
hf̃h−1. Thus we have just defined a homotopy between f̃ and f̃ ′.

A similar analysis applies to monopoles. To describe the action of global
symmetry transformations, we use the isomorphism (2.45). If the loop in H0

characterizing the monopole is fα, then a global symmetry transformation h
conjugates the loop, giving a monopole charcterized by the loop f ′

α = hfαh−1.
Therefore the monopoles are arranged in classes, consisting of based homotopy
classes of loops in H0 that are conjugates under the action of H/H0. The
monopoles in the same class are homotopic. For the monopole classes to consist
of more than one element, H must be non-abelian.

2.3.2 Interactions between defects in d=3

Now that we’ve classified the different charges of defects, we must study what
happens when several defects are present in the system. The defects can influ-
ence each other’s charge, by moving around each other, which we call braiding.
Furthermore, two defects can also fuse to form a new defect. We discuss both
types of interactions.

The braiding of defects

Consider a configuration with two line defects. If we remove the cores of these
line defects from the space, then the resulting space is not simply connected.
Namely, a loop around one of the cores cannot be to shrunk to the trivial loop.
Not that this is only true if the line defects have infinite extent. If the line
defects end on monopoles, then the space is simply connected.

15A free homotopy is a homotopy that is not based, i.e. we don’t require that a distinguished
point of Sn be mapped to e.
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The charges of the defects may interact with each other, and the defects in
the same multiplet can be transformed into one another. Fig.2.2 tells us that if

Figure 2.2: The conjugation of the defect h by the presence of g. This conjuga-
tion is the effect of braiding one defect around another.

a defect h is transported halfway around g, then it is conjugated by g, and its
charge becomes ghg−1. This transport halfway around is called half braiding.
Thus line defects in the same multiplet transform into each other when they
braid with other line defects. If H/H0 is abelian, then the braiding is trivial,
since then ghg−1 = h. Thus these interactions between charges only occur when
the first homotopy group is non-abelian.

Monopoles in the same class can also transform into each other by braiding
around a line defect. If a monopole is described by the loop fα in H0 under

Figure 2.3: The conjugation of a monopole by a line defect. The charge of
the monopole is an element of Π2(G/H). It is acted on by the charge of the
line defect, an element of Π1(G/H). Homotopy theory is used to calculate the
action.

the isomorphism (2.45), then after transporting the monopole around a line
defect of charge hiH0 ∈ H/H0 the monopole is characterized by the loop16

f ′
α = hifαh−1

i . Therefore the monopoles in the same class can turn into each
other by braiding around a line defect.

16This action is well defined because H0 is a normal subgroup of H, and the action of H0

on H/H0 is therefore trivial: Take h0 ∈ H0, and hH0 ∈ H/H0, then h0hH0h−1
0

= hH0.
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Note that the conjugation of the monopole is achieved by a full braiding of
the monopole around the line defect, in contrast to the half braiding of the line
defects.

The braiding of two monopoles does not affect their charge, since such a
braiding is homotopic to doing nothing (the path can be contracted ”over” the
other monopole).

The fusion of defects

Let us take a cross section of the line defects discussed until now. If we cut fig.
2.2 horizontally, the line defects become points in two dimensions.
When two line defects g and h are brought so close together that their cores
fuse, the charge of the resulting defect is gh, as shown in fig.2.3.2. In the

Figure 2.4: The fusion of two defects.

presence of another defect f , the fusion is ambiguous. Namely, if g is transported
around f in a clockwise fashion, the fusion becomes f−1gfh. Similarly, if h were

Figure 2.5: The fusion of defects g and h in the presence of another defect f .
The fusion originally gives gh. If g travels around f in a clockwise path, then g
is conjugated by f , and the fusion with h becomes f−1gfh.

transported around f in a clockwise path, the fusion would give gf−1hf . From
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these observations we conclude that the possible outcomes of the fusion of g
and h are given by the multiplication of all elements in the conjugacy of g in
H/H0 with all elements in the conjugacy class of h. Denote the conjugacy class
of an element g by Cg. We call the fusion rules of two particles the possible
outcomes of their fusion. We’ve learned that the fusion rules of g and h are
given by17 Cg ×Ch. One can prove that the multiplication of conjugacy classes
is commutative, and that it is composed of entire conjugacy classes, although
some conjugacy classes may be repeated in the decomposition. We denote the
fusion rules as

CA × CB =
∑

C

NAB
CCC (2.50)

where CA is the conjugacy class of an element gA, CB the conjugacy of class
gB, etc. We are adopting the notation that will be used in the next chapter,
where we will pick a preferred element out of each conjugacy class.NAB

C is an
integer that tells us how often CC appears in the multiplication of elements of
CA with those of CB.

2.3.3 Some energetics of defects

In a global theory with spontaneous symmetry breaking, the line defects have a
free energy per unit length outside the core which diverges logarithmically with
the size of the system. In a gauge theory, the energy per unit length outside the
core is finite. We will look at examples that show how this comes about.
The energy of a defect has a contribution from the core, where the symmetry
is higher and therefore the system is ”hotter”. To calculate it one needs an
expression for the free energy that is valid at the core. The free energies one
writes down are usually not valid at the core, since they are explicitly written for
a phase with the broken symmetry. However one can often make good estimates
of the core energy [15]. For our purposes, we need only remember that is makes
a finite contribution to the total energy.
Outside the core, we need an expression for the free energy to calculate the
energy. We will now consider an explicit example to illustrate the energetic
behaviour mentioned above.
We consider the free energy of a two-dimensional space with a complex order
parameter field φ = |φ|eiθ:

F =
1

2

∫

d2x(µ(∇iφ)∗(∇iφ)− λ(T − Tc)(|φ|2 − v2)2), (2.51)

where v and µ are real numbers, and λ is a positive real number. It has the
following global symmetry:

φ $→ φeiθ (2.52)

with θ ∈ . µ and λ depend on coupling constants. The second term is some-
times referred to as the ’Mexican hat’ potential. If T < Tc, it is energetically

17Cg × Ch is obtained by multiplying all elements of Cg with all elements of Ch.
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favorable for φ to acquire a vacuum expectation value < φ >= veiθ, and the
system enters the ordered phase. By using a global symmetry transformation we
can set θ to zero, such that < φ >= v. Excitations of |φ| away from v are mas-
sive excitations, and at low temperatures we can set |φ| = v in the Lagrangian,
obtaining an effective free energy Feff :

Feff =
1

2

∫

d2xµv2(∇θ)2 =
1

2

∫

d2xρs(∇θ)2 (2.53)

We defined the spin-wave stiffness ρs = µv2. It dictates how rigid the phase is.
(2.53) is the celebrated XY model in two dimensions. It plays a pivotal role in
the theory of superfluidity, where φ is the wavefunction of the system. It also
models ferromagnets in two dimensions. Finally, we will see that hexatic liquid
crystals are also described by this effective free energy.
In this phase, G = SO(2), H = {e}, and we have line defects characterized by
an integer:

Π1(G/H) = .

In this theory, the charge of the defect is called its winding number, because for a
defect with charge n, loop around the defect winds around the order parameter
space S1 n times (see fig.2.6). The defects in this theory are called vortices.
We would like to find configurations of the fields that minimize the free energy,

and correspond to the defects of different winding number. Minimizing (2.53)
yields the equation

−ρs∇2θ = 0, (2.54)

which is Laplace’s equation in two dimensions. Aside from the constant solution
θ(x, y) = θ0, it also has singular solutions:

θn,!x0(x, y) = n arctan(
y − y0

x− x0
) = nϕ, (2.55)

where n is an integer, vecx0 = (x0, y0) is a two-dimensional vector, and ϕ is the
polar angle of the vector (x− x0, y − y0).
θn,!x0 is the field of a defect of charge n whose core is at #x0. We can calculate the
free energy of this defect using (2.53). We impose a short and a long distance
cutoff of the integral, a and R respectively, and get

Fel(n) =
1

2
ρs

∫

d2x(∇θ)2 =
1

2
ρs2πn2

∫ R

a

dr

r
= ρsπn2ln(R/a) (2.56)

The free energy is infrared (long distances) and ultraviolet (short distances)
divergent. We needn’t worry about the ultraviolet divergence, since this is the
core region, where the effective free energy is invalid. We can obtain a regular
solution at the core if we demand that the symmetry is restored, meaning that
|φ| $→ 0 as we go to the center of the core.
The infrared divergence signals that the defect has an infinite energy if the
system has infinite extent. This divergence is traced back to the fact that the
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y
0=(x0,y0)x

θ(x)

x
ϕ

(a)

A charge 1 defect.

(b)

The loop around a charge 1 de-
fect

(c)

Another charge 1 defect.

(d)

The order parameter
space SO(2), and the
loop around the charge
1 defects. x is the base-
point, where all loops
must start and end.

(e)

A charge -1 defect.

Figure 2.6: Examples of defects in the XY model. We denote the angle θ by a
unit vector that makes an angle θ with the x-axis. A loop drawn around the
defect gives a closed loop in order parameter space, with winding number equal
to the charge of the defect.
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spins have a non zero gradient out to infinity. However, a defect-antidefect pair
has finite energy, because far away from the pair the gradient goes to zero. More
generally, if there are many vortices present of different winding numbers ni, we
will show that as long as

∑

i ni = 0 the energy is finite. In jargon, a vortex gas
(a finite density of defects) in this system must be neutral to have finite energy.
Therefore the only thermally excited configuration will have zero net vorticity.
To prove this, first note that if θni,!xi

are solutions to Laplace’s equation, then
so is

∑

i θni,!xi
, since Laplace’s equation is linear. Define #rij = (xj − xi, yj − yi),

the vector from vortex i to vortex j. The elastic free energy of the configuration
∑

i θni,!xi
with multiple vortices is

Fvortices = πρsln(
R

a
)(

∑

i

ni)
2 + 2πρs

∑

i<j

ninj ln(
a

#rij
) (2.57)

Therefore the energy is logarithmically divergent with the sample size, unless
∑

i ni = 0. The second term is the interaction energy. From it we learn that
vortices with vorticity of like sign repel, while they attract if their vorticities have
opposite sign. The defects interact via a Coulomb potential18 in two dimensions,
thus they behave like electrically charged particles in two dimensions.

In three dimensions, the point defects become line defects. The free energy
formulas we’ve just derived correspond to the free energy per unit length of a
line defect.

Now take the original free energy before symmetry breaking, and promote
it to a gauge theory (for example, by coupling the field to electrodynamics):

Fgauge =
1

2

∫

d2x(µ(Djφ)∗(Djφ) + λ(|φ|2 − v2)2) (2.59)

The covariant derivative D is defined by Djφ = (∂j + iAj)φ (j = x, y), and19

#A ∈ 2. The free energy has the following local symmetry:

φ(#x) $→ φ(#x)eiα(!x), Aj(#x) $→ Aj(#x) + ∂jα(#x) (2.60)

where α : 2 $→ U(1).
In this theory, there are finite energy configurations that correspond to defects
of any winding number. Go to polar coordinates (r,ϕ), and choose the following
values for the fields outside the core region20:

φ(r,ϕ) = veinϕ (2.61)

Ar = 0 (2.62)

Aϕ =
n

r
(2.63)

18A Coulomb potential V in d dimensions is a potential that satisfies Poisson’s equation:

∇2V ($x) = −λρ($x) (2.58)

where λ is a constant, and ρ($x) is the local charge density.
19Fgauge is not Lorentz invariant. This is due to the fact that we are considering the system

at finite temperatures. The relativistic version of this Lagrangian is called the planar Abelian
Higgs model[5] (see also [58]).

20We’ve neglected radial dependence. If we wanted a solution that is also valid at the core,
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The free energy vanishes everywhere with this configuration! The energy of this
defect is concentrated in the core region. Note that the field φ is locally flat! By
this we mean that it satisfies the parallel transport equation of the gauge field:

Djφ ≡ 0. (2.64)

This local flatness is the reason that the free energy vanishes everywhere. To
explicitly see that φ is flat, we can choose a gauge where φ is constant. Apply
the gauge transformation

φ $→ φe−inϕ, #A $→ #A + n∇ϕ. (2.65)

This gives
φ = v, Ar = 0, Aϕ + n∇ϕ. (2.66)

φ is now constant, but note that ∇ϕ is not well defined everywhere. If we
let ϕ run from 0 to 2π, there is a singularity in ∇ϕ at 2π. To resolve this,
we need to realize that we can only define our gauge transformation locally.
To be mathematically precise, we needs to work with charts, and realize that
we are dealing with a nontrivial line bundle. But it isn’t necessary to get too
technical. There is a physically intuitive way of dealing with this singularity.
Just introduce a cut in our space along the ϕ = 0 line. This is called a Dirac
string. It starts at the core and goes out to infinity. The Dirac string should be
thought of as a reminder that we have a nontrivial line bundle. A more physical
way to picture the Dirac string is to say that we’ve used a gauge transformation
to concentrate the windings of the Higgs field into a thin tube.
If we consider the analogous theory in 3 spatial dimensions, then there will be
line defects, with a finite energy per unit length. The energy equations for the
vortex in two dimensions correspond to the energy per unit length of the line
defects in the three-dimensional theory.
In this discussion of defects in gauge theory, we have glossed over one important
point: is the topological charge of the defects a gauge invariant quantity? We
will prove it for our abelian case. Go back to the original gauge choice (2.61).
If we draw any closed loop C around a defect of winding number n, the integral
of the gauge field along C gives

∮

C
#A · d#l = 2πn. Thus we can also define the

winding to be

n =
1

2π

∮

C

#A · d#l (2.67)

we would write

φ(r,ϕ) = f(r)einϕ

Ar = 0

Aϕ =
n

r
g(r)

with f(0) = 0, f(∞) = v, and g(∞) = 1. Then we would use the field equations to set f(r)
and g(r). We won’t go into this. This is done in [52]. We also haven’t included an energy
term for the gauge field, which in relativistic notation is of the form FµνF µν . One can check
it is also finite[58].
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Now apply the gauge transformation φ(#x) $→ φ(#x)eiλ(!x), Aj $→ Aj −∇λ. Then

this integral is invariant, because
∮

C ∇λ · d#l = 0, since λ is a regular function.
So the integral is gauge invariant, and so is the winding number. Thus we can
study the defects with homotopy theory, just like in the global case.
For general G and H , and defects of general dimensions, the topological charge
is also related to an integral of the gauge field[58], although for the non-abelian
case we must define the integral differently. For example, the charge g of a line
defect is equal to the exponential of the path ordered integral of the gauge field
along a closed path C encircling the defect:

g = Pei
H

!A·dx. (2.68)

When the gauge group is abelian path ordering is trivial.
If H is discrete, then, as we discussed earlier, the only residual symmetry

transformations are global symmetry transformations h ∈ H . Under this trans-
formation, the gauge field transforms according to #A $→ h #Ah−1. Using (2.68)
and the properties of the path-ordered integral, we can determine the transfor-
mation of the charge g under the symmetry transformation h:

g = Pei
H

!A·dx $→ Pei
H

h !Ah−1·dx = hPei
H

!A·dxh−1 = hgh−1. (2.69)

This is precisely the transformation property in the global case. Thus when H is
discrete the topological classification of defects is the same in the case of global
and local symmetries. When H is continuous the comparison of both cases is
more subtle.

2.4 Dyonic configurations

In this section we assume G is simply connected.
If there is a defect g in our space, corresponding to a configuration of φ, it

is interesting to study another field Ψ with this defect in the background. Ψ
transforms under a representation ΓΨof G, i.e.

Ψi(#x) $→ ΓΨ(g)i
jΨ

j(#x) (2.70)

for any g ∈ G. We want to answer the following question: which symmetry
transformations in H can we globally implement on Ψ with the defect g in
the background? A globally implemented transformation must leave the defect
configuration invariant, and act only on Ψ. If H is abelian, then all of H is
always globally implementable. If H is non-abelian, then we will see that in
some cases there are topological obstructions to globally implementing certain
transformations.

2.4.1 Global implementation of h ∈ H

Outside the core of the defect g the order parameter field φ(#x) takes values in
G/H . The stabilizer H!x of φ(#x) depends on position. Therefore to globally
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implement a transformation h ∈ H , we must make it dependent on position.
To h ∈ H we want to associate a smooth function h!x from the space to G, such
h!x ∈ H!x for all x (since then, and only then, does the transformation leave the
defect configuration invariant). This choice should respect the multiplication in
H , i.e. if h, h′ ∈ H then

h!xh′
!x = (hh′)!x. (2.71)

We can then let h act on Ψ(#x) according to

ψ(#x) $→ Γ(h!x)ψ(#x). (2.72)

However not all of H can be made to satisfy (2.71).
To see which elements of H can be globally implemented, we draw a loop around
the defect, and parametrize it with an angle ϕ (see fig. 2.4.1).

Figure 2.7: The path in G characterizing the line defect. ϕ parametrizes the
loop. We take g(0) = e, so that g(2π) is in the left coset in H/H0 that corre-
sponds to the topological charge of the defect.

Along the loop we have a path in G that characterizes the defect. The path
starts at g(0) = e and ends at g(2π), with g(2π) ∈ H . Then the only globally
implementable transformations are those h ∈ H that commute with g(2π), i.e.

hg(2π)h−1 = g(2π) (2.73)

To see why, note that the order parameter field around the defect is defined by
acting with g(ϕ) on φ(0) ≡ φ:

φ(ϕ) = g(ϕ)φ. (2.74)

This configuration is smooth because the path g(ϕ) is smooth, and g(2π) ∈ H
so that g(2π)φ = φ. Therefore there is no singularity at ϕ = 0.
Now the stabilizer of φ(ϕ) is

Hϕ = g(ϕ)Hg(ϕ)−1 (2.75)
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with H0 = H the stabilizer of φ. This tells us how to globally implement an
h ∈ H . Define

h(ϕ) = g(ϕ)hg(ϕ)−1 (2.76)

With this definition, h(ϕ) ∈ Hϕ for all ϕ, so that when h(ϕ) acts on the space
it leaves the defect invariant. However, this may be ill defined at ϕ = 0 ∼ 2π.
For the action to be well defined at ϕ = 0 we must demand that

g(2π)hg(2π)−1 = h, (2.77)

thus h is only globally implementable if it commutes with g(2π).
Thus we can only globally implement the centralizer of g(2π). The centralizer
of a defect of charge g is denoted by Ng.
We note that a similar analysis applies to defects of other dimensions, such as
monopoles. The analysis is more subtle in that case, since we must globally
implement h on all of S2 [8].

2.4.2 A dyon

If Ψ transforms nontrivially under the action of Ng, we call the configuration a
dyon.
We mention two subtleties. First, there may exist h ∈ H that do not commute
with g(2π), but that can be globally implemented on Ψ if Ψ doesn’t distinguish
between the action of h and the action of g(2π)hg(2π)−1, i.e.

h · φ = g(2π)hg(2π)−1 · φ. (2.78)

Second, g(2π) is not well defined if H0 '= 0. Namely, we saw that for any
h0 ∈ H0, g(2π)h0 represents the same defect. But the centralizers of g(2π)
and g(2π)h0 needn’t be equal, and they needn’t even be isomorphic [3]! Thus,
to study dyons, Π1(G/H) is too coarse a description, and we need to specify
the actual endpoint of the loop. However, for all cases we will be studying the
centralizers are isomorphic for different choices of endpoint.
For example, if H is discrete there is no ambiguity. Π1(G/H) = H in this case,
and for h ∈ H , Ng is simply the centralizer of h in H .
Finally, it may be unnecessary to include another field Ψ to get a dyonic con-
figuration. In the case of the uniaxial nematic, we will see that the defect
configuration already dyonic, because the field configuration transforms non-
trivially under the centralizer of the defect.

There are dyons in gauge theory as well, and the analysis is the same. The
dyon is then an electrically and magnetically charged configuration of the gauge
fields. The theory behind electric modes with a defect in the background is well
established, for an introduction see [55].
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2.5 Phase transitions and correlation functions

We can use the free energy to study phase transitions to an ordered state, and
the fluctuations around the ordered state.

2.5.1 Order of a phase transition

If the order parameter jumps discontinuously at the phase transition, we say
the transition is first order. If it changes continuously, the phase transition is
second order.

2.5.2 Landau theory of phase transitions

Landau’s theory is a mean field approach to the study of phase transitions. We
neglect fluctuations of the fields φi, so that the free energy (2.10) becomes

F [φ] =

∫

ddxV [φ]. (2.79)

Landau developed general arguments to write down the possible terms in this
free energy. He then used it to predict the order of the phase transitions. We will
only mention the salient features of Landau’s theory. For a detailed treatment,
see [37].
First we assume that the φi transform under an irreducible representation (irrep)
of G. If the representation is reducible, we decompose it into irreps, and consider
the irreps separately. All the terms in V [φ] must be invariant under G. Thus
we must form scalar invariants using combinations of the φi. There cannot be a
first order invariant21. The second order term Mijφiφj , where Mij is the mass
matrix. It is positive definite in the isotropic phase, i.e. its eigenvalues are
positive, to assure that φ0 = 0 is a minimum of the potential. Thus we can
diagonalize the second order term, by defining φ

′i’s as linear combinations of
φj ’s such that

Mijφ
iφj = φ′iφ′

i ≡ λ2. (2.80)

There is only one second order invariant, which we’ve called λ2.
If we work to fourth order, we must also determine all third order and fourth
order invariants. We write them in terms of rescaled fields

φ̃ = λφ
′

. (2.81)

We index the third order invariants with an index α, and the fourth order
invariants with an index β. The Landau free energy then takes the general form

F [φ] = λ2A(P, T ) + λ3
∑

α

Cα(P, T )f3
α(φ̃) + λ4

∑

β

Bβ(P, T )f4
β(φ̃). (2.82)

21A first order invariant would imply the representation is reducible (it contains the trivial
representation in its decomposition). We’re assuming the representation is not trivial.
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We now change the pressure and/or temperature, and we have a phase transition
when there is a new global minimum of the free energy away from φ = 0. A global
minimum is a minimum of the overal function, not simply a local minimum. By
studying this expression for the free energy as a function of λ, we can derive the
following behaviour at the phase transitions:

• If there are no third order invariants, the phase transition is of second
order. The ground state leaves 0 continuously.

• If there are third order invariants the transition is of first order. The
ground state jumps from 0 to a nonzero value.

2.5.3 Correlation functions and order

We want to study fluctuations from the ground states. We assume the depar-
tures are isothermal. In that case, when the field configuration goes from 0 to
φ, the work done on the system is equal to the change in free energy. This work
done is proportional to the change in entropy (see [37], p.62):

∆F [φ] = W [φ] = −T∆S[φ] (2.83)

where T is the temperature of the system. From this we derive the behaviour
of the weight function w(φ) ∼ eS[φ]/k, which determines the relative probability
of the system to be in state φ, as a function of the free energy:

w(φ) ∼ e−∆F [φ]/kT (2.84)

To check these statements, see any standard book on statistical mechanics such
as [37].
Thus we can study the fluctuations of our order parameter fields around the
ground state, using the free energy. The correlation function between φi at
point #x1 and φj at #x2 is defined as

< φi( #x1)φ
j( #x2) >=

∫

Dφ φi( #x1)φj( #x2) w(φ)
∫

Dφ w(φ)
=

∫

Dφ φi( #x1)φ( #x2) e−∆F [φ]/kT

∫

Dφ e−F [φ]/kT

(2.85)
The integrals are path integrals, which are integrals over all configurations of
the fields φ. To make this well defined, we can give our system finite extent
and periodic boundary conditions, and Fourier transform to momentum space.
Then the field φ(#x) becomes characterized by a countable set φ!ki

, and
∫

Dφ

becomes
∫

Πid#ki, which is a countable number of integrals.
If F [φ] only has terms quadratic in the φi, i.e. it is of the form

F [φ] =
1

2

∫

d #x1d #x2φ
i( #x1)G

−1
ij ( #x1, #x2)φ

j( #x2) (2.86)

then we can calculate the correlation functions exactly:

< φi( #x1)φ
j( #x2) >= kTGij( #x1, #x2), (2.87)
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where Gij( #x1, #x2) is defined by
∫

d #x3G
−1
ij ( #x1, #x3)Gij( #x3, #x2) = δ( #x1 − #x2) (2.88)

If F [φ] has terms of higher order in φ, then we can only calculate correlations
perturbatively, using Feynman diagrams. We will restrict ourselves to quadratic
order.

The behaviour of the correlation function at large separations of #x1 and #x2

is used to characterize the system:

• Long Range Order (LRO)

< φi( #x1)φ
j( #x2) > $→ Constant as | #x2 − #x1| $→ ∞. (2.89)

• Short Range Order (SRO)

< φi( #x1)φ
j( #x2) > $→

e−
| !x2− !x1|

ξ

| #x2 − #x1|η
as | #x2 − #x1| $→ ∞, (2.90)

where ξ and η are positive constants.

• Quasi Long Range Order (QLRO)

< φi( #x1)φ
j( #x2) > $→

1

| #x2 − #x1|η
as | #x2 − #x1| $→ ∞, (2.91)

where η is a positive constant.

We can use the correlation functions to study the fluctuations in an ordered
phase. Let us carry this out for the XY model in d dimensions. The free energy
given by (2.51), with d2x replaced by ddx. We want to calculate < |φ|2 > in the
ordered phase, were < |φ| >= v. This cannot be done exactly, however if we
set |φ| = v and neglect fluctuations in |φ|, we can use the effective free energy,
(2.53) with d2x replaced by ddx:

Feff =
1

2

∫

ddxρs(∇θ)2.

By going to Fourier space and transforming back, the correlation function of θ
is calculated to be 22

< θ(#x)θ(#0) >=
kT

ρs

∫

|k|<Λ
ddk

1

k2
ei!k·!x (2.93)

22This equation actually needs to be regularized to be well defined. We won’t go into details,
but note that the behaviour < θ($x)θ(0) >∼ |vecx|2−d as |$x| '→ ∞ can be inferred by looking
at the behaviour of the correlation function when $x '→ α$x:

< θ(α$x)θ(0) >∼ α2−d < θ($xθ(0) > (2.92)

.
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We introduced a cutoff Λ of the momenta: this integral is not valid at very
high momenta. We need to know the behaviour of this integral as k $→ 0. By
noting that the volume element in momentum space ddk ∼ kd−1dk, we infer the
following behaviour as |#x| $→ ∞:

• d < 2: the integral behaves like kT
ρs

|#x|2−d.

• d = 2: the integral behaves like kT
ρs

ln(|#x|).

• d > 2: the integral converges, we call it 2W .

From this integral we can derive < φ(#x)∗φ(#0) >:

< φ(#x)∗φ(#0) >=< eiθ(!x)e−iθ(!0) >= e−
1
2<θ(!x)θ(!0)>. (2.94)

In proving the second equal sign, we use a standard Gaussian integral23. Thus

• d < 2: < φ(#x)∗φ(#0) >∼ e−
kT
2ρs

|!x|2−d

.

• d = 2: < φ(#x)∗φ(#0) >∼ |#x|−
kT
2ρs .

• d > 2: < φ(#x)∗φ(#0) >∼ e−W

For d > 2 the fluctuations do not destroy the Long-Range Order. For d = 2,
the ordered phase has Quasi-Long Range Order: the fluctuations destroy the
Long-Range Order! This is a special case of the Mermin-Wagner theorem24[43],
which states that if a continuous abelian symmetry is broken in two dimensions,
there can never be long-range order. However, if we consider a small enough
region of our system, then the system is effectively ordered. Namely, the or-
der only decays algebraically. For d < 2, the fluctuations destroy the order
completely, and only Short-Range Order is left over.

The lowest dimension dc, such that LRO is maintained for d > dc, is called
the lower critical dimension. Thus dc = 2 for the XY model.

For the XY model in d = 2 we saw that < φ(#x)∗φ(#0) > does not exhibit
LRO. There is another field that does exhibit LRO in d = 2, namely ∇θ(#x):

< ∇θ(#x)∇θ(#0) >=
kT

ρs

∫

|k|<Λ
ddkei!k·!x ∼ 2W. (2.97)

23If our weight function is

w(x1, . . . , xn) = A

Z

dx1 . . . dxnexp(−
1

2
G−1

ij xixj) (2.95)

where A is a normalization factor, then

< exp(aixi) >= exp(
1

2
aiaj < xixj >). (2.96)

24Sometimes the theorem is also attributed to Coleman, Berezinskii and/or Hohenberg.
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One of the applications of the XY model is to superfluidity, where it is
the simplest effective energy. When applied to superfluidity, φ(#x) is the wave-
function of the system, and θ(#x) is the phase angle. In the application to
superfluidity, ∇θ(#x) is directly related to the superfluid velocity vs:

vs =
"

m
∇θ, (2.98)

where m = ρs

v2 is the ’mass’. This follows from the momentum operator in
quantum mechanics: p̂ = !

i∇. Applied on the wavefunction φ = veiθ (where
we set the amplitude to the constant the value v), we get p̂φ = "(∇θ)φ. Since
the velocity is obtained by dividing the momentum by the mass, the superfluid
velocity is then the eigenvalue of the operator p̂

m when applied to φ, which is
(2.98).

According to (2.97), the superfluid velocity exhibits LRO.



Chapter 3

Ordinary and liquid crystals

3.1 Introduction

Liquid crystals are phases with a symmetry between that of a liquid and a
crystal. A veritable zoology of liquid crystals have been discovered, the most
famous one being the nematic crystal used in flat screens. In biology liquid
crystals are quite common, the cell membrane is an ubiquitous example.

In high school we all learn that there are three phases of matter: solid, liquid
and gas. Now we know that there are many phases in between solids and liquids,
called liquid crystals. They share properties of both phases.

In the previous chapter we developed the formalism used to study the fluc-
tuations in such systems. We introduced order parameter fields, and found that
Goldstone modes and topological defects are excitations of the order parameter
fields. We also discussed the possible existence of other fields and dyons.

Liquid crystals exhibit a wide variety of orders, and we will study their
symmetry properties, order parameter fields, and modes. First we give a clear
definition of liquid crystals in terms of symmetry.

3.1.1 Definition in terms of symmetry

A liquid is a phase with unbroken external symmetry and internal symmetry.
The external symmetry group is O(d)! d, the Euclidean group in d dimensions,
including reflections. At this point we needn’t consider an internal symmetry:
Either the molecules are spherically symmetric, or their orientations are random.
Note that this doesn’t distinguish a liquid from a gas.

A crystal is a phase in which the external symmetry is a discrete group.
There are no infinitesimal rotations of translations in the symmetry group. The
atoms that make up the crystal may have internal structure, such as spin. We
will neglect the internal symmetries of the crystal for the moment.

Discrete external symmetry groups are called space groups. These have been
completely classified: there 230 different space groups.

47
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A liquid crystal is a phase with less symmetries than a liquid, and more sym-
metries than a crystal. More specifically, its external symmetry group is not
discrete, but it is smaller than O(3)! 3. The internal symmetry group may or
may not be broken.
This definition is subtle, because some liquid crystals have coupled external and
internal symmetries, i.e. the phase is only invariant under simultaneous internal
and external symmetry transformations. This will become clear in examples to
come.
The symmetries of a phase can be determined experimentally using scattering
experiments (with neutrons, or x-rays for example).

3.2 Liquid crystals

We now turn our attention to the most famous liquid crystals: nematics, smec-
tics and columnar phases. A good reference book on liquid crystals is the book
by de Gennes[18].

3.2.1 Nematic liquid crystals

Symmetry

A nematic liquid crystal is a phase with complete translational symmetry, and
incomplete rotational symmetry. The phase then inherits the name of the resid-
ual rotational group: If the residual rotational group is the tetrahedral group,
for example, the phase is called a tetrahedral nematic.
The residual internal rotational symmetry group H can be any proper subgroup
of G = SO(3). The possibilities are (see Appendix A)

G = SO(3) $→ H ∈ {Cn, Dn, T, O, I, SO(2) ! 2} (3.1)

where we use the notation employed in the crystallography literature[14]. Cn =

n, the abelian cyclic group of order n. Dn is the dihedral group of order n, T
is the tetrahedral group, O the octahedral group, and I the icosahedral group.
The most famous example is the uniaxial nematic, see fig.3.1. One possible
realization of a uniaxial nematic is a fluid in which the molecules have a rod-
like structure. The symmetry of one rod pointing along an axis #n is denoted
by SO(2) ! 2. This group contains rotations around #n, and rotations over π
around any axis perpendicular to #n.

However, the phase is not invariant under purely internal rotations. Ro-
tating the rods without rotating the system need not give a configuration
of same energy. In the isotropic phase, the rotational symmetry group is
(SO(3)ext ! 3) × SO(3)int, consisting of translations 3, an external rota-
tional group SO(3)ext which rotates the space, and an internal rotational group
which rotates the rods:

Rext ∈ SO(3)ext : #x $→ Rext#x

Rint ∈ SO(3)int : #n $→ Rint#n (3.2)
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Figure 3.1: Schematic representation of a uniaxial nematic liquid crystal.

At low temperatures, the translational part is unbroken, while the external
and internal rotational symmetries are coupled. The phase is only invariant
under transformations such that the internal and external rotations are the
same. In other words, the residual rotational group is the diagonal subgroup
of SO(3)ext × SO(3)int, i.e. all elements of the form {R(l̂, θ), R(l̂, θ)}, where
R(l̂, θ) is a clockwise rotation of angle θ around the axis of the unit vector l̂.
We denote the diagonal subgroup as

SO(3)(l̂,θ)ext × SO(3)(l̂,θ)int . (3.3)

We can also describe the diagonal subgroup in terms of generators. Denote as
Lx, Ly and Lz the generators of external rotations in SO(3)ext around the x-,
y- and z-axes respectively. We say that SO(3)ext is generated by the vector
#L = (Lx, Ly, Lz), and write SO(3)L = SO(3)ext. Denote as Tx, Ty and Tz

the generators of internal rotations in SO(3)int around the x-, y- and z-axes
respectively. SO(3)int is generated by #T = (Tx, Ty, tz), and we write SO(3)T =

SO(3)int. Then the diagonal subgroup is generated by #J = #L + #T = (Lx +
Tx, Ly + Ty, Lz + Tz), thus SO(3)J is the diagonal subgroup.

Then the residual symmetry of the uniaxial nematic is

H = 3
! SO(3)J = ( 3

! SO(3)(l̂,θ)ext )× SO(3)(l̂,θ)int . (3.4)

A similar statement holds for any nematic.
The locally gauged version of the uniaxial nematic is called Alice electrody-

namics. For analysis of Alice electrodynamics see [64][63].

Order parameter space and field

To describe the order parameter, we must treat each nematic separately.
For the unaxial nematic, we can describe the orientation of the rod as a bidirec-
tional arrow

↔
n , or a vector #n with the equivalence #n ∼ −#n. The order parameter

space O is therefore S2, the surface of a sphere, with antipodal points identified.
This manifold is called 2, the projective sphere. We cannot use a vector as an
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order parameter field, since it does not invariant under #v $→ −#v. We must use a
rank two tensor : take a symmetric traceless rank-two tensor, which transforms
in the five dimensional irreducible representation of SO(3). A symmetric matrix
is always diagonalizable and it has three orthonormal eigenvectors (n̂, l̂, m̂) , so
we can write

Qij =
2

3
Sninj + (η −

1

3
S)lilj + (−η −

1

3
S)mimj (3.5)

where S and η are numbers. This parametrization is redundant: we need only
specify n̂, l̂, S and η to set Qij .
In the case of the uniaxial nematic, η = 0. Using lilj + mimj = δij − ninj

(which is true for any triple of orthonormal vectors), we get

Qij = S(ninj −
1

3
δij) (3.6)

If, on the other hand, η '= 0, we say the nematic is biaxial. The rotational
symmetry will then be D2, the point group of a rectangle.
If we want to describe another nematic liquid crystal, such as a tetrahedral
nematic, then we need to use higher order rank tensors. We need an order
parameter that is only invariant under the rotational group H of the nematic we
are considering. In terms of representation theory, that means we seek a vector
in a vector space on which a representation of SO(3) acts, whose stabilizer is H .
This has to be worked out case by case (for a smart method, see [49]). For a
tetrahedral nematic, we need a third order tensor. Take the third tensor power
of the l = 1 (vector) representation of SO(3), and consider the vector

Tijk = x̂iŷj ẑk + x̂iẑj ŷk + ŷix̂j ẑk + ŷiẑjx̂k + ẑix̂j ŷk + ẑiŷj x̂k, (3.7)

where x̂, ŷ, ẑ are orthonormal vectors in 3. Tijk is only invariant under the
tetrahedral group, to be precise the symmetry transformations of the tetrahe-
dron given in fig.3.2.

Figure 3.2: The tetrahedron with the axes discussed in the text.

Using fig.3.2, we can use a convenient notation of the symmetry transforma-
tions of the tetrahedron. Namely, T - A4, the even permutations of the four
vertices. So we write the symmetries as permutations. For example, (12)(34)
corresponds to a π rotation around the z-axis, and (12) corresponds to a mirror
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symmetry, with respect to the plane that contains the z-axis and passes through
the vertices 3 and 4. Note that a similar notation, in terms of permutations,
can be used for all the discrete subgroups1 of SO(3).
Until now, we had neglected mirror symmetries. The reason is that we haven’t
specified if the constituent molecules are chiral, i.e. different from their mirror
image. If our tetrahedron isn’t chiral, then its symmetry group is Td - S4, the
group of permutations of the four vertices. Td is a subgroup of O(3), so we must
take G = O(3) as the symmetry in the isotropic phase to describe chirality. If
all the phases we are considering are achiral, then we can work with SO(3).
Note that (3.7) is invariant under all of Td.
Td includes symmetry transformations that are not connected to the identity.
Later on we will study the effect of such large symmetry transformations, as
they are called.
Experimentally, a wide variety of different nematics have been discovered. Not
necessarily as a phase with constituents with such a symmetry, but also as mod-
els that capture the essential physics. For example, icosahedral nematics have
been invoked to describe supercooled liquid prior to the glass transition [66].
The idea is that as the fluid is cooled down, locally the molecules want to form
an icosahedral structure (because they pack closer together this way). Since they
cannot maintain this icosahedral structure macroscopically, frustration occurs,
and the phase remains liquid below the freezing point. It is therefore transla-
tionally invariant, but locally the rotational symmetry is icosahedral. This is
a prime example of a nematic. There are also quantum systems with nematic
symmetries, which we discuss later.

Free energy and phase transitions

Let us form the free energy for a uniaxial nematic2. The order parameter field
is Qij(#x). To fourth order, the potential term is

V [Q] = B1Tr(Q2)−B2Tr(Q3) + B3Tr(Q4) (3.8)

These three terms are the only invariants one can build out of Qij to this or-
der. Other invariants are not independent of these ones: for example3, TrQ4 =
1
2 (TrQ2)2, and Tr(Q3) = 3detQ.

To form the elastic free energy density, one must form invariants under
simultaneous rotations of the space and the orientation of the molecules. The
possible terms are

Fkin = A1∇iQjk∇iQjk+A2∇iQij∇kQjk+A3∇iQjk∇kQij+A4∇i∇jQij (3.9)

1It can in fact be used for any finite group, since all finite groups are a subgroup of Sn for
some n. We prove this in AppendixA.

2The locally gauged version of the uniaxial nematic is called ”Alice electrodynamics”. For
an analysis see [64] and [63].

3These equations are easily checked in a basis where Q is diagonal.
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If we plug this expression into (3.6), we get

Fel = K1(∇.#n)2 +K2(#n.∇×#n)2 +K3(#n× (∇×#n)2 +K4∇ · ((#n ·∇)#n−#n(∇ ·#n)).
(3.10)

This is called the Frank free energy density, and Ki are called the Frank con-
stants. The four terms are called the splay, twist, bend and saddle-splay curva-
ture terms, respectively. The saddle-splay term is a total derivative term, and
is only important if one considers surface effects. We will set K4 to zero.
A common simplification in the literature is to take K1 = K2 = K3 ≡ K, known
as the one constant approximation. In this approximation the elastic free energy
density is called the field-theory free energy density fft, and is equal to

Fft = K∇inj∇inj (3.11)

In this approximation, the external and internal rotational groups decouple,
and in the ordered phase the external rotational group is unbroken, while the
internal rotational group is SO(2) ! 2. This is a common situation in field
theory, where only the internal symmetry group is broken.
According to Landau’s theory of phase transitions, due to the third-order term
in (3.8) the phase transition from the isotropic to the uniaxial nematic phase is
first order. Experiments reveal that it is only weakly first order, meaning that
B2 is small.
For other nematics, we have to form a free energy using whichever order param-
eter fields are necessary to describe the order. for example, for a tetrahedral
nematic, using the order parameter field Tijk we get

F = A1∇iTjkl∇iT jkl + A2∇iT
i
jk∇lT

ljk + A3TijkT ijk

+A4(TijkT ijk)2 + A5T
ijkTilmT ln

j T mn
k (3.12)

There are no other terms because Tijk is completely symmetric with respect to
the interchange of its indices. The analog to the one-constant approximation in
this case would be setting A2 = 0, because the A2 is the only term that couples
internal and external rotations. With A2 = 0 only the internal rotational group
is broken.
To see the details on the theory behind Landau phase transitions between the
different possible nematics, see [39].
Since there are no third order terms, Landau’s theory predicts a second order
phase transition. However, it has been proven in [54] that there is a runaway
of the coupling constant A4 in front of the fourth order term (T ijkT ijk)2 to-
wards negative values, signaling a first order phase transition. Note that the
Landau theory is still precious, as it is the basis for the Renormalization Group
calculation.

Modes

There are 7 conventional modes in the uniaxial nematic: 5 continuity modes
just as in a simple fluid, and 2 Goldstone modes.
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In the low temperature phase, the rods are oriented on average along an axis,
which we choose to be the z-axis. This leads to the existence of two Goldstone
modes, δnx and δny (see fig.3.3). They transform under a two-dimensional
irreducible representation of the residual symmetry group SO(2)! 2. However,

Figure 3.3: The Goldstone modes in a uniaxial nematic liquid crystal. These
low-energy excitations are extrapolations into neighboring vacua. The Gold-
stone modes δnx and δny span a two-dimensional vector space. Note that al-
though #n is a headless vector (with a symmetry #n $→ −#n), the Goldstone modes
δnx and δny aren’t.

the 2 transverse momentum modes couple to the Goldstone modes, because an
excitation of a Goldstone mode leads to a transverse momentum current, and
therefore the Goldstone modes imply the presence of transverse momentum
diffusion. The dispersion relations are given in [15] (they are approximate).
There are two ”slow” (low frequency) and two ”fast” modes (high frequency).
We reproduce the dispersion relations for one slow, and one fast mode:

iωs(K2k
2
x + K3k

2
z)−1 = C1 + C2

k2
z

C3k2
z + C4k2

x
(3.13)

iωf =
C3k2

z + C4k2
x

ρ
(3.14)

where Ci are constants related to the viscosity tensor of the phase. The fre-
quency is purely imaginary, so these modes are overdamped, i.e. they do not
propagate. The slow mode dies out on a longer timescale than the fast mode.

For other nematics, there are 5 continuity modes, and 3 Goldstone modes,
since all 3 generators of SO(3) are broken. The analysis of the couplings between
continuity and Goldstone modes would be complicated, but analogous to the
uniaxial case.

Defects

The defect structure is much more intricate for uniaxial nematics than for other
nematics. For nematics other than the uniaxial nematic, H is discrete. Thus
there are no monopoles, and line defects are characterized by H, the double
cover of H in SU(2).
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Now we consider the uniaxial nematic, for which H is continuous.

1 - The homotopy groups of the uniaxial nematic

To study the defects, we need the double cover H of SO(2) ! 2 in SU(2).
If the uniaxial nematics are on average ordered along the z-axis, then

H = {ei θ2σz , iσxei θ2σz , θ ∈ [0, 4π)} (3.15)

where σx,σy ,σz are the Pauli matrices (see appendix A). H consists of a com-
ponent H0 that is connected to the identity, and a component Hd that is discon-
nected from the identity. They subsets of H consist of the following elements:

H0 = {ei θ2σz , θ ∈ [0, 4π)}

Hd = {iσxei θ2σz , θ ∈ [0, 4π)}.

The homotopy groups of the uniaxial nematic are

Π1(G/H) = Π0(H) = 2 (3.16)

Π1(G/H) = Π1(H0) = (3.17)

Thus there is only one nontrivial line defect, a disclination. The monopoles are
labelled by an integer.

3 - The disclination of the uniaxial nematic

Figure 3.4: A section of the nontrivial line defect in a uniaxial nematic liquid
crystal.
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An explicit realisation of the line defect, with the core oriented along the
x-axis, is

#n(#x) = (0,−sin(
1

2
ϕ), cos(

1

2
ϕ))

with ϕ the angle defined in fig.3.4. The kinetic free energy of this defect is easily
calculated in the one constant approximation. Namely, in polar coordinates we
get

∇nx = 0

∇ny = −
1

2r
cos(

1

2
ϕ)ϕ̂

∇ny = −
1

2r
sin(

1

2
ϕ)ϕ̂

The free energy density becomes K
4r2 . We can calculate the energy per unit

length in the x-direction, which is the energy per unit length of the defect:

Eunitlength =

∫ R

a
rdrdϕ

K

4r2
=

π

2
Kln(

R

a
) (3.18)

This result is analogous to the XY model which we discussed earlier: The inte-
gral of this energy is ultraviolet (short distances) and infrared (large distances)
divergent. We needn’t worry about the infrared divergence, since we can always
place and antidefect at a certain distance, or give the system a finite extent.
The ultraviolet divergence is a signal that our the Frank free energy description
breaks down at the core. The integral is only valid outside the core of the defect.
Inside the core, another form of the free energy is needed.

What is the symmetry at the core? The system could be isotropic at the core
of the defect, but numerical investigations[62] have led to the conclusion that the
core is biaxial. This biaxiality can be captured by the tensor order parameter
description. The tools of homotopy theory discussed previously allow us to
understand why the singularity can be removed.

The argument runs as follows: Now, the Bi are temperature dependent
quantities, and they dictate the order of the phase transition. As B1 goes from
being positive to negative, a phase transition occurs. If B2 = 0, the phase
transition is of second order, otherwise it’s of first order. The second term is
present because there is no Q → −Q symmetry in a uniaxial nematic (Q → −Q
does not correspond to #n → −#n). Experiments reveal that the transition from
the isotropic to the nematic phase is only weakly first order, meaning that B2

is small relative to B1 and B3. So an approximation commonly used (which
is only qualitatively valid close to the phase transition) is that TrQ2 takes on
the value that minimizes the first and third terms in the potential free energy.
Using TrQ4 = 1

2 (TrQ2)2, one gets TrQ2 = −B1
B3

. Now, in the five-dimensional

space of traceless symmetric matrices, this is the equation of an S4. And since
Π1(S4) = 0, any loop can be shrunk. So if we start with the nontrivial defect in
the uniaxial nematic, the singularity at the core can be removed by assuming
biaxial symmetry at the core.
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There is an important observation to make about the uniaxial nematic: if
we consider the configuration in fig. 3.4, and rotate all the rods around the
z-axis by an angle θ, then we obtain a new configuration, which is topologically
a disclination, with the same line defect charge. Thus for every θ ∈ 2π we
have a configuration that corresponds to a disclination. In the one-constant
approximation, all these configurations have the same energy. We can now
imagine all the rods rotating around the z-axis, see 3.5. This costs no energy,
so it is an excitation of zero energy around the defect configuration, just like a
Goldstone mode! We have discovered a zero mode around the defect. A zero
mode is the generic name given to an excitation that costs zero energy in the long
wavelength, low frequency limit. The zero mode implies that the disclination is
dyonic in the one-constant approximation. Namely, rotations around the z-axis
correspond to transformations of the residual symmetry group. Thus, the defect
configuration transforms nontrivially under the residual symmetry group, which
is how we defined dyons. We will come back to this discussion at the end of
chapter 4.

(a)

The non trivial defect in a uniaxial
nematic. Imagine rotating the con-
figuration around the z-axis. This
gives a continuous family of con-
figurations which correspond to the
same defect. In the one-constant
approximation these configurations
all have the same energy.

(b)

The same defect after a π rota-
tion around the z-axis. Rotations
around the z-axis expose the zero
mode: the rods can rotate around
the z-axis, at low energy cost. This
is a massless excitation.

Figure 3.5: Schematic explanation of the dyonic nature of the disclination in a
uniaxial nematic.

2 - Monopoles in the uniaxial nematic

The monopoles are labelled by a charge n ∈ , which corresponds to the
winding number of the loop in H0 that characterizes the monopole, under the
isomorphism (2.45). Note that H0 is topologically a circle, which is why homo-
topy classes of loops in H0 are characterized by a winding number.
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In chapter 2 we discussed the possibility of having theories where the charge
of a monopole changes when it is transported around a line defect. In the
uniaxial nematic, there is only one nontrivial line defect, a disclination. When
a monopole of charge n is transported around the disclination, it returns with
the opposite charge −n. This is not too difficult to prove. Namely, a charge n
monopole is characterized by a loop fn : S1 → H0 of winding number n in H0:

fn(θ) = einθσz (3.19)

where θ is the angle that parametrizes the points on the circle S1. In chapter
2 we saw that a line defect is characterized by a path in G that ends in a
disconnected component of H. Thus in this case the path ends in a point
iσxei θ2σz in Hd. We also showed that the outcome of transporting a monopole
around a line defect is the conjugation of the loop in H0 characterizing the
monopole, by the endpoint of the path characterizing the line defect. This,
in this case, if we transport a monopole of charge n, characterized by fn(θ)
given (3.19), around a disclination whose endpoint is iσxei θ2σz , the outcome is
a monopole with loop g(θ) given by

g(θ) = iσxei θ2σz fn(θ)(iσxei θ2σz )−1 = f−n(θ). (3.20)

Note that the outcome is independent of the endpoint of the disclination. Thus
a monopole with charge n becomes a monopole with charge −n when trans-
ported around a disclination. This has remarkable consequences. For example,
if a monopole of even charge 2n decays into two monopoles of charge n (which is
topologically possible), and one of the monopole is transported around a discli-
nation, then it returns with charge −n. Thus we obtain a monopole of charge
n and an antimonopole of charge −n, and there is no topological obstruction
to their decay. Determining whether these processes actually takes place in a
system requires a dynamical analysis. For a dynamical analysis in the gauge
theoretical equivalent of the uniaxial nematic, called ”Alice Electrodynamics”,
see [64].

If we leave the one-constant approximation, the topological analysis is the
same, but the energetic analysis becomes very subtle. Namely, one has to ex-
plicitly solve the equations that minimize the free energy to find out if a certain
configuration is stable. This has been done extensively for uniaxial nematics. It
has been shown[16], for example, that the flux of the monopoles is not isotrop-
ically distributed around the monopole. Instead, it concentrates itself into two
flux tubes.

We make one last comment on monopoles. The disclination has a core which
is a line. This line can form a closed loop, and it turns out that this loop can
carry monopole charge! To measure this monopole charge, we draw a surface
that encompasses the loop. We will briefly explain why the loop can carry
monopole charge. For a more detailed discussion see [13].

Under the isomorphism Π1(G/H) - H/H0, every point of the core of a
line defect can be associated to an element h(t) in H, where t parametrizes the
core. As we move along the core, the element h(t) may change, as long as it
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corresponds to the same left coset in H/H0, since that doesn’t affect the charge
in Π1(G/H). The elements associated to the points on the core are given by
h(0)h′(t), with h′(t) ∈ H0. Thus if we consider a core that is a closed loop, h′(t)
will traced out a closed loop in H0 as we move around the loop. In the case of
the uniaxial nematic, H0 is topologicall a circle, so that the homotopy classes
of loops in H0 are characterized by a winding number. It turns out that this
winding number is precisely the monopole charge of the line defect [13].

One of the implication of the possibility of closed line defect loops to carry
monopole charge is that there is no topological obstruction to the decay of a
monopole into a closed line defect loop [63]. Another implication is that a
monopole can travel through a closed loop of line defect, and its charge will
change sign. This follows from the analysis above of the transport of monopoles
around a line defect.

Dyons

When we studied dyons in the previous chapter, we stated that in the presence
of a defect characterized by a path f̃ in G the only elements of H that can be
globally implemented are those that commute with f̃(2π). For nematics other
than the uniaxial one, the endpoint of the path is unique, so the centralizer is
well defined.
For the uniaxial nematic, the endpoint of the path that characterizes the discli-
nation is not unique. It can be any element of the form iσxei θ2σz , θ ∈ [0, 4π).

The centralizer of such an element is {±1,±iσxei θ2σz} (see (3.15)). Therefore
the centralizers for different θ are isomorphic to D2. We could therefore have a
field Ψ with this defect in the background, that transforms nontrivially under
D2, which gives a dyon.

Fluctuations and order

A nematic liquid has translational short-range order, and orientational long-
range order. The orientational long-range order survives fluctuations. This is
obvious for a uniaxial nematic in the one-constant approximation, where the
free energy is that of an XY model in three dimensions. In the previous chapter
we saw that in such a model long-range order survives fluctuations.

Cholesteric elastomers

Cholesteric elastomers are a special type of nematic liquid crystals, and we
briefly describe them here.
The cholerestic phase is very similar to the uniaxial nematic. The molecules are
rodlike so that they are characterized by a bidirectional arrow #n ∼ −#n. In every
plane perpendicular to the x-axis, the rods have the same average orientation.
However, as we go along the x-axis the average orientation of the rods twists
around the x-axis:

#n = ŷcosqx + ẑsinqx. (3.21)
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q is called the pitch of the cholesteric, which determines the period along the
x-axis. If we set q to 0, we get a uniaxial nematic, so that a uniaxial nematic
is a cholesteric with infinite pitch. This twist is achieved by introducing q into
the Frank free energy (3.10) , in the following way:

Fkin = K1(∇.#n)2+K2(#n.∇×#n+q)2+K3(#n×(∇×#n)2+K4∇.((#n.∇)#n−#n(∇.#n))

Minimizing the K2 term, i.e. setting

#n.∇× #n + q = 0, (3.22)

we find that (3.21) minimizes the K2 term.
The symmetries of the phase consist of translations a distance a along the x-axis
coupled to rotations of angle qa around the x-axis, and of π rotations are the
x-, y- and z- axes. The coupled rotations and translations are connected to the
identity, i.e. they sit in H0. Thus Π1(G/H) = HH0 is equal to the double
cover of the group spanned by the π rotations, which are not connected to the
identity. This group is D2, so that Π1(G/H) = D2 - Q, the quaternion group.
There are no monopoles, since there are no nontrivial loops in H0.
Since locally the phase looks like a uniaxial nematic, the structure of the conti-
nuity and modes is similar.
Experimentally this phase can be obtained by adding chiral molecules to a uni-
axial nematic.

3.2.2 Smectics

Symmetry

A smectic liquid crystal is obtained by breaking translational symmetry in a ne-
matic liquid crystal, in one direction. If a nematic is cooled down, the molecules
may form layers. Within a layer the system is a fluid. Note that the layer need
not have the thickness of one molecule as we in suggest fig. 3.6. In some cases
its thickness is that of two molecules.
There are different kinds of smectics, corresponding to different orientations of
the rods within the layers, which changes their symmeties properties. We will
discuss the smectic A, A* and C phases, because these are the most common
smectics. At the end of this chapter we will also briefly mention the smectic B
phase.
We call the axis normal to the layers the z-axis.
In a smectic A, the long axis of the molecules points along the z-axis.

The forming of the layers breaks the symmetry to a group that couples
internal and external rotations. The residual symmetry group is

H = (( 2 × ) ! SO(3)(l̂,θ)ext )× SO(3)(l̂,θ)int . (3.23)

The only difference with the symmetry group of the uniaxial nematic is that
translational symmetry in the z-direction is broken to .
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(a)

The ground state of the
smectic A phase.

(b)

The Goldstone mode of
the smectic A phase.

Figure 3.6: Schematic representation of a Smectic A liquid crystal. The rods are
confined to planes, and in microscopic times they orient themselves perpendic-
ularly to the planes. The only mode left is transverse oscillation of the planes,
which is captured by the field u(#x).

Figure 3.7: The smectic A* phase. The spirals on the molecules indicate the
phase is chiral.
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A smectic A* is a smectic A in which the molecules are chiral, i.e. they
cannot be superimposed on their mirror image. The chirality affects the optical
activity of the system. It is known that if a molecule is going to be optically
active (i.e. rotate the plane of polarization of an incoming monochromatic
light beam), it must be chiral because of symmetry arguments. Namely, if the
molecule rotates the polarization plane in a specific direction, and the molecule
is achiral, this violates the mirror symmetry.
The star is a general way of denoting a chiral phase, and applies to any phase.
For example, a nematic* phase is a nematic made of chiral molecules.
To pictorially indicate a molecule is chiral, we will draw a spiral on the molecules.
The only difference between the symmetry groups of the smectic A and A*
phases is that reflections are broken in the A* phase. We had neglected reflec-
tions in the smectic A, but they were actually present.
In the smectic C phase, the rods do not point towards the normal to the layers.

Figure 3.8: The smectic C phase.

Instead, their average direction is in a direction that is tilted with respect to
the normal. The residual symmetry is ( 2 × ) ! 2, where 2 corresponds to
a π rotation around a vector in the x-y plane perpendicular to the rods, the 2

symmetries are translations within a plane, and translates perpendicularly to
the layers.

Order parameter

To find the order parameter of a smectic, consider the Fourier transform of the
density operator:

ρ(#x) =

∫

d3q

(2π)3
ρ!kei!k·!x

In a nematic, we have < ρ!k >= δ!k,!0ρ!0, where ” <> ” denotes a thermal av-
erage. This simply means that the ground state has a constant density, which
is an infinite wavelength density wave. In the smectic phase, a density wave
with finite wavelength sets in, such that < ρ !k0

> '= 0, for some vector #k0.
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Ψ ≡ ρ !k0
= |ρ !k0

|e−ik0u is the complex order parameter of the smectic. Increas-
ing u uniformly corresponds to a translation along the z-axis. Thus u is actually
a vector that points along the z-axis.

Modes

The particle content is interesting: one might expect three Goldstone modes,
since a nematic crystal has two, and the breaking of translational symmetry
should give a third mode. However, there is only one mode! This is the mode
associated with the breaking of translational symmetry, see fig.3.6. What hap-
pened to the other two?

The figures we have provided are very suggestive. Namely, the rods are
always perpendicular to the layer, and it costs a lot of energy to rotate away
from the normal. If they slightly deflect from the normal, they decay back to it in
microscopic time. In the language of field theory, the two modes corresponding
to such an excitation (excitation in x- and in y-direction) are massive. Two
Goldstone modes have acquired mass, via the Higgs mechanism!

This requires clarification, because the Higgs mechanism is a very specific
mechanism, which requires a gauge theory, and the associated covariant deriva-
tive. In smectics, there is also a covariant derivative. A dynamically generated
gauge field will indeed appear when we construct the smectic free energy Fs.
The order parameter Ψ is now allowed to vary in space:

Ψ(#x) = ρ !k0
(#x)e−ik0u(!x).

Define ∇⊥ ≡ (∇x,∇y, 0), the derivative parallel to the undeformed planes; and
∇// ≡ (0, 0,∇z), the derivative perpendicular to the planes. If we assume that
#n does not fluctuate, then Landau theory tells us that the only terms in the free
energy are now

1

2

∫

d3x(r|Ψ|2 + c//|∇//Ψ|2 + c⊥|∇⊥Ψ|2 +
1

2
g|Ψ|4)

c// '= c⊥ because the presence of the rods sets up an anisotropic background in
the smectic.
If we allow for fluctuations of #n, then to lowest order only the c⊥ term is modi-
fied. Define δ#n⊥ ≡ #n− ẑ. Since n2 = 1, the variations of #n in the z-direction is
second order, and we neglect it.
The c⊥ term becomes

c⊥|(∇⊥ − ik0δ#n⊥)Ψ|2,

which is very similar to the covariant derivative term in the free energy of a
superconductor:

1

m
|("∇− ie #A)Ψ|2.

To arrive at this term, note that δ#n⊥ should enter the c⊥ in such a way that it is
invariant under rigid rotations of the whole system, which involves rotating the
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layers as well as the molecules. If we rotate the system by an angle θ around
a unit vector l̂ in the x-y plane, then δn⊥ = −θl̂ × ẑ, and u(#x) = −δ!n⊥ · #x.
Therefore Ψ changes according to:

Ψ $→ Ψ′ = Ψeik0δn⊥
·!x,

and (∇⊥− ik0δ#n)Ψ is invariant under global rotations. The smectic free energy
becomes

Fs =
1

2

∫

d3x(r|Ψ|2 + c//|∇//Ψ|2 + c⊥|(∇⊥ − ik0δ#n)Ψ|2 +
1

2
g|Ψ|4) (3.24)

The action is almost identical to the action for superconductivity [65]:

FSC =
1

2

∫

d3x(α|Ψ|2 +
1

2m
|(

"

i
∇−

e

c
#A)Ψ|2 +

1

8πµ
(∇× #A)2 +

β

2
|Ψ|4)

It is invariant under
{

δ#n⊥ $→ δ#n⊥ −∇λ
Ψ $→ Ψeiksλ

with λ : 3 $→ . An important difference is that only one gauge is physical:
(δ!n⊥)z = 0.

Summarizing, the Goldstone modes of the nematic are massive in the ordered
phase due to the Higgs mechanism. The variation in the director is no longer an
independent variable, as it relaxes in microscopic time to an orientation normal
to the layers. Just like in the nematic liquid crystals, the Goldstone mode is
diffusive, because it couples to continuity modes. See [15] for the precise cou-
pling. The dispersion relations are anisotropic: they depend on the orientation
of the wave number of the modes with respect to the layers.

Topological defects

The topological line defects are dislocations characterized by an integer:

Π1(ISO(3)/ISO(2)× ) = Π0(ISO(2)× ) = .

The topological charge should be interpreted as a vector pointing perpendic-
ularly to the layers, whose length is an integer times the distance d between
consecutive layers. This vector is called the Burgers vector #b of the defect. For
a defect of charge n the Burgers vector is

#b = ndẑ (3.25)

We’ve treated the smectic in the continuum theory, so that u(#x) is a field that
measures the local displacement of the layers along the z-axis. We consider
u(#x) to be a vector #u(#x). Then a configuration of the field that corresponds to
a dislocation of with Burgers vector b must satisfy the following property; for
any loop L around the core of the dislocation

∮

L
#u · d#x = #b. (3.26)
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Thus the Burgers vector measures the displacement of an observer inside the
smectic turning around the dislocation (see fig. ??). While the observer ”thinks”
he’s walked a close loop around the dislocation, he is actually displaced by#b. The

Figure 3.9: The cross section of a three dimensional smectic. There are three
dislocations, and their Burgers vectors are drawn. This cross section is also a
phase in itself, a two-dimensional smectic, also known as a stripe phase.

Burgers vector can point in any direction with respect to the orientation of the
singular line. If it is parallel to the singular line, it is called a screw dislocation,
and if it is perpendicular we are dealing with an edge dislocation. In general,
the Burgers vector can be decomposed into a parallel and a perpendicular part,
and the defect is simultaneously screw and edge.
There are no monopoles, since Π2(ISO(3)/ISO(2)× ) = Π1( 0) = 0.

Fluctuations and order

There is only quasi-long range order due to the fluctuations of u. This is a
general phenomenon for three-dimensional phases with periodic order in only
one direction [37], and once again follows from convergence considerations of
the fluctuation integrals.

3.2.3 Columnar phases

We can break translational symmetry in two directions, which corresponds to
columnar phases. This phase is composed of lines along which the phase is
liquid. These lines are placed on the vertices of a lattice. If we take a cross
section of the liquid lines, we obtain a two dimensional crystal.

There is true long-range order, and there are 2 Goldstone modes, associated
with the breaking of translational symmetry in two directions (The rotons are
massive).

The topological defects are line defects, and no monopoles. The cross section
gives a two-dimensional crystal with a certain homotopy group, which is equal
to the homotopy group of the columnar phase. The defects are precisely the
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Liquid crystal Order parameter field Symmetry Goldstone Defects
modes

Uniaxial Qij SO(2) ! 2 2 2

Dihedral D2 Qij D2 3 D2

Tetrahedral Tijk Td 3 T
Octahedral Oijkl Oh 3 O
Icosahedral Ih 3 I

Cholesteric
↔
n Complicated 2 D2

Smectic A ρ !k0
× ISO(2) 1

Smectic A* ρ !k0
× ISO(2) 1

Smectic C ρ !k0
× ISO(2) 1

Smectic F ρ !k0
× ISO(2) 1

Hexatic Smectic {ei6θ, ρ !k0
} × (Z6 ! 2) 2 × 6

Hexagonal ei6θ ( 6 ! 2)× 3 × 6

Table 3.1: The different liquid crystals, and their mode content. We omitted the
continuity modes, since there are five of them in all these phases (though they
may be coupled to Goldstone modes, see text). We also omitted the massive
Goldstone modes in smectics.

dislocations and disclinations of this two dimensional crystal. The only differ-
ence with the defects of the two dimensional crystal is that the dislocations can
have both screw and edge character.

3.2.4 Quantum Liquid Crystals

It has been theoretically predicted that Quantum Hall Systems at certain frac-
tional filling levels behave like a one-dimensional array of Luttinger liquids
[53][21]. This shares the properties of a two-dimensional smectic. The same
happens in High-Tc superconductors[9]. These two-dimensional smectics are
called stripe phases. We illustrate a 2D smectic in fig. 3.2.2.

3.3 The hexatic phase

The hexatic phase is a rather remarkable phase. It has unbroken translational
symmetry but broken rotational symmetry. Its most important characteristic
for us is that there are crystals that enter this phase when defects condense.
Before we can explain this, we must review the theory behind crystals.

3.3.1 Crystals

Symmetry, order parameter field and free energy

A crystal is a phase in which the symmetry group G = O(d)! d has been spon-
taneously broken to a discrete group H , called the space group of the crystal.
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The positions of the atoms in the crystal form a lattice. Severe restrictions on
the possible symmetries arise from the observation that the crystal should look
the same from every lattice point. For example, a crystal cannot have a fivefold
symmetry axis. This forbids icosahedral symmetry, since an icosahedron has a
fivefold symmetry axis. A tetrahedral crystal is also impossible in three dimen-
sions, because we can’t tile 3 with tetrahedra.
In the ground state, the i-th atom is on lattice point #xi. At finite tempera-

tures, its position fluctuates around #xi. We denote its position by #x
′

i, and its
displacement from #xi by u(#xi):

#x
′

i = #xi + #u(#xi) (3.27)

The order parameter is the structure function, defined by

S(#q) =< |ρ̂(#q)|2 > (3.28)

where ρ̂(#q) is the Fourier transform of the density. It is equal to [15]

S(#q) =
∑

i

ei!q· !xi < ei!q·(!u(xi)−!u(0)) > (3.29)

To write down a free energy, we must take the lattice spacing to zero. #u then
becomes a field #u(#x), called the displacement field.
The free energy can only depend on derivatives of this field, since a uniform #u is
equivalent to a uniform translation, which costs no energy. For small deviations,
the deformation energy density depends on the strain tensor

uij =
∂ui

∂xj
+

∂uj

∂xi
. (3.30)

We build up the free energy density out of uij . The potential term will be of
the form

V = uijλijklu
kl (3.31)

The rank four tensor λijkl is called the elastic modulus tensor. It is invariant
under the action of the space group. For every space group we can determine
the number of independent components of λijkl by using its symmetry proper-
ties.

Continuity and Goldstone modes

Of the continuity modes in a simple fluid, only the heat mode is present in
a crystal. Namely, momentum and mass cannot flow since the the atoms are
restricted to oscillate around their equilibrium position. We will have to assume
that heat flow happens slowly, i.e. the time scale of heat flow is long compared to
the time scale of oscillations of the atoms. Thus we consider adiabatic excitations
from the ground state. Under this assumption, we can actually write down a
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kinetic term for the crystal: the kinetic energy of the i-th atom is 1
2mu̇i

2, where
the dot denotes a time derivative.
In the continuum limit mass becomes a mass density ρ. Therefore the internal
energy density U of the crystal is

U =
1

2
ρu̇i

2 + uijλijklu
kl. (3.32)

Minimizing this equation, we obtain

ρüi = λijkl
∂2ul

∂xj∂xk
. (3.33)

To find the dispersion relation of the Goldstone modes, we substitute a plane
wave

#u = #u0e
i(!k·!x−ωt), (3.34)

to obtain
(ρω2δil − λijklk

jkk)ul = 0. (3.35)

For this equation to have solutions, the matrix acting on ul must have zero
determinant:

|ρω2δil − λijklk
jkk| = 0 (3.36)

This equation in ω2 of order d, where d is the dimension of the space. It has d
solutions, which may be complex, and may be degenerate. These solutions are
the dispersion relations of the d Goldstone modes.

We have obtained d Goldstone modes, but note that this does not equal the
number of broken generators! Namely, the group O(d) ! d as d generators
of translations, and 1

2d(d − 1) generators of rotations. We have obtained the
translation Goldstone modes, so what happened to the rotational Goldstone
modes? They don’t appear because we didn’t include rotations in the field
ui(#x). This field only has d components, so obviously it cannot have more than
d independent excitations. If we wanted to include rotational Goldstone modes,
called rotons, we would have to include a field that describes the local rotation
of the crystal.

However, for crystals encountered in nature this is unnecessary, because the
”rotons” turn out to be high-energy excitations. It costs relatively little energy
to stretch the bonds between neighbouring atoms, while bending different parts
of the crystal relative to each other is energetically very costly. Thus the rotons
are massive.

The situation is analogous to the case of smectics. There is a term in the free
energy that resembles a covariant derivative so that we effectively have a Higgs
mechanism that gives mass to the rotons. Although it is analogous to the term
for the smectic, it is more complicated, and involves 6 momenta, corresponding
to 6 reciprocal lattice vectors. We will not discuss it here. It can be found in
[46].

We make an important observation about our massive Goldstone modes: the
rotons have acquired mass because of translational symmetry breaking. It is the
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rigidity of the crystal, associated with the breaking of translational symmetry,
that makes it energetically costly to rotate different parts of the crystal relative
to each other. After finishing the discussion of crystals, we will return to this
point, when we discuss the hexatic phase.

Let us determine the Goldstone modes for a two-dimensional crystal with
hexagonal symmetry. The symmetry is broken to 2 ! 6. Symmetry under 6

implies that λijkl only has two independent components, and the free energy
density becomes

f =
1

2
λ(ui

i)
2 + µuiju

ij (3.37)

where λ and µ are constants. This is a special case, because we would have
obtained the same free energy if we had demanded that λ be invariant under
any rotation! Thus the elastic properties of a two-dimensional hexagonal crystal
are equivalent to those of an isotropic crystal. An isotropic crystal may sound
like a contradiction in terms, but it is perfectly possible that in the continuum
limit the crystal has a free energy density of the form above.

Using (3.33), we obtain the equations that minimize the internal energy
density:

ρüi = −λ∇i∇ju
j − µ(∇2ui +∇i∇ju

j) (3.38)

To obtain the dispersion relations, we look for a plane wave solution #u(#x) =

#uei(!k·!x−wt). The resulting equations simplify if we write #u = #u// + #u⊥, with

#u// parallel to #k (∇× #u// = 0), and u⊥ perpendicular to #k (∇ · #u⊥ = 0). The
dispersion relations become

#u// : ω =

√

µ

ρ
k (3.39)

#u⊥ : ω =

√

λ + 2µ

ρ
k (3.40)

Thus we arrive at one longitudinal mode called the compression mode, with
velocity c// =

√

(λ + 2µ)/ρ; and one transversal Goldstone mode, with velocity

c⊥ =
√

µ/ρ. Note that the longitudinal mode is faster.

Topological defects

The homotopy groups are:

Π1(G/H) = H (3.41)

Π2(G/H) = 0 (3.42)

In three dimensions, there are no monopoles because the space group H is
discrete. The line defects are characterized by elements of the covering group
of H .
Once again, we consider a two-dimensional hexagonal crystal. To determine
H we need the covering group of 2 ! SO(2). The translational part 2 is
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already simply connected. The covering group of SO(2) is . An element θ of
corresponds to a rotation over an angle θ. In the covering group, however,

a rotation over 2π is not equivalent to the identity, like it is in SO(2). The
covering of Z6 is

6 = × 6 - (3.43)

Therefore 2 ! 6 = 2 ! , and

Π1(G/H) = 2
! . (3.44)

Therefore a defect is an element of 2 ! . We denote it by (n, m)rp, with
n, m, p ∈ . r is a 2π

6 rotation, (1,0) a translation by one lattice vector in
the x-direction, and (0,1) a translation by one lattice vector in the y-direction.
A defect of the form (n, m) (i.e. with p = 0) is a dislocation. An rp defect
(n = m = 0) is a disclination. Now, we said that the rotational Goldstone
modes were massive, because it cost a lot of energy to rotate different parts
of the crystal relative to each other. For the same reason, disclinations are
massive, and at low temperatures we only have dislocations.
For a three-dimensional crystal, the analysis is very similar. For example, in a
crystal made up of layers of hexagonal crystal, G = 3 ! SO(3) is broken to
H = 3 ! Z6, so the defects have an extra label, which represents translational
defects in the direction perpendicular to the layers:

Π1(G/H) = 3
! (3.45)

For a dislocation characterized by (n, m, k), the vector (n, m, k) is the Burgers
vector of the defect. Just like in the smectic case, a general dislocation has both
screw and edge character, and the Burgers vector is given by the integral of the
field #u(#x) along a loop L encircling the core.
The fusion rules of line defects have some interesting features, which are crucial
for the story to come. We illustrate these features for the hexagonal crystal. To
determine the fusion rules, we need the conjugacy classes of the defects. This
requires knowledge of the multiplication in 2 ! 6, which is set by

r(a, b)r−1 = (−b, a + b). (3.46)

Thus we can classify all the conjugacy classes, see Table 3.2. Now we can prove
that two disclinations can fuse to form any dislocation in this crystal. Namely,
the fusion rules are given by multiplying entire conjugacy classes. If we fuse
r and r−1, we can get any dislocation (m, n) because (m, n)r is an element of
Cr. Thus, from a topological point of view a dislocation can decay into two
disclinations.

Fluctuations and orientational order

The structure function S(#q) =
∑

i ei!q· !xi < ei!q·(!u(xi)−!u(0)) > is our order pa-
rameter. Exactly analogous to the discussion of the XY model of the previous
chapter, fluctuations in ui affects the order of the phase:
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Representative element Conjugacy class
r6k, k ∈ Cr6k = {r6k}
(a, b)r6k C(a,b)r6k = {(a, b)r6k, (−b, a + b)r6k, (−a− b, a)r6k,

k ∈ , a, b ≥ 0 (−a,−b)r6k, (b,−a− b)r6k, (a + b,−a)r6k}
r1+6k, k ∈ Cr1+6k = {(m, n)r1+6k : (m, n) ∈ 2}
r−1+6k, k ∈ Cr−1+6k = {(m, n)r−1+6k : (m, n) ∈ 2}
r2+6k, k ∈ Cr2+6k = {(m, n)r2+6k : m− n ∈ 3 }

(1, 0)r2+6k, k ∈ C(1,0)r2+6k = {(m, n)r2+6k : m− n /∈ 3 }
r3+6k, k ∈ Cr3+6k = {(m, n)r3+6k : (m, n) ∈ 2 × 2 }
r3+6k, k ∈ C(1,0)r3+6k = {(m, n)r3+6k : (m, n) /∈ 2 × 2 }
r4+6k, k ∈ Cr4+6k = {(m, n)r4+6k : m− n ∈ 3 }

(1, 0)r4+6k, k ∈ C(1,0)r4+6k = {(m, n)r4+6k : m− n /∈ 3 }

Table 3.2: The defect classes in 2 ! 6.

• If d > 2 the correlation of the fluctuations is finite, thus LRO survives.

• If d = 2 we have QLRO.

• If d < 2 we have SRO

The reason we get the same behaviour is that when considering fluctuations,
we only need consider the derivative terms in the free energy. These terms,
when Fourier transformed, are of the form u∗

i (#k)uj(#k)f̃ ij(kx, ky, kx), where f̃ is
a quadratic function of the ki. Just like in the XY model calculation,

< ui(#x)uj(#0) >∼
∫

ddkf̃−1
ij (kx, ky, kx) (3.47)

which exhibits the behaviour discussed above.
Thus a two-dimensional crystal cannot have infinite extent. However, since the
divergence is only logarithmic, for a finite system we can speak of order.
A more advanced treatment [47] has led to the following: one can define two
correlation functions. The first one is called the translation correlation function
ΓT , which is the one we defined. The second one is the rotational correlation
function. to define it, we first define an angle θ according to

θ(#x) =
1

2
(
∂uy(#x)

∂x
−

∂ux(#x)

∂y
). (3.48)

In this equation we encounter the xy component of the rotational field

ωij =
∂uj(#x)

∂xi
−

∂ui(#x)

∂yj
. (3.49)

By considering infinitesimal rotations, one can prove that it does indeed describe
the local rotation of the crystal4. Using θ we define a new order parameter field

Ψ(#x) = e6iθ(!x) (3.50)

4In the Einstein-Cartan formulation of crystals, ω is the spin connection.
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In the ordered phase < Ψ >= 1, meaning that the phase has hexagonal symme-
try. It can be proven that Ψ does exhibit long range order in the crystal phase.
In the hexatic phase, which we discuss in the next section, it exhibits QLRO.
The heuristic derivation of this is that θ contains only first-order derivative,
which gives only one power of k in the denominator of the correlation function
of θ. Thus the correlation function converges, because

∫

d2k 1
k converges for

small k.

3.3.2 The hexatic phase

The phase is two dimensional. It is translationally invariant, but the rotational
group is broken to C6. Such a phase looks strange at first sight, because it
seems that to break rotational symmetry we need to put the atoms on a lattice,
thereby also breaking translational symmetry. But such a hexatic phase occurs
in nature!

Not that it is impossible to break translational symmetry without breaking
rotational symmetry. This can be proved by studying the representation theory5

of 2 ! SO(2).
An order parameter field is provided by φ = ei6θ, where θ measures the angle

the bonds between neighbouring molecules makes with the x-axis. In the high-
temperature isotropic phase, < ei6θ >= 0. In the ordered phase, < ei6θ > '= 0
because the angle of the bonds is on average a multiple of 2π

6 .
The hexatic phase can arise via spontaneous symmetry breaking from the

isotropic phase, but it can also be the outcome of the melting of a two-dimensional
hexagonal crystal. This is what happens in nature: as we increase the temper-
ature of the crystal, at some point the translational symmetry is restored, but
locally the molecules are still arranged hexagonally. Of course, locally there is
some translational symmetry, but the correlations of translations decay expo-
nentially.
Remember that in the crystal there were two massless translational Goldstone
modes, and there were dislocations. The disclinations and roton were massive.
As the translational symmetry is restored, the hexatic phase is reached. The
translational Goldstone modes and dislocations disappear. At the same time,
roton becomes massless, and disclinations are the defects of this phase. We say
that the roton and disclinations are liberated.
The traditional phase diagram of a two-dimensional crystal contains a line sep-
arating the crystal phase and the liquid phase. The phase transition is first
order. However, for the hexagonal crystal the transition to the liquid phase
can occur via two second-order phase transitions: first a phase transition to
the translationally invariant phase with broken rotational symmetry, and then
a transition to the liquid.
The mechanism behind the phase transition from crystal to hexatic is quite re-

5If an irrep is trivial when restricted to 2, when restricted to SO(2) it can be any irrep
of SO(2). If, on the other hand, it is trivial on SO(2), then the irrep must act the same on
all vectors of the same length, since we can turn any two unit vectors into each other with a
transformation of SO(2). This leads to the conclusion that the irrep is trivial on 2.
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markable: it is a dislocation condensation. As we’ve seen, defects in a phase
with global symmetry breaking cost an infinite amount of energy. However,
defect-antidefect pairs cost a finite amount energy, and at finite temperatures
they have a finite density, and an average separation between the defects in a
pair, which we call a. At the phase transition, a diverges, so that the single
defects fill the ground state. This restores translational symmetry. In the last
chapter of this work we will discuss why it restores symmetries. For now we
note what happens next: the ground state is now filled with single dislocations.
We’ve seen that these dislocations can decay into a disclination-antidisclination
pair. They also have an average separation, b. At the second phase transition,
the disclinations blow out, thus restoring rotational symmetry.

The hexatic phase has been experimentally verified in numerous three dimen-
sional phases, such as smectics, dense solutions of DNA, flux arrays of High-Tc
superconductors, superfluids[44], etc. All these phases have some kind of lay-
ered order. The hexatic smectic is also called the smectic B phase. The bond-
orientational order is within the layers of the smectic. For references on hexatic
phases, see [46].

3.3.3 Kosterlitz Thouless phase transition

We will now discuss another example of defect-mediated phase transition, which
occurs in the XY model discussed in the previous chapter. It is called the
Kosterlitz Thouless phase transition.

In chapter 2, we saw that the XY model is the effective free energy at low
temperatures of (2.51), where φ acquires a nonzero ground state expectation
value: < φ >= v. We also proved that fluctuations of θ diverge logarithmically,
which leads to QLRO, i.e. algebraic decay of < φ(#x)φ(#0) >. Our analysis of the
XY model was actually incomplete, because we didn’t take fluctuations of the
vortices into account. According to (2.56), the energy of a single vortex in the
XY model is logarithmically divergent with the system size, thus it is infinite
in a system of infinite extent. If we have multiple vortices in the system with
charges ni, then according to (2.57) the configuration only has finite energy if
the net vorticity is zero, i.e. if

∑

i ni = 0. Thus, if we consider the system at
finite temperatures, the only configurations of vortices that will be thermally
activated are configurations of zero net vorticity. Since the vortices of high
charge are energetically disfavored, we will only take vortices of charge ±1 into
account.

When we wrote down the free energy expression (2.56) for a single vortex,
we neglected the entropy of the configuration. The complete expression for the
free energy is given by F = E − TS, where E is the energy of the single vortex
configuration, T is the temperature, and S the entropy. We include the energy
EC of the core of the defect in E, which we neglected in (2.56). Thus E is given
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by

E = πρsln(
R

a
) + EC . (3.51)

For a two dimensional system of linear dimension R, the number of possible
positions for a vortex whose core has linear dimension a is (R/a)2 (we notice
this by dividing the space up into squares of linear dimension a). Thus the
entropy is 2ln(R/a), and the free energy for a single vortex of charge ±1 is

F = (πρs − 2T )ln(
R

a
) + EC . (3.52)

Thus this simple analysis, originally due to Kosterlitz and Thouless [35],
predicts a phase transition at the temperature Tc = πρ/2. If T < Tc the free
energy of a single vortex is positive, thus the free energy is minimized when
there are no vortices. If T > Tc the presence of vortices reduces the free energy.

A more detailed analysis involves a Renormalization group calculation [34].
The idea of the calculation is to calculate the contribution to the partition
function of closely bound vortices. The vortices cannot be closer to each other
than the the size a of their cores, so one calculates the contribution to the
partition function from vortices separated by a distance between a and a + da,
with da small. We neglect the possibility of having three vortices close to each
other: we only consider pairs of vortices. If the vortices in a pair have vorticities
of the same sign, then they repel and the energy of the configuration is high,
thus the contribution of these pairs to the partition function is suppressed. Thus
we only consider vortex-antivortex pairs.

By integrating out the contribution of vortex-antivortex pairs separated by
a distance between a and a + da, we obtain a new theory where the vortices
have a minimum separation of a + da. We then rescale the theory with the
scaling parameter b = 1 + da

a . This rescaled theory is described by an effective
free energy of the same form as the free energy of the original, except that
the parameters in the free energy have changed, due to the contribution of
closebound vortex-antivortex pairs. The free energy of the original is determined
by two parameters. We can take these to be K and y, defined by

K =
ρs

kT
y = e−

EC
kT . (3.53)

As we renormalize the theory, K and y flow, i.e. their values change. The
Renormalization group flow is schematically shown in fig.3.10.

The dashed line corresponds to points at the critical temperature Tc = πρ/2.
Indeed, the simple derivation of TC given above gives the correct expression for
Tc.

If T < Tc, y = e−
EC
kT gets renormalized to zero. This means that EC $→ ∞,

so that the vortices can no longer be excited. Thus the vortices get renormalized
right out of the problem, and the only relevant degrees of freedom are the spin
waves, whose correlation functions decay algebraically.
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Figure 3.10: The renormalization group flow of the Kosterlitz Thouless phase
transition. The dashed line corresponds to points at the critical temperature
Tc = πρ/2. If T < Tc, then y = e−EC/kT gets renormalized to zero, which means
that the vortices get renormalized right out of the problem. The only degrees
of freedom are the spin waves. If T > Tc, y flows to some fixed value, while K
flows to zero. Thus the vortices are the only relevant degrees of freedom. They
are free mobile charges interacting via a Coulomb potential.

If T > Tc, K flows to 0, and y flows to a constant. Thus the spin wave
stiffness goes to zero, so that there are no more spin waves. We are left with
free vortices interacting via a Coulomb potential.

In chapter 5, we will analyze a different approach to symmetry breaking,
using Hopf symmetries. We will show that the Hopf symmetry approach repro-
duces the results of the Kosterlitz-Thouless condensate given here.



Chapter 4

Hopf algebra symmetry

We have discussed the different modes in ordinary and liquid crystals, as well as
their topological defects. We will now call the smooth excitations of the ground
state, such as continuity and Goldstone modes, electric or ordinary modes. As
we have seen, electric modes are the excitations of fields φ that transform under
irreps of the symmetry group that characterizes the phase. We will consider
defects to be excitations as well, and we call them magnetic or topological modes.
In this chapter, we will show that the electric and magnetic modes can be treated
on equal footing, by introducing a Hopf symmetry. This Hopf symmetry can
also describe dyons, which as we saw are combinations of magnetic and electric
modes. The treatment in this chapter is inherently quantum mechanical, namely
we want to find the quantum numbers of our modes. These are labels we can
assign to our modes that are invariant in time. Examples are the spin of an
electron, and the topological charge of a defect.

First we summarize the properties of electric, magnetic, and dyonic modes
in terms of representation theory. Then we discuss the braiding of the different
types of modes. Once we’ve studied the similarities and differences of the prop-
erties of the different modes, we show how these properties can be algebraically
encoded in a Hopf algebra, called a quantum double. We uncover the appropri-
ate quantum double for liquid crystals and crystals discussed in the previous
chapter. Finally, we discuss effect of braiding, i.e. the transport of different
types of modes around each other. We illustrate this with the uniaxial nematic.

4.1 Representation theory of electric, magnetic
and dyonic modes

4.1.1 Electric modes

If the symmetry group of a phase is H , the fields φ in the system transform
under representations of H . The electric modes of φ are the smooth excitations
of φ.

75
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We’ve seen that it is advantageous to decompose φ into irreducible repre-
sentations (irreps). The irreps φa transform into each other under the action of
H , and don’t mix with the other irreps. Thus we write

φ =
⊕

a

φa (4.1)

where φa belongs to the irrep Πa. This implies that we can consider the modes
of the different irreps separately: excitations of one irrep transform into each
other under the action of H . The different vectors the vector space on which
an irrep acts are called the states of the irrep.

Now the symmetry operators commute with the Hamiltonian. Thus if a
state |v > has an eigenvalue λg under a symmetry operator g ∈ H , then this
eigenvalue is preserved in time, since the Hamiltonian generates time evolution
(see chapter 2). We then call λg a quantum number of the state |v >.

The different states of one irrep need not have the same eigenvalue under the
action of g. Still, in general one can define operators, called Casimir operators,
that commute with all the symmetry operators and the Hamiltonian. By Schur’s
lemma, they act as a constant times the identity matrix on an irrep. Thus
Casimir operators have one eigenvalue when they act on all the states of one
irrep, and we can label the irrep with this eigenvalue, which is called a quantum
number of the irrep. In general, one can define a set of independent Casimir
operators such that the set eigenvalues of these operators when acting on an irrep
completely specifies the irrep. Once we have determined a complete set Jk, k =
1, . . . , n of independent Casimir operators , then the irreps are labelled by the
eigenvalues (λ1,λ2, . . . ,λn) under the action of Jk. Two irreps are equivalent
if and only if they have the same eigenvalues under the Casimir operators. A
prime example of a Casimir operator is the operator J2 that measures the total
spin (internal plus angular) and squares it.

An electric mode is a state of an irrep of the symmetry group. We write it as
|ξj >, where the ξj are all the numbers we need to characterize the state: This
includes spatial coordinates and quantum numbers. The spatial coordinates are
actually also quantum numbers.

Now imagine two modes are present in our system. Their states are |ξj
1 >

and |ξj
2 >. The state of the combined system is1 |ξj

1 , ξ
j
2 >= |ξj

1 > ⊗|ξj
2 >, the

tensor product of both states. In general this tensor product is reducible:

|ξi
1 > ⊗|ξj

2 >=
⊕

a

|ξk
a >, (4.2)

where |ξk
2 > belongs to the irrep Πa. (4.2) called the fusion rule of |ξi

1 > and
|ξj

2 >. It implies that as particles 1 and 2 in states |ξi
1 > and |ξj

2 > are brought

1Note that if the particles are indistinguishable, i.e. their quantum numbers are equal, then
we have to be careful, because the state of the combined system must satisfy the spin-statistics
theorem: if the particles are anyons, then we must require that under the adiabatic transport
of the coordinates of Ψ1 around the coordinates of Ψ2 the state of the combined system is
acted on by the braid operator R. If the action of this adiabatic transport is nontrivial, then
the wavefunction corresponding to the state is multiply valued.
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close together, if we measure the quantum numbers of the combined system we
can get different outcomes, given by the |ξk

a > in the decomposition (4.2).
The states live in a vector space. The global symmetry transformations are

linear operators on this vector space. Consider one of the irreps α. Denote a
basis of this vector space by |eαj >, where j labels the different basis vectors of
the vector space. Then g ∈ H acts as follows:

α(g) · |eαj >= α(g)k
j · |eαk >, (4.3)

thus α(g) is matrix acting on the vector space.
We have to specify certain properties of our irreps. Firstly, we demand

that our irreps are unitary, because the state should stay normalized under
the action of G. Secondly, if H is not simply connected, then the states can
transform under projective representations of H . This means that the action of
H on the states is not a group homomorphism: the action of g2 first and then
g1 is not equal to the action of g1g2. However, the actions only differ a phase
factor:

α(g1)α(g2)Ψ = eϕ(g1,g2)α(g1g2)Ψ (4.4)

This is allowed because the phase factor disappears when we calculate probabil-
ities |Ψ|2. For example, electrons transform under a projective representation of
SO(3). To be explicit, a rotation of 2π around any axis n̂ is trivial in SO(3), but
it acts nontrivially on an electron: α(R(n̂, 2π))Ψ = −Ψ. This is the definition
of a fermion: a particle that picks up a minus sign under 2π rotation. A boson,
on the other hand, picks up no minus sign.

Mathematicians have exhaustively studied projective representations, and
they have proven that projective representations of H correspond to representa-
tions of the universal covering group H . For example, a spin 1

2 particle trans-
forms under the doublet, which is the two dimensional faithful representation
of SU(2), but corresponds to a projective representation of SO(3).

In three dimensions, the spin is either integer or half integer. This follows
from the fact that SU(2) covers SO(3) twice. Now if we are in two spatial
dimensions, the spin analysis changes drastically, because the rotation group is
the abelian group SO(2). The universal covering group of SO(2) is , which
covers SO(2) an infinite number of times. Representations of SO(2) are labelled
by an integer, while representations of are labelled by any real number r. The
action of the irrep ρr, with r ∈ on x ∈ is:

ρr(x) = eirx (4.5)

If r is integer, then ρr(2π) = 1, thus the irrep is bosonic. If r is half-integer,
ρr(2π) = −1, and the irrep is fermionic. For general r, ρr(2π) = ei2πr. It
is called an anyon. Note that this wasn’t possible in the SO(3) case precisely
because SU(2) is only a double cover of SO(3). covers SO(2) an infinite
number of times, which is why the fields can have any charge θ ∈ .
Summarizing, when we discuss electric modes in a phase with H symmetry, we
will look at representations α of H .
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4.1.2 Magnetic modes

Our discussion in the previous chapter on line defects was very similar to the
discussion of electric modes just given. Namely, we saw that the line defects
are arranged in classes, and that global symmetry transformations transform
defects in the same class into each other. Furthermore, the fusion rules are
given by ’multiplying’ the classes with each other. Therefore we can consider
the defects in the same conjugacy class as being part of a multiplet.

Let us assume that H is discrete. We denote the defect g by a ket |g >. In
analogy with the theory of electric modes, we put the defects in a vector space
spanned by the |g > with g ∈ H: V = {

∑

j λj |gj >: λj ∈ , gj ∈ H}2.
In our quantum treatment we can add defects. There is no obvious classical

interpretation of |g1 > +|g2 >, for example. It corresponds to a superposition
of the defects g1 and g2.

We’ve seen that global symmetry transformations conjugate the defect. The
action of a global symmetry transformation g ∈ H on the defect |g1 > is

g · |g1 >= |gg1g
−1 > (4.6)

Thus the global symmetry transformations are linear operators on this vector,
just as in the electric case.
The representations are labelled by conjugacy classes A: Namely, global sym-
metry transformations transform defects in the same conjugacy class into each
other. We denote the representation corresponding to the conjugacy class A by
ΠA.
The representation ΠA can be reducible3! However, there are other operators in
our theory that make the representation irreducible. Namely, we can measure
the precise flux of a defect, using Aharonov-Bohm scattering experiments [24].
Thus we have projection operators Ph in our theory, that act on the defects
according to

Ph|g >= δh,g|g > . (4.7)

The projection operators span a vector space F (H), which is isomorphic to the
vector space of functions from H to . Namely Ph can be associated with the
function on H defined by Ph(g) = δh,g.
The conjugacy classes form irreps under the combined action of H and F (H).
Note that we’ve described the action of F (H) and H separately, and we need to
know what happens when a projection operator and a global symmetry trans-
formation are applied in succession. Thus we want to turn the combination of
H and F (H) into an algebra, i.e. we want to be able to multiply elements of
H and F (H). Physics dictates what the answer is: the multiplication is this
algebra set by

gPh = Pghg−1g. (4.8)

2Note that we could have taken λi ∈ , but in the next chapter when we treat our theory
quantum mechanically, the vector space will be , so we may as well use this now.

3In fact, if H is non-Abelian, then the representation for a conjugacy with more than one
element is always reducible: take the sum over the defects in A:

P

g∈A |g >. H acts trivially
on the one dimensional subspace spanned by this vector, thus the representation is reducible.



4.1. REPRESENTATION THEORY OF ELECTRIC, MAGNETIC AND DYONIC MODES79

The reason for this equation is: if we measure a flux h with Ph, and then
conjugate the defect with g, we have a flux ghg−1. This action is equivalent to
first conjugating the defect with g, and then measuring ghg−1 with Pghg−1.
The algebra defined by this multiplication is called the quantum double of H ,
and is denoted by D(H). As a vector space, D(H) = F (H) ⊗ H , i.e. all
elements are a sum of elements of the form Phg. The multiplication is set by
the action defined above. thus we can say that the defects transform under
irreps of D(H).
The tensor product |g1 > ⊗|g2 > of two defects is to be interpreted as ”a
configuration with defect g1 to the left of defect g2”. The order is important:
if we measure the total flux of |g1 > |g2 > we get g1g2, while the total flux of
|g2 > |g1 > is g2g1. Thus we define the action of the projection operators on
the tensor product as follows:

Ph(|g1 > ⊗|g2 >) = δh,g1g2(|g1 > ⊗|g2 >). (4.9)

4.1.3 Dyonic modes

For every conjugacy class A we pick a preferred element gA. then all defects
can be written as ggAg−1 for some A and some g ∈ H . Call NA the centralizer
of gA. The centralizers of elements in the same conjugacy class are isomorphic:
NggAg−1 = gNAg−1.
A dyonic mode is an electric mode with a defect gA in the background. We
saw that we can only globally implement NA, thus the electric mode transforms
under an irrep α of NA.
We also use the ket notation for dyons. The configuration with electric mode
|eαj > and defect h ∈ A in the background is denoted by |h, eαj >. The |eαj >
form a basis of the vector space on which α acts, so that the |h, eαj > are a basis
of the vector space associated to the dyon. We denote the irrep of our dyon by
ΠA
α .

The action of global symmetry transformations on this vector space is subtle.
If we take a transformation n ∈ NA, then

n · |h, eαj >≡ ΠA
α (n)|h, eαj >= |h,α(n)eαj >, (4.10)

i.e. it acts on the electric mode.
Now if the transformation g /∈ NA, it conjugates the defect, and it can also act
on the electric mode! To describe this action, it is convenient to define another
notation for the vectors in ΠA

α .
First note that the elements of the conjugacy class A are in one-to-one correspon-
dence with left NA-cosets in H . Choose representatives xA

i of left NA cosets,
such that xA

1 = e. Then xA
i corresponds to hA

i = (xA
i )gA(xA

i )−1, where hA
i is an

element of A. THis association is well defined because it is independent of the
particular choice of representative xA

i of the left NA coset, since by definition
the elements of NA commute with gA. Furthermore, different xA

i correspond to
different elements hA

i of A, and we have A = {hA
1 = gA, hA

2 , hA
3 , . . . , hA

n } . Now
a basis of the vector space on which ΠA

α acts is given by {|hA
i , eαj >}.
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Alternately, we can denote |hA
i , eαj > by xA

i ⊗ |eαj >. This last notation allows us

to calculate the action of g ∈ H on this dyon. In this new notation, conjugating
the defect hA

i by a transformation g corresponds to multiplying xA
i by g from

the left. Thus

g · |hA
i , eαj >≡ g ·xA

i ⊗ |eαj >= gxA
i ⊗ |eαj >= xA

k n⊗ |eαj >≡ |hA
k ,α(n)eαj > (4.11)

where gxA
i = xA

k n, with n ∈ NA. In other words, gxA
i sits in some left NA

coset. Since the xA
k form representatives of left NA cosets, gxA

i is equal to xA
k n

for some k and some n ∈ NA. This n then acts on the electric part of the dyon.
This notation is the most transparent notation we can adopt for the action of g
on the dyon. In sloppy language, we say that g conjugates the defect, and the
part of g that ”shoots through” the defect, i.e. n, acts on the electric mode.
The action of the projection operators Ph on the dyon is

Ph · |hA
i , eαj >= δh,hA

i
|hA

i , eαj >, (4.12)

thus it projects the defect part.
Summarizing, the ΠA

α are irreps of D(H). It turns out that these are all the
irreps of D(H) (see Appendix B). We denote the vectors on which ΠA

α acts by
V A
α .

Note that the electric and magnetic modes discussed are also irreps of D(H)!
Namely, electric modes are irreps ΠCe

α , with Ce the conjugacy class of the iden-
tity e. Ce = {e}, and corresponds to having no defect. Thus electric modes
are dyons with the conjugacy class of the identity element. Magnetic modes are
irreps ΠA

id, dyons with a trivial representation of NA. Thus the quantum double
offers a unified description of electric, magnetic and dyonic modes.
We haven’t exactly proved that all the properties of the modes are captured by
D(H). For example, we would like D(H) to reproduce the fusion rules of the
modes. This can be done, by introducing a coproduct. The coproduct ∆ defines
the product of the irreps. It does so in the following way: ∆ is a map from
D(H) to D(H) ⊗ D(H), that respects the multiplication (i.e. it’s an algebra
morphism):

∆(PhgPh′g′) = ∆(Phg)∆(Ph′g′) (4.13)

Given an element Phg, the coproduct can be written out in a basis of D(H) ⊗
D(H):

∆(Phg) =
∑

h1,g1,h2,g2∈H

λh1,g1,h2,g2Ph1g1 ⊗ Ph2g2.

This is rather cumbersome notation. Instead, we adopt Sweedler’s notation.
For any a ∈ D(H) we write

∆(a) =
∑

(a)

a(1) ⊗ a(2). (4.14)

This means we can write ∆(a) as a sum of elements of the form a(1)⊗a(2), with
a(1) and a(2) ∈ D(H).
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Now if we have two irreps ΠA
α and ΠB

β , their tensor product is a representation

of D(H) whose action on a is given by

(ΠA
α ⊗ΠB

β )a ≡ (ΠA
α ⊗ΠB

β )∆(a) =
∑

(a)

ΠA
α (a(1))⊗ΠB

β (a(2)). (4.15)

Now the idea is to choose the coproduct so that it produces the right fusion
rules. The answer turns out to be (see Appendix B)

∆(Phg) =
∑

h′∈H

Phh′−1g ⊗ Ph′g. (4.16)

D(H) is also a Hopf algebra. This means there is more structure on D(H) than
we have defined until now. We discuss this in Appendix B. Here we will only
introduce the structures that are relevant for this chapter and the next.
A Hopf algebra has a counit ε, which corresponds to the vacuum representation.
For D(H), ε is defined by

ε(Phg) = δh,e (4.17)

ε is a one-dimensional representation of the D(H), whose tensor product with
any irrep ΠA

α gives ΠA
α :

ΠA
α ⊗ ε = ε⊗ΠA

α = ΠA
α . (4.18)

We prove this in Appendix B.
We introduce one more structure: the antipode S, defined for D(H) by

S(Phg) = Pg−1h−1gg
−1. (4.19)

It is used to define the antiparticle representation ΠA
α of ΠA

α :

ΠA
α (Phg) = ΠA

α
t
S(a), (4.20)

where t denote the transpose. The properties of the antipode imply that this
ΠA
α is a representation, and that the vacuum representation ε appears in the

decomposition of ΠA
α ⊗ΠA

α :

ΠA
α ⊗ΠA

α = ε⊕
⊕

B,β

ΠB
β . (4.21)

This explains our denomination of antiparticle irrep: an irrep and its anti-irreps
can decay into the vacuum representation ε. This discussion applies to general
Hopf algebras.
Finally we introduce a different notation for the elements of D(H), which we
used frequently in the next chapter. We want to write elements of F (H)⊗ H
as functions from F (H×H) to . To do this, we associate to h ∈ H the function
δh ∈ F (H), defined by δh(g1) = δh,g1∀g1 ∈ H . Then the element Phg of D(H)
corresponds to the function δh ⊗ δg defined as follows: for all g1, g2 ∈ H

δh ⊗ δg(g1, g2) = δh,g1δg, g2. (4.22)

We can rewrite all the structures on D(H), such as multiplication and coproduct,
in this function notation. This is done in Appendix B.
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4.2 Hopf symmetry of liquid crystals and crys-
tals

The Hopf symmetry of the crystals and liquid crystals with residual symmetry
group H is a quantum double D(H), or a slight variation of it.

4.2.1 Liquid crystals

We take a nematic liquid crystal with discrete symmetry group H (H ∈ SO(3)).
The Goldstone modes, defects and dyons are irreps of D(H).
Classifying all the irreps of D(H) gives us the possible particle spectrum of any
phase with D(H) symmetry4.
The steps towards classifying all the irreps of D(H) are

• Determine the conjugacy classes A of H

• Pick a preferred element gA for every A, and determine the centralizer NA

of gA

• Determine the irreps α of NA

• The irreps of D(H) are ΠA
α .

As an example, let us carry out this analysis for a tetrahedral nematic with
H = T . We saw that elements of T are permutations of the four vertices of the
tetrahedron (see fig. 4.1). We also need a notation for the elements of T . It
is similar to the notation for T : The defects can be noted as a permutation
and a plus of minus sign in front of it. For example, ±[(12)(34)],±[123] are
defects (we use square brackets for the defects). We describe the meaning of
this notation in Appendix B. The minus sign is itself a defect: −e is the defect
corresponding to a 2π rotation. The conjugacy classes are given in table 4.1,
and the centralizers and irreps in table 4.3.

We now return to a point alluded to in the previous chapter: what is the
relevance of ”large” global symmetry transformations, i.e. transformations that
are not connected to the identity? In other words, how does the representation
theory change if H = Td? Note that the Hopf symmetry of such a phase isn’t
simply the quantum double D(Td). Namely, there are no defects associated to
the reflections, because it is not connected to e, and defects are characterized
by drawing loops from e.

4Note we haven’t mentioned the continuity modes. The reason is that they transform
under irreps of the external symmetry group, and we are neglecting that part of the symmetry
group. All our modes transform under a representation of the external symmetry group. Take

for example a momentum mode $v0ei#k·#x−iωt. Its transformation properties under external
symmetries follow from the fact it is a vector under the action of the external rotation group.
Under an external rotation Rext, $v0 and $k are rotated by Rext. Under translations T , $k is
translated by T$k. When we expand modes into plane waves, all plane waves have the same
transformation properties under the external symmetry group. Thus, in the rest of our story
we neglect the external symmetry group, and the continuity modes.
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Figure 4.1: The tetrahedron, with labelled vertices.

Preferred element gA Conjugacy class A
e Ce = {e}
−e C−e = {−e}

[123] C[123] = {[123], [134], [142], [243]}
−[123] C−[123] = {−[123],−[134],−[142],−[243]}
[124] C[124] = {[124], [132], [234], [143]}
−[124] C−[124] = {−[124],−[132],−[234],−[143]}

[(12)(34)] C[(12)(34)] = {[(12)(34)], [(13)(24)], [(14)(23)],
-[(12)(34)],-[(13)(24)],-[(14)(23)]}

Table 4.1: The conjugacy classes of T , and the preferred elements gA.

To resolve this issue, let us first discuss how these large global symmetry trans-
formations act on the defects. They act just like any other group elements,
namely they conjugate the loop that characterizes the defect. Under the action
of these reflections on a defect g we may get a defect outside the conjugacy class
of g! Thus the defect classes under the action of Td are in general larger than the
conjugacy classes. We show the defect classes for the tetrahedral nematic case in
Table 4.2. This result requires a careful interpretation. The defects in the same

Classes of T under the action of Td

Ce

C−e

C[123] ∪ C[124]

C−[123] ∪ C−[124]

C[(12)(34)]

Table 4.2: The defect classes in a theory with Td symmetry. The classes are
unions of conjugacy of T . The conjugacy classes of T are defined in table 4.1.

class have the same energy, since the symmetry transformations commute with
the Hamiltonian. They also have isomorphic centralizers. However, the cores of
defects only related by a large symmetry cannot be interchanged. This is due to
the fact that the symmetry isn’t connected to the identity. Thus these defects
are not topologically equivalent: they cannot be deformed into each other with
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a finite amount of energy. So we might conclude that we shouldn’t act with
large symmetries on the defects, and we should work with conjugacy classes.
However, we cannot simply neglect the large global symmetries, since they act
on the electric modes.

This phase with Td symmetry has defects labelled by T , and the electric
modes transform under representations of Td, the double cover of Td in O(3). We
call the defect group the magnetic group, and the group under which the electric
modes transform the electric group. So this Td phase has different electric and
magnetic groups. We ask the more general question: How do we deal with
a phase with electric group Hel, and magnetic group Hm, with Hel and Hm

unequal?
We found that it is possible to define a Hopf symmetry that captures the

physics of such phases, given some restrictions on Hm and Hel. In all the
physical systems we’ve discussed these restrictions are met.

We call the Hopf symmetry of such a phase a generalized quantum double.
As a vector space, it is F (Hm) ⊗ Hel. This generalized quantum double is a
transformation group algebra (see Appendix B). To define the multiplication
in this algebra, we need an action of the electric group Hel on the magnetic
group Hm. For the normal quantum double, this action is simply conjugation.
In the Td case, for example, we’ve had to calculate the action of reflections on
the magnetic group separately. The transformations connected to the identity
act as a conjugation. The generalized quantum double of the achiral tetrahedral
nematic, for example, is F (T )⊗ Td. Note that we are not considering projective
representation of the electric group Td, i.e. we are only considering bosonic irreps
of the electric group. If we want to include fermionic irreps, the appropriate
generalized quantum double is F (T )⊗ T d.

gO Centralizer NO Irreps

±e T Πe
α

±[123] {e, (123), (132)} - 3 Π±[123]
k , k ∈ 3

±[124] {e, (124), (142)} - 3 Π±[124]
k , k ∈ 3

[(12)(34)] {e, (12)(34), (13)(24), (14)(23)} - 4 Π±[123]
k , k ∈ 4

Table 4.3: The irreps of F (T )⊗ Td. The α are irreps of Td.

Denote the action of h ∈ Hel on g ∈ Hm as h · g. Then the multiplication in
the generalized quantum double is set by

hPg = Ph·gh. (4.23)

The Hopf symmetry F (Hm)⊗ Hel of our phase is well defined, and since it is a
transformation group algebra we can use the theorem in Appendix B to deter-
mine its irreps. The calculation is similar to the quantum double case. Given
an element gO ∈ Hm, define the normalizer NO of gO to be the subgroup of
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Hel whose elements h ∈ NO satisfy h · gO = gO. Then the steps for determining
the irreps of F (Hm)⊗ Hel are:

• Determine the orbits O of Hm under the action of Hel

• Pick a preferred element gO for every O, and determine the normalizer
NO of gO

• Determine the irreps α of NO

• The irreps of F (Hm)⊗ Hel are ΠO
α .

4.2.2 The hexagonal crystal

We reconsider the planar hexagonal crystal discussed in the previous chapter.
We argued there that the symmetry was 2 ! 6. If the crystal is achiral, the
symmetry group is actually 2 ! D6. We’ve just discussed how to deal with
such a phase, so we consider an achiral hexagonal crystal. The defect classes
are larger than the conjugacy classes, but as we have argued above we still con-
sider conjugacy classes.

The first Brillouin zone (rescaled) is shown in Fig.4.3, which is a hexagon.

Figure 4.2: A triangular lattice, representing a crystal with hexagonal symmetry.
The dashed vectors are vectors in the reciprocal lattice, and the shaded hexagon
represents the first Brillouin zone.

Points in the Brillouin zone correspond to irreps of the translation group.
Namely, a point in the Brillouin is a momentum vector #k = (kx, ky), and the
associated irrep of 2 is:

(n, m) $→ eikxn+kym. (4.24)

The whole of k-space is the whole plane, and is tiled by hexagons (note that
position space is tiled by triangles). Equivalent points of k-space (corresponding
to equivalent irreps of the translation group) are obtained by translations that
leave the tiling invariant.

In the previous chapter, we saw that the magnetic group of a hexagonal
crystal with large symmetry transformations is 2 ! . Now we are considering
a hexagonal crystal with large symmetry transformations (reflections), and the
magnetic group is the same: Hm = 2 ! . This follows from the observation,
made earlier, that large symmetry transformations do not affect the magnetic
group.
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 1
 2
 3  4  5

 6
 7

x

y

(1,0)

(0,1)(-1,1)

(-1,0)

(0,-1) (1,-1)

Figure 4.3: The first Brillouin zone of the planar hexagonal crystal. The gray
area is a set of representatives of orbits under rotations and reflections. The
numbered squares are representatives of the different types of orbits. The x- and
y-axes have been rescaled. The unit distance on these rescaled axes corresponds
to a distance of π

a , where a is the lattice spacing in the crystal.

The electric group is Hel = 2 ! D6 = ( 2 ! D6)× . The last part cor-
responds to rotations of 2πn, n ∈ , which we denote by r6n. These rotations are
in the center of the group5. Thus the Hopf symmetry is6 F ( 2 ! )⊗ ( 2 ! D6)× .

In the previous chapter we denoted an element of ( 2 ! 6)× as (k, l)rp,
with k, l, p ∈ . We adopt a similar notation here. For ( 2 ! D6)× we write
an element as (k, l)sjrk+6n, with k, l, n ∈ , j ∈ 2, n ∈ . The reflection in
D6 is denoted by s. We take s to be the reflection with respect to the x-axis.
To analyze the particles of our theory, we proceed just as in the case of the
tetrahedral nematic. We need the orbits O of (( 2 ! 6)× ) under the action
of ( 2 ! D6)× , the centralizer N of a chosen preferred element of each orbit,
and the irreps of the centralizer. See table 4.5. The action of ( 2 ! D6)× on

2 ! 6 is set by:

r(a, b)r−1 = (−b, a + b),

s(a, b)s−1 = (a + b,−b).

srs−1 = r−1

There is one class of orbits, Or6k , for which determining the irreps of the
centralizer ( 2 ! D6) × is a little complicated. We can determine the irreps

5The center of a group is the subgroup of elements that commutes with all other elements.
6There is a subtlety due to the infinity of the groups. Drawing on the analogy with

generalized quantum doubles with finite groups, as a vector space this Hopf algebra is
F ((( 2 " 6) × ) × ( 2 " D6)). However, to make the representation theory tractable we
only take functions with compact support in the second variable. One can check that this is
an algebra (i.e. the finite sum and product of such elements also has compact support in the
second variable). We don’t take compact support in the first variable because of our analysis
of defect condensates, to come. If we condense the dislocation |(1, 0) >, for example, then
we need functions that are constant on left (1, 0) cosets, and these left cosets have an infinite
number of elements. The reader is referred to the next chapter for details.



4.3. BRAIDING 87

Orbits
Or6k = Cr6k

O(a,b)r6k = {C(a,b)r6k , C(a+b,−b)r6k}
Or1+6k = {Cr1+6k , Cr−1−6k}
Or2+6k = {Cr2+6k , Cr−2−6k}

O(1,0)r2+6k = {C(1,0)r2+6k , C(1,0)r−2−6k}
Or3+6k = {Cr3+6k , Cr−3−6k}

O(1,0)r3+6k = {C(1,0)r3+6k , C(1,0)r−3−6k}

Table 4.4: The orbits of 2× under the action of ( 2!D6)× . The conjugacy
classes are defined in table 3.2.

of 2 ! D6 and those of separately, because the irreps of a direct product of
groups is the tensor product if the irreps of the separate groups. Determining
the irreps of 2 ! D6 requires the little group method described in D.1.4. We
must pick a momentum vector #k which corresponds to an irrep of the translation
group 2, and act on it with D6. The elements that transform #k into a vector
that corresponds to the same irrep form a subgroup of D6, which we denote
by (D6)!k. Thus we are considering orbits in the first Brillouin zone (which has
nothing to do with the orbits described above!). We must find all possible cases
of vectors in the first Brillouin, with different (D6)!k. For the hexagonal crystal,
there are seven different types of orbits, and a representative element of each
type is given in fig. 4.3. We then call 2 ! (D6)!k the little group of #k. We must
determine the irreps of the little group, and then induce irreps of the whole
group (see D.1.4). This procedure gives all the irreps.
As an example, We explicitly give the irrep corresponding to orbit 5 in fig. 4.3.
In D.1.4 we illustrate how to derive this. The matrices of the irrep are

(a, b) $→





eiπ2 aeiπ2 b 0 0
0 eiπ2 (a+b)eiπ2 (−a) 0
0 0 eiπ2 bei π2 (−a−b)



 ,

r $→





0 0 eiπm

1 0 0
0 1 0



 , s $→





0 eiπn

0 eiπn 0
eiπn 0 0





4.3 Braiding

In this section we discusse the braiding of electric, magnetic, and dyonic modes.
In other words, we address the following question: What happens when one
type of mode is adiabatically (i.e. slowly) transported around another mode?
We introduce a braid operator and discuss its properties.
Let us first assume that H is discrete. We’ve actually already discussed the
braiding of defects. Namely, we saw that when a line defect h is transported
halfway around a line defect g in an anticlockwise direction (viewed from above),
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Conjugacy classes N Irreps

Cr6k ( 2 ! D6)× Πr6k

ρ,λ

k ∈ ρ irrep of 2 ! D6 (see table 4.2.2)

C(a,b)r6k , C(a+b,−b)r6k ( 2)× Π(a,b)r6k

!k,λ

a, b ≥ 0; b ≥ a; a, b ≥ 0; k ∈ #k ∈ 2

Cr1+6k , Cr−1−6k ( 6)× Πr1+6k

m,λ

k ∈ m ∈ 6

Cr2+6k , Cr−2−6k ( 6)× Πr2+6k

m,λ

k ∈ m ∈ 6

C(1,0)r2+6k , C(1,0)r−2−6k ( 3)× Π(1,0)r2+6k

n,λ

k ∈ n ∈ 3

Cr3+6k , Cr−3−6k ( 6)× Πr3+6k

m

k ∈ m ∈ 6

C(1,0)r3+6k , C(1,0)r−3−6k ( 2)× Π(1,0)r3+6k

l,λ

k ∈ l ∈ 2

Table 4.5: The irreps of F (( 2 ! ) ⊗ ( 2 ! D6) × . λ ∈ U(1) corresponds
to the irreps of the part of the centralizers, which represents the rotations by
an angle 2πn.

then h gets conjugated by g, and becomes ghg−1. We can encode this behaviour
by defining a braid operator R. If |g > lives in V A and |h > in V B, then R is
a map from V A ⊗ V B to V B ⊗ V A whose action is defined by

R · |g > |h >= |ghg−1 > |g > (4.25)

The braid operator encodes the braiding properties of the defects. Note that it
braids the defect to the right halfway around the other defect, and we call this
half-braiding. To achieve a full braiding, we have to apply R2.
From our previous discussions we know that the equation for the braiding of
defects |g > and |h > we have just discussed applies equally well to the cases of

Orbit number (D6)!k Number of irreps Dimension of irreps
1 D6 6 1, 1, 1, 1, 2, 2
2 2 2 6, 6
3 2 2 6, 6
4 e 1 12
5 2 ! 2 4 3, 3, 3, 3
6 2 2 6, 6
7 D3 3 2, 2, 4

Table 4.6: The irreps of 2 ! D6. The number of an orbit corresponds to the
number in Fig. 4.3. (D6)!k is the Little Group of the orbit.
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global and gauge symmetry breaking.
Electric modes braid trivially with each other7:

R|v1 > |v2 >= |v2 > |v1 > . (4.26)

Now for the braiding of an electric mode with a defect. We will discuss the
gauge theory case first, because the global case is more subtle. We will be brief,
because it is well covered in the literature [19].
Consider a gauge theory with a defect g. This topological charge is equal to the
path-ordered exponential of the gauge field around the defect (see (2.68)):

g = Pei
H

!A·dx.

Now imagine we have a particle coupled to the gauge field. Then the calculation
of the change of its wavefunction Ψ as it is adiabatically transported around the
defect is called a Berry’s phase calculation [11]. The outcome is

Ψ $→ Ψ′ = Pei
H

!A·dxΨ = g ·Ψ. (4.27)

Ψ′ solves the equation DiΨ = 0[68].
Thus as the electric mode is transported around the defect, it is acted on

by the topological charge g of the defect. We can choose a gauge such that the
field Ψ is constant everywhere except along a line going ”up” from the origin.
Then half-braiding already gives Ψ $→ g ·Ψ, because underneath the defect Ψ is
constant, i.e. Ψ braids trivially with the defect if it passes below the defect.

Now for the case of global symmetry breaking. What is the braiding of an
electric mode with a line defect? For example, what happens when a Goldstone
mode is transported around the nontrivial defect in the uniaxial nematic?

The modern approach to defects is to consider them to be sources of cur-
vature and torsion in a metric space. In other words, the defects curve the
space around them, so that geodesics are deformed. This idea has been applied
extensively to crystals, and the geometry is called Riemann Cartan geometry8.
For an introduction, see [27] and [29]. To be able to apply a geometry, one must
take the continuum limit of a crystal, which turns the theory into an ISO(3)
gauge theory (just like gravity is an SO(3, 1) gauge theory). Note that we briefly
encountered the continuum theory of defects when we discussed smectics and
crystals. We introduced continuum fields, and saw that the Burgers vector of a
dislocation is given by integrating the field around the defect.
In this theory, the outcome of braiding is the same as in the local case, but the

7Actually, if we are braiding two indistinguishable electriccparticles, then the braiding may
give a phase factor. Under half-braiding the wavefunction of the system picks up a phase factor
ei2πs, where s is the spin of the particles.

8The difference with standard Riemann geometry is that one doesn’t assume that the
metric is torsion free, i.e. the Christoffel symbols Γκ

µν are not required to satisfy Γκ
µν = Γκ

νµ.
Dropping this requirement makes the theory more complicated. For example, in normal
general relativity geodesics (paths along with the covariant derivative is zero) are the shortest
paths between the endpoints. This is no longer the case if there is torsion! There is a difference
between extremals and geodesics of the metric.
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interpretation is different here. In the gauge theory case, the wavefunctions are
multiply valued, and the phase factor follows from the path dependent formu-
lation of symmetry operators. In the global case, during the parallel transport
the particle is following a curved path in its internal space. It is being ”frame
dragged”, as it is called[40]. To be specific, one defines a local coordinate frame
somewhere at the start of the path in G characterising the defect. Then one
lets the elements of the path act on this initial frame, to obtain a new frame
everywhere on the path. An electric mode is then parallel transported around
the defect if its coordinates are constant with respect to the local frames.

This idea has been applied to many phases, such as superfluid helium, where
the symmetry is also global [28]. It has also been applied to uniaxial nematic
liquid crystals in the one constant approximation[41] (in the absence of diffu-
sion).

The braid operator can be used to study scattering. In the gauge theory
case, the equation for the scattering cross section is [69]:

dσ

dθ
=

1

4πpsin2θ/2
[1−Re < ψin|R2|ψin >] (4.28)

where |ψin > is the initial internal wavefunction of the whole system, and p
the momentum. For example, for the case of an electric mode |v > to the left
of a vortex |g >, we have |ψin >= |v > ⊗|g >. If the braiding is trivial, i.e.
R2|ψin >= |ψin >, then there is no scattering.

Let us look at a specific example of braiding of an electric mode with a
magnetic mode, in a hypothetical uniaxial nematic without diffusion. This
example will show that frame dragging leads to the same formula for braiding
as in the gauge theory case: R · |h > |v >= |α(h)v > |h >.

Place the disclination somewhere in space, and consider the braiding of the
two Goldstone modes with the defect. The defect is characterized by a loop
around it. At every point of the loop there is an element of G, so that the
loop corresponds to a path in G that starts at e and ends in the disconnected
component of SO(2) ! 2. Now to parallel transport a Goldstone mode along
the loop around the defect, let the group elements along the loop act on the
Goldstone mode! The endpoint of the loop is an element H , so we know where
the Goldstone mode will end up: it ends up being g · |v >, where g is the
endpoint of the loop, and |v > is the Goldstone mode. See fig. 4.3. One of the
Goldstone modes doesn’t transform, the other one picks up a minus sign. Note
that in the figure we have done half the braiding, i.e. we applied R. Once the
Goldstone modes have arrived at the left side of the defect, if we braid them
underneath the defect nothing changes, because the space under the defect is
flat.

Summarizing, the action of braid operator on a defect next to an electric
mode is

R · (|g > ⊗|v >) = (|α(g)|v >)⊗ |g > (4.29)

R · (|v > ⊗|g >) = |g > ⊗|v > (4.30)
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Figure 4.4: The braiding of the Goldstone modes with the disclination of the
uniaxial nematic liquid crystal. One Goldstone mode is left unchanged, while
the other one picks up a minus sign. In both cases, the result is the action of
the group element at the end of the path in G characterizing the defect, which
in this case is a rotation of π around the x-axis.

To incorporate the braiding into a Hopf algebra A, we introduce a universal
R matrix R. R is an element of A ⊗ A. It encodes the braiding of states the
irreps of A: to braid two states, |φ1 > in Π1 and |φ2 > in Π2, act with R on
|φ1 > ⊗|φ2 >, and then apply the flip operator τ :

R(|φ1 > ⊗|φ2 >) = τ ◦ (Π1 ⊗Π2) ◦R ◦ |φ1 > ⊗|φ2 > . (4.31)

τ flips any two vectors |φ1 > and |φ2 > around:

τ(|φ1 > ⊗|φ2 >) = |φ2 > ⊗|φ1 > . (4.32)

If |φ1 > is in the vector space V1, and |φ2 > in V2, then |φ1 > ⊗|φ2 > is a vector
in V1 ⊗ V2. Then R(|φ1 > ⊗|φ2 >) = τ ◦ (Π1 ⊗Π2) ◦R|φ1 > ⊗|φ2 > is a vector
in V2 ⊗ V1.

The universal R matrix is an invertible element of A ⊗ A, i.e. there is an
R−1 ∈ A⊗A which satisfies

RR−1 = R−1R = 1⊗ 1. (4.33)

R corresponds to braiding the particle on the right in a counterclockwise fashion
halfway around the particle on the left. Using R−1, we can define the inverse
braiding, which is the clockwise braiding of the particle on the right halfway
around the particle on the left:

R−1 = R−1 ◦ τ. (4.34)

We can write R in Sweedler’s notation:

R =
∑

(R)

R(1) ⊗R(2). (4.35)
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We can let R act on n-particle states. To do this, We define

Rij =
∑

(R)

1⊗ · · ·⊗R(1) ⊗ · · ·⊗R(2) ⊗ · · ·⊗ 1 (4.36)

where R(1) is in the i-th, and R(2) in the j-th position. Rij implements the
half-braiding of particles i and j. i needn’t be smaller than j. For example, on
a two particle state R21 =

∑

(R) R(2) ⊗ R(1).

In this notation, we have R−1 ◦ τ = τ ◦R21, so that we can rewrite R−1:

R−1 = τ ◦R−1
21 . (4.37)

We will this equation in the next chapter.
For the D(H) case, the universal R matrix is given by

R =
∑

g∈G

Pge⊗ g. (4.38)

The braid operator R that is derived from this R reproduces the braiding of the
different modes discussed in this section.

The universal R matrix satisfies certain axioms discussed in Appendix B.
From the axioms it follows that R satisfies the Yang-Baxter equation:

R12R13R23 = R23R13R12. (4.39)

12

=

1 32

R13

R23

1 2 3

R13

R12

R13 R

Figure 4.5: The Yang-Baxter equation.

A Hopf algebra with a universal R matrix is called a quasi-triangular Hopf
algebra. Thus the quantum double D(H) is quasitriangular.

We do not believe that scattering in real liquid crystals can be treated with
this equation, because diffusion dominates. For example, we saw that the Gold-
stone modes are diffusive, so the cross sections will be of no use here. However,
since the Landau theory of phase transitions still applies to liquid crystals, and
this theory is independent of diffusion, we do expect that symmetry breaking
in liquid crystals can be studied using Hopf algebra’s. Namely, phase transi-
tions involve universality classes, i.e. phases with the same symmetry breaking
scheme often have the same properties at the phase transition. Diffusion does
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not alter the properties of the phase transition itself, such as the scaling proper-
ties of quantities such as specific heat, and the order of the phase transition. It
only alters the properties of the phase obtained after the phase transition. We
study symmetry breaking in the next chapter.

Even though diffusion may dominate, it is still interesting to consider braid-
ing in a uniaxial nematic when diffusion is neglected. We called this the one-
constant approximation in chapter 3. In that chapter, we analyzed the nontrivial
line defect in a uniaxial nematic, and we saw that given a defect configuration,
there is a continuous family of defect configurations, labelled by θ ∈ [0, 2π),
that are obtained from the original configuration by applying rotations in the
residual symmetry group. We will now show that we can define coherent super-
positions of line defects in this family that carry an integer charge with respect
to the rotations in the residual symmetry group. Furthermore, when a charged
particle is braided around a coherent superposition of defects with charge n,
the sign of the charge of the particle changes, and the coherent superposition of
defects picks up a compensating charge, so that the overal charge is conserved.
Thus charge is transferred to the defect. This phenomenon is the Global ana-
logue of Cheshire Charge. For a reference on this phenomenon see [41], and for
the analogue in Alice Electrodynamics see [13].

4.3.1 Braiding in a uniaxial nematic

The defect classes

We consider the defect configuration shown in fig. 3.4. By rotating by angle
θ around the z-axis, we obtain a new configuration with the same line defect
charge. Using the ket notation for defects introduced in this chapter, we will
denote the defect obtained by a rotation of θ by |θ >. Thus |0 > is the original
configuration, and |2π >= |0 >. We have a continuous labelling of defects, by
an angle θ ∈ [0, 2π). This case is therefore different from all the cases we have
encountered until now in this chapter, because all defect labels encountered until
now were discrete.

The residual symmetry group is (see 3.15):

H = U(1) ! 2 = {ei θ2σz , iσxei θ2σz , θ ∈ [0, 4π)}.

to determine the class of the defect |0 >, we must act on |0 > with elements
of H , and see which defects we get. |0 > is characterized by a path in G that
ends in a point in Hd, the part of H that is not connected to the identity:

Hd = {iσxei θ2σz , θ ∈ [0, 4π)}.

We can choose which endpoint corresponds to |0 >. This choice sets the end-
points for the defects |θ >, as we will now see.

We take the path in G that ends in iσx as the path that characterizes |0 >.
Then the elements of H act on the defect by conjugating the endpoint of the
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loop (see chapter 2). An element ei θ2σz acts as follows on |0 >:

ei θ2σz iσx(ei θ2σz )−1 = eiθσz iσx. (4.40)

Since we defined |θ > as the defect obtained from |0 > by the action of ei θ2σz ,
we see that the endpoint of the path that characterizes |θ > is eiθσz iσx. We
can use a more convenient terminology: the defect |θ > has a charge in H given
by eiθσz iσx. Thus the charge of the defects is no longer a left coset in H/H0,
but is an element of H . The classification of line defects in terms of the first
homotopy group is too coarse in this case.

Now that we have the charge of the defects |θ >, we can answer any question:
for example, how does the residual symmetry transformation iσx act on the
defects? The answer is obtained by conjugating the charge in H of the defect.
The outcome is

iσx · |θ >= |− θ > . (4.41)

The residual symmetry transformation eiα2 σz act as follows:

eiα2 σz · |θ >= |θ + α > . (4.42)

Since we can obtain any defect |θ > from any other |θ′ > by applying a global
symmetry transformation, all the defects |θ > are in the same class. The defects
|θ > transform under a representation of H with a continuous family of basis
vectors. In the next section we will see that this representation is reducible.

Coherent superposition of defects

We can adopt a difference basis for the representation of U(1) ! 2 spanned by
the |θ >: define a charge n defect |n >m as

|n >m=

∫ 2π

0
dθe−inθ|θ > (4.43)

We have taken a coherent superposition of defects. This transformation is similar
to a Fourier transform. We can now calculate the action of H on |n >m:

iσx · |n >m= |− n >m (4.44)

eiα2 σz · |n >m= eiαn|n >m . (4.45)

Thus |n >m transforms under an irreducible representation of the subgroup
U(1) = {eiα2 σz : α ∈ [0, 2π)} of H , since it picks up a phase factor under the
action of elements of U(1). Furthermore, the 2π rotation in U(1): u(ẑ, 2π) =
ei 2π

2 σz acts trivially on |n >m. This implies that |n > transforms under an irrep
on U(1) ∈ SO(3) corresponding to rotations around the z-axis. Namely, U(1)
is the double cover of U(1) = {R(ẑ, θ) : θ ∈ [0, 2π)}, and irreps of U(1) that are
trivial on the 2π rotation correspond to irreps of U(1) (see appendix A for an
explanation of the notation). Irreps of U(1) are labelled by an integer, which
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is called the charge of the irrep. Thus from (4.45) we conclude that |n >m has
U(1) charge n.

The coherent superposition of defects is a purely quantum mechanical en-
tity, with no classical analogue. Classically, the |θ > form a degenerate set of
states with the same energy. The quantum theory may paint a different picture,
depending on the Hamiltonian of the system. It may be the case (as it is in the
theory discussed in [41]) that the coherent superpositions of defects, with U(1)
charge n, are eigenvectors of the Hamiltonian, in which case they each carry a
certain energy. The energy levels are then quantized.

Braiding a defect with a charged particle

The question arises how we should interpret the charge n on the defect |n >m.
To study this, we will analyze the braiding of regular excitations with defects,
using (4.30).

A regular particle in this system is an irrep of H = U(1) ! 2. We will only
consider irreps of H that are also irreps of H = U(1)! 2, i.e. we consider only
bosonic irreps (just as we did with the tetrahedral nematic, discussed above).
H is precisely the semidirect product of an abelian group U(1) with a finite
group 2. Thus, we can use the Little Group Method described in appendix D
to determine its irreps. The outcome is as follows: denote an element of H as
RθXj (j = 0, 1). Rθ corresponds to a rotation of angle θ around the z-axis, and
X corresponds to a π rotation around the x-axis. Then the irreps are:

1. One dimensional irreps Π0,0 and Π0,1:

Π0,0(RθX
j) = 1 (4.46)

Π0,1(RθX
j) = (−1)j . (4.47)

2. Two dimensional irreps Πk, k ∈

Πk(Rθ) =

(

eikθ 0
0 e−ikθ

)

(4.48)

Πk(X) =

(

0 1
1 0

)

(4.49)

We denote the basis of the irrep Πk that corresponds to the matrix rep-

resentation of Πk given in (4.49) by {|k >, | − k >}. The vector

(

a
b

)

on

which the matrices act corresponds to a|k > +b| − k >. This is very sugges-
tive notation: we see from (4.49) that |k > transforms under an irrep of U(1):
Rθ|k >= einθ|k >. We say that |k > has U(1) charge k. |− k > then has U(1)
charge −k, since Rθ|−k >= einθ|−k >. The operator X maps |k > into |−k >
and vice versa. Thus X acts as a flip operator on these irreps: it flips the sign
of the charge.
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Now consider a defect in the state |n >m, and the particle Πk in the state
|k > to the right of it. Using (4.30), we can determine the outcome of counter-
clockwise half-braiding of these two particles. To do so, we first determine the
half-braiding of defect |θ > with |k >. |θ > has H charge iθσz iσx. The outcome
of half-braiding is the action of eiθσz iσx on |k >. This action is determined by
first using the homomorphism from SU(2) to SO(3), that acts as

eiθσz iσx $→ RθX.

Thus the outcome of half-braiding is

R · (|θ > ⊗|k >) = Πk(RθX) · |k > ⊗|θ >= e−ikθ |− k > ⊗|θ > . (4.50)

Using the definition of |n >m |n >m=
∫ 2π
0 dθe−inθ|θ >, we can now determine

the outcome of half- braiding |k > around |n >m:

R · (|n >m ⊗|k >) =

∫ 2π

0
dθe−inθR · (|θ > ⊗|k >)

=

∫ 2π

0
dθe−inθe−ikθ |− k > ⊗|θ >

= |− k > ⊗|n + k >m . (4.51)

Thus the regular particle is now in a state with charge −k, and the defect
has charge |n + k >m. The overal charge is conserved.

This charge is called Cheshire charge.In the gauge theory equivalent of the
uniaxial nematic, Alice Electrodynamics, this charge is rather mysterious, be-
cause it cannot be localized anywhere. There is a sheet attached to the line
defect, and the sheet acts like a charged perfect conductor. However, the po-
sition of the sheet is not gauge-invariant: gauge transformation can move the
sheet around. Thus the Cheshire is non localizable. See [63] for further discus-
sion.

In the case of the uniaxial nematic, the charge is localizable. To prove
this requires a knowledge of the formula for the Noether current associated to
rotations around the z-axis. It is a function of derivatives of the field #n(#x) of
the uniaxial nematic. We will not go into discuss, see [41] for a derivation of
the current.

Braiding of two defects

We can also calculate the outcome of braiding two defects, of charge |n >m and
|k >m, using (4.25). First we braid |θ1 > with |θ2 >. We introduce a new
notation for the defects: |θi >≡ |eiθσz iσx >, i.e. we can denote a defect by its
H charge. The action of braiding is the conjugation of the H charge. Using
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(4.25), we get

R · (|θ1 > |θ2 >) = R · (|eiθ1σz iσx > |eiθ2σz iσx >)

= |(eiθ1σz iσx)eiθ2σz iσx(eiθ1σz iσx)−1 > |eiθ1σz iσx >

= |ei(2θ1−θ2)σz iσx > ||eiθ1σz iσx >

= |2θ1 − θ2 > |θ1 > . (4.52)

Using this equation, we calculate the outcome of half-braiding |n >m and |k >m:

R · (|n >m |k >m) =

∫ 2π

0
dθ1

∫ 2π

0
dθ2e

−inθ1e−ikθ2R · (|θ1 > |θ2 >)

=

∫ 2π

0
dθ1

∫ 2π

0
dθ2e

−inθ1e−ikθ2 |2θ1 − θ2 > |θ1 >

= |− k >m |n + 2k >m . (4.53)

Thus the braiding of defects is analogous to the braiding of a defect with a
charged particle.

Hopf symmetry description

The Hopf symmetry description requires a continuouos generalized quantum
double, F (U(1) ! 2)⊗ (U(1)! 2). Quantum doubles of compact groups are
described in [32]. The representation theory is analogous to the representation
theory of generalized quantum doubles with discrete groups: the irreps are
labelled by an orbit in U(1) ! 2 under the action of U(1) ! 2, and by an
irrep of the centralizer of a chosen preferred element in the orbit. The orbits,
centralizers and irreps are given in table 4.7.

Preferred element Orbit Centralizer Irreps
e {e} U(1) ! 2 Πe

0,0

Πe
0,1

Πe
k, k ∈

−e {eiπσz} U(1) ! 2 Π−e
0,0

Π−e
0,1

Π−e
k , k ∈

ei θ2σz , θ ∈ [0, 2π) {ei θ2σz , e−i θ2σz} U(1) Πθ
k, k ∈

iσx {eiθσz iσx : θ ∈ [0, 2π)} {e, X} - 2 Πiσx

j , j ∈ 2

Table 4.7: The irreps of F (U(1) ! 2)⊗ (U(1)! 2). For the irreps of U(1)! 2,
we used the notation given in (4.47) and (4.49).

The irreps Πe
α, with α an irrep of U(1) ! 2 are the regular irreps. The

Π−e
alpha irreps are dyons with the 2π rotation in the background, or simply the
−e defect if α is trivial. Since we assumed that α was a bosonic irrep, with −e
in the background we can still implement the full group U(1) ! 2. The Πθ

k
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are intriguing: they correspond to irreps with ’defect’ ei θ2σz . But ei θ2σz is not a
defect, so these irreps can safely be neglected. In the gauge theory case, they
are to be interpreted as a configuration with a flux ei θ2σz of the gauge field. This
flux is not topological stable, thus ei θ2σz is not a topological quantum number,
and we should neglect these irreps.

The Πiσx

j irrep corresponds to the irrep spanned by the |θ >, discussed
above. The j label labels an irrep of 2. If the irrep of 2 is nontrivial, we have
a dyonic configuration. However, note that we had already interpreted Πiσx

j as
a dyonic configuration, because we defined states coherent superpositions |n >m

of defects, with U(1) charge n. These states can carry a further nontrivial irrep
of 2.



Chapter 5

Hopf symmetry breaking
and confinement

In the previous chapters we thoroughly analyzed the modes in liquid crystals,
and found that their fusion rules and braiding properties are captured by a gen-
eralized quantum double F (Hm)⊗ Hel. In this chapter we will show that this
Hopf symmetry description allows for a systematic investigation of phase transi-
tions in these phases. Since electric, magnetic and dyonic modes are treated on
equal footing, we will unify the study of phase transitions induced by all three
types of modes. Such an analysis was carried out for the first time in [61]. In
that work, certain physical and mathematical constraints were imposed on the
residual symmetry after a phase transition. We will encounter situations where
some of these constraints must be relaxed, which will require the development
of a novel criterion for symmetry breaking.

The electric phase transitions we’ve come across are characterized by an
order parameter φ, that acquires a nonzero ground state expectation value φ0 in
the ordered phase. The residual symmetry in the ordered phase is the stabilizer
of φ0, i.e. the subgroup Hel of the original symmetry group G whose elements
h ∈ Hel satisfy

h · φ0 = φ0. (5.1)

The excitations of the ordered phase transform under irreducible representations
of the residual symmetry group Hel.

As we saw in chapter 2, φ0 corresponds to the expectation of some order
parameter φ̂ with respect to a state called the ground state and denoted by
|φ0 >:

< φ0|φ̂|φ0 >= φ0.

In a quantum treatment, the ordered phase corresponds to a phase in which
|φ0 > fills the space, with a certain density. The stabilizer of |φ0 > is equal to
φ0, because |φ0 > transforms has the same transformation properties under Hel

as φ0 does:
Hel = {h ∈ G : h · |φ0 >}. (5.2)

99
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In this chapter we will generalize the concept of a stabilizer to the case of
a phase described by a Hopf symmetry A. Given a state |φ0 > in an irrep
of A, we will define a Hopf stabilizer TR of φ. TR is a subalgebra of A, and
excitations from the ordered phase transform under irreps of TR. We give |φ0 >
the suggestive name of condensate, and say that |φ0 > has condensed. By
studying the residual symmetry for all the possible condensates in a system,
we obtain a systematic analysis of all conceivable phases. Determining whether
these phases are actually realized requires a dynamical analysis.

A careful analysis of the irreps of the residual symmetry algebra TR reveals
that some excitations are not local excitations of the condensate. These ex-
citations braid nontrivially with the condensate |φ0 >. Thus the state of the
condensate is not singly valued around them. We will see that to create these
excitations we must introduce a half line singularity in the condensate. To the
left and to the right of this half-line the condensate takes on a different value.
This half line goes from the excitation out to infinity, and it costs a finite amount
of energy per unit length. We call such an excitation a confined excitation. In an
infinite system the confined excitations cost an infinite amount of energy. They
cannot be excited, unless the half-line ends on another confined excitation, so
that the singular line only has finite extent. We call a configuration consisting
of confined excitations connected by half-line singularities, such that the overal
configuration is unconfined, a hadronic composite, in analogy with hadrons in
Quantum Chromodynamics, where hadrons are unconfined composites of con-
fined quarks.

The excitations that braid trivially with the condensate are called unconfined
excitations, and they can be created locally.

In the next section we will introduce confinement by taking a new look at
the XY-model. We will reinterpret the phase transition to the ordered state as
a confinement mechanism. After that we will study symmetry breaking for a
phase described by a general Hopf algebra A. Then we will specialize to the case
of A being a generalized quantum double F (Hm) ⊗ Hel. We will show that
our symmetry breaking formalism reproduces the standard theory of electric
condensates. After that, we will address the case of defect condensates. We will
find general formulae that describe the residual symmetry, and show that these
formulas reproduce the results of the defect phase transitions that we discussed
in chapter 3: the Kosterlitz-Thouless phase transition, the transition from a
hexagonal crystal to the hexatic phase, and the transition from the hexatic
phase to the isotropic phase. Finally, we briefly discuss dyonic condensates.

5.1 Condensate and confinement

The XY model is described by (2.53):

Feff =
1

2

∫

d2xµv2(∇θ)2 =
1

2

∫

d2xρs(∇θ)2,
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where θ is a real number with the identification 2πn ≡ 0. This free energy is
the low temperature effective free energy of (2.51):

F =
1

2

∫

d2x(µ(∇iφ)∗(∇iφ)− λ(T − Tc)(|φ|2 − v2)2),

where φ = |φ|eiθ is a complex order parameter field.
We briefly review the excitations in the ordered phase discussed in chapter

2.
At low temperatures |φ| = v. The symmetry is spontaneously broken from

G = U(1) to H = {e}. This implies the existence of defects labelled by
Π1( / ) - . The electric particles transform under irreps of . These ir-
reps are labelled by λ ∈ U(1).

The equation that θ(#x) has to satisfy in order to minimize Feff is Laplace’s
equation in two dimensions (2.54). We found singular solutions θn,( !x0) that
corresponded to a defect of charge n centered at #x0. There are in fact other
singular solutions to (2.54), in which the singularity is a half-line. They are
labelled by a λ ∈ and a vector #x0 = (x0, y0). Their field configuration is given
by

θλ,!x0(x, y) = λ arctan(
x − x0

y − y0
) = λϕ, (5.3)

with ϕ the polar angle.

2πλ

(a) A confined charge λ vor-
tex in the XY model

(b) An unconfined com-
posite of two confined
charge 1

2
vortices

Figure 5.1: Confinement of vortices of non-integer charge λ in the ordered phase
of the XY-model. In (a) we see a half-line singularity which starts at #x0 and
goes out to infinity. It carries a finite amount of energy per unit length. (b)
shows an unconfined composite of two confined charge 1

2 vortices. The charge
1
2 vortices are attached by a singular line. The overall configuration has charge
1.

For λ = n ∈ , there is no line singularity. For λ /∈ , there is a line starting
at #x0 and going out to infinity, along which φ = eiθ is discontinuous. To see
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that there is a discontinuity, we follow a loop around #x0, and notice that as
we go full circle θ turns by an angle 2πλ. If λ /∈ , θ does not return to its
original value as we finish travelling along our loop (remember that θ is defined
modulo 2π). Thus there is a half line singularity in θ, which implies a half line
singularity in φ. This line singularity carries a finite amount of energy per unit
length. To prove this, fill |φ| = v into (2.51), and obtain

F =
1

2

∫

d2xµ(∇iφ)∗(∇iφ). (5.4)

Call φL the value of the order parameter field just to the left of the singular
half-line and φR its value just to the right of it (see fig. 5.1). At the line
singularity, we have

∇φ = (φR − φL)δ(ϕ), (5.5)

since we orient the singular line along ϕ = 0, and integrating ∇φ across the
singularity gives φR − φL. If the line L has a length l, its free energy content
is1

Fline =
1

2

∫

L
d2xµ(∇iφ)∗(∇iφ) =

1

2
µ|φR − φL|2l. (5.6)

Thus, if λ /∈ , the free energy of the configuration θλ,!x0 increases linearly
with the system size2. This is not a topological defect, since it does not carry a
Π1(G/H) charge. We will call it a vortex with non-integer charge λ, and say that
this vortex is confined. It is attached to a half-line singularity which corresponds
to a domain wall, because the line is of one dimension lower than the dimension
of the space (see table 2.1). More generally, confinement is defined as follows:
an excitation is confined if its energy increases linearly with the system size.

Thus the confined vortex configurations carry an energy which increases lin-
early with the system sizes. Now remember that the integer charge vortices
carry an energy that increases logarithmically with the system size (see (2.56) ).
We say that the integer charge vortices are logarithmically confined. The nonin-
teger charge defects also carry energy outside the half-line singularity, and this
energy increases logarithmically with the system size (the calculation is analo-
gous to (2.56)). However, for a large system we can neglect this logarithmically
increasing energy compared to the linearly increasing energy of the half-line
singularity. We say that the noninteger charge vortices are linearly confined, in
contrast to logarithmic confinement. In this thesis when we say confinement, we
mean linear confinement, unless stated otherwise. Also, when we say a particle
is confined, we mean that is not linearly confined. It may still be logarithmically
confined.

The different confinements for the integer and noninteger charge vortices may
have important physical consequences. If the system is at finite temperatures,
then the vortex configurations that are thermally excited are those with neutral

1To be precise, we are integrating the free energy within a thin stroke containing the
half-line singularity.

2When we talk of system size, we mean the length of one axis of the system.
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overal vorticity, because of the logarithmic confinement of the vortices (see chap-
ter 3). In chapter 3 we stated that we can consider only vortex-antivortex pairs
at low temperatures, because configurations with more than two vortices cost
more energy, and vortices of the same sign also cost more energy. There may
be vortex-antivortex pairs where the constituent vortices have integer charge,
and others where the constituents have noninteger charge. Because the integer
charge vortices are logarithmically confined, and the noninteger charge are lin-
early confined, it is reasonable to assume that there are different length scales
associated to the integer and noninteger vortex-antivortex pairs. The average
separation at a certain temperature between the integer charge vortices may
be much larger than the average separation between the noninteger charge vor-
tices. Thus there may be temperatures where the only degrees of freedom are
the integer charge vortices. In the ordered phase of the XY model, for example,
we can safely neglect the noninteger charge vortices, even though they can be
thermally activated.

In the equivalent of the XY model with local symmetries discussed in chap-
ter 2, the integer charge vortices are not logarithmically confined, and there
is no need to consider different length scales, since there only is one type of
confinement: linear confinement. Later on, we will discuss the implications of
logarithmic confinement, but for now we can neglect, and consider the effect on
linear confinement only.

Using the concept of confinement, the phase transition from the high temper-
ature phase to the ordered phase of the XY model can be interpreted as follows:
before symmetry breaking, vortices of any charge are unconfined. Namely, we
can have |φ| $→ 0 as we approach the line at which θ is singular, so that there is
no singularity in the order parameter field φ = |φ|eiθ. After symmetry breaking,
|φ| = v, and the vortices of non-integer charge are confined. It is conceivable
that there are noninteger charges in this phase, connected together by half-line
singularities, such that the overal charge is integer. We call a composite of con-
fined particles that is unconfined as a whole a hadronic composite. See fig. 5.1
for an example of a hadronic composite of two charge 1

2 vortices.
The crucial characteristic of confined excitations is that the condensate takes

on a different value to the left and right of the excitation. We had started
by condensing the order parameter field, such that it took on the value φ0

everywhere. Now we have an excitation such that the order parameter field
takes the value φL to the left, and φR to the right of the half-line singularity
connected to the excitation. So we ask ourselves: where does the condensate
take on the value φ0? To answer this, we must make a choice with respect to
the excitations. We must specify whether the excitation comes in from the left,
or from the right. We choose to have all particles coming in from the left, both
confined and unconfined particles. Thus, we set φ0 = φR, and as a confined
excitation comes in from the left the condensate to the left of the excitation
takes on the value φL '= φ. If an unconfined excitation comes in from the left,
then φL = φR = φ0.

We now restate these statements on the value of the condensate in terms of
the state |φ0 > of the condensate. We specify that the state of the condensate
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is |φR >= |φ0 > to the right of the system. Particles come in from the left, and
they are confined if the state of the condensate to the left of the particle is not
equal to |φR >, thus |φL > '= |φR >.

Imagine a particle |v > coming in from the left. We want to know how to
tell if |v > is confined of not. Thus we need to know if |φL >= |φR >, in
which case |v > is unconfined. This is where braiding comes in: |φL > is the
outcome of half-braiding |φR > counterclockwise around |v >. Thus, to find
out whether |v > is confined, we braid the condensate around the excitation,
using the braid operator R. For |v > to be unconfined, the condensate |φR >
has to braid trivially both clockwise and anticlockwise around |v >. We must
check that both braidings are trivial, because the half-line singularity could run
along the positive or the negative x-axis in fig. 5.1. This leads to the following
test of whether an excitation is confined or unconfined:

|v > is unconfined

⇐⇒
{

R · (|v > ⊗|φR >) = |φR > ⊗|v >
R−1 · (|v > ⊗|φR >) = |φR > ⊗|v > .

Let us apply this criterion to the vortices in the XY model, to see which ones
are unconfined. Denote a vortex of charge λ by |λ >. We set |φR >= v. Then
|φR > gets frame dragged as we braid it counterclockwise around |λ >, and
picks up a phase factor ei2πλ. Clockwise braiding is trivial, since we’ve chosen
the convention that the clockwise braiding of an electric mode to the right of a
defect is trivial3. Thus

R · (|λ > ⊗|φR >) = ei2πλ|φR > ⊗|λ >

R−1 · (|λ > ⊗|φR >) = |φR > ⊗|λ >,

and a vortex is unconfined ⇐⇒ λ ∈ . Thus the defects are precisely the
unconfined vortices.

In the high temperature phase, the ”electric” excitations are irreps of the
electric group U(1). If we also consider projective irreps, then the electric exci-
tations are irreps of the universal covering group U(1) = of U(1). The irreps
are denoted by ρr, they are labelled by an r ∈ R. All these irreps braid trivially
with the condensate, because the condensate is in a state |φR > in an electric
irrep, and electric irreps braid trivially with each other.

In summary, the phase transition from the high temperature to the ordered
phase in the XY model can be described as a confinement mechanism. In
this chapter, we will stress the importance of confinement in the discussion of
conceivable phase transitions.

3In a gauge theory, this amounts to picking a gauge such that the Dirac string points
’upwards’ in the drawings. In the global case, we orient the defect such that the frame
dragging happens in the upper half plane.
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(a) A confined parti-
cle

(b) A hadronic composite

Figure 5.2: Confinement of particles in the ordered phase, and hadronic compos-
ites. The dark lines are singularities in the condensate and cost a finite amount
of energy per unit length.

5.2 Hopf Symmetry breaking

In this section we will first study symmetry breaking for a phase described by
a general Hopf algebra A. Then we will specialize to the cases where A is a
generalized quantum double: A = F (Hm ×Hel). The quantum double D(H) is
a special case of the generalized quantum double, with Hm = Hel = H .

5.2.1 The criterion for symmetry breaking

We consider any physical system whose particles are irreps of a quasitriangular
Hopf algebra A. A state |φR > of an irrep Π of A condenses, so that our ground
state is a state filled with the particles in the state |φR >. We will now define
the residual symmetry algebra TR, which is an algebra such that the excitations
from the condensate are irreps of TR.

The residual symmetry algebra TR consists of the operator that are ’well
defined with respect to the condensate’. Before we explain what that means, let
us first consider the case of a system whose symmetry is a group G. G is broken
spontaneously to H by the condensation of a state |φR > of an irrep of G. H is
the stabilizer of |φR >, i.e. the set of symmetry transformations that leave the
condensate invariant. This means that we can implement these transformations
on excitations of the condensate, because they leave the condensate invariant.
Thus they only act on the excitations. Since the symmetry transformations
commute with the Hamiltonian, they transform low energy excitations into low
energy excitations.

Now consider a particle |v > in an irrep of the original symmetry G. If we
fuse |v > with |φR >, and act on the outcome |v > |φR > of this fusion with
an h ∈ H , the result is the same as when we act on |v > with h first, and then
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fuse the outcome with |φR >. This follows from

h · (|v > ⊗|φR >) = (h · |v >)⊗ (h · |φR >) = (h · |v >)⊗ |φR >, (5.7)

since h · |φR >= |φR >. Thus we can also define the residual symmetry group
H to be the set of transformations that don’t notice fusion with the condensate.
Whether a particle |v > in an irrep of G fuses with the condensate or not, the
action of H is the same. Thus we define residual symmetry operators to be
operators that don’t notice fusion with the condensate. When the symmetry
is spontaneously broken from G to H , the residual symmetry operators are the
elements of H .

This definition of residual symmetry operator can be generalized to the case
of a condensate |φR > in an irrep of a Hopf symmetry A. The residual symmetry
operators are the operators that don’t notice fusion with the condensate. The
residual symmetry operators form a subalgebra of A, which we call the residual
symmetry algebra TR. There is a subtlety in the definition of TR: an operator
a ∈ A is an element of TR if its action on any particle |v > in any irrep of A
is the same whether |v > has fused with the condensate |φR > or not. But we
must specify whether |v > fuses with |φR > from the left or the right! Namely,
in the systems we are considering |v > ⊗|φR > and |φR > ⊗|v > are not
(necessarily) the same state, because of the possibility of nontrivial braiding.
Thus we have to fix a convention. This convention is set by our earlier choice
of having all particles come in from the left. Remember that we had to make
this choice because some particles are confined. Thus we define TR as follows:
a ∈ TR ⇐⇒ for any particle |v > in any irrep of A, we have

a · (|v > ⊗|φR >) = (a · |v >)⊗ |φR > . (5.8)

Since |v > and |φR > are states of particles of A, their fusion is set by the
coproduct ∆ of A:

a · (|v > ⊗|φR >) = (Π⊗Πφ) ◦∆(a)(|v > ⊗|φR >), (5.9)

where |v > is in the irrep Π of A, and |φR > in the irrep Πφ of A. Since this
equation has to hold for all vectors |v > in all irreps Π of A, it is equivalent to4

(1⊗Πφ)∆(a)(1 ⊗ |φR >) = a⊗ |φR > . (5.10)

TR consists of all operators that satisfy this criterion. We will now prove that
TR is a subalgebra of A. We also prove two more properties of TR which will
play a role later on.

Lemma 1. The elements of a finite dimensional Hopf algebra A that satisfy

(1⊗Πφ)∆(a)(1 ⊗ |φR >) = a⊗ |φR >

form a subalgebra TR of A that satisfies:

4We note that Joost Slingerland has independently discovered this mathematical structure,
and some of its properties, and we are grateful for private discussions.
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1. ∆(TR) ⊂ A⊗ TR

2. The elements of TR leave tensor products of the vacuum invariant.

Proof. That TR is an algebra follows from the fact that ∆ is an algebra mor-
phism.

1. Using the definition of TR and the coassociativity of the coproduct,

(1⊗ 1⊗Πφ)(1⊗∆)∆(a)(1 ⊗ |φR >) = (1⊗ 1⊗Πφ)(∆⊗ 1)∆(a)(1 ⊗ |φR >) =

= (∆⊗ 1)(1⊗Πφ)∆(a)(1 ⊗ |φR >) = (∆⊗ 1)(a⊗ |φR >=
∑

(a)

a(1) ⊗ a(2) ⊗ |φR >

⇒
∑

(a)

a(1) ⊗ (∆(a(2)) · (1⊗ |φR >)) =
∑

(a)

a(1) ⊗ a(2) ⊗ |φR >

⇒ ∆(a(2)) · (1⊗ |φR >) = a(2) ⊗ φ

⇒ a(2) ∈ TR
⇒ ∆(a) ∈ A⊗ TR

2. We just proved that (1 ⊗ Πφ)∆(a(2))(1 ⊗ |φR >) = a(2) ⊗ |φR >. Using
this, we get

(1⊗Πφ ⊗Πφ)(1 ⊗∆)∆(a)(1 ⊗ |φR > ⊗|φR >)

=
∑

(a)

a(1) ⊗ ((Πφ ⊗ 1)(1⊗Πφ)∆(a(2))(1 ⊗ |φR >)(|φR > ⊗1))

=
∑

(a)

a(1) ⊗ ((Πφ ⊗ 1)(a(2) ⊗ |φR >)(|φR > ⊗1))

= ((1⊗Πφ)∆(a)(1 ⊗ |φR >))⊗ |φR >

= a⊗ |φR > ⊗|φR >

We call TR the right residual symmetry algebra.
What if we condense the sum of two vectors in different irreps, |φ1 > +|φ2 >?
According to (5.10), a ∈ A is part of the right residual symmetry algebra TR of
|φ1 > +|φ2 > if

(1⊗Πφ1)(∆(a))(1⊗ |φ1 >)+(1⊗Πφ2)(∆(a))(1⊗ |φ2 >) = a⊗ |φ1 > +a⊗ |φ2 > .
(5.11)

Since we are dealing with irreps, the only way to get an equality is by equating
the first terms on the left-hand side and right-hand side of this equation, and
the last terms, separately. So TR = (TR)1 ∩ (TR)2, the intersection of the right
residual symmetry algebras of |φ1 > and |φ2 >. Therefore, we need only treat
the condensation of vectors in one irrep, since we can then take intersection of
the right residual symmetry algebras of condensates in different irreps to get
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the right residual symmetry algebra for any condensate.

We will now specialize to the case where A is a generalized quantum double:
A = F (Hm)⊗ Hel, where Hm and Hel are groups (see Appendix B).

The irreps of A = F (Hm)⊗ Hel are labelled by an orbit A in Hm under the
action of Hel, and an irrep of the normalizer NA of a preferred element gA ∈ A.

In the previous chapter we showed how to write elements of F (Hm)⊗ Hel

as functions f ∈ F (Hm × Hel). In this notation the derivations to come are
more elegant. Consider symmetry breaking by a condensate |φR > in an irrep
ΠA
α of A.

Lemma 2. Take f ∈ F (Hm ×Hel). Then

f ∈ TR ⇐⇒ f(x1(x·gA), y1)|φR(y−1
1 x) >= f(x1, y1)|φR(x) > ∀x1 ∈ Hm, x, y1 ∈ Hel

(5.12)

Proof. We use the formulase in Appendix B.

(id⊗ΠA
α )∆(f)(1 ⊗ |φR(x) >) = f ⊗ |φR(x) >

⇐⇒ 1⊗
∑

z∈Hel

∆(f)(x1, y1; x · gA, z)|φR(z−1x) >= f(x1, y1)⊗ |φR(x) >

⇐⇒ 1⊗
∑

z∈Hel

f(x1(x · gA), y1)δy1(z)|φR(z−1x) >= f(x1, y1)⊗ |φR(x) >

⇐⇒ 1⊗ f(x1(x · gA), y1)|φR(y−1
1 x) >= f(x1, y1)⊗ |φR(x) >

TR was obtained by condensing |φR > to the right of our system. If we choose
to condense |φR > to the left, we get another residual symmetry algebra:

TL = {a ∈ A : (Πφ ⊗ id)∆(a)(|φR > ⊗1) = |φR > ⊗a}. (5.13)

We call TL the left residual symmetry algebra.
It is interesting to compare this criterion to the one in [61]. There, the

residual symmetry algebra is denoted by T , and is defined as the largest Hopf
subalgebra of A whose elements satisfy

a · |φR >= ε(a)|φR > . (5.14)

The motivation for this criterion is: The residual symmetry operators act on
the condensate like the vacuum irrep ε does.

The important difference between T and TR is that we don’t require TR to
be a Hopf algebra. In particular, we don’t expect the residual symmetry to have
a coproduct. We can give a heuristic reason why TR needn’t have a coproduct:
we have chosen thr condensate to be |φR > on the right. Bring in a confined
excitation from the left. The condensate takes on the value |φL > to the left of
this excitation. Now consider a second particle coming in from the left. It sees
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the condensate |φL >, and it is therefore an excitation of the residual symmetry
of |φL >, which needn’t be equal to the residual symmetry of |φR >! Thus,
there is an ordering in the particles, i.e. it is crucial to know in which order
we brought in the particles from the left. We will see that this translates itself
in the absence of a coproduct in TR, namely we can’t simply fuse irreps of TR.
Before we can discuss this, we need to know more about our residual symmetry
algebras.

5.2.2 Relationship between T , TR and TL

There are very interesting connections between T , TR and TL. All the operators
in TR and TL satisfy (5.14):

a · |φR >= ε(a)|φR > .

Thus the operators of TR and TL act on the condensate like the vacuum irrep ε
does, just as the operators of T do. At the same time, we have the inclusions

T ⊂ TR T ⊂ TL. (5.15)

The left and right residual symmetry algebras encompass T . We prove these
statements in the following lemma.

Lemma 3. TR, TL and T satisfy the following:

1. All elements of TR and of TL satisfy (5.14):

a · |φR >= ε(a)|φR >

2. T ⊂ TR ∩ TL

Proof. 1. a ∈ TR implies:

(id⊗Πφ)∆(a)1⊗ |φR >= a⊗ |φR >

⇒ (ε⊗ 1)(1⊗Πφ)∆(a)1⊗ |φR >= ε(a)⊗ |φR >

⇒ (1⊗Πφ)(ε⊗ 1)∆(a)1⊗ |φR >= ε(a)⊗ |φR >

⇒ 1⊗Πφ(a)|φR >= ε(a)⊗ |φR >

⇒ Πφ(a)|φR >= ε(a)|φR >,

where we used one the axioms of a Hopf algebra: (ε ⊗ id)∆(a) = 1 ⊗ a.
This proves the claim for TR. The proof for TL is analogous, and left to
the reader.

2. T is a Hopf algebra, so

a ∈ T ⇒ ∆(a) =
∑

(a)

a(1) ⊗ a(2) ∈ T ⊗ T ⇒ a(2) ∈ T ⇒ a(2) · |φR >= ε(a(2))|φR >

⇒ (id⊗Πφ)∆(a)(1 ⊗ |φR >) = (id⊗ ε)∆(a)(1 ⊗ |φR >) = a⊗ |φR >

⇒ a ∈ TR.
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This proves T ⊂ TR. We leave the proof that T ⊂ TL to the reader.

TR and TL are not necessarily Hopf algebras, while T is a Hopf algebra by
its definition. It turns out that TR is a Hopf algebra ⇐⇒ TR = T ! Similarly,
TL is a Hopf algebra ⇐⇒ TL = T . Also, TR = T ⇐⇒ TR = TL. Thus
TR and TL are very interesting extensions of T : if they are equal to each other,
then they are equal to T . Thus, the difference between TR and TL is a measure
of the departure of TR (and TL) from being a Hopf algebra.

We need one assumption about A to prove these claims: the antipode S of
A must satisfy S2 = id. Generalized quantum doubles satisfy this assumption,
for example.

First we prove a little lemma.

Lemma 4. If the antipode S of A satisfies S2 = id, then S(TL) = TR and
S(TR) = TL.

Proof. According to (B.4), and using S2 = id:

∆op ◦ S = (S ⊗ S) ◦∆

⇒ ∆op = (S ⊗ S) ◦∆ ◦ S

Say a ∈ TL, then using the last equation

(Πφ ⊗ 1)∆(a)|φR > ⊗1 = |φR > ⊗a

⇒ (1⊗Πφ)∆op(a)1 ⊗ |φR >= a⊗ |φR >

⇒ (1⊗Πφ)(S ⊗ S)∆(S(a))1 ⊗ |φR >= (a⊗ 1)(1⊗ |φR >)

Apply S ⊗ S to left the and right, and use S2 = id and S(1) = 1 to get

⇒ (1⊗Πφ)∆(S(a))1 ⊗ |φR >= S(a)⊗ |φR >

⇒ (1⊗Πφ)∆(S(a))1 ⊗ |φR >= S(a)⊗ |φR >

⇒ S(a) ∈ TR

So S(TL) ⊆ TR. Similarly we can prove that S(TR) ⊆ TL. Since S is invertible,
we have dim(S(TR)) = dim(TR) and dim(S(TL)) = dim(TL), where dim is the
dimension as a vector space. Therefore, using S(TL) ⊆ TR and S(TR) ⊆ TL, we
get

dim(S(TL)) ≤ dim(TR) = dim(S(TR)) ≤ dim(TL) = dim(S(TL)). (5.16)

Thus dim(TR) = dim(S(TL)). Since S(TL) ⊆ TR, we must have S(TL) = TR.
Applying S to both side of this equations, we get TL = S(TR).

This lemma states that the antipode S brings us from TR to TL, and back.
Remember that S is used to construct the antiparticle or conjugate irrep of a
given irrep. Thus, going from TR to TL is tantamount to replacing all particles
by their antiparticles!

Using lemma 4, we can prove all our claims about the relationships between
T , TR and TL.
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Proposition 1. For A an n-dimensional Hopf algebra whose antipode S satis-
fies S2 = id, we have

(1)TR = TL ⇐⇒ (2) TR is a Hopf algebra ⇐⇒ (3)TR = T ⇐⇒ (4)TL ⊂ TR
Proof. • (1)⇒ (2)

We assume TR = TL. Take a ∈ TR = TL. To prove that TR is a Hopf
subalgebra of A, we need to prove three things:

1 ∈ TR, ∆(a) ∈ TR ⊗ TR, S(TR) ⊂ TR. (5.17)

The first demand is trivial, because ∆(1) = 1⊗ 1, so that

(1⊗Πφ)∆(1)(1⊗ |φR >) = 1⊗Πφ(1)|φR >= 1⊗ |φR >⇒ 1 ∈ TR. (5.18)

For the second demand: since a ∈ TR = TL, we have ∆(a) ∈ TL ⊗ A =
TR⊗A, and ∆(a) ∈ A⊗TR. Choose a basis {ri}1≤i≤k of TR, and a basis
{aj}k+1≤j≤n of T ⊥

R . Then

∆(a) ∈ TR ⊗A⇒ ∆(a) =
∑

ri ⊗ a′
i

Write a′
i out in terms of the bases {ri} of TR and {aj} of T ⊥

R :

a′
i = Bijrj + Cikak Bij , Cik ∈

⇒ ∆(a) =
∑

ri ⊗Bijrj +
∑

ri ⊗ Cikak

∆(a) ∈ A⊗ TR ⇒ Cikak = 0

⇒ ∆(a) =
∑

ri ⊗Bijrj ∈ TR ⊗ TR

Now for S(TR) ⊂ TR. Using lemma 4, S(TR) = TL = TR.

Thus TR is a Hopf subalgebra of A.

• (2)⇒ (3)
According to lemma 3, we have T ∈ TR, and all a ∈ TR satisfy Πφ(a)|φR >=
ε(a)|φR >. T was defined as the largest Hopf subalgebra of A whose ele-
ments satisfy Πφ(a)|φR >= ε(a)|φR >, so if TR is a Hopf algebra we must
have TR = T .

• (3)⇒ (1)
We already proved that T ⊂ TL. Thus if we assume T = TR we have
TR ⊂ TL.

Since TR = T , TR is a Hopf algebra. Thus S(TR) ⊂ TR. From lemma 4,
we know that S(TR) = TL. Thus TL ⊂ TR.

Done: TR = TL.

• (1)⇒ (4)
Obvious.

• (4)⇒ (1)
Lemma 4 taught us that TR = S(TL) and S(TR) = TL. Apply S to the
left and right of TL ⊂ TR to obtain TR ⊂ TL. Done: TR = TL.
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5.2.3 TR and TL: Hopf or not?

We are interested in finding out which condensates yield a right residual sym-
metry algebra TR that is a Hopf algebra. From proposition 1 we know that TR
is a Hopf algebra ⇐⇒ TL is the same Hopf algebra.

As an example, consider a phase with a generalized quantum double as its
Hopf symmetry: A = F (Hm) ⊗ Hel. We write elements of A as functions
f ∈ F (Hm ×Hel) (see appendix B). Now condense |φR > in an irrep ΠA

α of A.
We saw in lemma 2 that a function f ∈ F (Hm ×Hel) is an element of TR if it
satisfies

f(x1(x · gA), y1)|φR(y−1
1 x) >= f(x1, y1)|φR(x) > ∀x1 ∈ G, x, y1 ∈ Hel

where gA is the preferred element of A.
Analogously to the derivation of lemma 2, we can prove that the functions

f in TL are precisely those f that satisfy

f((x · gA)x1, y1)|φR(y−1
1 x) >= f(x1, y1)|φR(x) > ∀x1 ∈ G, ∀x, y1 ∈ Hel.

(5.19)
Proposition 1(4) tells us that proving that TR is a Hopf algebra is equivalent

to proving that TL ⊆ TR. Thus, to prove that TR is a Hopf algebra, we must
prove that if a function f satisfies (5.19), it automatically satisfies (5.12):

∀x1 ∈ Hm, ∀x, y1 ∈ Hel :

f(x1x · gA, y1)|φR(y−1
1 x) >= f(x1, y1)|φR(x) >

⇒ f((x · gA)x1, y1)|φR(y−1
1 x) >= f(x1, y1)|φR(x) > (5.20)

This implication is automatically satisfied if Hm is an abelian group, because
then x · gA and x1 commute. Thus, if the magnetic group Hm is abelian, TR is
necessarily a Hopf algebra.

Also, if gA is in the center of Hm, and is acted on trivially by all of Hel,
then (5.20) is satisfied. Electric condensates are an example, since gA = e for
electric condensates. e is in the center of Hm, and Hel acts trivially on e.

If the original phase is a D(H) phase, then we have similar results: TR is a
Hopf algebra if H is abelian, or if gA is in the center of H . We needn’t demand
that all of H acts trivially on gA, since this immediately follows from gA being
in the center of H .

5.2.4 Requirement on the condensate |φR >

If the condensate is |φR >, then our ground state is filled with the particles
in the state |φR >. We know that if an excitation of this ground state braids
nontrivially with the condensate, then it is connected to a half-line singularity
which costs a finite amount of energy per unit length. Thus, if |φR > were
to braid nontrivially with itself, then the ground would be filled with half-line
singularities, and it wouldn’t make sense to speak of a condensate. Thus we
require of our condensate |φR > that it braid trivially with itself:

R ◦ (|φR > ⊗|φR >) = |φR > ⊗|φR > . (5.21)
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Note that we are braiding indistinguishable particles, and as we discussed in
chapter 4, if |φR > has spin s, then the braiding picks up an extra phase factor
ei2πs. The spin factor should be taken into account when verifying the trivial
self braiding condition.

Recently fermionic condensates have received considerable theoretical and
experimental attention[22], and we could definitely treat those as well with our
methods. We may then relax the trivial self braiding condition, since identical
fermions don’t braid trivially with each other: they pick up a minus sign under
half-braiding.

5.2.5 Unconfined excitations and U
The trivial braiding conditions

Now that we’ve learned how to derive TR, we want to study the unconfined
excitations of TR. We found a criterion for determining whether an excitation
was confined: If the excitation doesn’t braid trivially with the condensate |φR >,
then it is confined.

The condensate is in a state |φR > of an irrep Πφ of A. Now consider an
excitation of the ground state, sitting in an irrep Ω of TR. Since the universal R
matrix R =

∑

(R) R(1)⊗R(2) ∈ A⊗A, we cannot simply act with R on states in
the tensor product representation Πφ⊗Ω, because we can only act with elements
of TR on states of Ω. We need a projection P of A onto TR, so that we can act
with (id⊗ P )R on states of Πφ⊗Ω. If A has an inner product, then we can use
this inner product to define the projection P. Take an orthonormal basis {ai}
of TR, and an orthonormal basis5 {bj} of T ⊥

R . Together, the ai and bj form an
orthonormal basis of A, such that the ai span TR, and for all i and j we have6

(ai, bj) = 0, (5.22)

where (a, b) denotes the inner product between a and b. Now take any a ∈ A,
and write

a =
∑

(ai)

(ai, a)a +
∑

(bj)

(bj , a)bj ≡ Pa + (1− P )a. (5.23)

Thus we have our projection: Pa =
∑

(ai)
(ai, a)a ∈ TR. It is known that this

projection is in fact independent of our choice of basis: given a vector space
with an inner product, the perpendicular projection onto a vector subspace is
uniquely defined.

Generalized quantum doubles F (Hm) ⊗ Hel come equipped with an inner
product (B.22):

(Pgh, Pg′h′) = δg,g′δh,h′ .

We use this inner product to define the projection operator P : A→ TR, just as
we discussed above. Now we can define the braiding of a state |v > of Ω with

5T ⊥
R

is the vector space consisting of all vectors in A perpendicular to all vectors in TR.
6We can find such a basis of A using the Gram-Schmidt orthogonalization procedure.
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|φR >:

Counterclockwise : τ ◦ (Ω⊗ΠA
α )(P ⊗ id)R(|v > ⊗|φR >) (5.24)

Clockwise : τ ◦ (Ω⊗ΠA
α )(P ⊗ id)R−1

21 (|v > ⊗|φR >) (5.25)

where in the second line we used (4.37): R−1 = τ ◦R−1
21 .

We want to find out which irreps Ω of TR braid trivially with the condensate,
thus the braiding has to be trivial for all |v > in the vector space on which Ω
acts. We still need a definition of ”trivial braiding”. A natural definition is: Ω
braids trivially with the condensate if it braids just like the vacuum irrep ε does.
This definition immediately implies that the vacuum irrep ε is unconfined, since
obviously ε braids like ε does. Thus the conditions for trivial braiding of an irrep
Ω of TR with the condensate |φR > living in the irrep ΠA

α of F (Hm) ⊗ Hel

become

(Ω⊗ΠA
α )(P ⊗ 1)R(1⊗ |φR >) = (Ω(1)ε⊗ΠA

α )(P ⊗ 1)R(1⊗ |φR >) (5.26)

(Ω⊗ΠA
α )(P⊗id)R−1

21 (1⊗|φR >) = (Ω(1)ε⊗ΠA
α )(P⊗id)R−1

21 (1⊗|φR >). (5.27)

Ω(1) is an n× n unit matrix, where n is the dimensionality of the irrep Ω.
If these equations are satisfied, then we can replace 1 ⊗ |φR > in these

equations by |v > ⊗|φR > for any state |v > of Ω. Thus if Ω satisfies the trivial
braiding conditions (5.26) and (5.27), then all the states |v > of Ω braid trivially
with |φR >.

An irrep Ω that satisfies these two equations is said to braid trivially with
the condensate. If an irrep doesn’t braid trivially with the condensate, it is a
confined excitation, attached to a string that goes out to infinity and costs a
finite amount of energy per unit length.

The unconfined symmetry algebra U

The trivial braiding equations (5.26) and (5.27) divide the irreps of TR into
confined and unconfined irreps. We cannot simply take the tensor product of
irreps of TR, since TR isn’t a Hopf algebra. The reason for the absence of a
coproduct is the presence of confined excitations. The condensate to the right
of a confined excitation takes on the value |φR >, while it takes on a different
value |φL > to the left of the excitation. Thus particles coming in from the
left see a different condensate: they are excitations of the residual symmetry
algebra of |φL >.

The situation is actually a little more complicated, because the value |φL >
of the condensate to the left of a state |v > of an irrep Ω of TR depends on the
explicit state |v > of Ω. Thus |φL > is not unique for an irrep Ω.

We will discuss how to deal with these issues later. For now, we note that
unconfined excitations do not suffer from such complications, since the conden-
sate takes on a constant value around unconfined excitations. Thus we expect
the fusion rules of unconfined excitations to be associative, if we only consider
their composition with other unconfined excitations. There should be a Hopf
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algebra U , called the unconfined symmetry algebra, whose irreps are precisely
the unconfined irreps, and whose fusion rules give the fusion channels of the
unconfined excitations into other unconfined excitations.

To obtain U , we first determine all unconfined irreps of TR. Then we take
the intersection of the kernels of all unconfined irreps7, and denote it by I.
Finally, we define the algebra

U = TR/I (5.28)

This is an algebra because I is an ideal of TR. Its irreps are precisely the
unconfined irreps.

Our claim is that U is a Hopf algebra. In all the cases we’ve worked out, this
is indeed the case. We have therefore stumbled upon a physically motivated
conjecture, and hopefully mathematicians will take up the challenge of proving
that U is always a Hopf algebra. We note that a proof would have to make use of
the trivial self braiding condition (5.21) that we formulated for the condensate
φ, because if this condition is dropped then we have found cases where U isn’t
a Hopf algebra.

Trivial braiding for F (Hm/B)⊗ N

In the next section, we will see that for the electric and defect condensates in a
phase with F (Hm) ⊗ Hel symmetry, the residual symmetry algebra TR takes
on a special form:

TR = F (Hm/B)⊗ N, (5.29)

where B is a subgroup of Hm, and N is a subgroup of Hel whose elements n ∈ N
satisfy

n · B = B. (5.30)

This last equation tells us that the action of n ∈ N on Hm/B is well defined:
F (Hm) ⊗ Hel is a generalized quantum double, so that the action of h ∈ Hel

on Hm satisfies (B.24):

∀g1, g2 ∈ Hm : h · (g1g2) = (h · g1)(h · g2).

Since N ⊂ Hel, all n ∈ N also satisfy this equation. The action of n on Hm/B
is given by:

n · (gB) = (n · g)(n · B) = (n · g)B. (5.31)

TR = F (Hm/B) ⊗ N is a transformation group algebra, so we can use the
canonical theorem on the irreps of transformation group algebras given in Ap-
pendix B. The irreps are labelled by an orbit T in Hm/B under the action of
N , and an irrep τ of the normalizer NT of a preferred element gT of T . We
denote irreps of F (Hm/B) ⊗ N by ΩT

τ . The conditions (5.26) and (5.27) for
ΩT
τ to braid trivially with |φR > in ΠA

α reduce to
∑

h∈B

|φR(Γ(h(xη · g−1
T ))x) >=

∑

h∈B

|φR(Γ(h)x) > (5.32)

7The kernel of a map is the set of elements which the irrep maps to zero. These elements
form an ideal I, meaning that if i ∈ I and a ∈ TR, then ia ∈ I and ai ∈ I.
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|φR(x) > '= 0,Γ(x · gA) ∈ N ⇒ τij(x
−1
η Γ(x · g−1

A )xζ)1NT (x−1
η Γ(x · g−1

A )xζ)

= τij(x
−1
η xζ)1NT (x−1

η xζ) (5.33)

where the xη and xζ are chosen representatives of left NT cosets of H .
The proof of these equations is rather lengthy. Some intermediate steps are

• Proof of (5.32)

R =
∑

h,g∈G

Pge⊗ PhΓ(g)

P (PhΓ(g)) = 1N (Γ(g))
1

|B|
PhBΓ(g)

∑

g,h

ε(P (Pge))Π
A
α (PhΓ(g))|φR(x) >=

∑

g∈B

1

|B|
|φR(Γ(g)x) >

ΩT
τ (P (Phg))i,j

η,ζ =
1

|B|
1N(Γ(g))

∑

NT

PhB(xη · gT )δg(xηnx−1
ζ )βi,j(n)

∑

h,g

ΩT
τ (P (Pge))

i,j
ζ,ηΠ

A
α (PhΓ(g))|φR(x) >

= ΩT
τ (1)i,j

ζ,η

∑

ε(P (Pge))Π
A
α (PhΓ(g))|φR(x) >

⇐⇒
1

|B|
τi,j(x

−1
η xζ)1NT (x−1

η xζ)
∑

h∈B

|φR(Γ(hxη · g−1
T )x) >

=
1

|B|
τi,j(x

−1
η xζ)1NT (x−1

η xζ)
∑

h∈B

|φR(hx) >

⇐⇒
∑

h∈B

|φR(Γ(h(xη · g−1
T ))x) >=

∑

h∈B

|φR(hx) >

• Proof of (5.33)
∑

h,g

ε(P (PhΓ(g−1)))ΠA
α (Pge)|φR(x) >= 1N(Γ(x · gA))|φR(x) >

∑

h,g

ΩT
τ (P (PhΓ(g−1)))ΠA

α (Pge)φ = ΩT
τ (1)

∑

h,g

ε(P (PhΓ(g−1)))ΠA
α (Pge)|φR(x) >

⇐⇒ 1N(Γ(x · gA))τi,j(x
−1
η Γ(x · g−1

A )xζ)1NT (x−1
η Γ(x · g−1

A )xζ)|φR(x) >

= 1N (Γ(x · gA))1NT (x−1
η xζ)τi,j(x

−1
η xζ)φ(x)

⇐⇒ |φR(x) >= 0 or Γ(x · g−1
A ) /∈ N

or τi,j(x
−1
η Γ(x · g−1

A )xζ)1NT (x−1
η Γ(x · g−1

A )xζ) = 1NT (x−1
η xζ)τi,j(x

−1
η xζ)

When the generalized quantum double is a quantum double D(H), the con-
ditions for an irrep ΩT

τ of TR to braid trivially with the condensate |φR >
become

∑

h∈B

|φR(hxηg
−1
T x−1

η x) >=
∑

h∈B

|φR(hx) > (5.34)
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|φR(x) > '= 0, xgAx−1 ∈ N ⇒ τij(x
−1
η xg−1

A x−1xζ)1NT (x−1
η xg−1

A x−1xζ)

= τij(x
−1
η xζ)1NT (x−1

η xζ). (5.35)

We will now use these equations to work out TR and U for various conden-
sates in generalized quantum doubles. We start with electric condensates, and
show that the conventional theory of electric condensates (Landau’s theory) is
reproduced. After that we study a variety of defect condensates.

Figure 5.3: The symmetry breaking scheme.

5.3 Electric condensates

Consider a phase described by a quantum double D(H), and condense a state
|φR > of an electric irrep Πe

α of D(H). Then equation (5.12) tells us that the
functionsf in TR satisfy

f(x1, y1)α(x−1y1) = f(x1, y1)α(x−1)

f(x1, y1)α(y1) = f(x1, y1)

f(x1, y1) = 0 ∨ y1 ∈ NφR

⇒ TR = F (H)⊗ NφR

(5.36)

where NφR is the stabilizer of |φR >, i.e. the set of elements h ∈ H that satisfy
Πe
α(h)|φR >= α(h)|φR >= |φR >. is the unit matrix. Since the condensate

is purely electric, the magnetic group is unbroken, thus all of F (H) is present
in TR. TR is a Hopf algebra in this case, which implies that the tensor product
of irreps is well defined, and associative.

Some defects are confined. The trivial braiding conditions (5.34) and (5.35)
tell us that only the defects g ∈ NφR are unconfined. Thus the unconfined
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symmetry algebra is
U = D(NφR). (5.37)

One of the consequences of electric symmetry breaking is the lifting of de-
generacies. Namely, excitations which used to be in the same irrep are now split
into different irreps, which may have different energies. This splitting of energy
levels is experimentally measurable, in principle.

To treat a phase with inversion symmetry, such as an achiral tetrahedral
nematic with F (T )⊗ Td symmetry, we need the formulas for electric symmetry
breaking of generalized quantum doubles F (Hm)⊗ Hel. The derivation of TR
and U after the condensation of a state |φR > of an electric irrep of a generalized
quantum double F (Hm) ⊗ Hel is analogous to the derivation given above for
a quantum double D(H). The result is

TR = F (G)⊗ NφR (5.38)

U = F (Γ−1(NφR))⊗ NφR (5.39)

For example, for F (T )⊗ Td, Γ−1(NφR) = NφR , so that U = F (NφR)⊗ NφR .
As an example, we’ve worked out all possible electric phase transitions from

F (T )⊗ Td, see table 5.1. Although we haven’t found references that systemat-
ically work out all electric condensates for all irreps as we have done, the theory
behind electric condensates is well known, so there results are not innovative.
Our innovation lies in the derivation of the theory of electric condensates from
the Hopf symmetry description of liquid crystals. A reference that offers a de-
tailed analysis of the theory of electric condensates in nematic liquid crystals is
[39].

Original symmetry Condensate in this TR U
irrrep of Td

F (T )⊗ Td A1 F (T )⊗ Td F (T )⊗ Td

A2 F (T )⊗ T F (T )⊗ T
E F (T )⊗ D2 F (D2)⊗ D2

E F (T )⊗ D2d F (D2)⊗ D2d

F1 F (T )⊗ S4 F (C2)⊗ S4

F1 F (T )⊗ C1v F (C1)⊗ C1v

F1 F (T )⊗ C3 F (C3)⊗ C3

F2 F (T )⊗ C1v F (C1)⊗ C1v

F2 F (T )⊗ C2v F (C2)⊗ C2v

F2 F (T )⊗ C3v F (C3)⊗ C3v

Table 5.1: Electric condensates in a tetrahedral nematic. We use the notation
for the irreps of Td given in [57], and the standard crystallographic notation for
groups (S4 is not the permutation group of 4 elements, it is a rotary-reflection
group).
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The transition from F (T ) ⊗ Td to F (D2) ⊗ D2 in table 5.1, induced by
the condensation of a vector in the irrep E of Td, is an example of spontaneous
symmetry breaking from an achiral to a chiral phase, since D2 does not contain
any inversions or reflections, while Td does. This may be the explanation of the
experimental discovery of a phase built up of achiral molecules, whose symmetry
is spontaneously broken to a chiral phase[48]. For a relevant discussion, see [39].

5.4 Defect condensates

There are different types of defect condensates which we wish to analyze. Con-
sider a phase described by a quantum double D(H), or a generalized quantum
double F (Hm)⊗ Hel, and pick a magnetic representation ΠA

1 (1 is the trivial
representation of the centralizer NA). A basis of the vector space on which this
irrep acts is given by {|gA

i >}, where the gA
i are the different defects in A. We

consider the following types of condensates:

• Single defect condensate
φ = |gA

i > (5.40)

• Class sum defect condensate

φ =
∑

gi∈A

|gi >=: |CgA > (5.41)

where CgA is a conjugacy class in the D(H) case, and an orbit in G under
the action of H in the F (Hm)⊗ Hel case. We denote the condensate by
|CgA >, where gA is the preferred element of A.

• Combined defect condensate

φ =
∑

gi∈E

|gi > (5.42)

where E is a subset of the defects in one class. We need only take the
elements to be within one class because, as we mentioned earlier, we need
only study the cases where the condensate is the sum of vectors in the
same irrep.

The single defect and class sum defect condensates are a special case of
combined defect condensate. The derivation of TR and U for a combined defect
condensate is rather technical, so we will discuss the results for the single defect
and class sum defect condensates first, and then derive the general formulae.

5.4.1 Single defect condensate

Consider a phase with D(H) symmetry, and condense |gA > in the magnetic
irrep ΠA

1 . We’re condensing the chosen preferred element in the conjugacy
class A. This is not a restriction on our choice of defect, since gA was chosen
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arbitrarily. The condensate |gA > satisfies the trivial self braiding condition
(5.21).

The function |φ >: H → that corresponds to the vector |gA > is (see
appendix B)

|φ(x) >= 1NA(x) ∀x ∈ H. (5.43)

The criterion (5.12) that defines TR becomes

f ∈ TR
⇐⇒ ∀x, x1, y1 ∈ H : f(x1xgAx−1, y1)1NA(y−1

1 x) = f(x1, y1)1NA(x)

∀x /∈ NA : f(x1, y1) = 0 ∀y1 /∈ NA

∀x ∈ NA : f(x1gA, y1) = f(x1, y1) ∀y1 ∈ NA

⇒ TR = F (H/(gA))⊗ NA (5.44)

where we define (gA) to be the smallest subgroup of H that contains gA.
This result for TR has a very natural interpretation: the residual electric

group is NA, the subgroup of H that doesn’t conjugate the defect. The magnetic
part H/(gA) is not necessarily a group. It consists of left cosets of (gA) =
{. . . g−1

A , e, gA, g2
A, . . .}. The defects are now defined modulo the condensate

defect |gA >. In other words, if a particle in a magnetic irrep of the residual
symmetry TR fuses with the condensate |gA >, it is left unchanged. Thus its
defect is defined modulo gA.

Using our previous propositions, we can prove that TR is a Hopf algebra
⇐⇒ (gA) is a normal subgroup of H ⇐⇒ H/(gA) is a subgroup of H .

The unconfined symmetry algebra is

U = D(NA/(gA)). (5.45)

If we condense another defect |kgAk−1 > in the conjugacy class A, the symmetry
algebras are 8:

TR = F (H/k(gA)k−1)⊗ kNAk−1 (5.46)

U = D(NA/k(gA)k−1). (5.47)

The results for a single defect condensate |gA > in a phase with F (Hm) ⊗
Hel symmetry are analogous:

TR = F (G/(gA))⊗ NA (5.48)

U = F (NA/(gA)) ⊗ NA/Γ((gA)). (5.49)

As an example, we work out all single defect condensates in an achiral tetra-
hedral nematic in table 5.2. The single defect condensates in an achiral octahe-
dral, and an achiral icosahedral nematic are given in appendix C.

8To prove this, use < kgAk−1 >= k < gA > k−1 and NkgAk−1 = kNAk−1.
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Single defect condensate in
A = F (T )⊗ Td K TR U

|− e > C1 F (T )⊗ Td F (T )⊗ Td

|[123] > C3 F (T/C3)⊗ C3 D(e)
|[(12)(34)] > C2 F (T/C2)⊗ D2 D(C2)

|− [(12)(34)] > C2 F (T/C2)⊗ D2 D(C2)

Table 5.2: Single defect condensates in a tetrahedral nematic.

5.4.2 Class sum defect condensates

Consider a phase with D(H) symmetry, and condense the sum of the defects in
the conjugacy class A:

φ =
∑

gA
i ∈A

|gA
i >=: |CgA > .

A class sum defect condensate satisfies the trivial self braiding condition (5.21):

R(|CgA > ⊗|CgA >) = R(
∑

gA
i ∈A

|gA
i > ⊗

∑

gA
k ∈A

|gA
k >)

=
∑

gA
i ∈A

(
∑

gA
k ∈A

|gA
i gA

k (gA
i )−1 >)⊗ |gA

i >

=
∑

gA
i ∈A

(
∑

gA
k ∈A

|gA
k >)⊗ |gA

i > .

= |CgA > ⊗|CgA >

In going from the second to the third line, we use the fact that gAg−1 = A for
any g ∈ H .

A class sum condensate doesn’t break the electric group at all! Namely,
conjugation acts trivially on a conjugacy class, since for any g ∈ H we have

g · φ = g · (
∑

gA
i ∈A

|gA
i >) =

∑

gA
i ∈A

|ggA
i g−1 >=

∑

gA
i ∈A

|gA
i >= φ. (5.50)

Thus this condensate is invariant under all residual symmetry transformations
in H . For this reason, in the case of a gauge theory this condensate is called a
gauge invariant magnetic condensate. Namely, in the D(H) phase of a gauge
theory, with H a discrete group, the only residual gauge transformations are
global, because H is discrete and the gauge transformation must be continuously
defined on the space (see chapter 2). These gauge transformations act trivially
on the class sum defect condensates, thus these condensates are indeed gauge
invariant.
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The residual and unconfined symmetry algebras are

TR = F (H/K)⊗ H (5.51)

U = D(H/K), (5.52)

where K is the smallest subgroup of H that contains the class A. From this
definition, it follows that K is a normal subgroup of H . Thus H/K is a group.

If we condense a class sum defect condensate |CgA > in a generalized quan-
tum double F (Hm)⊗ Hel, the outcome is

TR = F (Hm/K)⊗ Hel (5.53)

U = F (Hm/K)⊗ Hel/Γ(K). (5.54)

As an example, we work out all class sum defect condensates in an achiral
tetrahedral nematic in table 5.3. The class sum defect condensates in an achiral
octahedral, and an achiral icosahedral nematic are given in appendix C.

Defect conjugacy classes of
A = F (T )⊗ Td K TR U

|C−e > C1 F (T )⊗ Td D(e)
|C[123] >, |C−[123] >, |C[124] >, |C−[124] > T F ( 3)⊗ T D(e)

|C[(12)(34)] > D2 F ( 3)⊗ Td D( 3)

Table 5.3: Class sum defect condensates in a tetrahedral nematic.

5.4.3 Combined defect condensates

The formal derivation

We will now derive all the formulas for defect condensates we have come across.
Start with a phase with F (Hm)⊗ Hel symmetry. Choose an irrep ΠA

α , and
consider a condensate of the form

∑

gi∈E |gi >, with E a subset of the defects
in one conjugacy class.

The demand of trivial self braiding (5.21) gives

R(
∑

gi∈E

|gi > ⊗
∑

gk∈E

|gk >) =
∑

gi∈E

|gi > ⊗
∑

gk∈E

|gk >

⇐⇒
∑

gk∈E

∑

gi∈E

|gigkg−1
i > ⊗|gi >=

∑

gi∈E

∑

gk∈E

|gi > ⊗|gk >

⇐⇒ ∀gi ∈ E : {gigkg−1
i }gk∈E = {gk}gk∈E .

It interesting in itself to study how many different defect condensates satisfy
this criterion. Defect-antidefect condensates |g > +|g−1 > always satisfy this
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criterion9, as do any set of commuting elements in a certain conjugacy class,
and class sum defect condensates. This trivial self braiding condition will play
a crucial role in determining TR.

The derivation of TR and U is rather formal. We give the results first, and
then we derive them:

TR = F (Hm/K)⊗ ME

U = F (NE/K)⊗ ME/Γ(K).

For the derivation, we must introduce various definitions. Define the follow-
ing subset of H (which needn’t be a subgroup):

VE ⊂ Hel : VE = {xiNA}gi∈E (5.55)

where NA ⊂ Hel is the normalizer of the chosen preferred element gA in A, and
xi satisfies xigAx−1

i = gi. In function notation, the condensate wavefunction is

|φR(x) >= 1VE (x) ∀x ∈ H. (5.56)

Define the following subgroup of Hel:

ME ⊂ Hel : ME = {m ∈ H : {m · gi}gi∈E = {gi}gi∈E} (5.57)

= {m ∈ Hel : mVE = VE}. (5.58)

ME is composed of the global symmetry transformations that leave the conden-
sate invariant.

Also define

NE ⊂ Hm : NE = {n ∈ Hm : {ngin
−1}gi∈E = {gi}gi∈E}. (5.59)

Using (B.37): Γ(g1) · g2 = g1g2g
−1
1 ∀g1, g2 ∈ Hm, we can prove that

Γ−1(ME) = NE and Γ(NE) = ME. (5.60)

From this equation we can derive that the elements of ME satisfy

|φR(mx) >= |φR(x) > ∀m ∈ ME, x ∈ Hel. (5.61)

Finally, we need one more definition:

K ⊂ Hm : K = ({gi}gi∈E), (5.62)

where ({gi}gi∈E) is the smallest subgroup of Hm that all the gi ∈ E, i.e. the
defects in the condensate.

The trivial self braiding equation (5.55) implies that K ⊂ NE. Thus, ac-
cording to (5.60) and (5.61)

∀k ∈ K : Γ(k) ∈ME and φ(Γ(k)x) = φ(x). (5.63)

9Note that g and g−1 needn’t be in the same conjugacy class.
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The residual symmetry algebra TR is given by the set of functions f ∈ F (Hm×
Hel) that satisfy (5.12):

f(x1(x · gA), y1)1VE (y−1
1 x) = f(x1, y1)1VE (x). (5.64)

We will now prove that

TR = F (Hm/K)⊗ ME . (5.65)

Note that G/K need not be a group.
To prove (5.65), take y1 /∈ME . Then ∃ x ∈ VE such that y−1

1 x /∈ V . Namely,
if such an x doesn’t exist, then y−1

1 V = V , thus y−1
1 ∈ME according to (5.58),

and y1 ∈ ME.
Substitute an y1 /∈ ME , and x with y−1

1 x /∈ V , into (5.64). This gives

0 = f(x1, y1)∀x1 ∈ Hm if y1 /∈ME ,

so that TR ⊂ F (Hm)⊗ ME .
Now substitute y1 ∈ ME into (5.64): 1VE (y−1

1 x) = 1VE (x) so the equation
implies f(x1(x · gA), y1) = f(x1, y1) for all x1 ∈ G, x ∈ VE . Acting with all the
x ∈ VE on gA gives us all the gi ∈ E, thus f(x1gi, y1) = f(x1, y1) for all gi ∈ E.
Thus, in the first component f must be constant on left K cosets, since K is
generated by the gi. Thus TR = F (Hm/K)⊗ ME .

U is a little harder to extract. It is given by

U = F (NE/K)⊗ ME/Γ(K) (5.66)

For the case of a quantum double D(H)

U = D(NE/K). (5.67)

To prove (5.66) and (5.67), we must find out which irreps ΩT
τ of F (Hm/K)⊗

ME braid trivially with the condensate φ in the irrep ΠA
α of F (Hm)⊗ Hel.

Our residual symmetry algebra TR is of the form (5.29), with B = K and
N = ME . Thus we can use the conditions (5.32) and (5.33) to determine the
irreps of TR that braid trivially with the condensate. The unconfined symmetry
algebra U is then the Hopf algebra whose irreps are precisely the unconfined
irreps.

Equation (5.32) states that for an unconfined irrep ΩT
τ , with gT the preferred

element in the orbit T :

∑

k∈K

|φR(Γ(k(xη · g−1
T ))x) >=

∑

k∈K

|φR(Γ(k)x) > ∀x ∈ Hel, (5.68)

where the xη are chosen representatives of left NT cosets in ME .
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Using (5.63), equation (5.68) becomes
∑

k∈K

|φR(Γ(xη · g−1
T )x) >=

∑

k∈K

|φR(x) > ∀x ∈ Hel

⇒ |φR(Γ(xη · g−1
T )x) >= |φR(x) > ∀x ∈ Hel

⇒ Γ(xη · g−1
T ) ∈ME

⇒ Γ(xη · gT ) ∈ ME

⇒ xη · gT ∈ NE using (5.60).

Choosing xη = e, we get gT ∈ NE. (5.32) is actually equivalent to gT ∈ NE in
this case, because xη · gT ∈ NE follows from gT ∈ NE. To prove this, note that
xη ∈ME , so {xη · gi}gi∈E = {gi}gi∈E. Thus

{(xη · gT )gi(xη · gT )−1}gi∈E = {(xη · gT )(xη · gi)(xη · gT )−1}gi∈E

= {(xη · (gT gigT )−1}gi∈E = {xη · gi}gi∈E = {gi}gi∈E

⇒ xη · gT ∈ NE

In proving the third equal sign we used the fact that gT ∈ NE .
Thus (5.32) has taught us that for an irrep ΩT

τ to be unconfined, we must
have gT ∈ NE . The magnetic part of the unconfined symmetry algebra U is
therefore F (NE/K). From the definition of NE and K, we can prove that

∀n ∈ NE : nKn−1 = K. (5.69)

Thus K is a normal subgroup of NE . NE/K is the unconfined magnetic group.
Equation (5.33) further restricts ΩT

τ :

|φR(x) > '= 0, Γ(x · gA) ∈ME

⇒ τij(x
−1
η Γ(x · g−1

A )xζ)1NT (x−1
η Γ(x · g−1

A )xζ) = τij(x
−1
η xζ)1NT (x−1

η xζ)

Choose an x such that |φR(x) > '= 0. This is equivalent to saying that x·gA = gk

for some gk ∈ E. Now choose xη = xζ in (5.33):

τij(x
−1
η Γ(g−1

k )xη)1NT (x−1
η Γ(g−1

k )xη) = τij(e) = δij .

Now x−1
η Γ(g−1

k )xη = Γ(x−1
η ·g−1

k ) = Γ((x−1
η ·gk)−1). Since xη ∈ME and gk ∈ K,

we have (x−1
η · gk) ∈ K, so (x−1

η · gk)−1 ∈ K. Thus Γ((x−1
η gk)−1) ∈ Γ(K). Now

Γ(K) acts trivially on the magnetic group NE/K, due to (B.37). Thus neces-
sarily Γ(K) ⊂ NT , since the elements of Γ(K) are normalizers of all elements of
NE, so they are also normalizers of gT . This means that 1NT (x−1

η Γ(g−1
k )xη) = 1.

5.70) becomes

τij(x
−1
η Γ(g−1

k )xη) = τij(Γ(x−1
η · g−1

k )) = τij(Γ(x−1
η · gk))−1 = δij .

⇒ τij(Γ(x−1
η · gk)) = δij .

Observe that the set {x−1
η · gk}η,k = E. Since τ must send all Γ(x−1

η · gk) to the
unit matrix , τ must send all of Γ(K) to the unit matrix (since K is generated
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by E). We conlude that Γ(K) is in the kernel of τ , and the electric group is
ME/Γ(K).

At the start of this last derivation, we filled in xη = xζ in (5.33). The case
xη '= xζ gives nothing new, because

1NT (x−1
η Γ(x · g−1

A )xζ) = 1NT (x−1
η Γ(x · g−1

A )xηx
−1
η xζ) = 1NT (x−1

η xζ), (5.70)

where in the last line we used a fact that we proved earlier: x−1
η Γ(x·gA)xη ∈ NT .

Thus (5.33) becomes

τij(x
−1
η Γ(x · g−1

A )xζ)1NT (x−1
η xζ) = τij(x

−1
η xζ)1NT (x−1

η xζ)

⇐⇒ τij(x
−1
η Γ(x · g−1

A )xη)τij(x
−1
η xζ)1NT (x−1

η xζ) = τij(x
−1
η xζ)1NT (x−1

η xζ)

This is equation is satisfied if τij(x−1
η Γ(x · g−1

A )xη), which we already proved.
Summarizing, the unconfined magnetic group is NE/K, and the unconfined

electric irreps are those that have Γ(K) in their kernel, which means that the
electric group is ME/Γ(K). Thus we have derived (5.66). Had we started with
a quantum double D(H) (H = Hel = Hm), the unconfined symmetry algebra
becomes U = D(NE/K), because in that case ME = NE .

Examples

We will now show some examples of combined defect condensates. We give all
the defect condensates in a tetrahedral nematic, see table 5.4. By looking at
this table, and looking at all the other tables of condensates in this chapter, we
note that two different condensates never give simultaneously the same TR and
U . Some condensates give the same unconfined symmetry algebra, but TR is
then different. Thus there are differences in the spectrum, be it the unconfined
spectrum of the hadronic spectrum, of different condensates, so that in principle
they are distinguishable. However, it is not at all obvious that we can set up an
experiment that distinguishes between the different condensates. The problem
with measuring defect condensates, for example, is that the conventional mea-
suring techniques can measure the electric symmetry group (by looking at Bragg
reflections, for example), but as far as we know there are no techniques yet to
measure the magnetic symmetry group. If such techniques were developed, then
we could use our tables to determine which condensates we are dealing with.

In appendix C, we work out all defect condensates from an achiral octahedral,
and an achiral icosahedral nematic.

For example, table 5.4 predicts a defect-mediated phase transition from an
octahedral nematic F (O) ⊗ O to a biaxial nematic D(D2). Note that this
biaxial nematic is rather special, namely there is no 2π defect. This is not
because this defect is confined, but because it’s condensed (since it’s an element
of K, or more to the point because |[12][34] > ×|[12][34] >= | − e >, thus the
2π defect is the outcome of fusion of the condensed defect with itself).

We see a general phenomenon appear in defect condensates: the electric
group may be broken, or partially broken, or unbroken (if we condense a class
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Combined defect condensate in K TR U
A = F (T )⊗ Td

|[123] > +|[132] > C3 F (T/C3)⊗ C3v C1v

|[(12)(34)] > +|[(13)(24)] > D2 F (T/D2)⊗ C2v 1v

{|[(12)(34)] > +|[−(12)(34)] > + D2 F (T/D2)⊗ D2d C1v

+|[(13)(24)] > +|− [(13)(24)] >}
|[(12)(34)] > +|[−(12)(34)] > C2 F (T/C2)⊗ D2d F (C2)⊗ C2v

|[(12)(34)] > +|[(13)(24)] > +|[(14)(23)] > D2 F ( 3)⊗ T D( 3)

Table 5.4: Combined defect condensates in an achiral tetrahedral nematic (that
satisfy trivial self braiding). In this table, A is the original symmetry algebra,
K is the smallest subgroup of Hm that contains all the defects gi that are in
the condensate, TR is the residual symmetry algebra, and U is the unconfined
symmetry algebra. No two defect condensates have simultaneously the same TR
and U . This in principle the different defect condensates are distinguishable.

sum defect condensate for example). More often than not, most electric particles
are confined, which we notice by looking at the unconfined electric groups in U .

Now that we have set up the mathematical theory behind symmetry break-
ing, and applied it to defect condensates, we must physically interpret our re-
sults. There are several aspects of defect condensates we would like to address.
First of all, when we discussed defect condensates in chapter 3 we noticed that
they restore symmetries. In the next section we will show how symmetry restora-
tion fits into our formalism. Secondly, we mentioned three defect condensates:
the Kosterlitz-Thouless condensate in the XY-model, the dislocation condensate
in hexagonal crystals giving the hexatic phase, and the disclination condensate
in the hexatic phase giving the isotropic phase. We will show that these phase
transitions follow naturally from our formalism.

There is one last phenomenon we will address: the Abrikosov lattice in type
II superconductors, which is a phase where the defects sit on a lattice, thus only
restoring the translation group partially. This phase has an analog in liquid
crystals, called the Twist-Grain Boundary Phase[15]. It consists of slabs of
smectic with different orientations, and separated by an array of parallel screw
dislocations.

5.5 Defect-mediated melting

Now that we’ve set up a mathematically and physically sensible theory of Hopf
symmetry breaking, the time has come to take a closer look at defect conden-
sates. The defect condensates discussed in chapter 3 restore electric symmetries.
A careful analysis of the unconfined particles reveals that our theory actually
predicts symmetry restoration! We will illustrate this with two simple but cru-
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cial examples.

Global internal abelian symmetry: Kosterlitz-Thouless condensate

The simplest example of defect condensate we have come across until now is the
Kosterlitz Thouless phase transition in the XY model. In the isotropic phase,
the internal symmetry group is SO(2). Representations of SO(2) are labelled by
a n ∈ . For reasons that will become clear shortly, we also introduce particles
that transform under projective representations of SO(2), which is equivalent to
saying they transform under representations of the universal covering group
of SO(2). The representations of are labelled by a real number λ ∈ , giving
the irrep ρλ:

ρλ(x) = eiλx ∀x ∈ .

If λ ∈ , the particle is bosonic, because ρλ(2π) = 1. If λ ∈ + 1
2 , the irrep

is fermionic, because ρλ(2π) = −1. For any other value of λ, the irrep is an
abelian anyon.

In the low temperature phase, SO(2) symmetry is spontaneously broken to
{e}. In the covering group, is broken to . The residual symmetry transfor-
mation n ∈ are multiples of the 2π rotation. The Hopf symmetry of this phase
is D( ), because the fluxes are labelled by Π1( / ) = Π0( ) = . The electric
irreps are now labelled by µ ∈ U(1), labelling irreps of . However, we can
still consider all the electric irreps of the isotropic theory! In other words, we
can restrict the irreps of to , giving representations of , some of which are
equivalent. We need to take all the electric irreps along, because we want to see
which irreps of the isotropic phase are unconfined in the various phases. Note
that the Goldstone boson transforms trivially under , because 2π rotations
don’t affect it.

In this D( ) phase, the Kosterlitz-Thouless condensate is a condensate of
the defect |1 >. After |1 > has condensed, the residual phase has no defects,
since according to (5.45):

U = D( / ) = D(e).

What about the electric irreps? The only irreps of that braid trivially with
the condensate |1 > are those labelled by an integer n ∈ :

ρn(x) = ei2πnx ∀x ∈ .

So the residual theory has no defects, and electric irreps are labelled by n ∈ .
A theory with no defects and charges labelled by n ∈ is an SO(2) theory!
This suggests that the symmetry has been restored to SO(2), i.e. the original
theory has been compactified, and the electric charge is now quantized. More
generally, condensing the |n > defect gives a theory with n defects (defects
defined modulo n), and the electric irreps are labelled by k

n , k ∈ , signalling
that the symmetry is restored to U(1)/ n.
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Local internal abelian symmetry: defect condensates in superconduc-
tors

In the case of a system with local U(1) symmetry, such as a superconductor
the analysis is exactly the same as the analysis above. In a superconductor, the
fermion field is denoted by Ψ, its conjugate by Ψ. The unbroken phase has U(1)
as a local symmetry group, and the local symmetry transformations are given
by

Ψ $→ eiα(x),Ψ $→ e−iα(x)

Aj(#x) $→ Aj(#x) + ∂jα(#x).

(5.71)

The Cooper pair condensate < ΨΨ > breaks the U(1) symmetry to 2. The
defects in this theory are labelled by Π1(U(1)/ 2) = , and all charges of the
original theory are present. Condensing |1 > restores U(1)/ 2 - U(1), thus
partially restoring the gauge group, and destroying superconductivity.

Global external abelian symmetry: dislocation condensate in a hexag-
onal crystal

We neglected external symmetries in the above discussion, and the analysis is
slightly different in the case of external symmetries. To illustrate this, con-
sider the translational group in two dimensions, 2. The representations ρ!kare

labelled by a momentum vector #k = (kx, ky) ∈ 2:

ρ!k(x, y) = ei(kxx+kyy). (5.72)

Imagine a density wave in the y-direction (0, a) condenses, giving a smectic with
× symmetry. The defects are labelled by Π1( 2/ × ) = Π0( × ) = . The

electric irreps are irreps of × , and are labelled by (kx, ky), with kx ∈ , ky ∈
U(1). In the discussion of the XY model above, we considered the irreps of the
isotropic phase in our ordered phase. In this case, we cannot, because the irreps
of that are not irreps of U(1) correspond to momenta ky in the y-direction
that are larger than the ultraviolet cutoff. Namely, in our smectic we have a
lattice spacing a in the y-direction, and we only allow for electric irreps ρ(kx,ky)

with ky < 2π
a , i.e. we require ky to be in the first Brillouin zone. We have

to introduce the lattice spacing to make the theory physically sensible, namely
we need the cutoff to make correlation functions converge. Note that momenta
outside the first Brillouin zone correspond to irreps of × that are equivalent
to some irrep with momentum inside the first Brillouin zone, so we only need
charges in the first Brillouin zone. But we make the stronger statement that
momenta outside the first Brillouin zone are forbidden. So the electric irreps are
labelled by #k ∈ × SO(2), with SO(2) = [0, 2π

a ). The phonons of the crystal

are electric irreps whose momentum #k = (kx, ky) satisfies kx = 0.
Now condense the |1 > defect. The residual theory has no defects, and the

unconfined electric irreps satisfy ky = 0. Thus, all phonons are confined, since
their charge now satisfies kx = ky = 0.
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So the residual theory has no defects, and all the phonons are confined. This
signals a return to the isotropic theory. Note the difference with the analysis
of the XY model. In the XY model, we studied the fields that transformed
under a representation of the isotropic theory. The Goldstone mode was not
confined, but the symmetry was restored to SO(2). This means that the original
electric condensate was destroyed, and even though the Goldstone mode wasn’t
confined the symmetry was restored. In the case of translational symmetry,
the ultraviolet cutoff imposes a restriction on the possible momenta. After
condensation of the |1 >, all the Goldstone modes are confined, signalling a
return to the isotropic theory.

Now that we’ve seen how the symmetry is restored, we can explain what
happens in the Abrikosov lattice, for example. The symmetry is first fully
restored by the defect condensate, and then it is broken to a lattice, by the
condensation of density waves, just as in the formation of the smectic.

Global external nonabelian symmetry: defect condensates in hexag-
onal crystals

We still have to explain the hexatic phase. We start with a hexagonal crystal
whose Hopf symmetry is

A = F ( 2
! ( 6 × )) ⊗ (( 2

! D6)× ). (5.73)

Now consider a class sum defect condensate

|(1, 0) > +|(0, 1) > +|(−1, 1) > +|(−1, 0) > +|(0,−1) > +|(1,−1) > . (5.74)

By drawing the condensate, we can ”see” what TR and U will be (see fig. 5.4)

TR = F ( 2
! ( 6 × )/ 2)⊗ (( 2

! D6)× ) (5.75)

U = F ( 6 × ) ⊗ (D6 × ) (5.76)

6 × corresponds to disclinations, and D6 × corresponds to rotations and
inversions. The part of D6 × corresponds to multiples of the 2π rotation.

Figure 5.4: The defect condensate |(1, 0) > +|(0, 1) > +|(−1, 1) > +|(−1, 0) >
+|(0,−1) > +|(1,−1) > with hexagonal symmetry.

Note that the translational symmetries have completely disappeared. There
are no more dislocations, and the translational phonons are confined. As we
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discussed earlier, this signals the restoration of translational symmetries, thus
the unconfined and residual symmetry algebras of the hexatic phase are actually

TR = F ( 2
! ( 6 × )/ 2)⊗ (( 2

! D6)× ) (5.77)

U = F ( 6 × )⊗ ( 2
! (D6 × )). (5.78)

Thus we’ve understood the phase transition from the hexagonal crystal to
the hexatic phase. We now wish to comment on a phase described in [73]:
the topological nematic. This is a two dimensional phase obtained from an
isotropic crystal, where dislocations have condensed, but rotational symmetry
is completely unbroken. In our defect condensate that led to the hexatic phase,
the residual rotational symmetry group was 6, but in the topological nematic
the rotational symmetry group is U(1). In our discussion on crystals in chapter
3, we came to the conclusion that an isotropic crystal only makes sense in the
continuum limit, because by definition a crystal is not isotropic. However, in
the continuum limit one can definitely have a Lagrangian of a crystal in terms
of the displacement field #u(#x), that is invariant under ISO(2) = 2 ! SO(2).
It turns out (see chapter 3) that the two dimensional hexagonal and isotropic
crystals have exactly the same Lagrangians, so we could consider this isotropic
crystal to be the continuum limit of a hexagonal crystal.

Now the topological nematic is a phase obtained by a defect condensation in
the isotropic crystal. To obtain a defect condensate that fully restores the rota-
tional symmetry group SO(2), we must first realize that in the continuum limit
the dislocations carry a continuous label. The Burgers vector of a dislocation
in the continuum limit is characterized by a two-dimensional vector |(a, b) >,
with a, b ∈ 2. Thus a dislocation condensate that leads to restoration of the
full rotational symmetry group is given by

|φR >=

∫ 2π

0
dθ|(cosθ, sinθ) > . (5.79)

In a sense, this condensate is the continuum limit of the class sum defect con-
densate we considered in the hexatic phase. It is indeed a class sum defect
condensate of the isotropic crystal. Thus our analysis naturally incorporates
the topological nematic. Furthermore, our analysis allows for partial restora-
tion of the symmetry group, by considering defect condensates that are not class
sum.

We now return to the hexatic phase. We will analyze the phase transition
from the hexatic phase to the isotropic phase. The hexatic phase is a phase
described by the Hopf algebra

A = F ( 6 × )⊗ ( 2
! (D6 × )).

The condensate is |r >, the 2π
6 rotation. The outcome is

TR = F (e)⊗ ( 2
! ( 6 × )) (5.80)

U = 2. (5.81)
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Our formalism also allows for other phase transitions. Consider, for example,
the defect-antidefect condensate

|(1, 0) > +|(−1, 0) > .

The residual and unconfined symmetry algebras are

TR = F (( 2
! 6)× )/0× ) ⊗ ( 2

! ( 2 ! 2)) (5.82)

U = F (( ! 2)× )⊗ ! ( 2 ! 2). (5.83)

The dislocations along the (1, 0) direction are condensed, and the phonons with
momentum in that direction are confined. Thus the symmetry is restored in
that direction, so that

TR = F (( 2
! 6)× )/0× ) ⊗ ( 2

! ( 2 ! 2)) (5.84)

U = F (( ! 2)× )⊗ (( × ) ! ( 2 ! 2)). (5.85)

This is a 2D smectic. Remember that in the smectics we discussed in chapter
4 the Goldstone modes corresponding to oscillations of the rods within a plane
were massive, because of the analog of the Higgs phenomenon. It was crucial
that the symmetry group of the rods was not internal, but coupled to external
symmetries. In the 2D smectic we have uncovered now, there are no internal
symmetries. However, the defect-antidefect pairs in our condensate behave like
rods in a conventional smectic. Note that they are coupled to external symme-
tries, in fact they arise due to the breaking of external symmetries. Thus we
also expect the Goldstone modes associated with the oscillation of our ”rods”
to be massive, and only the longitudinal oscillation of the planes to be massless.

We note that our analysis has naturally led us to the quantum smectic
discussed in [73].

5.6 Defining a coproduct for TR
TR is not always a Hopf algebra, because the coproduct of A does not necessarily
satisfy ∆(TR) ⊂ TR ⊗ TR. It does satisfy ∆(TR) ⊂ A ⊗ TR. This means that
we cannot take the tensor product of irreps of TR, in other words we cannot
fuse two particles in TR. We can only fuse particles in TR with particles of A
coming in from the left.

The reason we can’t fuse particles of TR is that some excitations of the
condensate |φR > are confined. The condensate takes on the value |φR > to
the right, and |φL > '= |φR > to the left of a confined excitation, in an irrep
Ω of TR. Thus particles coming in from the left see the condensate |φL >.
Thus particles to the left of are excitations of |φL >, and they transform under
irreducible representations of the right residual symmetry algebra of |φL >.

Matters are complicated further by the observation that given two states
|v1 > and |v2 > in a confined irrep Ω, the value of the condensate to the left of
|v1 > need not be equal to the value the condensate takes to the left of |v2 >.
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Thus the condensate does not take a well defined value to the left of the irrep
Ω.

One possible interpretation of a configuration with a confined excitation Ω,
is that the condensate has only condensed to the right of Ω. To the left of Ω the
system is in the unbroken phase, with A symmetry. Thus particles to the left
of Ω are irreps of A. We can fuse particles in irreps Π of A with Ω, and look
at the fusion rules. The outcome of this fusion tells us what the particle in the
irrep A can become when it enters the ordered phase.

This interpretation of a confined excitation is reasonable, but it is unsatis-
factory. Namely, we still want to be a able to fuse the irreps of the residual
symmetry algebra. There should be a finite set of quantum numbers in the
broken phase, and we should be able to tell which of these quantum numbers
can form hadronic composites. We want to be able to talk about the fusion
of the quantum numbers in the broken phase without bringing in the quantum
numbers of A. We know that if TR is a Hopf algebra, we can fuse irreps of TR.
We will now discuss how to fuse irreps of TR when TR is not a Hopf algebra.

A purely magnetic phase

Let us first study a simple system that only has magnetic degrees of freedom.
Its symmetry algebra is F (H), with H some finite group. A basis of H is given
by {Ph : h ∈ H}, where Ph is a projection operator. It measures the flux of a
configuration : if the flux of a state |v > is h, then Ph · |v >= |v >. If the flux
of |v > isn’t h, then Ph|v >= 0.

Now consider a single defect condensate |φR >= |g >. Then using (5.48)
(with NA = {e}) we find for the residual symmetry algebra:

TR = F (H/(g)), (5.86)

where (g) is the subgroup of H generated by |g >. Let us assume that (g) is
not a normal subgroup of H , so that TR is not a Hopf algebra. A basis of TR
is given by {Phi(g) : hi ∈ F}, where F consists of a set {hi} of representatives
of the left (g) cosets in H . These projection operators measure defects modulo
the condensed defect |g >. This is a consequence of our definition of operators
in TR: the operators in TR are the operators that do not notice when a particle
fuses with the condensate |g >.

If we apply the coproduct ∆ on a basis element Phk(g) of TR, we obtain

∆(Phk(g)) =
∑

hi∈F

Phk(g)h−1
i
⊗ Phi(g) =

∑

hi∈F

Phkh−1
i (high−1

i ) ⊗ Phi(g). (5.87)

This coproduct has a natural interpretation: if a projection operator Phi(g)

measures a defect on the right, then the projection operators on the left measure
defects modulo hi(g)h−1

i . Thus φL = |high−1
i >: the condensate on the left is

conjugated by hi. Note that the defect of the particle that Phi(g) measured is
only defined modulo g, but this doesn’t affect |φL >, since |higng(hign)−1 >=
|high−1

i > ∀n ∈ .
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We assume that there is a confined excitation |v > in an Ω of TR, and that
Phi(g)|v >= |v >. We have a condensate |φL > to the left of the confined
excitation measured by Phi(g) that is different from the condensate |φR > to
the right. We can, however, redefine our projection operators to the left of the
confined excitation. The projection operators to the left of |v > are defined
modulo |high−1

i >. A basis of these projection operators is {Ph′
k
(high−1

i ) : h′
k ∈

J}, where J consists of a set {h′
k} of representatives of the left (high−1

i ) cosets
in H .

To every projection operator Ph′
k(high−1

i ), we associate a projection operator

P ′
hi(g),h′

k(g) in TR:

P ′
hi(g),h′

k(g) = Ph−1
i h′

k(high−1
i )hi

= Ph−1
i h′

khi(g). (5.88)

Using this definition, we can define a coproduct ∆′ for TR:

∆′(Phk(g)) =
∑

hi∈F

P ′
hi(g),h′

k(g) ⊗ Phi(g) =
∑

hi∈F

Ph−1
i h′

khi(g) ⊗ Phi(g). (5.89)

∆′ is a map from TR to TR ⊗ TR. One can check that ∆′ is an algebra
morphism, i.e.

∆′(Phj(g)Phk(g)) = ∆′(Phj(g))∆
′(Phk(g)). (5.90)

We can use ∆′ to fuse two irreps Ω2 and Ω1 of TR:

Ω2 ⊗ Ω1(a) = (Ω2 ⊗ Ω1) ◦∆′(a). (5.91)

∆′ is not coassociative, i.e.

(∆′ ⊗ id) ◦∆′ '= (id⊗∆′) ◦∆′. (5.92)

This implies that the tensor product of three irreps Ω3, Ω2 and Ω1 of TR is not
associative:

(Ω3 ⊗ Ω2)⊗ Ω1 '= Ω3 ⊗ (Ω2 ⊗ Ω1). (5.93)

The interpretation of this non coassociativity is as follows: when we take the
tensor product Ω2⊗Ω1, Ω2 is defined with respect to the condensate to the right
of Ω1. If a third particle Ω3 comes in from the left, then it becomes defined with
respect to the condensate between Ω2 and Ω1. So we have a natural ordering for
the tensor product, namely we must take (Ω3⊗Ω2)⊗Ω1, which corresponds to
having Ω1 in the system, then bringing in Ω2 from the left, and then bringing in
Ω3. Ω3 ⊗ (Ω2 ⊗ Ω1) is unphysical, because it isn’t clear how the particles were
put in the system.

The general case

In general, if we bring in Ω1,Ω2, . . . ,Ωn from the left in that order, the resulting
configuration is ((. . . (Ωn ⊗ Ωn−1) ⊗ Ωn−2) ⊗ . . .) ⊗ Ω2) ⊗ Ω1. We have been
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forced to introduce an ordering in our fusion. This ordering corresponds to an
ordering in the coproduct:

(∆′ ⊗ id⊗ . . .⊗ id) ◦ . . . ◦ (∆′ ⊗ id⊗ id) ◦ (∆′ ⊗ id) ◦∆′(a). (5.94)

Once we have defined a non coassociative coproduct ∆′, we can fuse confined
excitations TR, and study the possible hadronic composites. To define a ∆′, we
need a linear map γ with the following properties:

γ : A⊗ TR $→ A⊗ TR
∀a, b,∈ TR : γ(∆(ab)) = γ(∆(a))γ(∆(b))

γ|∆(TR) : ∆(TR) $→ TR ⊗ TR is injective

γ(∆(amodI)) = ∆(a)mod(I ⊗ I)

where I was a subideal of TR such that U = TR/I. The last demand is equiva-
lent to demanding that we do not alter ∆ at the level of U . Then we define

∆′(a) = γ ◦∆(a). (5.95)

We can be more explicit in the case of a condensate in a phase described by a
generalized quantum double F (Hm)⊗ Hel, when the right residual symmetry
algebra TR is of the form (5.29) : TR = F (Hm/B) ⊗ N . We’ve seen that TR
is of this form for electric condensates, and defect condensates. The action of
N on B is well defined, because N acts trivially on B. For every orbit Ai in
G/B under the action of N , pick a preferred element gi. Now define a map
σ : Hm/B $→ Hm such that σ(giB) ∈ giB. In other words, σ sends every left B
coset giB into a chosen element in giB. We demand that for all n ∈ N

σ(n · giB) = n · σ(giB). (5.96)

Using σ, we define

γ : (F (Hm)⊗ Hel)⊗ (F (Hm/B)⊗N)→ (F (Hm)⊗ Hel)⊗ (F (Hm/B)⊗N)

γ(Pgn⊗ Pg′Bn′) = Pσ(g′B)−1gσ(g′B)n⊗ Pg′Bn′. (5.97)

It is straightforward but lengthy to verify that γ|∆(TR) is an algebra morphism10.
Thus we have a coproduct

∆′(PgBn) = γ ◦∆(PgBn) =
∑

gi

Pσ(giB)−1gBn⊗ PgiBn. (5.98)

An example: A = D(D2n)

As an example, we consider a phase described by the quantum double of the
double cover of an even dihedral group: A = D(D2n). The group structure of
D2n is discussed in appendix A:

D2n = {rksm : k = 0, 1, . . . , 2n− 1; m = 0, 1} (5.99)

10γ is not an algebra morphism of D(H)⊗TR, it is only an algebra morphism when restricted
to ∆(TR).
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with r2n = s2 = −e.
Now condense a single defect11 |s >. The right residual and unconfined

symmetry algebras are

TR = F (D2n/(s))⊗ 2 ! 2 (5.100)

U = D( 2), (5.101)

where 2 ! 2 = {rknsm : k = 0, 1, 2, 3; m = 0, 1}.
The irreps of TR are given in table 5.5, and the irreps of 2 ! 2, which

occurs as a centralizer of two orbits in D2n/(s), are given in table 5.6.
We write the basis of the irrep Ωi

k as |i >, |− i >, where |i > corresponds to
the defect |ri(s) > (remember that the defects are defined modulo the conden-
sate < s >). The action of TR on this basis is set by

Prj<s> · |i >= δj,i

rtn · |i >= (−1)tk|i > t = 0, 1, 2, 3

s|i >= |− i > .

We can write this compactly in one equation:

Prj<s>rtnsl|i >= δj,(1−2l)i(−1)tk|(1− 2l)i > t ∈ 4, l ∈ 2. (5.102)

The left (s) cosets in D2n/(s) are ri(s) = {ri,−ri, ris,−ris : i = 0, 1, . . . , 2n−
1}. To define the coproduct, we must choose σ(ri(s)) ∈ ri(s) for every i. If
we choose σ(ri(s)) = ri, then the coproduct ∆′ is coassociative. This can be
traced back to the fact that the ri form a group. Note that in general, it is not
possible to choose representatives of the cosets so that they form a group.

Using ∆′, we can determine the following fusion rule:

Ωi
k ⊗ Ωj

l = Ωi+j
k+l ⊕ Ωi−j

k+l (5.103)

The unconfined irreps are given in table 5.6. This fusion rules implies, for
example, that Ωi

1 and Ωn−i
1 can fuse to Ωn

2 , which is unconfined. Thus we have
made a hadronic composite.

If we choose σ(ri(s)) = ris, the fusion rules are the same, even though
the coproduct is not coassociative. However, in this case the definition of the
particles is altered. Namely, if an irrep Ωi

k is present to the right, then |j > in
the irrep Ωj

l coming in from the left should be interpreted as |− j >. This can
be checked by applying the projection operators:

Prl<s> · (|j > ⊗|i >) = δl,−j+i|j > ⊗|i > (5.104)

We have therefore discovered that our choice of coproduct ∆′ alters the meaning
of the labels of our irreps, when they are to the right of a confined excitation.

11We take even dihedral groups, because in D(D2n+1), condensing |s > yields U = e,
which is slightly less interesting, but note that we can still study hadrons! Only the hadron
must be in the trivial irrep, since that is the only unconfined irrep.
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Preferred e rn ri

element gA i = 0, 1, . . . , n− 1
Orbit A < s >= {e, s,−e,−s} rn < s > {ri < s >, r−i < s >}

in D2n/ < s >

Normalizer NA 2 ! 2= 2 ! 2= 2=
{rtnsk : {rtnsk : {e, s,−e,−s}

t ∈ 4, k ∈ 2} t ∈ 4, k ∈ 2}
Irrep of NA αk,l αk,l βm

k ∈ 4, l ∈ 2 k ∈ 4, l ∈ 2 m ∈ 4

Irrep of Ω Ω0
k,l Ωn

k,l Ωi
m

Unconfined Ω0
k,0 Ωn

k,0

irreps k = 0, 2 k = 0, 2

Table 5.5: The irreps of TR = F (D2n/ < s >)⊗ 2 ! 2.

The reason for this is the following: we can determine the irreps of TR, and that
gives us a finite set of labels. When we have one particle in an irrep of TR in the
system, its meaning is unambiguous. Now if a confined excitation is present,
then we know that the residual symmetry algebra of the condensate φL to the
left of the excitation may be different from the right residual symmetry algebra
TR. However, we still want to use the same labels for particles to the left of
the confined excitations, because they are excitations of a symmetry algebra
isomorphic to TR. Thus we are adding information to the labels of irreps of
TR, namely we are defining their meaning when they appear to the left of a
confined excitation. They should not be considered as the same particle: for
example, |i > |i > should not be interpreted as the fusion of |i > with itself.
The correct interpretation is that we have the confined excitation |i > of TR,
and we brought in a particle from the left, which under our choice of coproduct
is labelled by |i >.

In summary, for the |s > condensate in D(D2n), the fusion rules are inde-
pendent of the choice of coproduct. We do not expect this to be a general result
(although in the cases we’ve worked out the fusion rules don’t depend on the
choice of coproduct). The physics of the phase, on the other hand, should not
depend on our choice of coproduct, since this choice boils down to a definition
of our labels. An interesting follow up on this research would be to study the
influence of the choice of coproduct on the fusion rules.

5.7 Dyonic condensates

We have applied our symmetry breaking analysis to electric condensates, and
defect condensates, with remarkable success. We will now study an example of a
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Element of e −e rn r−n s −s srn sr−n

2 ! 2

Irrep αk,l 1 (−1)k ik i−k (−1)lik (−1)li−k (−1)l+k (−1)m

k ∈ 4, l ∈ 2

Table 5.6: The irreps of 2 ! 2.

dyonic condensate. In the case of dyonic condensates, TR and U are considerably
harder to extract. In particular, TR is in general a complicated algebra, and it
is quite a challenge to determine its irreps. The study of dyonic condensates is a
good test of our claims, such as the claim that there is a Hopf algebra U whose
irreps are the unconfined irreps. We will purposely seek out cases where TR is
not a Hopf algebra, because we’ve seen that if TR is a Hopf algebra, then the
right residual symmetry algebra TR is equal to the residual symmetry algebra
T studied in [61], where it is proven that if T is the residual symmetry algebra,
then the unconfined irreps are indeed irreps of a Hopf algebra U .

We consider a phase described by a generalized quantum double F (Hm) ⊗
Hel, and take a vector in a dyonic irrep ΠA

α , with A '= {e}, and α '= id.
gA is a chosen preferred element of A, NA is the normalizer of gA in Hel,
xi : i = 0, 1, . . . , n− 1 are representatives of left NA cosets with x1 = e, so that
A = {gi = xigAx−1

i } with g1 = gA.
We condense a single defect dyon. i.e. a vector of the form |gj , v >. The

condition of trivial self braiding gives the restriction that the irrep ΠA
α in which

|gj , v > lives must satisfy α(gA) = .
Without loss of generality, we can take gi = gA, since gA was an arbitrarily

chosen element of A. Thus our single defect dyon condensate is |gA, v >. In
function notation,

|φR(x) >= 1NA(x)α(x−1)|v > . (5.105)

TR is made up of all the functions f ∈ F (Hm ×Hel) that satisfy

f(x1(x · gA), y1)|φR(y−1
1 x) >= f(x1, y1)|φR(x) > ∀x1 ∈ G; x, y1 ∈ H. (5.106)

Filling in x = e we get

f(x1gA, y1)|φR(y−1
1 ) >= f(x1, y1)|φR(e) >

⇒ f(x1gA, y1)1NA(y−1
1 )α(y1)|v >= f(x1, y1)1NA(e)α(e)|v >

⇒
{

if y1 /∈ NA, then 0 = f(x1, y1) ⇒ TR ⊂ F (Hm ×NA)
if y1 ∈ NA, then f(x1gA, y1)α(y1)|v >= f(x1, y1)|v >

(5.107)

This last equation leads to the following conclusions: if f(x, y) '= 0, then
f(xgA, y) '= 0, and |v > is an eigenvector of α(y), with an eigenvalue we call λy:

λy =
f(x, y)

f(xgA, y)
. (5.108)
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This equation must hold for all x ∈ Hm, thus f(x,y)
f(xgA,y) is independent of x.

We filled in x = e into (5.106). One can check that filling in x '= 0 leads to the
same equations we just derived. TR is spanned by the functions f ∈ F (Hm×Hel)
that satisfy

1. f ∈ F (Hm ×NA)

2. If f(x, y) '= 0, then f(xgA, y) '= 0, and |v > is an eigenvector of α(y) with

eigenvalue λy = f(x,y)
f(xgA,y) .

A basis of TR is given by functions fxζ,y, labelled by a representative xζ of a left
(gA) coset in G/(gA), and an element y of H such that |v > is an eigenvector
of α(y) with eigenvalue λy :

fxζ,y

n−1
∑

k=0

Pxζgk
A
yλ−k

y , (5.109)

where n is the smallest integer such that gn
A = e.

These right residual symmetry operators are a beautiful manifestation of the
dyonic nature of the condensate. Our attention now turns to whether TR is a
Hopf algebra. Using our results at the beginning of this chapter, TR is a Hopf
algebra ⇐⇒ TR = TL. Thus if we determine TL, we can compare it with TR
to find out if TR is a Hopf algebra.

The derivation of TL is analogous to that of TR. A basis of TL is given
by functions gxη,y, labelled by a representative xη of a right < gA > coset in
< gA > Hm, and an element y of Hel such that |v > is an eigenvector of α(y)
with eigenvalue λy :

gxη,y =
n−1
∑

k=0

Pxηgk
A
yλ−k

y . (5.110)

As an explicit example, let us study single defect dyons of the form |rk,βl >
in D(Dn). βl is an irrep of the centralizer Nrk of rk. If we assume that n is
odd, then Nrk = {rm : m = 0, 1, . . . , 2n− 1}. The irreps βl of Nrk are labelled
by an integer l ∈ 2n−1:

βl(r
m) = exp(i

2πml

2n
). (5.111)

Now condense |rk,βl > with k '= 1
2n, n, 3n

2 . Since we require the dyon to
have trivial self braiding, l and k satisfy lk = 0(mod2n).

The right residual symmetry algebra TR is

TR = F ( gcd(k,2n))⊗ yk,l 2n ⊕A (5.112)

where yk,l = gcd(k,2n)
gcd(gcd(k,2n),gcd(l,2n)) , and A is some algebra with complicated

multiplication, whose irreps are all confined. The unconfined symmetry algebra



140 CHAPTER 5. HOPF SYMMETRY BREAKING AND CONFINEMENT

is

U = F (xl gcd(k,2n))⊗
2n

gcd(gcd(l, 2n), gcd(k, 2n))
2n

- F ( gcd(k,2n)gcd(l,2n)
2n

)⊗ gcd(k,gcd(l,2n)) (5.113)

where xl = 2n
gcd(l,2n) .

The proof of (5.112) and (5.113) lengthy, though there are some steps that
simplify matters considerably. The greatest common divisor appears because
gcd(k, 2n) is the smallest number in the series {tkmod(2n) : t ∈ }12. A basis
of TR is given by functions fp,m and gp,m:

fp,m =
xk
∑

t=0

Prp+ktrmj−mt p = 0, 1, . . . , gcd(k, 2n); m = 0, 1, . . . , 2n− 1

gp,m =
xk
∑

t=0

Psrp+ktrmj−mt p = 0, 1, . . . , gcd(k, 2n); m = 0, 1, . . . , 2n− 1

where xk = 2n
gcd(k,2n) , j = exp( i2πl

2n ). For fp,m (and gp,m) to be non-zero, we

must have j−mxk = 1 (if j '= 1). This means that mxk = 0(modxl), so that m

is a multiple of gcd(k,2n)
gcd(gcd(l,2n),gcd(k,2n)) .

The fp,m therefore span the first part of TR we wrote down before, and the gp,m

span A.
Now for the irreps that braid trivially with the vacuum. Some intermediate
steps are

P (Psmrpsnrq) = δn,0j
p−(p mod gcd(k,2n))

gcd(k,2n) zkq(δm,0fp mod gcd(k,2n),q+δm,1gp mod gcd(k,2n),q)
(5.114)

where zk is the smallest positive integer such that zkk = gcd(k, 2n)(mod2n).

ε(P (Psnrpsmrq)) = δn,0δm,0δp,0 modgcd(k,2n)j
p−(p mod gcd(k,2n))

gcd(k,2n) zkq (5.115)

Equation (5.26) gives for an irrep Ω of TR:

Ω(

gcd(k,2n)−1
∑

q=0

fq,0j
q) = Ω(1) and Ω(

gcd(k,2n)−1
∑

q=0

gq,0j
q) = 0 (5.116)

Let us call the irreps of the first part of TR (the part spanned by the fp,m) ρf ,
and the irreps of A will be called ρg. The ρf are zero on all of A, while the ρg

are zero on all fp,m. The first of the two equations we just wrote down leads to

the fact that all ρg are confined, because 1 =
∑gcd(k,2n)−1

q=0 fq,0 + gq,0, so that

ρg(

gcd(k,2n)−1
∑

q=0

fq,0j
q) = ρg(1)⇒ 0 = ρg(1)⇒ ρg ≡ 0 (5.117)

12This follows from a basic lemma in algebra theory, that gcd(k, n) is the smallest positive
integer in the set {xk + yn : x, y ∈ Z}, and from the fact that (2n − 1)k = −k(mod2n), so
that we have {(xk + yn)mod2n : x, y ∈ } = {(xk + yn)mod2n : x ∈ , y ∈ }.
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Equation (5.27) tells us that

gcd(k,2n)−1
∑

q=0

Ω(fq,−k + gq,−k) = Ω(1) (5.118)

We know that the irreps of the first part of TR are labelled by two integers, so we
call the irreps ρa,b; a = 0, 1, . . . , gcd(k, 2n)−1; b = 0, xk, 2xk, . . . ,−xk(mod(2n)).
The trivial braiding conditions give

ja = 1 = e−
i2πbk

2n (5.119)

which leads to a = 0, xl, 2xl, . . . and b = 0, xk, 2xk, . . . This proves (5.113).

To obtain the case of a pure defect condensate, fill in l = 2n (which is
equivalent to l = 0, but in the equations it only makes sense to fill in l = 2n):

U - D( gcd(k,2n)). (5.120)

5.8 Conclusions and outlook

The Hopf symmetry description of phases with spontaneously broken symme-
tries exposes the duality between electric modes and topological defects in a very
explicit and beautiful way. Furthermore, it encodes the braiding of modes alge-
braically, with a braid operator acting on the vector space of the modes. We have
studied the recent discovery that symmetry breaking can be studied by studying
the representation theory of the Hopf algebra. We’ve seen that dropping the
restriction that the residual symmetry be a Hopf algebra leads to a novel cri-
terion that gives physically sensible answers. It allows for a unified description
of symmetry breaking induced by electric, magnetic and dyonic condensates.
We’ve shown that our analysis reproduces the conventional theory of electric
phase transitions, and that it gives answers for defect condensates that are con-
sistent with the defect-mediated phase transitions discussed in the literature. As
an example, we’ve analyzed all electric and defect-mediated phase transitions
in achiral tetrahedral, octahedral and icosahedral nematic. The spectrum in
the residual phase consists of two types of excitations: unconfined excitations,
which are well excitations around which the condensate is singly valued, and
hadronic composites, which are combinations of confined excitations that are
unconfined as a whole. In the tetrahedral nematic, we’ve found that different
condensates lead to a different spectrum, either in the unconfined excitations
or the hadronic composites, so that in principle the phases obtained by the
different condensates are distinguishable. For the octahedral and icosahedral
nematics there are defect condensates that given the same spectrum according
to our analysis. Finally we worked out a simple example of a dyonic condensate.

There are many open questions which should be addressed. Firstly, we have
made certain mathematical conjectures plausible, but we haven’t proved them.
We hope that mathematicians will take up the challenge of proving
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Conjecture 1. TR is a semisimple algebra13, and there is a Hopf algebra U
whose irreps are precisely the irreps of TR that braid trivially with the conden-
sate. U has a natural braiding, which follows from the braiding of the original
Hopf symmetry A.

Conjecture 2. Choosing different coproducts ∆′ for TR gives the same physical
answers, such as the possible hadronic composites.

Our criterion for symmetry breaking was defined for a general Hopf algebra.
It didn’t make explicit use of the coassociativity of the Hopf algebra, so it can
also be applied to quasi-Hopf algebras, for example (see [26] for the definition).
The Hopf symmetry approach has been applied to many physical systems, to
which it would be very interesting to apply our symmetry breaking formalism:

• Go back to the gauge theory in (2.59) (the non relativistic version of
the planar Abelian Higgs model). If we add the Chern-Simons term[19]
q #J · #A − µ #A · (∇ × #A) to the Lagrangian (where #J is the current of the
charged particles), and the symmetry is spontaneously broken to a discrete
H , then the electrically charged particles become automatically magneti-
cally charged[19]. There is a Hopf algebra, called a quasi-quantum double
Dω(H), that captures the fusion rules and braiding properties of the exci-
tations of this system. Dω(H) is very similar in structure to the quantum
double D(H), but the representation theory is more complex. Our sym-
metry breaking formalism is definitely applicable to Dω(H), and the study
of Hopf symmetry breaking in Dω(H) would be a very natural extension
of this work.

It has been proven that condensates of particles in theories with Chern-
Simons terms can become superconducting[72]. The idea that this might
explain High-Tc superconductivity has recently been overthrown, because
it conflicts with experiments.

• There is a quantum group description of the Fractional Quantum Hall
effect[61]. The quantum group is Uq(sl2), the quantum deformation of sl2.
It is infinite dimensional, but the infinite dimensionality is not a daunting
one. The basic ingredient, sl2, is a finite dimensional Lie algebra, and
we can take formal tensor products of elements of the Lie algebra, which
is why Uq(sl2) is infinite dimensional. It would be very interesting to
study condensates in such systems, especially since experimentalists have
extensively studied phases where anyons have condensed.

• Finally, 2+1D gravity, and 3D crystals, can be described as a Chern-
Simons gauge theory. It has been proved[45] that there is a continuous
quantum double that captures the fusion rules and braiding properties of
the excitations of these systems. In the case of 2+1D gravity, it is denoted

13Requiring that TR is semisimple is equivalent to requiring that all representations are fully
reducible. This means that there are a finite number of irreps out of which all representations
are built. Thus we have a finite set of quantum numbers.
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by D(SU(1, 1)). For 3D crystals the quantum double is D(SU(2)). We
strongly believe that our symmetry breaking formalism is applicable to
continuous quantum double.
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Appendix A

SO(3) and SU(2)

A.1 The subgroups of SO(3)

There are only a handful of types of finite subgroups of SO(3). These are

• n, denoted by Cn in crystallographic notation

• Dn, the dihedral group of order n

• T , the tetrahedral group

• O, the octahedral group

• I, the icosahedral group, also denoted by Y or K.

All finite groups are isomorphic to a subgroup of a permutation group Sn from
some n. This follows from the observation that when a group G acts on itself by
left multiplication, it permutes its own elements. This left action establishes a
homomorphism from the group G to the group Sn of permutation of n elements,
for a group with n elements. Therefore, G is isomorphic to a subgroup of Sn.
Note that G could also be isomorphic to a subgroup of Sk from some k < n.
The finite subgroups above are isomorphic to the following:

T - A4 (A.1)

O - S4 (A.2)

I - A5 (A.3)

An, the alternative group of order n, is the group of even permutations of n
elements.

These isomorphisms have a natural interpretation:

T - A4 : even permutations of the 4 vertices of a tetrahedron

O - S4 : all permutations of the 4 diagonals of a cube

I - A5 : even permutations of the 5 cubes inscribed inside an icosahedron.
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The icosahedral group is the symmetry group of the icosahedron, as well as
the dodecahedron, which is the ’dual’ of the icosahedron. By dual, we mean we
put a point on the center of every face of the icosahedron, connect these points,
and obtain a dodecahedron. The tetrahedron is self dual, and the dual of the
cube is the octahedron.

Figure A.1: The tetrahedron, with labelled vertices. It is self dual.

Figure A.2: The icosahedron and the dodecahedron are dual.

Figure A.3: The octahedron and the cube are dual.

A.2 Double cover groups

SU(2) is a double cover of SO(3). There is a two-to-one homomorphism

ρ : SU(2)→ SO(3) (A.4)

To specify a rotation in SO(3), one must specify an axis around which the ro-
tation takes place, and a rotation angle θ ∈ [0, 2π). Denote by n̂ a unit vector
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Figure A.4: The icosahedron, with one of the five inscribed cubes.

along the axis of rotation, and define positive θ to correspond to counterclock-
wise rotation with respect to n̂. Then this rotation is denoted by R(n̂, θ).

We can parametrize matrices in SU(2) in a very similar way: take any unit
vector n̂, and any angle θ ∈ [0, 4π). Notice how θ runs over a larger range than
in the SO(3) case. Now associate to n̂ and θ the following matrix in SU(2):

u(n̂, θ) = exp(i
θ

2
n̂ · #σ) = cos(

θ

2
) + isin(

θ

2
)n̂ · #σ (A.5)

where #σ = (σx,σy ,σz) is a vector containing the three Pauli matrices, and is
the unit matrix.

σx =

(

0 1
1 0

)

,σy =

(

0 −i
i 0

)

,σz =

(

1 0
0 −1

)

(A.6)

The homomorphism is now easily accomplished: just replace u by R.

ρ : SU(2)→ SO(3)

u(n̂, θ) $→ R(n̂, θ) (A.7)

The kernel of this homomorphism is {+1,−1}. The irreps of SO(3) are
precisely the irreps of SU(2) that factor over ρ. A irrep of SU(2) that factors
over ρ is called bosonic, otherwise it is fermionic.

The homomorphism from SU(2) to the quaternions is just as elegant: replace
−iσx by I, −iσy by J, −iσz by K.

Armed with these identifications, double cover groups become more trans-
parent. The double cover of a subgroup G of SO(3) is the inverse of this group
under ρ. It has twice as many elements, but note that it is not simply G× 2.
The double cover of G is denoted by G.

Let us work out the group structure of Dn as an example. The easiest
presentation is as elements of . Take the z axis as the rotation axis. Then

rk = u(ẑ,
π

n
k)

s = u(x̂,π)
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One easily checks that rk = s2 = −1. All elements of Dn are of the form
{±rksm; k = 0, 1, . . . , n− 1; m = 0, 1}.
We can also write the following presentation, which is used in this work:

Dn = { rksi : k = 0, 1, . . . , n− 1; i = 0, 1, 2, 3 : s2 = rn,

s4 = e, rkrj = rk+j , srks−1 = rn−k} (A.8)

Here rn is a 2π rotation (just like s2), which commutes with all others elements.



Appendix B

Hopf algebra’s

In this appendix we will develop the mathematical theory behind Hopf algebra’s.
We present all the structures of a Hopf algebra, and explain their physical
interpretation. We give these structures for the quantum double of a finite
group, and finally we discuss generalized quantum doubles in the main text.

B.1 Quasitriangular Hopf algebras

Algebra’s are an ubiquitous mathematical structure. Famous examples are ,
, matrices, polynomials, functions from a manifold to , etc. Another math-

ematical structure which is less widespread is a coalgebra, a structure that is
in a precise sense a dual object to an algebra. A Hopf algebra is simultane-
ously an algebra and a coalgebra, with certain compatibility conditions between
the algebra and coalgebra structures. Let us work through the definitions, and
important examples.

B.1.1 Algebra’s

An algebra A is vector space over a field (which we will take to be or ), with
a bilinear multiplication. Since it is bilinear, we can think of this multiplication
as a map µ : A ⊗ A $→ A. Our algebras will all have a unit element, i.e. an
element 1 which satisfies 1a = a1 = a ∀a ∈ A. One can also assign a map to
this unit, which embeds the field into the center of the algebra. We write
η : $→ A. We require that η be an algebra morphism (the field is also an
algebra, with itself as ground field). All the algebra’s we will consider will be
associative with respect to multiplication.
A very important example is the group algebra of a finite group. Label the groups
elements by gi. To get an algebra, choose a field , and put the group elements
in ”kets”, writing them like |gi >. The group algebra is then the set of objects
of the form

∑

i λi|gi >. This structure is very important, as it contains all the
information about the group. For example, irreducible representations of the
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group algebra are in one-to-one correspondence with irreducible representations
of the group.
Electric modes transform under an irrep of a group, which is equivalent to saying
that they transform under an irrep of the corresponding group algebra.

B.1.2 Coalgebra’s

A coalgebra C is a vector space, and it comes equipped with a comultiplication
and counit. The comultiplication is a linear map ∆ : A $→ A ⊗ A. The counit
is a linear map ε : A $→ . They must satisfy

Coassociativity : (∆⊗ id) ◦ (∆) = (id⊗∆) ◦∆

∀c ∈ (ε⊗ id) ◦∆(c) = c = (id⊗ ε) ◦∆(c)

As an example, take all the linear functions from a finite group H to ,
which we denote by F (H). They form a vector space, which is spanned by the
functions {δgi : gi ∈ H}. A coalgebra structure is then given by

ε(δgi) = δgi,e

∆(δgi) =
∑

gk∈H

δgig
−1
k
⊗ δgk

We need only define these functions on a basis of F (H) since they are linear.
Given an algebra A, its dual A∗1 can be given a coalgebra structure, that
depends explicitly on the algebra structure. It is achieved in a rather natural
way. The structures on the coalgebra are:

∆(f)(a1, a2) = f(a1a2)

ε(f) = f(1)

This definition is the reason for the denominations of coproduct and counit.
The coalgebra F (H) we defined above is obtained from the group algebra H
by these definitions, and is therefore the dual. It just so happens that F (H) is
also an algebra with pointwise multiplication: f1 × f2(x) := f1(x)f2(x). As we
will see, it is in fact a Hopf algebra, just as H is.
Given a finite dimensional coalgebra, its dual can be given an algebra structure,
but this is in a slightly less natural way, and we will not discuss it (it is remi-
niscent of the isomorphism A∗∗ - A for a finite dimensional vector space).
This is why we say that the coalgebra is a structure dual to the algebra.

B.1.3 Quasitriangular Hopf algebra’s

A Hopf algebra is simultaneously an algebra and a coalgebra, with certain com-
patibility conditions. Namely, we demand that ε and ∆ be algebra morphisms.

1The dual of an algebra A is defined as F (A) = A∗, the set of linear functions from A to
.
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This is equivalent to demanding that η and µ be coalgebra morphisms (see [26]).
It also contains an antipode map S, which is the unique map from A to A that
satisfies

µ(S ⊗ id)∆(a) = µ(id⊗ S)∆(a) (B.1)

From this definition, one can derive the following relations:

∀a, b ∈ A : S(ab) = S(b)S(a) (B.2)

S(1) = 1 (B.3)

(S ⊗ S)∆ = ∆opS (B.4)

ε(S(h)) = ε(h) (B.5)

Physically, the antipode map is used to construct antiparticles out of particles.
More specifically, given an irrep Π, define the antiparticle or conjugate irrep
Π(a) = ΠtS(a). It’s an irrep because S is an antimorphism, and so it transpo-
sition. When we fuse particle and antiparticle irreps, we don’t necessarily get
the vacuum, but it is guaranteed that ε is present in the fusion rules.

Lemma 5. Π⊗Π can decay into the vacuum channel ε.

Proof. Call V the representation space of Π (which is also the representation
space of Π). Decompose V ⊗ V into a traceless part, and the trace:

v, w ∈ V : v ⊗ w = (v ⊗ w −
1

3
v · w ) +

1

3
v · w

These two subspaces of V ⊗ V are invariant under the action of Π⊗Π, because
(using the results above)

tr((Π ⊗Π)(v ⊗ w −
1

3
v.w )) =

∑

(a),i,j,k

a(1)
ik S(a(2))li(vkwl −

1

3
v · wδkl

= ε(S(a))
∑

kl

(vkwl −
1

3
δkl)

= 0

In the penultimate line we used µ(S ⊗ id)∆op(a) = ε(S(a)). This proves that
the traceless part gets mapped into the traceless part. The trace is also left
invariant: Π⊗Π(a) = ε(a) .

The standard example of a Hopf algebra is the group algebra. We have
already discussed the algebra structure. It is turned into a Hopf algebra with
the following definitions:

∆(gi) = gi ⊗ gi

ε(gi) = 1

S(gi) = g−1
i
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Given a finite dimensional Hopf algebra A, one can define a Hopf algebra struc-
ture on A∗, and A∗ is then called the dual Hopf algebra. The definitions are
quite natural, and explain the names coproduct and counit:

unit 1∗ : 1∗(a) = ε(a)

Counit ε∗ : ε∗(f) = f(1)

Multiplication : f1 · f2(a) := (f1 ⊗ f2)∆(a)

Coproduct ∆∗ : ∆∗(f)(a1, a2) = f(a1a2)

We’ve seen that F (H) has an algebra structure, and a coalgebra structure. It
turns out that these are compatible in the sense defined earlier. Defining the
antipode as S(Ph) = δh,e, F (H) turns into a Hopf algebra. And, as the reader
may have guessed, F (H) = H∗ as a Hopf algebra, i.e. F (H) is the Hopf algebra
dual to H .
And now we are finally ready to explain the statement ”defects are dual particles
to electric modes”. Namely, the physical measurement operators on the defects
are projection operators Ph, which have the Hopf algebra structure of F (H)
(given that the defects live in H). This is not a trivial statement, it will become
clear when we discuss the fusion rules, and notice that they are exactly the
fusion rules of defects. For now, note that the coproduct has an immediate
interpretation:

∆(Ph) =
∑

h′

Ph′ ⊗ Ph′−1h. (B.6)

It makes sure that when two defects fuse, the total ”flux” (the homotopy class
of a loop surrounding both defects) is equal to the product of the fluxes (the
composition of the loops defining each defect). Therefore, the defects transform
under irreps of F (H), and are therefore dual particles to irreps of H .

A Hopf algebra A is called quasitriangular when there is an invertible element
R of A⊗A that satisfies:

(∆⊗ id)R = R13R23 (id⊗∆)R = R13R12

∀a ∈ A : R∆(a)R−1 = ∆(a)

where if we write R =
∑

(R) R(1) ⊗R(2), then

Rij =
∑

(R)

1⊗ · · ·⊗R(1) ⊗ · · ·⊗R(2) ⊗ · · ·⊗ 1

where R(1) is in the i-th, and R(2) in the j-th position.
Given a Hopf algebra A, there is a natural to ”double” it, creating a new

Hopf algebra D(A) called Drinfeld’s quantum double of A. As a vector space,
D(A) = A∗ ⊗A, so it’s a tensor product of A and its dual. For the discussion
of the Hopf algebra structure on D(A), see [26]. For our purposes, we need only
know what the structure is like for H a discrete group. We also specify a braid
matrix, making it a quasitriangular Hopf algebra.
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As vector space, D(H) is F (H)⊗ H , which is the same as F (H ×H) for finite
H . Denote a basis of D(H) as Phg (that’s the notation used in [??]), where
g ∈ H , and Ph ∈ F (H) is defined by Ph(x) = δh,x (x ∈ H). If we see it as an
element of F (H ×H), the function is Phg(x, y) = δh,xδg,y. We can also define
g ≡ 1g =

∑

h∈H Phg, and Ph ≡ Phe. We’ve therefore embedded H and F (H)
into D(H), and their embeddings form an algebra basis of D(H) (meaning that
any element can be written as a sum of products of these basis elements). The
structure is determined by the following formulae:

PhgPh′g′ = δh,gh′g−1Phgg′ (B.7)

∆(Phg) =
∑

h′∈H

Phh′−1g ⊗ Ph′g (B.8)

ε(Phg) = δh,e (B.9)

S(Phg) = Pg−1h−1gg
−1 (B.10)

R =
∑

g∈H

Pge⊗ g (B.11)

These relations can also be given in the language of functions in F (H×H), and
this notation is convenient in several cases, so we give it now:

(f1f2)(x, y) =
∑

h∈H

f1(x, h)f2(h
−1xh, h−1y) (B.12)

∆(f)(x1, y1; x2, y2) = f(x1x2, y1)δy1(y2) (B.13)

ε(f) =
∑

z∈H

f(e, z)dz (B.14)

S(f)(x, y) = f(y−1x−1y, y−1) (B.15)

R(x1, y1; x2, y2) = δe(y1)δx1(y2) (B.16)

This notation is also important because it generalizes to the case where H is
compact, or locally compact. For results on such cases, see [32] and [33].

The irreducible representations of D(H) follow from the fact that it’s a trans-
formation group algebra (see [61] for details). Since we will come across other
transformation group algebras in the main text, we give the general definition.
As a vector space, the transformation group algebra is F (X)⊗ H , where X is
a finite set and H is a finite group. A basis is given by

{Pxh : x ∈ X, h ∈ H}. (B.17)

Just as in the quantum double case, we can consider it to be the vector space
F (X ×H) of functions

f : X ×H → . (B.18)

The element Pxh ∈ F (X)⊗ H corresponds to the function

f(y, z) = δx,yδh,z ∀y ∈ X, z ∈ H. (B.19)
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Furthermore, there is an action of the group H on X . This means that the
elements h ∈ H act as bijections of X , in a manner that is consistent with the
group structure (i.e. we have a homomorphism from H to bijections of X).
Denote the action of h ∈ H on x ∈ X by h · x. We now turn this vector into an
algebra, by introducing a multiplication.

Definition 1. F (X×H) is a transformation group algebra if the multiplication
of Pxh and Px′h′ is given by:

PxhPx′h′ = δx,h·x′Pxhh′ (B.20)

In function notation:

(f1f2)(x, y) =
∑

h∈H

f1(x, h)f2(h
−1 · x, h−1y) (B.21)

We define an inner product on F (X ×H). We give it in both notations: in
terms of elements Pxh ∈ F (X)⊗ H , and in terms of functions fi ∈ F (X×H).

(Pxh, Px′h′) = δx,x′δh,h′

(f1, f2) =
∑

x∈X,h∈H

f1(x, h)∗f2(x, h). (B.22)

We can split X up into orbits under the action of H . The orbit of an x0 ∈ X
is given by {h · x0 : h ∈ H}. Call {A} the collection of orbits. For each orbit A,
choose a preferred element xA

1 , and define the normalizer NA to be the subgroup
of h ∈ H that satisfy h · xA

1 = xA
1 . The OA and NA play a central role in the

determination of the irreps.

Theorem 2. Choose an orbit A in X, a preferred element xA
1 of A, and an

irrep α of NA. The orbit A = {xA
1 , xA

2 , . . . , xA
n : xA

i ∈ X}. Let hA
i be any

element in H such that hA
i · xA

1 = xA
i . Then the hA

i form representatives of
left NA cosets in H. Further call ej the basis vectors of the vector space Vα on
which the irrep α acts.
An irreducible unitary representation ΠA

α of F (X ×H) is given by inducing the
irrep α. A basis of the vector space is {|xA

i , eαj >}, and the action of Pxg ∈
F (X ×H) is given by

ΠA
α (Pxg)|xA

i , eαj >= δx,ghA
i ·xA

1
|xA

j ,α(n)eαj >

where xA
j is defined by ghA

i = hA
j n, n ∈ NA. This is possible because ghA

i sits

in a particular coset of H/NA, and the hA
i are representatives of the left NA

cosets.
Furthermore, all unitary irreducible representations are equivalent to some ΠA

α ,
and ΠA

α is equivalent to ΠB
β iff OA = OB and α is equivalent to β.

Thus irreps of a transformation group algebra are labelled by an orbit A
in X under the action of H , and an irrep α of the normalizer NA of a chosen
preferred element xA

1 of A.
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The notation in terms of basis elements makes the action of the irreps trans-
parent. An alternate notation for the Hilbert space is hA

i ⊗ |eαj >≡ |xA
i , eαj >.

Then the action of a global symmetry transformation g ≡ 1g is simply

ΠA
α (g)hA

i ⊗ |eαj >= ghA
i ⊗ |eαj >= hA

j n⊗ |eαj >= hA
j ⊗ |α(n)eαj >≡ |xA

i ,α(n)eαj >

In words, the part of g that ”shoots through” the defect acts on the electric
part.

The function notation is rather opaque, but extremely useful in calculations
in the main text. The Hilbert space of the irrep ΠA

α is given by:

Fα(H, Vα) = {|φ >: H → Vα||φ(hn) >= α(n−1)|φ(h) >, ∀h ∈ H, ∀n ∈ N}

To make contact with the notation above, |φ(h) > corresponds to the vector
attached to the ”flux” h · xA

1 . For example, the function |φ > associated with
|xA

i , eαj > is |φ(hA
i ) >= 1hA

i NA
(h)|eαj >. To explain the rest of the definition,

note that ∀n ∈ N

|xA
i , eαj >≡ hA

j ⊗ |eαj >= hA
j nn−1 ⊗ |eαj >= hA

j n⊗ |α(n−1)eαj >

which explains why |φ(xn) >= α(n−1)|φ(x) >.
Then the action of f ∈ F (X × H) on |φ > under the irrep ΠA

α gives a new
function ΠA

α (f)φ ∈ Fα(H, Vα), defined by

(ΠA
α (f)φ)(h) =

∑

z∈H

f(h · xA
1 , z)|φ(z−1h) >

One easily checks that this is equivalent to the definition given above.
The quantum double D(H) is a special case of a transformation group al-

gebra, with X = H and h · x = hxh−1. Thus in D(H) the orbits of X = H
under the action of H are conjugacy class of X = H . NA is the centralizer of
the preferred element gA of A.

We proved earlier on that the antipode can be used to create an antiparticle
irrep from any irrep ΠA

α . In the case of D(H), the antiparticle irrep of ΠA
α is

ΠA−1

α , where A−1 is the conjugacy class of g−1
A , and α(n) = αt(n−1). In particle,

for an electric irrep Πe
α the antiparticle irrep is Πe

α. An example of this is the 3
irrep of SU(3), which is the antiparticle irrep of 3. The quarks transform under
the 3 irrep, while the antiquarks transform under the 3 irrep of SU(3).

Two chapters back, we analyzed the classical fusion rules of defects, and
of electric modes. The fusion of two electric modes was tantamount to taking
the tensor product of their representations, and analyzing the decomposition
of this tensor product into irreps. For magnetic modes, the fusion rules of
two defects corresponded to the multiplication of their conjugacy classes. This
multiplication is commutative, and gives a union of conjugacy classes (some of
which may appear more than once in the decomposition):

CA × CB =
∑

C

NAB
C CC . (B.23)
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We would like the fusion rules of the Hopf algebra to reproduce these fusion
rules. But in the decomposition ΠA

1 ⊗ ΠB
1 =

∑

D,γ NABγ
11C ΠC

γ , there will be
dyons! The defect fusion rules are still present in this decomposition, though.
We will now prove that if we ”sum over” the electric part of the irreps (i.e. we
neglect the electric part), then the defect fusion rules are reproduced.

Lemma 6. For two flux irreps of D(H), we have

ΠA
1 ⊗ΠB

1 =
∑

D,γ

NABγ
11C ΠC

γ .

By summing over the electric irreps γ and their dimensions dγ, we get the
classical fusion rules:

CA × CB =
∑

C

(
∑

γ

dγN
ABγ
11C )CC

Proof. The best way to see this is to study the representation space,{|gi > |hj >
, gi ∈ A, hj ∈ B}. The global symmetry transformations g act as g · |gi > |hj >=
|ggig−1 > |ghjg−1 >. Let all the g ∈ H act on these vectors (which transforms
them into other vectors of the same form), and decompose the vector space
into invariant subspaces Vi. These are obviously the conjugacy classes in the
multiplication of CA and CB . These subspaces are also invariant under the
action of the projection operators, which act as Ph · |gi > |hj >= δh,gihj |gi >
|hj >. Now write Vi =

∑

h∈H PhVi. PhVi is invariant under the action of
Nh, so it’s a representation of Nh. Decompose this into irreps γk

h,i of Nh,
writing PhVi =

∑

k Wγk
h,i

. Acting by global symmetry transformations g, we

get g · Wγk
h,i

= Wγk
ghg−1 ,i

.

These are exactly the irreps γ in the decomposition above. Obviously, for a given
PhVi, the irreps γh,i satisfy

∑

k dγk
h,i

= dim(PhVi). We’ve explicitly constructed

the decomposition into irreps, since if PhVi '= 0, acting on PhVi with global
symmetry transformations generates all of Vi, and the action is invertible. Thus,
summing over the dyons gives the class multiplication.

B.2 Generalized quantum doubles

In the main text we came across phases whose Hopf symmetry was a variation on
a quantum double, which we called a generalized quantum double. An example
is F (T )⊗ Td. We will now give the general definition of a generalized quantum
double2.

As a vector space a generalized quantum double is F (Hm) ⊗ Hel, where
Hm and Hel are two groups. It is also a transformation group algebra, so there

2We came up with this structure to deal with the phases with inversion or reflection
symmetries.
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is an action of Hel on Hm. We denote the action of h ∈ Hel on g ∈ Hm by h · g.
We require this action to satisfy the following relation:

∀h ∈ Hel, ∀g, g′ ∈ Hm : h · (gg′) = (h · g)(h · g′). (B.24)

A basis of F (Hm)⊗ Hel is given by {Pgh : g ∈ Hm, h ∈ Hel}. F (Hm)⊗ Hel

is a Hopf algebra with the following structure:

∀g, g′ ∈ Hm, ∀h, h′ ∈ Hel : PghPg′h′ = δg,h·g′Pghh′ (B.25)

∆(Pgh) =
∑

g′∈Hm

Pg′h⊗ Pg′−1gh (B.26)

ε(Pgh) = δg,e (B.27)

S(Pgh) = Ph−1·g−1h−1 (B.28)

These structures satisfy all the axioms of a Hopf algebra, thus F (Hm) ⊗ Hel

is a Hopf algebra. Just as in the quantum double case, we can write elements
of F (Hm)⊗ Hel as functions in F (Hm ×Hel). An element of F (Hm ×Hel) is
a function

f : Hm ×Hel → . (B.29)

The element Pgh ∈ F (Hm)⊗ Hel corresponds to the function

f(y, z) = δg,yδh,z ∀y ∈ Hm, z ∈ Hel. (B.30)

The structures of F (Hm ×Hel) are

∀f, f1, f2 ∈ F (Hm ×Hel); x, x1, x2 ∈ Hm; y, y1, y2 ∈ Hel :

(f1 × f2)(x, y) =
∑

h∈Hel

f1(x, h)f2(h
−1 · x, h−1y) (B.31)

∆(f1)(x1, y1; x2, y2) = f(x1x2, y1)δy1(y2) (B.32)

ε(f) =
∑

h∈Hel

f(e, h)dh (B.33)

S(f)(x, y) = f(y−1 · x−1, y−1) (B.34)

Making F (Hm) ⊗ Hel quasitriangular, i.e. introducing a braid matrix, is
not that easy. We have found a way to do it that applies to all cases in the main
text. We need a homomorphism:

Γ : Hm → Hel, (B.35)

that satisfies the following relations:

∀g, g1, g2 ∈ Hm, h ∈ Hel : (B.36)

Γ(g1) · g2 = g1g2g
−1
1 (B.37)

Γ(h · g) = hΓ(g)h−1. (B.38)
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F (Hm)⊗ Hel is then a quasitriangular Hopf algebra with the following braid
matrix:

R =
∑

g∈Hm

Pge⊗ Γ(g). (B.39)

The inverse of R is
R−1 =

∑

g∈G

Pge⊗ Γ(g−1). (B.40)

The quantum double D(H) is a special case of a generalized quantum double,
with Hm = Hel = H , h · g = hgh−1 ∀h, g ∈ H , and Γ ≡ id.

Armed with our knowledge of generalized quantum doubles, we can study
an achiral tetrahedral nematic, for example. The elements of Td are denoted as
permutations of the four vertices of a tetrahedron, see fig. B.1.

The defects are labelled by

Π1(O(3)/Td) = Π1(SO(3)/T ) = Π1(SU(2)/T ) = T . (B.41)

Global symmetry transformations conjugate the defects, so these defects are
grouped together in orbits under the action of the residual symmetry group, in
this case Td. This is not the same as the conjugacy classes of T ! To see this, we
must first set a notation for the defects. Write an element of T as

u(n̂, θ) = sign(cos
θ

2
)u′(n̂, θ′) − π < θ′ ≤ π θ′ = θ(mod2π), (B.42)

where u(n̂, θ) ∈ SU(2) is defined in Appendix A. Every defect corresponds to
a u(n̂, θ). The element of u(n̂, θ) that corresponds to a defect is not uniquely
defined, we have some choice. We denote the defects as cycles of T with square
brackets with a plus or minus sign, e.g. ±[123]. The minus sign corresponds to
the 2π defect, i.e. the nontrivial loop in SO(3). The defect [123] corresponds to
the u′(n̂, θ′) with −π < θ′ ≤ π such that

R(n̂, θ′) = (123).

We need to know the axis n̂1 in fig. B.1, such that (123) corresponds to a 2π
3

around n̂1.

Figure B.1: The tetrahedron, with labelled vertices.

From the figure we see that n̂1 = 1√
3
(1, 1, 1). Thus we define [123] = u(n̂1,

2π
3 )
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The trivial defect is denoted by 1, and the 2π defect by −1.
To have a notation for all the defects in T , we first define the following axes:

n̂1 =
1√
3
(1, 1, 1) n̂2 =

1√
3
(1, 1,−1) n̂3 =

1√
3
(−1, 1, 1) n̂4 =

1√
3
(−1, 1,−1).

Then the defects are given

±e

±[123] = ±u(n̂1,
2π

3
) ±[124] = ±u(n̂2,

2π
3 ) ±[124] = ±u(n̂2,

2π

3
)

±[234] = ±u(n̂3,
2π

3
) ±[134] = ±u(n̂4,

2π
3 ) ±[132] = ±u(n̂1,−

2π

3
)

±[142] = ±u(n̂2,−
2π

3
) ±[243] = ±u(n̂3,− 2π

3 ) ±[143] = ±u(n̂4,−
2π

3
)

±[(12)(34)] = ±u(ẑ,π) ±[(13)(24)] = ±u(ŷ,π) ±[(14)(23)] = ±u(x̂,π).

Using our notation, we can determine the defect classes under the action of
Td. First consider an element R(n̂,φ) of T . Its action on a defect u(n̂i, θ) gives
u(n̂,φ)u(n̂i, θ)u(n̂,φ)−1.

Now consider transformations in Td that are connected to the identity, such
as (12). We can always write such an element as Inv × R(n̂,φ), where Inv is
the inversion matrix:

Inv = − =





−1 0 0
0 −1 0
0 0 −1



 . (B.43)

Inv acts trivially on all the defects, thus the action of Inv×R(n̂,φ) on a defect
u(n̂i, θ) gives u(n̂,φ)u(n̂i, θ)u(n̂,φ)−1.

We will now write the large symmetry transformations as Inv × R(n̂,φ).
First we define the following axes:

m̂1 =
1√
2
(1,−1, 0) m̂2 =

1√
2
(−1, 0, 1) m̂3 =

1√
2
(0, 1, 1)

m̂4 =
1√
2
(0,−1, 1) m̂5 =

1√
2
(1, 0, 1) m̂6 =

1√
2
(1, 1, 0).

The inversions are given by

(12) = Inv ×R(m1,π) (13) = Inv ×R(m2,π) (14) = Inv ×R(m3,π)

(23) = Inv ×R(m4,π) (24) = Inv ×R(m5,π) (34) = Inv ×R(m6,π).

We can now derive the multiplication table of T using the multiplication in
SU(2). For example,

[123][123] = −[132]

[123][124] = [(14)(23)]

(12)[(12)(34)](12) = −[(12)(34)]

etc.
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F (T )⊗ Td is a generalized quantum double. We just defined the action of
Td on T . We still need a Γ: it is given by

Γ(±[123]) = (123),Γ(±[(12)(34)]) = (12)(34), etc.

Thus Γ turns square brackets into round brackets and neglects the eventual
minus sign.



Appendix C

Defect condensates in
achiral nematics

In this appendix, we give all defect condensates from an achiral octahedral and
an achiral icosahedral nematic.

C.1 Achiral octahedral nematic

Using the isomorphism O - S4 discussed in appendix A, we can write elements
of O as cycles, e.g. (1234), (123), (23), (13)(24), etc. In analogy with the achiral
tetrahedral nematic discussed in appendix B, we can denote elements of the
defect group O as cycles with square brackets, with an eventual minus sign.
Examples are ±[123],±[(12)(34)],±[(12)], where the minus sign is the 2π defect.
The notation is explained in appendix B.

The electric group is Oi, consisting of the octahedral group and inversions.
Defining

Inv = − =





−1 0 0
0 −1 0
0 0 −1



 .

Then Oi = {O, Inv × O}. The Hopf symmetry is F (O) ⊗ Oi. The defect
classes in O under the action of Oi are given in table C.1. The inversion Inv
acts trivially on the defects, so for the octahedral nematic the defect classes are
in fact the conjugacy classes of O. In general, when a group carries a sublabel
i, it means that the group contains Inv.

The single defect condensates in F (O) ⊗ Oi are given in table C.2. The
class sum defect condensates are given in table C.3. Finally, the combined
defect condensates are given in table C.4. We note that we are giving a very
representative sample. The other defect condensates give the same TR and U
as one the defect condensates shown here (except for a small difference: there

167
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Preferred element gA Defect class A of O
±e C±e = {±e}

±[123] C±[123] = {[123], [124], [142], [132], [134],
[234], [142], [143], [243]}

±[1234] C±[1234] = {[1234], [1243], [1324],
[1342], [1423], [1432]}

[(12)(34)] C[(12)(34)] = {[(12)(34)], [(13)(24)], [(14)(23)],
−[(12)(34)],−[(13)(24)],−[(14)(23)]}

[12] C[12] = {[12], [13], [23], [14], [24], [34],
−[12],−[13],−[23],−[14],−[24],−[34]}

Table C.1: The defect classes of O under the action Oi, and the preferred
elements gA. When we write ± in front of a class, we mean that there are two
classes, one with plus signs in front of all the elements, and one with minus signs
in front of all the elements.

may be condensates where K is actually the double of a K given here. That
slightly changes the magnetic part of TR, but doesn’t affect U).

Single defect condensate in
A = F (O)⊗ Oi K TR U

|− e > C1 F (O) ⊗ Oi F (O) ⊗ Oi

| ± [12] > C2 F (O/C2)⊗ D2i F (C2)⊗ C2i

| ± [123] > C3 F (O/C3)⊗ C3i Ci

| ± [1234] > C4 F (O/C4)⊗ C4i Ci

| ± [(12)(34)] > C2 F (O/C2)⊗ D4i F (D2)⊗ D2i

Table C.2: Single defect condensates in an octahedral nematic. When we write
± is front of a condensate, we mean that the condensate with or without the
minus sign gives the same symmetry breaking analysis.
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Class sum defect condensates of
A = F (O)⊗ Oi K TR U

|C[(12)(34)] > D2 F (D3)⊗ Oi F (D3)⊗ D3i

|C±[123] > T F (C2)⊗ Oi F (C2)⊗ C2i

|C±[1234] > O Oi Ci

|C[12] > O Oi Ci

Table C.3: Class sum defect condensates in an achiral octahedral nematic.
When we write ± is front of a condensate, we mean that the condensate with
or without the minus sign gives the same symmetry breaking analysis.

Combined defect condensate in K TR U
A = F (O)⊗ Oi

|[123] > +|[132] > C3 F (O/C3)⊗ D3i C2i

|[12] > +|[34] > D2 F (O/D2)⊗ D4i F (C2)⊗ Ci

|[(12)(34)] > +|[(13)(24)] > D2 F (O/D2)⊗ D4i F (C2)⊗ C2i

|[12] > +|[13] > +|[23] > D3 F (O/D3)⊗ D3i Ci

Table C.4: Combined defect condensates in an achiral octahedral nematic. In
this table, A is the original symmetry algebra, K is the smallest subgroup of
Hm that contains all the defects gi that are in the condensate, TR is the residual
symmetry algebra, and U is the unconfined symmetry algebra.

C.2 Achiral icosahedral nematic

Using the isomorphism O - A5 discussed in appendix A, we can write elements
of I as cycles, e.g. (12345), (123), (145)(23), (13)(24), etc. In analogy with the
achiral tetrahedral nematic discussed in appendix B, we can denote elements
of the defect group I as cycles with square brackets, with an eventual minus
sign. Examples are ±[123],±[(12)(345)],±[(15)], where the minus sign is the 2π
defect. The notation is explained in appendix B.

The electric group is Ii, consisting of the icosahedral group and inversions:
Ii = {I, Inv × I}. The Hopf symmetry is F (I) ⊗ Ii. The defect classes in I
under the action of Ii are given in table C.5. The inversion Inv acts trivially
on the defects, so the defect classes are the conjugacy classes of I.

The single defect condensates in F (O) ⊗ Oi are given in table C.6. The
class sum defect condensates are given in table C.7. Finally, the combined defect
condensates are given in table C.8. We give a very representative sample.
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Preferred element gA Defect class A of I
e Ce = {e}
−e C−e = {−e}

±[123] C±[123] = ±{[123], [132], [124], [142], [125],
[152], [134], [143], [135], [153],
[145], [154], [234], [243], [235],
[253], [245], [254], [345], [354]}

±[12345] C±[12345] = ±{[12345], [12453], [12534], [13254],
[13425], [13542], [14235], [14352],
[14523], [15243], [15324], [15432]}

±[12354] C±[12354] = ±{[12354], [12435], [12543], [13245],
[13452], [13524], [14253], [14325],
[14532], [15234], [15342], [15423]}

[(12)(34)] C[(12)(34)] =
{±[(12)(34)],±[(12)(35)],±[(12)(45)],±[(13)(24)],±[(13)(25)],
±[(13)(45)],±[(23)(45)],±[(14)(23)],±[(14)(25)],±[(14)(35)],
±[(24)(35)],±[(15)(23)],±[(15)(24)],±[(15)(34)],±[(25)(34)]}

±[123] C±[123] = ±{[123], [124], [125], [132], [134],
[234], [135], [235], [142], [143],
[243], [145], [245], [345], [152],
[153], [253], [154], [254], [354]}

Table C.5: The defect classes of I under the action Ii, and the preferred elements
gA. When we write ± in front of a class, we mean that there are two classes,
one with plus signs in front of all the elements, and one with minus signs in
front of all the elements. If we write ± in front of an element inside a class, we
mean that the element with the plus and the minus sign are both present in the
class.

Single defect condensate in
A = F (I)⊗ Ii K TR U

|− e > C1 F (I)⊗ Ii F (I)⊗ Ii

|[123] > C3 F (I/C3)⊗ C3i Ci

|− [123] > C3 F (I/C3)⊗ C3i Ci

| ± [(12)(34)] > C2 F (I/C2)⊗ D2i F (C2)⊗ C2i

|[12345] > C5 F (I/C5)⊗ C5i Ci

|− [12345] > C5 F (I/C5)⊗ C5i Ci

Table C.6: Single defect condensates in an icosahedral nematic. When we write
± is front of a condensate, we mean that the condensate with or without the
minus sign gives the same symmetry breaking analysis.
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Class sum defect condensate in
A = F (I)⊗ Ii K TR U

|C±[12345] > I Ii Ci

|C±[12354] > I Ii Ci

|C[(12)(34)] > I Ii Ci

Table C.7: Class sum defect condensates in an achiral icosahedral nematic.
When we write ± is front of a condensate, we mean that the condensate with
or without the minus sign gives the same symmetry breaking analysis.

Combined defect condensate in K TR U
A = F (I)⊗ Ii

|[(12)(34)] > +|[(13)(24)] > D2 F (I/D2)⊗ D2i Ci

|[(12)(34)] + |[(13)(24)] > +|[(14)(23)] > D2 F (I/D2)⊗ Ti C3i

|[(12)(34)] > +|[(12)(35)] > +|[(12)(45)] > D3 F (I/D3)⊗ D3i Ci

{|[(12)(34)] > +|[(13)(25)] > +|[(15)(24)] > D5 F (I/D5)⊗ D5i C2i

+|[(23)(45)] > +|[(14)(35)] >}
|[123] > +|[132] > C3 F (I/C3)⊗ D3i C2i

|[123] > +|[134] > +|[142] > +|[243] > T F (I/T )⊗ Ti Ci

{|[123] > +|[124] > +|[132] > +|[134] > T F (I/T )⊗ Ti Ci

+|[234] > +|[142] > +|[143] > +|[243] >}
{|[123] > +|[152] > +|[135] > +|[253] > I C3i Ci

+|[142] > +|[134] > +|[243] >}
{|[12345] > +|[13524] > C5 F (I/C5)⊗ D5i C2i

+|[14253] > +|[15432] >}

Table C.8: Combined defect condensates in an achiral icosahedral nematic. In
this table, A is the original symmetry algebra, K is the smallest subgroup of
Hm that contains all the defects gi that are in the condensate, TR is the residual
symmetry algebra, and U is the unconfined symmetry algebra.
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Appendix D

Irreducible representations

D.1 Irreducible representations of semidirect prod-
uct groups

D.1.1 Irreps of a finite group

The theory of irreducible representations of finite groups is based on the great
orthogonality theorem for irreps of finite groups: given two irreps Πa and Πb,
then the matrix elements satisfy the following orthogonality relation:

∑

g∈G

Πa(g)ijΠb(g)kl =
|G|
da

δi,lδj,kδa,b (D.1)

where |G| is the order of the group, and da the dimension of the irrep Πa. δa,b

is one if the irreps are equivalent, and zero if they aren’t.
Define the character χa of an irrep Πa as the trace of the irrep: χa(g) =

TrΠa(g). Actually, the trace is just an example of a character function. More
generally, a character function is a function from the group to the complex
numbers that is constant on the conjugacy classes. From the orthogonality
theorem, the following corollaries are easily proven:

1. The number of inequivalent irreps is equal to the number of conjugacy
classes,

2.
∑

a d2
a = |G| where the sum runs over all irreps,

3. The characters are orthogonal with respect to the following inner product:

< xa, xb >=
1

|G|
∑

g∈G

xa(g)∗xb(g)

They form an orthogonal basis of the space of character functions.

These corollaries are precious when working out the character table of a group.
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D.1.2 Subduced and induced representations

Given a group G, a subgroup H, and a representation α of G, we can restrict
this representation to elements of H . This gives a representation of H , which
is called the subduced representation, and denoted α|H . If α was an irrep of
G, then α|H may be reducible. We saw physical examples of this: when the
symmetry is broken from G to H , degeneracies may be lifted.
Inducing a representation goes the other way around. Given a representation
β of H , construct a representation βG of G as follows: first choose a set of
representatives of left H cosets, call then xi. Choose a basis |vj > of the vector
space Vβ on which β acts. Then define a new vector space, with basis |xi, vj >,
and define the following action of G on this vector space:

βG(g)|xi, vj >= |xk,β(h)vj >

where gxi = xkh for some k, and some h ∈ H . All elements of G are of the
form xkh, because the xk are a complete list of representatives of left H cosets.
A notation for this new module (or irrep) is

[G]⊗ [H] Vβ .

In words, we stick G onto Vβ , and let H shoot through the tensor product and
act on Vβ .

D.1.3 Semi-direct product groups

A semidirect product of groups is an example of a group extension (see [1]). The
name of the game is, given two groups N and G, to find groups E such that N
is a normal subgroup of E and E = G/N . The question is how many different
E exist satisfying these criteria. For example, SU(2) is an extension of SO(3),
where N = 2.
A famous example is the semi-direct product of N and G. We need a homomor-
phism λ : G → Aut(N) (where Aut(N) is the group of automorphisms of N).
The semi-direct product of N and G, denoted N ! G, is the set N ×G with the
following multiplication:

(n, g)(n′, g′) = (nλ(g)n′, gg′).

Now we turn the question around: given a group G, a normal subgroup N ,
and a subgroup H , when do we have G = N ! H? Here we make a specific
choice that λ(g) must correspond to conjugation with g: λ(g)n = gng−1. One
can check that G = N ! H ⇐⇒ G = NH and N ∩H = e.

Examples are the Galilean group 4 ! SO(3), the Poincaré group 4 !

SO(3, 1), the symmetry group of a hexagonal crystal 2 ! 6. Note that in all
these cases the normal subgroup is a group of translations, therefore it is abelian.
There is a general prescription for determining the irreducible representations
of N ! H with N abelian, called the little group method. We will now quickly
summarize the prescription.
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D.1.4 Irreps of N ! H, with N abelian

Use Mackey’s induction theorem (see [60], 8.2). The steps are:

1. Find the irreps of N . Take one of them, call it δ.

2. For g ∈ G, define αg as the automorphism of N given by conjugation by
g: αg(n) = gng−1 ∀n ∈ N . Call Hδ = {h ∈ H |δ ◦ αh = δ}. Then N ! Hδ

is the subgroup of G whose elements g satisfy δ ◦ αg = δ. It is called a
little group of the second kind.

3. Find the irreps of Hδ. Take one of them, call it λ.

4. Now define a representation δ ⊗ λ of N ! Hδ as follows:

δ ⊗ λ(n, h) := δ(n)⊗ λ(h).

It is crucial that δ ◦ αg = δ for this to be a representation:

δ ⊗ λ((n, h), (n′, h′)) = δ ⊗ λ(nαh(n′), hh′)

= δ(n)δ ◦ αh(n′)⊗ λ(h)λ(h′)

= δ(n)δ(n′)⊗ λ(h)λ(h′)

= (δ(n)⊗ λ(h))(δ(n′)⊗ λ(h′))

5. Induce a representation of N !H from the representation δ⊗λ of N !Hδ.
The vector space of the representation is

IndN"H
N"Hδ

(δ ⊗ λ) = [N ! H ]⊗ [N"Hδ] Vδ⊗λ.

A consequence of Mackey’s theorem is that all the irreps of N ! H are
contained in the set {Πδ,λ}. Note that some of the irreps in this set may
be equivalent.

If the groups N and H are infinite (locally compact), the theorem still holds, if
we demand that the irreps are bounded.
For the case of N ! H with N a translation group and H a rotation group, this
story can be drawn on a lattice (this is used in the main text). An irrep Π!k of

N is given by a momentum vector #k. Given a translation #x, the irrep is defined
by

Π!k(#x)ei!k·!x.

Now take a rotation R ∈ H . Then Π!k ◦αR = ΠR−1!kR, so the action of R on the

vector Π!k is to turn #k by R−1. This follows from the multiplication in N ! H .
Write elements of N ! H as (t, R), with t ∈ N, R ∈ H . Then

(t′, R′)× (t, R) = (t′ + R′t, R′R)
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To derive this, write #x′ = Rx + t, and then apply the second transformation:
#x′′ = R′x′ + t′ = R′Rx + R′t + t′.
Now we compute:

Π!k ◦ αR((t, e)) = Π!k(Rt, e) = ei!k·Rt = ei(R−1!k)·!t = ΠR−1!k((t, e)),

because the rotations are orthogonal. This new irrep may be equivalent to the

previous one, if #k and
#

R−1#k differ by a reciprocal lattice vector. We call the set
of vectors R−1#k that represent inequivalent irreps the star of #k, also known as
the orbit of #k.
What is the dimension of such an irrep? The irrep of N is one-dimensional be-
cause N is abelian. The irrep of the little group N !Hδ has a certain dimension,
which we call dδ. When inducing, we ”stick on” left Hδ cosets, so we multiply
the dimension by [H, Hδ], where [G : H ] is the number of left H cosets in G.
The total dimension is therefore dδ × [H, Hδ].

An example from the main text

We now illustrate the derivation of an irrep of 2!D6 discussed in the main text.
Take orbit 5 in fig. 4.3, with momentum #k = (π2 , π2 ) (i.e., ( π

2a , π
2a ) with a = 1).

A rotation of 180 degrees (r3) gives an equivalent vector, i.e. a momentum that
represents the same irrep of 2. As a matter of fact, so do e, sr2, sr−1, so HΠ!k

is
isomorphic to 2! 2 = (r3)×(sr2), where in general (g) is the group generated
by g. It has four one-dimensional irreps. Now [D6 : 2 ! 2] = 3, so we get four
three-dimensional irreps. Denote an irrep of 2 ! 2 by ρm,n, with m, n ∈ 2.
Explicitly, a basis of the irreps is given by a set of representatives of left 2 ! 2

cosets, which we take to be {|e >, |r >, |r2 >} (the order is important when we
write down the matrices explicitly). The matrices of the irrep are

(a, b) $→





ei π2 aeiπ2 b 0 0
0 eiπ2 (a+b)eiπ2 (−a) 0
0 0 eiπ2 beiπ2 (−a−b)



 ,

r $→





0 0 eiπm

1 0 0
0 1 0



 , s $→





0 eiπn

0 eiπn 0
eiπn 0 0





Let us illustrate the derivation of the second column of the matrix corresponding
to s:

s|r >= |sr >= |r(sr2) >= |r > eiπn.

D.2 Irreducible representations of algebras

Physicists demand that their symmetry algebras be semisimple, meaning that
the radical of the algebra (which is the largest solvable ideal) is trivial. There
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are many equivalent definitions of the radical J(A) of the algebra A:

J(A) = {x ∈ A|1 + xy ∈ A∗∀y ∈ A}
= {x ∈ A|xy nilpotent ∀y ∈ A}
= the unique maximal ideal consisting of nilpotent elements

= the unique solvable ideal

= the unique maximal nilpotent ideal

=
⋂

{M |M maximal right ideal of A}

=
⋂

{M |M maximal left ideal of A}

This definition is actually also adequate for any finite dimensional algebra, and
in fact Irreps(A) = Irreps(A/J(A)), meaning that the irreps of A are in one-to-
one correspondence with the irreps of A/J(A), and that they factor through the
obvious map from A to A/J(A) to sends a to its equivalence class. Obviously
A/J(A) is semisimple, since we have modded out the radical.
There are very important theorems that apply to semisimple algebras, which
make them appealing for physicists. First of all, all its representations are
either irreducible or fully reducible, meaning that there are a finite number of
particles (irreps) from which one can build all representations. Actually a finite-
dimensional algebra is semisimple if and only if all its reducible representations
are fully reducible.
A simple algebra is an algebra with no non-trivial ideals. It is therefore also
semisimple. Any semisimple algebra is a direct sum of simple algebras.
Weddenburm’s theorem states that any simple algebra is isomorphic to a matrix
algebra. Therefore all semisimple algebras are direct sums of matrix algebras.
In the chapter on condensation, we assumed that TR was a semisimple algebra,
and we will not prove this. We then modded out the intersection of the kernel
of a set of irreps (the unconfined irreps) which we called I, and we can actually
prove that TR/I is semisimple. First we derive an alternate definition of J(A),
for any finite-dimensional algebra A:

J(A) =
⋂

{kerφ|φ irrep of A}

Since A/J(A) is semisimple, we have A/J(A) =
⊕

Ai, with Ai simple. Note
that when we write A/J(A) =

⊕

Ai, we actually mean that if i '= j, then
aiaj = 0, for any ai ∈ Ai, aj ∈ Aj . Now the kernel of an irrep is an ideal, so for
an irrep φi of a simple algebra Ai we have kerφi = {0}. Here φi is an irrep of
A, so kerφi =

⊕

j *=i Aj , and obviously
⋂

i kerφi = {0}, since Ai ∩Aj = {0} for
i '= j. So

∩kerφi = 0 in A/J(A) ⇒ ∩kerφ′
i ⊂ J(A) φ′

iirreps of A

We also have J(A) ⊂ kerφ′
i due to Irreps(A) = Irreps(A/J(A)). So J(A) =

kerφ′
i.

Now take a set of irreps of A, {ψi}. Defining I = ∩ikerψi, is A/I semisimple?
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It is. This follows from the observation that A/I = (A/J(A))/(I/J(A)), since
J(A) ⊂ I. A/J(A) is semisimple, and any quotient of a semisimple algebra is
semisimple. Namely, for a semisimple algebra B =

⊕

i Bi, all ideals of B are Bi

and sums of Bi’s. Now mod out an ideal I =
⊕

i∈X , for some indexing set X .
The radical of B/I then satisfies J(B/I) = J(B) I, so if J(B/I) is non trivial,
then so is J(B).

For more details on the theory behind associative algebras, see [51]. For the
standard reference on the representation theory of groups and algebras, see [17].


