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Abstract

We consider phases of spontaneously broken gauge theories in which dif-

ferent types of topological excitations, like fluxtubes, monopoles etc. coexist.

We analyse the topological relations which exist between the charges, and give

a description of the admissible core deformations in terms of certain cohomo-

logy groups that occur in obstruction theory. Simple examples are worked out

in detail.

1 Introduction

An interesting feature of (spontaneously) broken gauge theories is the existence
of topological excitations. One may think of fluxtubes, magnetic monopoles and
instantons. The topological charges are labelled by certain homotopy groups of the
coset space G/H, where G is the gauge group and H the residual symmetry group
of the groundstate [1, 2].

Most of the research on these topological excitations has focussed on a situation
where only a single type of excitation is present in the theory, basically because usu-
ally only one of the relevant homotopy groups is non-trivial. In this paper however
we will investigate the situation where different types of topological excitations can
coexist. The theories in which this occurs, i.e. where the coset space G/H has more
than one non-trivial homotopy group, may exhibit novel features which have to do
with a non-trivial coupling between different topological quantumnumbers. In sim-
ple models we are used to think of the topological singularity, where the topological
charge is located, to be point-like in the appropriate dimension (i. e. d = 2, 3, 4 for
fluxtubes, monopoles and instantons successively), but in models with a coupling
between the different quantumnumbers we will encounter situations where the topo-
logical singularity may be extended, for example to a ring or a higher dimensional
closed surface. This means that the analysis of topological stability becomes more
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involved. In the conventional cases the stability derives from the asymptotic (large
r) behaviour of the fields, which determined the element of the relevant homotopy
group πn(G/H). The core was always assumed to be point-like and the question
of ”instability” of the core never presented itself. However if several topological
quantumnumbers are available, the question of core instability becomes relevant.
Such an instability may involve a topological deformation of the core. For example,
in certain models a magnetic charge may be located on a ring, rather than in a single
point [9]. And it is conceivable that by varying the parameters of the theory the
deformation of the point charge to a ring charge will become favoured energetically.

In this paper we present a rather general topological analysis of this problem,
and show that the appropriate mathematical setting in which to describe such phe-
nomena is obstruction theory.

In section 2 we formulate the problem of connecting the ordinary monopole
with monopoles with an extended topological singularity. We present a construction
which relates the normal asymptotic πn classification of defects to the homotopy
classification of the extended singularity. In this construction a mathematical theory,
called obstruction theory, is employed which we will discuss in section 3. This theory
deals with the question of extending maps defined on a space A into a space Y , to
a map from X ⊃ A to Y . Obstruction theory gives certain criteria for the spaces
and maps by which we can see if the map has an extension over X.

The paper closes with a few examples. These show how the construction de-
scribed in section 2 can be applied. The case of a monopole which has an extended
topological singularity is discussed in detail.

2 The question of extended topological singular-

ities

As is well known, the magnetic charge of monopoles in a gauge theory with gauge
group G, spontaneously broken to a subgroup H, are in one-to-one correspondence
with π2(G/H), the second homotopy group of the vacuum manifold. To have a
solution with non-vanishing magnetic charge, the asymptotic higgs field

φ∞(θ, φ) : S2 −→ G/H (1)

must belong to a non-trivial element of π2(G/H). If [φ∞] is non-trivial, then it
follows from continuity considerations that φ(~x), (~x ∈ R3) has to be singular in at
least one point. This singularity is characterized by the fact that the value of φ at
that point has a different residual symmetrygroup H ′ ⊃ H. In the case G = SU(2)
this implies that Φ has to vanish sothat H ′ = SU(2). We say that the gauge
symmetry at the singularity is (partially) restored. For larger groups the situation is
slightly more involved but not in an essential way. If φ is in the adjoint representation
it fixes a Cartan-element in the Lie-algebra, this will generically break the symmetry
to a product of rank(G) U(1) factors, therefore the magnetic charge has in that case
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rank(G) components which are topologically conserved. The most degenerate case
that can occur in that situation is that the residual symmetrygroup is of the form
U(1)

⊗

K where K is some semisimple subgroup of G, in that case there is only
one component of the magnetic charge conserved topologically. In a general group,
where the magnetic charge generically has more then a single component which
is conserved topologically, there are ofcourse many possible types of topological
singularities. These correspond to changes in the value of φ where the number of
conserved components changes some way. If we think of φ as a vector in the Cartan-
subalgebra it means that at a topological singularity one or more components of
that vector go to zero in a suitable basis. And at the singularity the gaugesymmetry
need only be partially restored These complications are not essential to what we
want to discuss in this paper. For reasons of simplicity we stick therefore to the
case G = SU(2) where a topological singularity is the subset T ⊂ R3 where the
Higgsfield φ vanishes. We remark that in an actual monopole solution the topological
singularity is just a point, at the other hand the fields φ and A are in fact completely
regular and the energy of such a configuration is finite.

We should be aware of the fact that the topological singularity is point-like does
however not follow from topology, but rather from energy considerations. It is con-
ceivable that instead of in a point, φ vanishes on some closed compact submanifold
of R3, which is topologically non-trivial. In the remainder of this section we will
consider this possibility of an extended topological singularity and relate this to
homotopy theory. The topological singularity is enclosed by the so-called monopole
core. Inside this core, at the singularity, the symmetry remains unbroken. Outside
of the core the fields rapidly approach their asymptotic value, which is governed by
the broken symmetry. The core size is roughly the inverse of the mass associated
with the symmetry breaking scale. It is the boundary of the core which will play an
important role in our considerations.

We mentioned already that the classification of monopoles with point-like sin-
gularity in Rk+1, is given by [φ] ∈ πk(G/H), where we consider φ now as a map of
the boundary of the core (' Sk) to G/H. In the following we shall consider a field
on a smooth and closed k-dimensional manifold A in Rk+1, where A is the bound-
ary of a core which contains some extended topological singularity. The question
we want to adress in general is whether the point-like monopole can smoothly be
deformed (”decay”) into an object with the extended charge. We may think of this
deformation as a result of slowly changing the parameters in the model. So we want
to establish a relation between possible field configurations on Sk, which are char-
acterized by elements of the n-th homotopy group, and possible field configurations
on A, which are characterized by the homotopy classes of [A;Y ]. In order to answer
this question, we start by recalling the notion of cobordism. A cobordism between
two n-dimensional manifolds C1 and C2 is defined as a (n+1)-dimensional manifold
D such that ∂D = C1 ∪C2, where C1 and C2 are disjunct. If such a manifold exists
then C1 and C2 are called cobordant.

Let us assume that A and Sk are cobordant. For the situation we are interested
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Figure 1: Schematical representation of the ”cobordism”-construction.

in, this is not a very restrictive condition. We can always put the manifold A inside
the sphere. The cobordism B is the space between A and Sk with the latter as
boundaries. This cobordism is well defined because A and Sk are closed compact
manifolds without boundary in Rk+1. It is obvious that ∂B = A ∪ Sk.

The procedure to establish the relation between the configurations on A and Sk

starts with a field configuration (map) on Sk, f : Sk → Y . This map is labelled
by the homotopy class of f, i.e. [f ] ∈ πk(Y ). We try to extend this map over the
cobordism B. The central question is whether this can be done and if so, for which
elements of πk(Y ).

If it is possible to extend f over B, the next question is, which configurations we
can obtain on A this way. In other words, we want to determine the homotopy classes
of the extension restricted to A. Furthermore, we want to know which elements of
[A;Y ] we may reach by different extensions. To answer this last question we use the
same arguments in reverse order: we start with a configuration h : A→ Y and then
look whether it is possible to extend this map over B. We restrict this extension
to Sk and determine which elements of πk(Y ) we can get. Comparing the results of
the two constructions described above, we can decide which homotopy classes [A;Y ]
and πk(Y ) correspond to each other, i.e.. which topological defects can be smoothly
deformed into each other by changing their core. An interesting possibility arises if
more than one class [A;Y ] corresponds to a single element of πk(Y ). Then one may
expect that by varying the parameters in the potential, the solution with a point-like
singularity changes smoothly into one with an extended topogical singularity.

In figure 1 we have sketched schematically the cobordism and the manifolds Sk

and A. The construction amounts to trying to extend f and g over the cobordism
B and then to determine the map at the other boundary.

So the things we need to know to make a classification of the allowed monopole
core deformation are the structure of πk(Y ), of [A;Y ], and in which cases there
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exists an extension. This latter, purely mathematical question can be answered in
a very general way by means of obstruction theory, which is the subject of the next
section.

3 Obstruction theory

In this section we will give a brief account of obstruction theory as it may be found in
standard text books about algebraic topology. There are various approaches known
in literature, such as in [3] or [4]. Here we will mainly follow the approach used in
[5], which is the most accesible.

Obstruction theory tells us under which conditions a function, which maps a
space A to a space Y , can be extended continously to a map from a space X,
with A ⊂ X, into the space Y . This extension problem can be diagrammatically
represented as in figure 2.
From the physical point of view we are faced with the question of extending maps,

f g

i
A X
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J
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Figure 2: The extension problem

where A, X and Y are smooth manifolds. However, the natural setting in which
obstruction theory is defined, is that of cell complexes. So we will restrict ourselves
to maps of finite cell complexes into a pathwise connected space Y . Furthermore,
we will mostly think in terms of a special kind of cell complex, namely the simplicial
complex. To settle the notation we will start by giving definitions of simplicial
complexes, chain complexes etc. , and other mathematical notions appearing in
obstruction theory.

3.1 Basic definitions

All of the definitions given in this section can be found in the mathematical textbooks
[3, 6]. Alternatively one may consult the book of Nash & Sen [7].

An m-dimensional simplex (m-simplex) σm is defined as the set of points x in
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Rn given by

σm = {x =
m+1
∑

i=1

λixi|λi ≥ 0,
m+1
∑

i=1

λi = 1}, (2)

where xi, . . . , xm+1 are independent.
A simplicial complex K of dimension k is a finite collection of simplexes in Rn,

with dimension less or equal than k, satisfying

1. if σp ∈ K, then all faces of σp belong to K,

2. if σp,σq ∈ K then either σp ∩ σq = ∅ or σp ∩ σq is a common face of σp

and σq

A simplicial complex is a special kind of cell complex, the cells being simplexes.
The union of members of K with the Euclidean subspace topology is called the

polyhedron associated with K. The m-skeleton of a simplicial complex consists of
all simplexes with dimension less or equal than m.

A simplicial complex is closely related to the familiar concept of triangulation,
namely, a toplogical space X which is homeomorphic to a polyhedron K is said to
be triangulable and the polyhedron K is called a triangulation of X.

By introducing the concept of orientation on simplexes it is possible to make out
of a simplicial complex another complex, the chain complex.

A chain complex C = {Cn, ∂n} is a sequence of abelian groups Cn , n = 0,±1,±2
, . . ., and a sequence of homomorphisms (boundary operators) ∂n : Cn → Cn−1 which
are required to satisfy the condition

∂n−1 ◦ ∂n = 0 (3)

for all n.
The relation between simplicial- and chain complexes can be phrased exactly by

saying that there exists a functor from the category of simplicial complexes to the
category of chain complexes. This relation makes it possible to introduce homology
on simplicial complexes in the usual way.

If we have a chain complex C and a module G, we can make a cochain com-
plex (the same definition as a chain complex only the homomorphisms (coboundary
operators) map into an abelian group with index one higher, instead of one lower)
by using the functor Hom, which assigns to every chain complex C and module G
the cochain complex Hom(C,G) = {Hom(Cq, G), δq}. The coboundary operator is
defined by

(δqf)(c) = f(∂q+1c) , c ∈ Cq+1, f ∈ Hom(Cq, G).

Just as on chain complexes one can introduce homology on cochain complexes, now
called cohomology.

The link between chain- and cochain complexes enables us to derive properties of
cohomology from these of homology. We will however not pursue this link and give
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an axiomatic description of the properties of cohomology in the appendix. This de-
scription suffices to do the calculations needed for the determination of cohomology
groups appearing in this paper. There is however another reason for emphasiz-
ing this link as will become apparent in the following: it leads to a description of
obstruction in terms of cohomology.

3.2 Measuring the obstruction

We shall use the notation
X̄n = A ∪Xn,

with X a cell complex and A a subcomplex of X. The obstruction method consists
of trying to extend the map f : A→ Y step-by-step over the subcomplexes [5]

X̄n, n = 0, 1, 2, · · · .

We will do so untill we meet an obstruction. We illustrate the subcomplex X̄n for
various n in figure 3 where we take X to be a triangulation of S2 and as subcomplex
we take the boundary of a face.

Figure 3: The subcomplexes X̄n where X is the triangulation of S2

The obstruction method starts with a map on A. Then you try to extend this
map over X̄0, so over the vertices outside A. This can always be done arbitrarily.
Then you proceed with extending the map on X̄0 over X̄1, which are the lines
outside A. This can always be done if Y is pathwise connected. The next step is
trying to extend over X̄2 etc. untill you reach X̄m, where m is the dimension of X.
Obstruction theory tells you when an extension is possible or not. If you run into
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trouble during the stepwise extension this is called an obstruction. We will call a
map n-extendable over X if it is extendable to X̄n.

Let n be a given positive integer and assume that Y is n-simple (a space Y
is n-simple if the fundamental group of Y acts trivially on the homotopy groups
πp(Y ) for all p ≤ n). If this is the case, every map of any oriented n-sphere into Y
determines a unique element of the homotopy group πn(Y ).

The idea behind obstuction theory is that, if you have an extension over an
n-skeleton, the obstruction to extending the map over the (n + 1)-skeleton has
something to do with the homotopy group πn(Y ). This arises because the (n + 1)-
skeleton is built up out of the n-skeleton by filling in the n-cells. Extending over
an (n + 1)-cell, if the map is already defined on the boundary of the cell, is only
possible if the element of the homotopy group πn(Y ), which is associated with the
boundary, is trivial. Of course this has to be true for all (n + 1)-cells. This basic
idea will be worked out in the remainder of this section.

Let us consider a given map

g : X̄n → Y. (4)

This map g determines an (n + 1)-cochain cn+1(g) of X with coefficients in the
homotopy group πn(Y ) as follows. Let σ be any (n + 1)-cell of X. Then the set
theoretic boundary ∂σ of σ is an orientated n-sphere. Since ∂σ ⊂ Xn, the partial
map gσ = g|∂σ determines an element [gσ] of πn(Y ). So for every (n + 1)-cell of
X, which determines an element of the chain group Cn+1(K), we can associate an
element of πn(Y ). This element is given by the homotopy class of gσ. The association
establishes a homomorphism Cn+1(X) → πn(Y ) for every (n + 1)-cell of X. Since
the cochain group Cn+1(X;πn(Y )) of X is defined as the set of homomorphisms
from Cn+1(X) to πn(Y ), we get an element of this cochain group. This cochain is
defined by taking

[cn+1(g)](σ) = [gσ] ∈ πn(Y ) (5)

for every (n+1)-cell of X. This (n+1)-cochain cn+1(g) of X is called the obstruction

of the map g.
With all (n+1)-cells of A, there is also associated an element of πn(Y ). But, since

g is defined on the whole of A, gσ has an extension. Hence [gσ] is the zero element
of πn(Y ) for every cell σ of A. So cn+1(g) is not only an element of Cn+1(X;πn(Y ))
but in particular an element of Cn+1(X,A;πn(Y )).

We will show that cn+1(g) is not only a cochain, but also a cocycle: cn+1(g) ∈
Zn+1(X,A;πn(Y )). So it determines a cohomology class

γn+1(g) ∈ Hn+1(X,A;πn(Y )) (6)

represented by cn+1(g).
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Let σ be any (n+ 2)-cell. It is sufficient to show that [δcn+1(g)](σ) = 0. Let W
be the boundary of σ and W n be the n-skeleton of W . Then we have the following
sequence of groups and homomorphisms:

Cn+1(W )
∂
−→ Zn(W ) = Zn(W

n) = Hn(W
n)

h
← πn(W

n)
k∗→ πn(Y ), (7)

where h is the Hurewicz homomorphism and k∗ is the homomorphism induced by
the partial map gσ. Because W

n is (n−1)-connected, h is an isomorphism for n > 1
and an epimorphism for n = 1. So we have a well defined homomorphism

k∗h
−1 : Zn(W ) −→ πn(Y ) (8)

and we can extend this homomorphism to

d : Cn+1(W ) −→ πn(Y ). (9)

Since [cn+1(g)](τ), with τ an (n+1)-cell, is represented by the partial map k|∂τ , we
have

[cn+1(g)](τ) = k∗h
−1(∂τ) = d(∂τ) = (δd)(τ). (10)

And so
[cn+1(g)](∂σ) = δd(∂σ) = (δδd)(σ) = 0. (11)

So cn+1(g) is a cocycle. The obstruction cocycle cn+1(g) does not depend on homo-
topy, so homotopic maps give the same obstruction.

We now come to the very important Eilenberg extension theorem, which tells us
when a function can be extended. It says that γn+1(g) = 0 if and only if there
exists a map h∗ : X̄n+1 → Y such that h∗|X̄n−1 = g|X̄n−1. The theorem says that
if cn+1(g) ∼ 0, then we can modify the open cells in X/A such that an extension of
g over X̄n+1 exists.

We are going to define the obstruction set of f : A→ Y . This (n+1)-dimensional
obstruction set is a subset of the (n+ 1)-dimensional cohomology group

On+1(f) ⊂ Hn+1(X,A;πn(Y )).

If f is not n-extendable over X, we define On+1(f) as the vacuous set. Now, suppose
that f is n-extenbable over X. Then there exists an extension g : X̄n → Y of f .
The cohomology class γn+1(g) in Hn+1(X,A;πn(Y )) is called an (n+1)-dimensional
obstruction element of f . Then On+1(f) is defined as the set of all (n+1)-obstruction
elements of f . Two immediate consequences of this definition are that the map
f : L→ Y is n-extensible over X if and only if On+1(f) is non-empty and the map
f is (n + 1)-extendable over X if and only if On+1(f) contains the zero element of
Hn+1(X,A;πn(Y )). This last statement follows from Eilenbergs theorem. It is also
important to know that this obstruction set does not depend on the triangulation
of A, so we can really speak of the obstruction set.
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We now turn to the case of an (n − 1)-connected space X for a given positive
integer n. (A space is a k-connected space (k ≥ 0) if it is pathwise connected and
πi(Y ) = 0 for all i = 1, . . . , k). Then f is always n-extendable over X. The first
obstruction we may meet, is γn+1(f) and is called the primary obstruction. In this
case the (n + 1)-dimensional obstruction set consists of one element and it can be
shown that

γn+1(f) = (−1)nδ∗f ∗ιn(Y ) ∈ Hn+1(X,A;πn(Y )), (12)

where ιn(Y ) ∈ Hn(Y ;πn(Y )). The mappings correspond to the diagram

Hn(Y ;πn(Y ))
f∗

−→ Hn(A;πn(Y ))
δ∗
−→ Hn+1(X,A;πn(Y )), (13)

where δ∗ is the coboundary operator and f ∗ is the homomorphism induced by f :
A → Y . The condition on fn : Xn → Y to be extendable over Xn+1 is that
γn+1(f) = 0, which is necessary and sufficient.

Let us suppose that γn+1(f) vanishes. If dim (X,A) = n + 1 then we have an
extension and the procedure has come to an end. If dim (X,A) > n + 1, we reach
a secondary obstruction if Hr+1(X,A;πn(Y )) 6= 0 for some r > n. This secondary
obstruction is an element of this cohomology group:

zr+1(fu) ∈ H
r+1(X,A;πr(Y )), (14)

where fu : Xn+1 → Y . The vanishing of zr+1 is necessary and sufficient for fu to
be extendable over Xr+1. (This follows from the Eilenberg extension theorem). Of
course, zr+1 depends only on the homotopy class of fu.

This is as far as we will go. In the next section we apply this method in monopole
theory to the case of extended topological singularities.

4 Monopoles and Obstruction Theory

4.1 What do we learn from obstruction theory ?

Let us suppose that we have calculated, for manifolds A and Y , the possible exten-
sions of f : Sk → Y to g : B → Y . Following the construction described in section 2
we now can decide which configurations on the sphere, characterized by πk(Y ), lead
to which configurations on the manifold A, characterized by [A;Y ].

If we find that each class [f ] ∈ πk(Y ) gives us only a single class [h] ∈ [A;Y ],
then obviously we have a unique relation between the topological charges of both
objects. In practice this means that we do not obtain any additional topological
structure by deforming the sphere-like core to the deformed core with boundary A.

The configuration on A is essentially the same as the configuration on Sk. In
this sense this situation is not very interesting.

More interesting is the case where we can reach different classes [h] ∈ [A;Y ] for
a single homotopy class [f ] ∈ πk(Y ). The configurations on A are different from
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the configurations on Sk because for one [f ] ∈ πk(Y ) we get topologically different
elements of [A;Y ]. There are several different extensions allowed over the cobordism
B. In this case, we have to do physics to see which configuration on A is favourable
in terms of energy.

In the following we will consider two examples to illustrate these ideas. The
theories are very similar, but there is one difference, which has to do with the
fundamental group. It is very closely related to the difference between ordinary and
“alice” electrodynamics. It turns out, that this makes the difference between an
interesting - and a non-interesting case explicit.

4.2 The Georgi-Glashow model

Consider a SO(3) gauge theory with a Higgs field in the adjoint representation.
After symmetry breaking we are left with a U(1) symmetry. G/H is then identified
with the 2-sphere S2. This is the theory in which ’t Hooft and Polyakov originally
found their celebrated magnetic monopole. We will now argue why it is not such an
interesting case in the present context.

Let us start with a configuration f : S2 → S2 which belongs to a class [f ] ∈
π2(S

2) = Z. The core deformation we are going to look at is the deformation of
the singular point to a ring. The manifold which encloses the extended topological
singularity is the torus. The cobordism is the manifold B, with ∂B = S2 ∪ T 2. We
try to extend f over the cobordism B to the torus. The homotopy groups which

Figure 4: The cobordism fills the space between the sphere and the torus.

will be needed in obstruction theory are π1(S
2) ' 0 and π2(S

2) ' Z.
Let us try to extend f over B. One glance at obstruction theory tells us that

this can always be done because all relevant cohomology groups vanish (for the
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calculation of the cohomology groups, see the appendix)

H2(B, S2; 0) = 0 (15)

H3(B, S2;Z) = 0, (16)

so we do not bump into any obstructions. Now we start with a map h : T 2 → S2

which belongs to a class [h] ∈ [T 2;S2] = Z. But we see again that the relevant
cohomology groups vanish:

H2(B, T 2; 0) = 0 (17)

H3(B, T 2;Z) = 0 (18)

so there is no obstruction to extending h : T 2 → S2 over B. This is not a very
interesting example in the sense of the previous section. We can always make an
extension over the cobordism to the other space, and every element of π2(S

2) gives
us exactly one element of [T 2, S2] and vice-versa. So there is not really a difference
between the configuration on the torus and the configuration on the 2-sphere.

The physical interpretation we should give is that in this example the ring sin-
gularity enclosed by the torus T 2 is not locally stable for a topological reason. It
can be pinched of and will most probably shrink to a point singularity, as we know
that to be the minimal energy solution. In a realistic model one expects the actual
solution to be maximally symmetric compatible with the topological structure.

4.3 The Alice-Georgi-Glashow model

Consider an SO(3) gauge theory in the 5-dimensional representation. The 5-dimen-
sional representation corresponds with a symmetric second-rank tensor Φab. This
tensor can in general be decomposed with respect to as particular SO(2) subgroup
of rotations about a particular vector η as follows.

Φab = α(η̂aη̂b −
1

3
δab) + β(µ̂aλ̂b + λ̂aµ̂b) (19)

where η̂, µ̂ and λ̂ form an orthonormal basis and α and β are constants. From
this decomposition one easily sees what the possible orbits and stability groups are
[8]. The generic case with β 6= 0 and α/β 6= 1

2
the residual symmetrygroup is the

dihedral group D2, with four elements. Because this group is discrete one has that
π2(G/H) ' 0 and π1(G/H) ' D2. Hence in this phase the model only supports
(non-abelian) fluxtubes. In the present context we are more interested in the case
where the potential for Φ is so arranged that its minimum is achieved for values
β = 0 or α/β = 1

2
. In that case the residual symmetrygroup is H = N (U(1), i.e.

the normalizer of U(1) in SO(3). That is to say, U(1) plus rotations of ±π around
the axis perpendicular to the axis around which U(1) works. (See [9]). G/H is
then identified with P 2, the real projective plane. The real projective plane P 2 is
topologically equivalent to S2 with opposite points identified. As S2 is the double
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Figure 5: The deformation of (B, S2) into (S2 ∪ L1, S2).

covering of P 2, we have that π2(P
2) ' π2(S

2) ' Z. However, the fundamental group
π1(P

2) ' Z2, the integers modulo 2.
The essential difference with the previous example is that both π1(P

2) and π2(P
2)

are non-trivial, so that the model supports magnetic charges (monopoles) as well
as magnetic fluxtubes. The latter should be compared to those of type-II super
conductors, with the property that if two fluxtubes combine than the flux becomes
topologically unstable and will most probably decay into gauge- and Higgs particles.

We will work with the same deformation and manifolds as in the previous section,
so the cobordism remains the same. Also the relevant cohomology groups are the
same, only the coefficient groups differ.

We start again with a map f : S2 → P 2, and we find with the help of the
deformation of (B, S2) into (S2 ∪ L1, S2), see figure 5, that

H2(B, S2;Z2) = 0, (20)

H3(B, S2;Z) = 0, (21)

(see appendix), so this map can always be extended over B. But now, the situation
is different when we try to extend a map h : T 2 → P 2 over B, because [T 2;P 2]
(' (Z2 ⊕ Z2) ⊗ Z) is different from [T 2, S2]. The participating cohomology groups
are

H2(B, T 2;π1(P
2)), (22)

H3(B, T 2;π2(P
2)), (23)

and notice that they differ with the cohomology groups used in the previous section.
This difference lies in the fact that π1(P

2) ' Z2. We calculate these groups with
the help of the deformation of (B, T 2) into (B ∪D2, T 2) as in figure 6. (Notice that
during the deformation, T 2 remains fixed). So we get (see appendix)

H2(B, T 2;Z2) ' H2(T 2 ∪D2, T 2;Z2) ' Z2. (24)
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Figure 6: The deformation of (B, T 2) into (T 2 ∪D2, T 2).

The same procedure holds for the third cohomology group, but with a different
result

H3(B, T 2;Z) ' H3(T 2 ∪D2, T 2;Z) = 0. (25)

This means that we only have to cope with a primary obstruction. We now turn to
the explicit calculation of the primary obstruction.

Bearing in mind the deformation of (B, T 2) we are lead to the conclusion that
extending f : T 2 → P 2 is essentially the same as extending f : T 2 → P 2 over the
disc D2.

If we restrict f to ∂D2 we get a map

f |∂D2 : ∂D2 −→ P 2 (26)

which induces an element of the cohomology group H1(∂D2;Z2) which is isomorphic
to Z2. If the homotopy class of f if trivial, then f induces the trivial element
of H1(∂D2;Z2), but if the homotopy class of f is non-trivial it induces a non-
trivial element of this cohomology group. So we know that there is a one-to one
correspondence between elements of this cohomology group and elements of the
homotopy group π1(P

2). We know f ∗ιn(Y ) and we only have to map this with the
coboundary operator into H2(D2, ∂D2;Z2). But as we can see in the following exact
sequence:

H1(D2;Z2) ' 0→ H1(∂D2;Z2)
δ∗
→ H2(D2, ∂D2;Z2)→ H2(D2;Z2) ' 0, (27)

δ∗ is, in this case, an isomorphism so we come to the conclusion that the conditions
for f : T 2 → P 2 to be extendable, depend only on the triviality of curves β in
figure 6. We could have seen this directly, because we can see (we have to see) ∂D2

as the boundary of the 2-simplex |D2|. Extending over the simplex is only possible
if and only if the homotopy class associated with f |∂D2 is trivial. It follows that
there is a one-to-one correspondence between H2(D2, ∂D2;Z2) and the homotopy
group π1(Y ).
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We conclude that one element of π2(P
2) on the sphere can give two elements

on the torus, characterized by elements of the fundamental group π1(P
2) around

curves of type α. Notice that if this element is trivial, then we can pinch the curves
α and β to a point and obtain nothing but a sphere. So in this case nothing has
really happened. We have the same situation in this case as in the trivial example.
But if we have a non-trivial element of π1(P

2) along α, this cannot be done, and we
have obtained a different situation: the ring carries charge and flux. It exemplifies
the essential interrelation between magnetic flux and charge that is present in this
model!

What about the overall quantum-number of a map f : S2 → P 2, which is asso-
ciated to the magnetic charge ? How does this behave under the extension. A first,
rather obvious observation, but therefore not less true, is the fact that the overall
quantumnumber of a map f : T 2 → P 2 is just the same as the quantumnumber we
had on S2, when we extended this map over B. Alternatively, one could consider
figure 7, where T̃ 2 is the single - or double covering of T 2, depending on which ele-

T̃ 2

6
S2 - P 2

6

T 2¾

Figure 7: Commutative diagram, expressing the fact that the overall quantumnum-
ber is unchanged after extension.

ments of the fundamental group we have on curves α and β, in figure 6. So we have
four different classes Cm,n with m,n = 0, 1. From the diagram we see that for each
m,n the homotopy classes are in one-to-one correspondence with maps S2 → P 2,
due to the covering space property of homotopy groups. So we get the earlier stated
result

[T 2;P 2] ' (Z2 ⊕ Z2)⊗ Z (28)

Notice that (for trivial curves β) confirms our obvious observation.
We finally conclude that the deformed monopole has a magnetic charge asso-

ciated with the normal π2 classification, but there are two kinds of monopoles for
every element of π2. They can be distinguished by the fundamental group π1 along
the curves of type α.

If the element of π1 is non-trivial we have a closed fluxtube in the form of a ring,
because the loop cannot be pinched to a point. So in this three dimensional object
we have both flux and magnetic charge. The flux can be compared with the strings
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formed in type-II superconductors, whose existence follws from topological consid-
erations as well. It is clear that the different core states can only be distinguished
physically by performing experiments where charged particles are scattered of the
core. In the case of an extended singularity one would be able to observe particle--
antiparticle transitions due to the presence of the Alice flux. Indeed, it turns out
that this monopole has exotic properties some of which are discussed in [9].

5 Conclusion

In this paper we investigated core deformations of topological defects in sponta-
neously broken gauge theories. In particular in theories where more than a single
homotopy group is non-vanishing, i.e. where several types of topological excitations
can coexist. In theories where this is the case, it turns out to be possible to have
topologically stable core deformations.

The admissible core deformations can be found by establishing relations between
elements of πk(G/H) and elements of [A;G/H], where A is the manifold enclosing
the topological singularity. This relation was established with the help of obstruction
theory. Obstruction theory tells us whether there exist extensions of maps defined
on a space A into Y , to maps from X ⊃ A to Y . This is only the case if the
obstruction is zero. This obstruction is an element of a certain cohomology group.

We investigated two simple examples in detail. We found a topologically stable
core deformation in the case of G = SO(3) and H = N (U(1)). It is interesting to
exted this discussion to theories where the discrete part of the gaugegroup is more
complicated and nonabelian.

We note further that non-trivial examples can be found in the case of instantons.
One particularly interesting model might be the model with G = SO(3) and H =
U(1), such that G/H ' S2. In this case, the third and second homotopy group are
isomorphic to Z. The idea is that we can deform the core, such that the manifold
which encloses the extended topological singularity is S1×S2. We might then obtain
a ring of monopoles, because π2 is non-trivial.

In this paper we have restricted ourselves to a topological analysis, which deter-
mines what kind of deformations are possible in principle. It is now interesting to
proceed and see whether in explicit models these deformations can be realized by
an appropriate choice of parameters in the Higgs potential.

A The Calculation of Cohomology Groups

Originally the cohomology groups used to be defined in terms of homology groups
in the following way (see [10]): For a chain complex C and module G we define the
cohomology module H∗(C;G)={Hq(C;G)} of C with coefficients G by

Hq(C;G) = Hq(hom(C,G)). (29)
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The properties of the cohomology groups were derived from this definition. It is
however easier to give an axiomatic description of cohomology, since we want to do
calculations more than that we want to have a perfect mathematical perception of
these matters. This descripition reads as follows (see [3]):

Let G be an R module. A cohomogy theory with coefficients G consists of a
contravariant functor H∗ = {Hq} from the category of topological pairs to graded
R modules and a natural transformation δ∗ : H∗(A)→ H∗(X,A) of degree +1 such
that the following axioms hold

1. Homotopy Axiom If f0, f1 : (X,A)→ (Y,B) are homotopic,then

H∗(f0) = H∗(f1) : H
∗(Y,B) −→ H∗(X,A). (30)

2. Exactness Axiom For any pair (X,A) with inclusion maps i : A ⊂ X
and j : X ⊂ (X,A) there is an exact sequence

· · ·
δ∗
−→ Hq(X,A)

Hq(j)
−→ Hq(X)

Hq(i)
−→ Hq(A)

δ∗
−→ Hq+1(X,A) · · · . (31)

3. Excision Axiom For any pair (X,A) if U is an open subset of X such
that Ū ⊂ intA, the excision map j : (X −U,A−U) ⊂ (X,A) induces an
isomorphism

H∗(j) : H∗(X,A) ' H∗(X − U,A− U). (32)

4. Dimension Axiom On the category of one-point spaces, there is a natu-
ral equivalence of the constant functor G with the functor H∗.

We will now calculate the cohomology groups which play a role in this paper.
To calculate H2(B, S2;Z2) we use axiom 1 with the deformation (see figure 5) of
(B, S2) into (S2 ∪ L) and axiom 3 to get

H2(B, S2;Z2)
(1)
' H2(S2 ∪ L, S2;Z2)

(3)
' H2(L, ∂L;Z2) = 0 (33)

The same goes for H3(B, S2;Z)

H3(B, S2;Z) ' H3(L, ∂L;Z) = 0. (34)

The last step in the calculation follows from dimensional considerations. The space
is 1-dimensional so the second- and third cohomology group vanishes.

To calculate H2(B, T 2;Z2) we again use axiom 1, but now with the deformation
(B, T 2) into (T 2 ∪D2, T 2), see figure 6, followed by the excision axiom

H2(B, T 2;Z2) ' H2(T 2 ∪D2, T 2;Z2) ' H2(D2, ∂D2;Z2) ' Z2, (35)

where we have used an exact sequence to calculate the last step. The same axioms
give

H3(B, T 2;Z) ' H3(D2, ∂D2;Z) = 0. (36)

The third cohomology group is zero because the dimension of (D2, ∂D2) is 2.
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