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Abstract

The work we describe in this thesis is inspired by the recent developments
towards an intrinsically fault-tolerant form of quantum computation to be
implemented in physical systems that exhibit topologically ordered phases.
We investigate transitions between different topological phases by conden-
sation of bosonic quasiparticles. This provides us with a full description of
the excitations in the bulk of these phases as well as on the domain wall
separating them. We apply this method to several fractional quantum Hall
states. Included is a phase transition between the MR and NASS state
where the wall between these phases turns out to have the same order as a
minimal model at central charge c = 7/10. Both the MR and NASS state
carry anyons with non-Abelian statistics making them suitable for doing
quantum computations. The different quantum numbers carried by these
quasiparticles are obtained and processes that involve particles from both re-
gions and the wall are discussed. Furthermore, we successfully obtain spec-
tra for fractional quantum Hall states belonging to the Haldane-Halperin
and Bonderson-Slingerland hierarchies. The former describes Abelian Hall
states in the lowest Landau level and the latter non-Abelian ones in the sec-
ond Landau level, including the MR state at ν = 5/2. Especially, we focus
on the domain wall between different phases of the same hierarchy, where
we obtain electric charges of the fundamental excitations on these walls.
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CHAPTER 1

Introduction

Over the past decades, there has been a growing interest in studying topo-
logical phases of matter. With the discovery of fractional quantum Hall
(FQH) fluids, which are systems that are expected to exhibit such topologi-
cal phases, we have real physical systems at hand to test the theory. These
fluids are believed to have anyonic excitations which in some cases could be
of the non-Abelian type. The different states such non-Abelian particles can
be in, lead to a natural way of storing quantum information. This opens the
door to building fault tolerant quantum computers, which is an important
application and therefore, makes them extremely interesting not only for
physicists.

With this application in the back of our minds, it is necessary to enlarge
our knowledge of topological phases and in particular of FQH states. The
starting point for our work is that we are able to characterize a given topo-
logically ordered phase by some algebraic structure, a quantum group or
Hopf algebra. In this thesis we go a step further and analyse transitions
between different topological phases induced by a condensate of bosonic de-
grees of freedom. In other words, we will develop the notion of the breaking
of quantumsymmetries. The phases that are discussed in this thesis are all
FQH states. This method has been successfully applied in earlier work and
is complementary to the more conventional way to deal with FQH systems
in terms of wavefunctions. We look directly at the underlying symmetry of
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Chapter 1. Introduction

these states. In practice, this means that the topological excitations are la-
beled by representations of a quantum group corresponding to the symmetry
of the system. These excitations carry certain quantum numbers associated
to their statistics and fusion rules. When there is a bosonic particle present
in the theory it can form a condensate, which breaks the symmetry of the
initial spectrum. This might induce a transition to a new topological phase.
It turns out that this approach automatically provides us with a description
not only of the spectrum of the initial and final phase, but also of the domain
wall between them.

The different chapters of this thesis roughly fall into two parts. First, chapter
2 and 3 present some of the theory behind the physics of topological phases.
Second, chapter 4 and 5 apply the theory to some specific physical systems.

We start in chapter 2 with setting the stage of (2 + 1)-dimensional physics.
A quick introduction on planar quantum statistics is given, which results in
the notion of anyons; particles that are neither bosons nor fermions. Two
quantum numbers are introduced that are carried by anyons: topological
spin and quantum dimension, associated to rotating anyons and fusing them
respectively. We end the first section by illustrating all these concepts using
the Fibonacci model. The next section gives a review of the quantum Hall
effect and states that have been proposed in the literature to describe the
physics at the Hall plateaus. Also, experiments that try to determine the
charge and statistics of the excitations in a Hall fluid will be discussed.
Chapter 2 ends with a section on how non-Abelian anyons can be used to
encode qubits for a quantum computer. Again, the Fibonacci model, which
has a non-Abelian anyon, serves as an example.

Chapter 3 presents the method we use to describe transitions between dif-
ferent topological phases. We start with a short section on quantum groups
which label the excitations of a topological phase. After that, we present all
the different steps of topological symmetry breaking in section 3.2. These
include identifying bosons in 2D, breaking the symmetry, finding the spec-
trum after a phase transition occurred, and determining what happens on
the domain wall between two different phases. These concepts are put into
practice using Kitaev’s honeycomb model as an example.

This brings us to the second part of this thesis where topological symmetry
breaking is applied to some explicit FQH states. Chapter 4 deals with a
phase transition between a spin polarized state and a spin-singlet state,
which are the so-called Moore-Read and NASS state respectively, where
both carry non-Abelian anyons. We analyze the spectrum of the phases as
well as of the domain wall between them. Also, we discuss what happens
when a quasihole is dragged from one phase to the other and how qubits
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can relax their internal state. Both processes include the domain wall in a
non-trivial way.

Chapter 5 presents how the same method can be applied to the hierarchy
picture of the FQH effect. This picture, of building different Hall states on
top of each other, will be explained in section 5.1. We explicitly derive the
excitation spectra of two different hierarchy pictures, where one is Abelian
and the other non-Abelian. Starting with two specific examples in section
5.2 we will present general formulae in section 5.3 of the excitation spectra
and the associated quantum numbers.

Finally, in chapter 6, the main results will be summarized and we present
an outlook for interesting future research.
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CHAPTER 2

Features of planar physics

This thesis is concerned with topological phases of matter. We investigate
such phases and their spectra by means of topological symmetry breaking.
Before we reach this point we should set the stage for topological phases;
that is what this chapter is concerned with.

In section 2.1 we start by considering the problem of quantum statistics of
particles in two dimensions and contrast it with the situation in three dimen-
sions. In three dimensions particles have either bosonic or fermionic statis-
tics corresponding to completely symmetric or antisymmetric multiparticle
states. However, in two dimensions the conditions for consistency are far
less restrictive opening up novel possibilities denoted as fractional spin and
braid statistics. These exotic properties are a key element to understand-
ing the physics of anyons; the typical excitations that exist in topologically
ordered phases.

Section 2.2 gives a brief introduction to Quantum Hall fluids. These are
topological phases which are being observed in the laboratory. The observed
characteristics of these fluids are discussed, as well as the theory that tries
to describe the observations. Also, some experiments on how to determine
the quantum numbers of the particles in FQH fluids will be discussed.

The present chapter ends with a section on topological quantum compu-
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2.1 Quantum statistics in planar physics

Figure 2.1: Quantum statistics of two identical particles in three or more
spatial dimensions. Taking a particle around the other is topologically equiv-
alent to doing nothing at all.

tation (TQC), which opens the door to fault-tolerant quantum computers
and can be viewed as the application that inspired physicists to seriously
investigate topological order.

To keep the theory of this chapter as transparent as possible we will use the
Fibonacci model as a theoretical discourse in this chapter.

2.1 Quantum statistics in planar physics

This section will closely follow the lines of Ref. [1, 2]. Before considering
systems in two spatial dimensions, let us first go one dimension up. When
we have a system of two identical particles and they are interchanged twice,
this operation is identical to bringing one particle around the other, in such
a way that their final positions coincide with the initial positions. The
trajectory of the particle that was taken around the other can be smoothly
deformed and shrunk to a single point, which is shown in Fig. 2.1. These
situations are topologically equivalent. This result has to be incorporated
in the wave function describing the system. It has to pick up a phase factor
of either +1 or −1 when two particles switch positions. The +1 corresponds
to particles with Bose statistics and −1 to particles with Fermi statistics.

After this rather brief review of statistics in 3-dimensional systems where
there naturally arise two types of particles, namely bosons and fermions,

Figure 2.2: Quantum statistics of two identical particles in two spatial
dimensions. Taking a particle around the other results in a non-trivial op-
eration acting on the wave function of the system.

5



Chapter 2. Features of planar physics

we turn to our case of interest. Fig. 2.2 shows the difference in statistics
between two dimensions and the 3-dimensional case. This time we cannot
smoothly deform the trajectory of the particle that has been taken around
the other, since we would have to cut through the other particle.

For three spatial dimensions particles fall into two classes: bosons and
fermions, which followed from the invariance under interchanging particles
twice. For two dimensions this no longer holds and we must find a way of
describing the different ways in which these particles can be interchanged in
planar systems. This will be explained in the following.

2.1.1 Braid group

The statistics of N identical particles in two spatial dimensions is governed
by the braid group, BN . Let us start with a comment on the name of this
group. When considering (2+1)-dimensional physics we can keep track of
the spacetime coordinates of an object by drawing its trajectory. For a point
particle these are lines, which in this context are called worldlines. When
an element of the braid group acts on the particles it interchanges them, i.e.
it braids their worldlines.

Clearly, the braid group is an infinite group, since we can just keep on inter-
changing the particles. Still, it is generated by a finite number of generators.
For N particles there must be N−1 generators, denoted by σi. As an exam-
ple consider a system with three indistinguishable particles. The action of
the two generators of the braid group are shown in Fig. 2.3. The σ1 genera-
tor exchanges the leftmost particle with its neighbor in a counter-clockwise
way. The σ2 generator does the same for the second particle and its neighbor
to the right. Their inverses execute the same action, but in a clockwise way.

The generators for N particles satisfy the following, defining relations

σiσj = σjσi for |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1 for ∀i (2.1)

The last of these is called the Yang-Baxter equation and it is graphically
shown in Fig. 2.4. Since a clockwise and a counter-clockwise exchange of
particles is not the same (see Fig. 2.4), we have

σ2
i 6= 1 (2.2)
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2.1 Quantum statistics in planar physics

Figure 2.3: The action of the two generators of the braid group correspond-
ing to a system with three identical particles. The worldlines of the particles
are shown.

The fact that the square of a generator is not equal to unity makes the braid
group so different from the permutation group (which deals with exchanging
identical particles in 3- or higher-dimensional physics).

After presenting the main features of the braid group the next subsection
shows how the braid group can label the particles that arise in 2-dimensional
physics.

2.1.2 Anyons

Let us, again for a moment, return to a 3-dimensional system with N indis-
tinguishable particles. In this case an action of the permutation group SN
on the system results in interchanging the particles. The permutation group
has two 1-dimensional irreducible representations and it is exactly those two
irreps that label bosons and fermions.

In the same way we use the irreps of the braid group to label particles in
2-dimensional systems. The 1-dimensional irreps of the braid group are just
the phases that the quantum state of the system picks up when particles
are exchanged. For a wavefunction ψ(r1, r2) describing two particles at
coordinates r1 and r2 such an exchange results in

Ψ(r1, r2) → eiθΨ(r1, r2) (2.3)

Note that the fermionic and bosonic cases are also included in this phase
factor; for two fermions we have θ = π and for bosons θ = 0. Any other
phase corresponds to particles called anyons. For the specific case in (2.3)
it does not matter in which order the particles are braided, since the phase
factors commute. We say that they are anyons with Abelian statistics, or
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Chapter 2. Features of planar physics

Figure 2.4: Yang-Baxter equation for generators of the braid group is
shown in the left figure. At the right it is displayed that, in general, a
clockwise exchange of two particles is not the same as a counter-clockwise
exchange.

just Abelian anyons. But the braid group also has higher-dimensional irreps.
In this case the wavefunction is a vector and the action of the braid group
on the system is represented by matrix multiplication. Physically it means
that there has to be a number of anyons at fixed positions which results in
a degeneracy of the ground state. Exchanging particles mixes the different
components of the wave function. This can be written as

ψα → [M(σi)]αβψβ (2.4)

for some matrix representation [M(σi)] of the braid group generators σi.
In general matrices do not commute, which leads to the implication that
for higher-dimensional irreps the order in which particles are braided does
matter. The particles obey non-Abelian braiding statistics, i.e. they are
non-Abelian anyons.

We have seen that when a system is in a topological phase its excitations are
anyons. A more precise definition of such phases is that they are systems in
which all observable properties are invariant under smooth deformations of
the spacetime manifold, at long wavelengths, low temperatures and energies.
In general, topological phases have a non-zero energy gap that separates the
ground states from the excited states. Then, the only way that such a
system can undergo a transformation is by braiding the anyons. This is
exactly what happens in (2.4).

2.1.3 Fusion rules

Besides braiding there is another type of interaction between anyons. This
is fusion of anyons. Imagine two anyons coming close together, at a certain
point we cannot distinguish between them anymore. We could say that their

8



2.1 Quantum statistics in planar physics

Figure 2.5: Two anyons with topological charge a and b fuse to form an
anyon with charge c.

quantum numbers combine, i.e. they fuse to form a different particle (see
Fig. 2.5). Consider a particle carrying some topological charge a and one
with charge b, when they fuse, this can be written as

a× b =
∑
c

N c
abc (2.5)

where N c
ab is a positive integer that denotes the number of independent

ways in which a and b can fuse to form c. For
∑

cN
c
ab ≥ 2 they are non-

Abelian anyons. These fusion rules are restricted by the following physical
arguments:

Associativity (a×b)×c = a×(b×c): When fusing three or more particles
the order in which they are fused should not matter. The final outcome
has to be the same.

Unique vacuum a× 1 = 1× a = a: There has to be a charge denoted by
1 which will be called the vacuum charge, with the property that any
anyon that is fused with it results in the same anyon.

Charge conjugate a × ā = 1 +
∑

c 6=1N
c
aāc: Every anyon has its unique

conjugate particle. When they fuse the vacuum should appear as a
fusion channel, with N1

aā = 1.

So far, no explicit quantum numbers, carried by the anyons, have been men-
tioned. The first one that needs to be addressed is the quantum dimension
of an anyon. Formally this number is found by fusing an anyon a many
times with itself. The asymptotic number of available fusion channels is
(da)N where da is the quantum dimension of a. In practice, we will be using
the following relation between fusion and quantum dimensions

9



Chapter 2. Features of planar physics

Figure 2.6: The order in which anyons are fused does not change the final
charge. This leads to different bases for the same Hilbert space. A change
of basis is governed by the F-matrix.

a× b =
∑
c

N c
abc ⇔ dadb =

∑
c

N c
abdc (2.6)

The associativity of the fusion rules implies that there are different bases
for the same Hilbert space. Let us be more explicit on this. When three
charges a, b and c fuse to form total charge d, it can happen in two ways.
First a and b fuse to some intermediate charge e which then fuses with c to
d, or b and c fuse to e′ which fuses with a to d. If we denote the Hilbert
space that is spanned by this fusion product by V d

abc it can be decomposed
into

V d
abc

∼=
⊕
e

V e
ab ⊗ V d

ec
∼=
⊕
e′

V d
ae′ ⊗ V e′

bc (2.7)

This means that there are two bases for this Hilbert space. It may be useful
to switch between those bases. The unitary transformation that performs
this switch of bases is called the F-matrix. If we first fuse a and b to some
intermediate charge e and then fuse it with c to form d this can be expressed
in a different basis as (also see Fig. 2.6)

|((a× b)e × c)d〉 =
∑
e′

[F dabc]
e
e′ |(a× (b× c)e′)d〉 (2.8)

Whenever four particles are fused, we get more than two different bases.
The F-matrix is restricted by the pentagon relation associated to this [3].
This relation is shown in Fig. 2.7 and it shows the associativity of four
particles being fused to a fifth one.

If we want to change bases from |(((1 × 2)a × 3)b × 4)5〉 to one that has

10



2.1 Quantum statistics in planar physics

Figure 2.7: Pentagon relation is imposed on the F-matrix. Moving through
the upper part of the figure should always have the same final result as when
taking the lower route.

|(1 × (2 × (3 × 4)c)d)5〉 this can be done in two different ways represented
by taking the upper path in Fig. 2.7 or the lower one. Both should give the
same result, which leads to the pentagon equation:

[F 5
12c]

a
d[F

5
a34]

b
c =

∑
e

[F d234]
e
c[F

5
1e4]

b
d[F

b
123]

a
e (2.9)

which puts a restriction on the F-matrix. Moreover, one should note that
these equations are also restricted by the specific fusion rules of the theory.
In general, there are only a few solutions to these equations. At the end of
the next subsection we will see another consistency relation that needs to be
imposed on the theory which, together with the fusion rules and pentagon
equations, fully determines an anyonic model. But first another quantum
number associated to anyons will be introduced.

2.1.4 Spin factor

Let us consider the effect on the wave function of an anyonic system when a
particle is rotated over a 2π angle. This results in a phase factor multiplying
the initial wave function of the form

11



Chapter 2. Features of planar physics

Figure 2.8: The monodromy of particles a and b that are in fusion channel
c is equal to rotating those particles over a 2π angle. This relates fusion to
braiding.

θa = e2πiha (2.10)

We call this phase the spin factor of a and ha, which appears in the exponent,
the topological spin of a.1 For a theory with a finite number of sectors, these
spins are always rational [4].

The spin of an anyon can be used to relate braiding to fusion. In order to
see this, first look at the monodromy of anyons. The monodromy of two
particles is taking one particle around the other and then fusing them. This
is visualized in Fig. 2.8 where it appears on the left hand side. Monodromy
is topologicallly equivalent to counter-clockwise rotating both a and b over
an angle of 2π and rotating their fusion channel c clockwise. This operation
is shown in the second figure. Then (2.10) tells us that this is equal to just
fusing the anyons and multiplying by a phase factor e2πi(hc−ha−hb).

There is a more formal way to describe braiding of particles. This is by
using the braid operator R, which is a map from the Hilbert space where
a and b are fused to c, to one where the positions in space of a and b have
been interchanged.

R : V c
ab → V c

ba (2.11)

This operation can also be expressed as a unitary matrix, which is called
the R-matrix. Swapping the position of two particles leads to

1That it must be of the form (2.10) comes from the fact that ha labels the representa-
tions of the covering group of the 2-dimensional rotation group, i.e. U(1).
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2.1 Quantum statistics in planar physics

Figure 2.9: The hexagon relation constrains the R- and F-matrices. Taking
the upper path of this figure should have the same result as the lower one.

(a× b)c = Rcab(b× a)c (2.12)

In this notation the order in which the anyons appear is the same as their po-
sitions in space. As has been said before, besides the pentagon relation there
is a second condition that can be imposed on the anyonic system. This is
visualized in Fig. 2.9 and is called the hexagon relation. It combines chang-
ing bases with swapping particles which means that it puts constraints on
the R- and F-matrix simultaneously. The hexagon equation can be written
as

Rc13[F
4
213]

a
cR

a
12 =

∑
b

[F 4
231]

b
cR

4
1b[F

4
123]

a
b (2.13)

It turns out that the hexagon and pentagon conditions are the only ones
that need to be met to ensure consistent braiding and fusing [2]. So if one
has an anyonic model with a set of labels and its fusion rules and there
exists solutions to the hexagon and pentagon equations then the model has
the right physical properties.

Fusion and spin will be the main ingredients for topological symmetry break-
ing to be discussed in chapter 3. We will not be proving that knowing the
fusion rules and spins of a topological phase fully pins down the correspond-
ing TQFT. Still, for the examples we will be discussing we have not found
two inequivalent TQFT’s that have the same fusion rules and spins.2

2For an example of theories with the same fusion rules, but different spins look at the
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Chapter 2. Features of planar physics

2.1.5 Example: Fibonacci anyons

It seems helpful to go through what has been presented so far by using an
explicit example. The model we choose for this is the Fibonacci model and
it is fairly simple, but exhibits all of the structure that has been presented
up until now. In this model there is only one non-trivial anyon denoted by
τ and it is often called the Fibonacci anyon. The fusion rules are

1× 1 = 1 1× τ = τ × 1 = τ τ × τ = 1 + τ (2.14)

The fusion coefficients follow directly from this: N1
11 = N τ

1τ = N τ
τ1 = N1

ττ =
N τ
ττ = 1, the others are zero. Furthermore, we notice that τ is its own anti-

particle. The fusion rule of τ with itself tells us that the Fibonacci anyon
has to be a non-Abelian particle, since

∑
iN

i
ττ = 2.

To find the quantum dimension of τ we simply consult relation (2.6), which
leads to a set of equations

(d1)2 = d1 (2.15)
d1dτ = dτ (2.16)
(dτ )2 = d1 + dτ (2.17)

The first two equations independently set d1 = 1, which results in (dτ )2 =
1 + dτ . The outcome of this is the golden mean

dτ =
1 +

√
5

2
(2.18)

The quantum dimension of the Fibonacci anyon could also have been de-
duced from the more formal definition. To this end, let us consider the
dimension of the Hilbert space of n Fibonacci anyons, that ultimately fuse
to the vacuum, V 1

τn . The different independent ways in which this fusion
product occurs can be expressed in terms of a Bratelli diagram. The differ-
ent paths that can be taken gives the dimension of the Hilbert space. Such

Ising model. The fusion rules can be found in Tab. 4.1 as well as the spins of the Ising
fields. This model is one out of eight inequivalent TQFT’s that have the same fusion
rules. They are Ising, SU(2)2, SO(5)1, SO(7)1 and their complex conjugates. The fields
of these theories that have the same fusion rules as σ, all have spins that differ from each
other. This means that these theories have the same solution of the pentagon equation,
but a different solution of the hexagon equation.
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2.1 Quantum statistics in planar physics

Figure 2.10: Bratelli diagram for Fibonacci anyons. The dimension of
the Hilbert space of n anyons of total charge i = 1, τ can be determined by
counting the number of paths that lead to this charge. This diagram shows
the possible paths for n = 6 anyons. One particular path with total charge
i = 1 has been drawn in blue.

a diagram is shown in Fig. 2.10. This leads to a recursion relation for the
dimension of the Hilbert space, D1

τn :

D1
τn = D1

τn−1 +D1
τn−2 (2.19)

Knowing that D1
τ1 = 0 and D1

τ2 = 1 this relation can be solved and leads to
the Fibonacci numbers. It is known that these grow like

D1
τn ∝ φn (2.20)

where φ ≡ 1+
√

5
2 . This agrees with what we found before.

Let us now address the F-matrices. When fusing three anyons the total
charge can either be 1 or τ , so we must find two F-matrices. Starting with
the easiest one we can just invoke a change of bases

|(τ × (τ × τ)i)1〉 =
∑
j

[F 1
τττ ]

i
j |((τ × τ)j × τ)1〉 (2.21)

Since the total charge has to be 1 it is easy to see that there is only one
non-zero element:

[F 1
τττ ] =

(
0 0
0 1

)
(2.22)

15



Chapter 2. Features of planar physics

The pentagon relation is needed as well as unitarity to find the other F-
matrix, [F ττττ ]. Here we will only state the general solution:

[F ττττ ] =

(
φ−1 eiθ

√
φ−1

e−iθ
√
φ−1 φ−1

)
(2.23)

where the phase factor that appears can be set to 1. Next, the hexagon
relation (2.13) can be used to find the R-matrix. The only non-trivial case
is where two Fibonacci anyons are fused to form either 1 or τ , R1

ττ and Rτττ
respectively. Since R needs to be a unitary matrix they can be written as
R1
ττ = eiθ1 and Rτττ = eiθτ . Plugging this into the hexagon equation together

with (2.23) leads to

R1
ττ = e−4πi/5 (2.24)

Rτττ = −e−2πi/5 (2.25)

Before we continue with determining all the possible ways in which a system
of Fibonacci anyons can be manipulated, let us first consider the topological
spin of an anyon. For this the monodromy of two such anyons will be used.
Remember that this was interchanging two particles twice, i.e. R2. On the
other hand monodromy was also related to fusion by a phase factor which
was shown in Fig. 2.8. This leads to

(Rτττ )
2 = e−4πi/5 = e−2πihτ (2.26)

where the last equality must be met, from which it follows that the spin of
the Fibonacci anyon is hτ = 2/5.

Knowing the R- and F-matrices we can in principle construct unitary ma-
trices for any braid in a system of n Fibonacci anyons. For 3 particles this
is still fairly simple, since there are only two generators of the braid group
and the Hilbert space is 3-dimensional. The two matrices representing the
generators are
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ρ(σ1) =

 e−4πi/5 0 0
0 −e−2πi/5 0
0 0 −e−2πi/5

 (2.27)

ρ(σ2) =

 −e−πi/5φ−1 −ie−iπ/10φ−1/2 0
−ie−iπ/10φ−1/2 −φ−1 0

0 0 −e−2πi/5

 (2.28)

With these two matrices any braid can be performed. This is a topic which
we will get back to in the last section of this chapter, when topological
quantum computation is discussed.

The basic concepts of 2-dimensional physics have been introduced in this
section. Included are the possible statistics of anyons and the interaction
of braiding and fusion between the particles together with their associated
quantum numbers. Associativity of the fusion rules leads to the F-matrices
which are maps between different bases of the n-particle Hilbert space. To-
gether with the R-matrices, which interchange particles, any generator of the
braid group can be represented by a combination of the R- and F-matrices.
Up until now, we have only dealt with the theory of topological phases. It
would be desirable to actually create a system that is in a topological phase;
that is what the next section is concerned with.

2.2 Quantum Hall systems

Having introduced the main features of quantum statistics in 2-dimensional
physics, we will use this section to present a physical system where it is ex-
pected that anyonic properties might be observed in experiments. Quantum
Hall physics is a rich field, but we will be rather short on it in the following.
For more details we would like to refer to the literature [5].

2.2.1 Quantum Hall effect

In 1879 Hall discovered a phenomenon observed in electrical conductors.
This is nowadays known as the Hall effect. When an electric field is applied
to a conductor, the electrons start flowing in the direction of this field, which
leads to a current. However, when a perpendicular magnetic field is applied
the Lorentz force comes into play. This results in a component of the current
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which is orthogonal to the direction of the electric field. In short, this is what
is called the Hall effect.

Nowadays the experiments on the Hall effect are done in 2-dimensional
electron gases (2DEG), at low temperature, ∼ 10mK and subject to a
strong perpendicular magnetic field, ∼ 10T . The resistivity tensor is defined
through a relation between the effective electric field ~E and the current ~J

Eµ = ρµνJ
ν (2.29)

Due to arguments based on translational invariance it can be shown that for
the Hall effect ρ and its inverse, the conductivity tensor σ, are given by [6]

ρ =
B

nec

(
0 1
−1 0

)
, σ =

nec

B

(
0 −1
1 0

)
(2.30)

where n is the electron density and B the strength of the magnetic field,
which is perpendicular to the plane. One remarkable result is that since
σxx = 0 and ρxx = 0 the system is a perfect insulator and a perfect conductor
in the direction of the electric field at the same time. The Hall resistivity is
defined as ρH = ρxy and is given by

ρH =
B

nec
(2.31)

According to these results the Hall resistance RH should grow linearly with
the magnitude of ~B. However, this does not agree with experimental data.
In 1980 von Klitzing et al. observed what is now known as the integer
quantum Hall (IQH) effect [7]. The graph of the Hall resistance shows
plateaus at certain values of the magnetic field, which is shown in Fig. 2.11.
Actually, this figure shows more than just the Hall plateaus found by von
Klitzing et al. The plateaus denoted by an integer are part of the IQH effect.
We also see plateaus at fractional values, this is known as the FQH effect,
which will be discussed in later parts of this subsection. Since experiments
show that (2.31) is not correct at the plateaus, it should be rewritten as

ρH =
1
ν

h

e2
(2.32)

where ν takes on integer values and is called the filling fraction, which we
will get back to at a later stage. For now we see that plateaus form at integer
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2.2 Quantum Hall systems

Figure 2.11: The Hall resistance RH is plotted against the strength of the
perpendicular magnetic field. The diagonal line is what is expected from the-
ory for an ideal 2DEG. At certain values of B, observations do not agree
with this, we see stable plateaus forming. This is the integer and fractional
quantum Hall effect. Also plotted is the resistance in the longitudinal direc-
tion, which drops to zero at these plateaus. Graph taken from Ref. [8].

values of the filling fraction. This means that even though B increases the
resistance does not grow.3

The filling fraction of the quantum Hall effect can be better understood by
solving the hamiltonian for free electrons with mass m subject to a perpen-
dicular magnetic field of strength B. This leads to Landau energy levels

En = (n+
1
2
)~ωc, n = 0, 1, ... (2.33)

with the classical cyclotron frequency ωc = eB
mc . In principle, these levels are

infinitely degenerate. However, since the electrons take up a finite amount
of space and in experiments samples always have a finite area A, the number
of available states for the electrons NΦ in a Landau level must also be finite
and given by

NΦ =
ABe

hc
=
AB

Φ0
(2.34)

3Also, the longitudinal resistivity, ρxx drops to zero.
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Figure 2.12: FQH plateaus in the second Landau level appear when the
Hall resistance Rxy is plotted as a function of the magnetic field. Note that
there is a plateau for ν = 5/2 which has an even denominator. Graph taken
from Ref. [9].

where Φ0 = hc
e , is the fundamental flux quantum. Apparently, the number

of available states in a finite sample is given by the number of flux quanta
piercing through its surface. Quite logically the filling fraction is defined as
the number of electrons over the number of available states

ν =
Ne

NΦ
(2.35)

Whenever ν is an integer the Landau levels are exactly filled. Now we can
understand why a quantum Hall fluid at integer filling fraction is called
incompressible. At ν ∈ N compressing the fluid, i.e. decreasing the area,
forces some electrons to go to a higher Landau level, which costs energy.
Since the spacing between different levels is ~ωc ∝ B, for a very strong
magnetic field the energy gap between the Landau levels becomes large.
And the amount of energy that it costs to push an electron to a higher level
is significant. For this reason the quantum Hall fluid is an incompressible
state. Notice that the huge energy gap separates the multi-particle ground
state from the excited states, which makes it a topological phase of matter.
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So far nothing prohibits ν of being different from an integer. This happens
when random impurities in the 2DEG are taken into account. Almost all
electrons become localized and only a few are extended. It is precisely these
extended states that can carry the current from one side of the sample to
the other. When the magnetic field is tuned in such a way that it affects
the localized states nothing happens; the Hall conductance stays constant,
thus we are at a plateau. When it reaches the energy level of the extended
states the Hall conductance suddenly increases.

This seemed like a satisfactory explanation of what is observed in the lab-
oratory. However, trying to get devices cleaner led to the discovery of the
FQH effect. In 1982 Tsui et al. observed stable plateaus at fractional filling
fractions [10]. These plateaus are shown in Fig. 2.11 and they all have
odd denominator filling fraction. However, experiments done in the second
Landau level also show even denominator filling fractions [11, 12]. A graph
with a plateau at ν = 5/2 is shown in Fig. 2.12.

In trying to explain the IQH effect, one big assumption has been made and
that is neglecting the Coulomb interaction between the different electrons.
This assumption was legitimate since the samples used in experiments had
large impurity potentials. As samples have less disorder this assumption is
no longer valid and the Coulomb interaction has to be taken into account.
We will not go into detail on the theory behind the FQH effect. In stead, we
simply mention that FQH states are observed and that they are incompress-
ible, like the integer states. Furthermore, the ground state is also separated
from the excited states by a large gap.

Most importantly, excitations in these FQH states have fractional charge
and are also expected to have fractional (and even non-Abelian) statistics.
This will be discussed briefly in the next subsection where we will present
some states that have been proposed to explain the physics at certain FQH
plateaus.

2.2.2 FQH states

There have been many wave functions proposed to explain the physics at
the Hall plateaus. We will use this subsection to mention a few of them.

Wave functions to describe the physics for the plateaus at ν = 1/m, where m
is an odd integer, have been proposed by Laughlin in Ref. [13]. Excitations
over the ground state are quasiparticles and quasiholes and each of them is
attached to one flux quantum. For N electrons and n quasiholes at complex
coordinates zi and uj , respectively, the wave function is
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ψm(z1, ...zN ;u1, ...un) =
∏
i<j

(zi − zj)m
∏
k,l

(zk − ul)e−
1
4

P
p |zp|2 (2.36)

The quasiholes have fractional charge Q = e/m and when the position of
two quasiparticles is interchanged it leads to a phase factor of eiπ/m, which
implies that the quasiholes have fractional statistics θ

π = 1
m .

As can be seen from Fig. 2.11 and 2.12 the Laughlin wave functions can-
not account for all observed filling fractions. All odd denominator filling
fractions in the lowest Landau level can be explained by a construction now
known as the Haldane-Halperin (HH) hierarchy [14, 15]. A hierarchy of
states is built on top of the Laughlin state by letting the quasiparticle exci-
tations condense into a new Laughlin-type state of matter. This hierarchy
will be discussed in more detail in chapter 5.

Another series of states has been proposed by Jain in Ref. [16]. It presents
a new approach of understanding the FQH effect. He argues that it can
be understood as the IQH effect but for composite fermions instead of real
electrons. A composite fermion is an electron attached to an even number of
flux quanta, 2n.4 The flux quanta that are bound cannot contribute to the
magnetic field, which leads to a different effective magnetic field. Starting
from an IQH plateau at ν = p and assuming that the Ne electrons each bind
to 2n flux quanta this leads to a filling fraction of the composite fermion
state

ν ′ =
p

2np± 1
n, p ∈ N (2.37)

The sign depends on the relative direction of the magnetic field and the
flux quanta attached to the electrons. The fundamental particle has charge
Q = e/(2np± 1) and statistics θ/π = 1/(2np± 1). Note that for p = 1 the
Laughlin state is obtained. The composite fermion approach naturally gives
a beautiful interpretation of the FQH effect in terms of the IQH effect. The
down side of these states is that they do not reproduce all odd denominator
filling fractions, but for the most stable values of ν they do.

The Read-Rezayi (RR) states that have been proposed in Ref. [17] are yet
another series of states. The filling fractions are5

4An even number is needed to preserve fermionic statistics.
5The RR state for k = 3 and M = 1 has a sector with the same quantum numbers as

the Fibonacci anyon.
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νRR =
k

kM + 2
M = 1, 3, ..., k = 1, 2, ... (2.38)

The Moore-Read (MR) state is a special case of the RR states for k = 2 and
M = 1. In Ref. [18] Moore and Read suggest a wave function to account
for ν = 1/2, which is a candidate for ν = 5/2 in the second Landau level.
The RR states have quasiparticle excitations with fractional charge and
non-Abelian fractional statistics which makes them extremely interesting
for TQC. We will return to the MR state in several other parts of this
thesis.

Having introduced several candidate states to describe the physics of the
FQH effect, we devote the last part of this section to some experiments
that have been done in order to determine the charge and statistics of the
excitations in FQH fluids.

2.2.3 Experiments on FQH systems

Many states have been proposed to account for the physics that is observed
in FQH fluids. To verify which state is actually the correct description more
experiments have to be performed.

Electric charges of quasiparticles for different filling fractions have been mea-
sured, for instance by so called shot noise experiments. The authors of Ref.
[19] measured a quasiparticle charge of e∗ = e/3 at filling fraction ν = 1/3
and in Ref. [20] a charge of e∗ = e/5 was observed for ν = 2/5. These
observations agree with the predicted charge of the Laughlin state and the
state proposed by Jain, respectively. A similar experiment has been per-
formed by th authors of Ref. [21]. They measured quasiparticle charges for
QH fluids in the second Landau level. Most interestingly they observed a
charge e∗ = e/4 for the plateau at ν = 5/2. This agrees with the predictions
of Moore and Read. For details on the set up of these experiments we refer
to the literature.

What is more difficult to measure, but of great interest, is the statistics
of the quasiparticles. Many possible set ups have been proposed in the
literature based on interference measurements for Abelian as well as non-
Abelian particles, see for example Ref. [23, 24, 25]. The authors of Ref. [22]
claim to have actually measured the statistics of the Laughlin quasiparticle
at ν = 1/3. They construct an interferometer by surrounding an island
at ν = 2/5 by a quantum Hall fluid at ν = 1/3 (see Fig. 2.13). Tunneling
between the two edges can occur upon which the quasiparticles can circle on
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Figure 2.13: Device used to measure the statistics of the e/3 Laughlin
quasiparticles. An island at filling fraction ν = 2/5 is surrounded by a
quantum fluid at ν = 1/3. Tunneling between the two edges can occur.
When an e/3 particle tunnels to the inner edge it goes around the island and
picks up a phase due to interactions with the quasiparticles on the island. If
this happens interference should be measured. Figure taken from Ref. [22].

the inner edge. This could lead to a phase factor because of interaction with
the quasiparticles present on the island. The particles that tunneled have
a different phase factor than the particles moving on the outer edge, which
results in interference. The authors measure such an interference term, from
which they draw the conclusion that the quasiparticles indeed have θ

π = 1
3

statistics,6 which confirms the predictions of Laughlin. The same authors
repeated the experiment using the same set up, but this time letting the
island be at ν = 1/3 as well as the surrounding fluid (see Ref. [26]). Again
they find superperiods which confirm the 1/3 statistics.

Even though these experiments have been performed, it remains problematic
to measure the statistics of quasiparticles. It would be especially interesting
to know the statistics of the Hall fluid at ν = 5/2, since this could answer
the question of which of the proposed states is the right one. For instance,
the MR state predicts quasiholes that have non-Abelian statistics. We will
see that these non-Abelian anyons are precisely what is needed to perform
topological quantum computations. The last section of the present chapter,
addresses this topic.

6In chapter 5 we discuss a different interpretation of this result.
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2.3 Topological quantum computation

2.3 Topological quantum computation

This section treats topological quantum computation. Let us start with dis-
cussing quantum computation (QC) in general before we turn to the topo-
logical variant of it. The idea of doing computations by using the properties
of quantum mechanics goes back to the early 1980s [1]. It was shown that
QC could speed up calculations for certain problems. Even though much
effort has been put into the theory of QC it remains difficult to actually
build a quantum computer. The main problem is that the information that
is stored decoheres quite easily, which leads to errors in the calculations.
One way to deal with this problem is to develop error correcting codes; if
an error occurs it can be detected and fixed. Another possibility of avoiding
decoherence, is by using topological properties. Since topology is a non-
local property the quantum information should not be sensitive to any local
perturbations.

2.3.1 Qubits and gates

The idea behind QC is that we use a state that is in a superposition to
encode a qubit

|ψi〉 = α|0〉+ β|1〉, with |α|2 + |β|2 = 1 (2.39)

The Hilbert space spanned by this state is 2-dimensional. The way of doing
calculations with such qubits is by acting on |ψi〉 with unitary transforma-
tions to obtain some final state |ψf 〉 which can be read out.

The form of (2.39) suggests that non-Abelian anyons are a natural way to
encode qubits. When two anyons a and b are fused their product is

|ψi〉 = a× b =
∑
c

N c
abc (2.40)

This is a d-dimensional Hilbert space where d =
∑

cN
c
ab. We want to act on

this state by a unitary transformation to do quantum computations. Since
we are dealing with a topological phase the only way that this system can
undergo a transformation is by braiding anyons [1]. The unitary gates we
are looking for must be accomplished by braiding anyons. Since two anyons
cannot change their fusion channel by braiding, the state in (2.40) does not
suffice. Extra anyons are needed to make them change their fusion channel.
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How this can be done will be illustrated in the next subsection where we,
yet again, use the Fibonacci model as an example.

2.3.2 TQC with Fibonacci anyons

In subsection 2.1.5 the Fibonacci model was presented. We used it to ex-
plicitly show the concepts that were discussed in the first section of this
chapter. Now we will again use it as an example, but this time to illustrate
TQC.

The only non-trivial particle in the Fibonacci model is the τ particle and
we will use it to encode a qubit. As was mentioned, two anyons cannot
change their fusion channel, so we need at least three Fibonacci anyons.
Their fusion product is as follows

(τ × τ)× τ = (1 + τ)× τ = 1 + 2τ (2.41)

A system with three Fibonacci anyons has a 3-dimensional Hilbert space.
Adopting notation from Bonesteel et al. in Ref. [27] where τ is represented
by •, the different states of this space can be written as follows

|0〉 = |((• × •)1 × •)τ 〉 (2.42)
|1〉 = |((• × •)τ × •)τ 〉 (2.43)

|NC〉 = |((• × •)τ × •)1〉 (2.44)

The |0〉 and |1〉 are the two orthogonal states of the qubit and |NC〉 is a
noncomputational state. By braiding the three particles around each other
their initial state can be changed. For the |NC〉 state we need to demand
that it does not have an amplitude at the start nor at the end of the cal-
culations. The effect of braiding can be found by determining the matrices
representing the braid generators. These have been calculated and are given
in (2.27) and (2.28). Note that they are block diagonal which implies that
the noncomputational state does not mix with the qubit state.

The question remains if any computation can be done by using these two
matrices. It turns out that the Fibonacci anyons allow for universal QC
[28], which means that any unitary operation can be approximated with
arbitrary precision by successively acting with ρ(σ1) and ρ(σ2). Still, it is
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not trivial to find a particular unitary gate of interest. The authors of Ref.
[27] present a method to find specific quantum gates to arbitrary precision.

Since TQC is not sensitive to local perturbations one might wonder if there
are other ways in which errors could occur. In Ref. [1] it is discussed that
errors could arise when the braiding is not done accurately. One has to keep
track of positions of all the anyons in the system in order to avoid braiding
of anyons that should not be involved in the calculation.

In this chapter we introduced some concepts that arise in planar physics.
For instance, the statistics of particles changes dramatically when they are
confined to two spatial dimensions. Instead of just fermions and bosons
there is the notion of anyons. These are particles which have the property
that upon interchanging two identical anyons the wavefunction describing
the system acquires a phase factor that can have any value. Anyons with
different statistics correspond to different irreps of the braid group. This
group acts on a two dimensional system of identical particles by interchang-
ing them.

The anyons carry two quantum numbers which will be important for later
parts of this thesis. This is the quantum dimension and the topological spin.
The former is closely related to the fusion rules of the anyons and the latter
to rotation of an anyon over a 2π angle. These concepts are made explicit
by treating an example: the Fibonacci model.

A physical system in which anyons arise are FQH fluids. This is a 2DEG sub-
ject to a strong perpendicular magnetic field and at very low temperatures.
When an electric field is applied for certain values of the magnetic field the
system becomes incompressible. It is exactly at these values that the QH
fluid is in a topological phase and its excitations are presumably anyonic.
Many states have been proposed in the literature to capture the observed
physics of these phases. To test which description is correct experiments
have been done to measure the charge and statistics of the excitations. So
far, it seems that most of the phases have Abelian anyons, but some could
also have non-Abelian excitations.

The last section deals with an implementation of anyonic systems. Non-
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Abelian particles can act as a quantum register. Qubits are encoded by
using the Hilbert space spanned by the fusion product of non-Abelian anyons
and computations are performed by braiding these anyons. This leads to a
fault-tolerant way of storing and manipulating information.

Having set the stage, in the next chapter we move on to topological symme-
try breaking.
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CHAPTER 3

Symmetry breaking by Bose condensation

To investigate phase transitions in a 2-dimensional topological medium we
use the method of topological symmetry breaking. In many fields of physics
symmetry breaking is a natural way to describe phase transitions. The idea
is that the initial symmetry is broken down to a residual symmetry, which
describes the new phase. For a 2D topological phase of matter anyonic
quantum statistics naturally arises as we have seen in the previous chapter.
The algebra that should describe the symmetry of the topological phase is
different from a standard (Lie) group or algebra in that they also should
incorporate the non-trivial braiding interaction that the excitations may
have. The fact is that the symmetry of the system is described by a quantum
group. The irreps of this quantum group label the spectrum of topological
excitations. Instead one could also use the full CFT description to describe
a quantum system. But writing down explicit wave functions is usually
difficult. Instead we prefer the quantum group approach, i.e. the symmetries
of the system, because the method is very general and allows us to extract
what we want to know in a systematic way.

This chapter will give an extensive overview of the concept of topological
symmetry breaking set out in Ref. [4, 29, 30, 31]. We will use this scheme to
induce transitions between different topological phases. This enables us to
describe the degrees of freedom present in the bulk of the different phases as
well as on the boundary between them. The steps that need to be taken are
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roughly the following: First identify the spectrum of the initial phase by la-
beling the excitations by irreps of the underlying quantum group. Next, find
a bosonic excitation in this spectrum and assume that it forms a condensate,
upon fusion with this condensate certain fields will become identified and
others will split, all of this is captured by the branching rules. Now we have
reached a new intermediate phase described by a T -algebra that has good
fusion rules, but where non-consistent braiding might arise. Excitations
that do not braid trivially with the condensed excitations will pull strings
in the condensate and due to energy considerations will be expelled from
the bulk and must live on the boundary of the phase. Lastly, we recognize
that the fields that are unconfined make up a new, final phase, described by
an algebra U . These excitations are the true particle-like excitations of the
broken phase. By following these steps we have a phase transition between
an initial phase described by a quantum group A and a final phase described
by U . The domain wall between the two phases can be fully captured by
the intermediate T -algebra.

The second section of the present chapter is structured after these three
steps. To illustrate how this process works in practice we discuss an explicit
phase transition while presenting the general framework. As an example we
choose Kitaev’s honeycomb model described in Ref. [32]. Before we reach
this point we start with a brief introduction to quantum groups and how
they describe the underlying symmetry of a 2D quantum system.

3.1 Quantum groups

The previous chapter showed that the braid group acts non-trivially on a
2-dimensional system. The appearance of the braid group can be associated
with an underlying symmetry described by a quantum group A. This is a
special case of a Hopf algebra which is a generalization of groups. For a
precise discussion and exact definitions of quantum groups we refer to the
literature on quantum groups [33, 34].

It suffices to mention that each excitation in the spectrum of a topological
phase carries an irrep of a quantum group that describes the symmetry of
the system. So the spectrum is obtained when we know the irreps of the
quantum group. The extra structure that quantum groups have are such
that the physical properties of the excitations like fusion and braiding can
correctly be taken into account.

For instance, there is a structure called the coproduct which makes it able to
act on a multi-particle state, i.e. it allows for a consistent definition of how
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Figure 3.1: Topological symmetry breaking happens in two steps. Our
initial phase has an underlying symmetry denoted by a quantum group A.
The spectrum of this phase is labeled by the irreps of A. After a condensate of
bosonic quasiparticles forms the symmetry breaks down to a smaller algebra
T ⊂ A. The excitations in this phase might not have well-defined braiding
statistics with the condensate. Those which do not braid trivially pull strings
in the condensate and will become confined to the boundary of the system.
We are left with a final algebra U describing excitations that are closed under
fusion and have well-defined braiding statistics.

the quantum group acts on a tensor product state of two representations.
Given that action one can deduce how the product representation reduces
into irreducible components and that way gives rise to the tensor product of
fusion rules of representations. The R-matrix which was introduced in the
previous chapter is the operator that implements the braid operation on a
two-particle state. In the quantum group language this operator corresponds
with a canonical element in the tensor product of the algebra with itself.
This particular element has the important property that it commutes with
the action of the quantum group A and therefore by considering tensor
products we can always decompose any product of n irreps into irreducible
representations of the product A⊗ Bn.

In the following we will work with quantum systems of which we know the
spectrum and fusion and braiding interactions, i.e. we identify the physical
system by the collection of representations and their labels. This is usually
the case with physical applications of abstract algebraic structures. This
means that we will not write down the explicit quantum groups, but just
assume that they describe the underlying symmetry. We will see that for
the examples we are considering this is sufficient.
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3.2 Phase transitions

The main idea of topological symmetry is sketched in Fig. 3.1. The breaking
happens in two steps. Our initial phase has an underlying symmetry denoted
by a quantum group A. The spectrum of this phase is labeled by the irreps
of A. The first step is when a condensate of bosonic particles forms. This
condensate breaks the symmetry down to a smaller algebra T ⊂ A. Again
the spectrum of this intermediate phase is labeled by irreps of T . This is
an intermediate phase since the excitations in this phase might not have
well-defined braiding statistics with the condensate. Those which do not
braid trivially pull strings in the condensate and will become confined to
the boundary of the system. This leads us to the last step where we reach
a final phase with excitations labeled by irreps of an algebra U which are
closed under fusion and have well-defined braiding statistics.

3.2.1 Getting started

First thing that needs to be done is identifying the excitation spectrum
of the topological phase we are studying. Since this is a rather general
statement we will immediately move to the example we chose to discuss,
namely Kitaev’s honeycomb model.

This is a model where spin-1/2 particles live on the sites of a honeycomb
lattice. They have nearest neighbor interactions and this model can be
solved exactly. Depending on the different coupling strengths there are four
different phases. Three of these phases have an energy gap and carry Abelian
anyons that have the same order as the Z2 toric code, which is the same
as the quantum double D(Z2) = Z2 ⊗ Z2 [4]. The fourth phase is gapless,

Ising

c = 1/2 1 σ ψ

hi 0 1
16

1
2

di 1
√

2 1
σ × σ = 1 + ψ ψ × ψ = 1
σ × ψ = σ

Z2 toric code

c = 0 1 e m em

hi 0 0 0 1/2
di 1 1 1 1
e× e = 1 m×m = 1
em× em = 1 e×m = em
m× em = e em× e = m

Table 3.1: Sectors of the Ising model (left) and Z2 toric code (right) to-
gether with their spins, quantum dimensions and the fusion rules of the
non-trivial sectors. The fusion rules are commutative.
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3.2 Phase transitions

Figure 3.2: Phase diagram with two different topological phases.

but becomes gapped in the presence of a magnetic field. The excitations of
this phase are non-Abelian and turn out to be the same as the sectors of
the Ising model. The field content of the Ising model and Z2 toric code are
given in Tab. 3.1.

The aim is to obtain a configuration with two different phases, where one
has Ising sectors and the other is the Z2 toric code, this is shown in Fig.
3.2. We could just bring two phases close together, but what happens at
the boundary of the two? This question can be answered by following the
scheme set out below.

Let us start with a disc carrying the Ising sectors. The different sectors of
the Ising model together with their quantum numbers are given in Tab. 3.1.
The idea is that we place a smaller auxiliary layer on top of this Ising disc
and induce a phase transition in the overlapped region so that we end up
with the phase we are aiming for.1

The conformal field theory (CFT) describing the Ising model has central
charge c = 1/2 and the Abelian phase we are aiming for has zero central
charge. It seems logical to use an auxiliary layer that cancels the central
charge of the Ising part. Let us try to do it with a smaller disc carrying
Ising sectors. This model has central charge c = −1/2 and the sectors have
spins that also have opposite signs from the Ising model sectors. The fusion
rules and quantum dimensions are the same for both theories.

So we place a smaller disc carrying an Ising model on top of our original
Ising disc as is shown in Fig. 3.2. This just means we take a tensor product
of the two theories in the region where they overlap. This region will be
denoted by region II from now on. It has an underlying symmetry described
by A = Ising ⊗ Ising. The quantum dimensions of two sectors in a tensor

1It is not always necessary to use an auxiliary layer. If there is a bosonic excitation
present in the single-layered system we could just condense it in a part of the phase in
order to obtain a two-phased diagram. This has been done, for example in Ref. [4].
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Chapter 3. Symmetry breaking by Bose condensation

product multiply and the spins add up.

At this point we have an initial spectrum labeled by irreps of A in region II.
To proceed the symmetry breaking we first have to identify a bosonic sector
in region II.

3.2.2 Boson

The next step in the symmetry breaking scheme would be to form a conden-
sate of bosonic excitations. But what is a boson in two spatial dimensions?
In more than two dimensions bosons are particles that have integer spin.
This is the same as the condition that exchanging two bosons leaves the
system invariant. In two dimensions these two are not necessarily equal
anymore.

Consider the relation between self-monodromy of a particle with trivial spin
and fusion of two such particles. This is shown in Fig. 3.3 and the phase
that relates these two processes is e2πi(hc−2hb) = e2πihc . From this we see
that requiring invariance under braiding, there should be at least one fusion
channel that has integer spin, leading to the following definition of a boson:

Let b ∈ A with fusion rule b× b =
∑

cN
c
bbc, if

1. hb ∈ Z

2. ∃c with hc ∈ Z

then b is a boson.

Going back to Kitaev’s honeycomb model we can identify the bosons in this
system. From Tab. 3.1 we see that there are two non-trivial bosons: (ψ,ψ)
and (σ, σ), these are the diagonal fields. It should be clear that they both
have spin equal to zero which meets the first requirement of being a boson.
For the second requirement we note that their fusion rules are

(ψ,ψ)× (ψ,ψ) = (1, 1) (3.1)
(σ, σ)× (σ, σ) = (1, 1) + (1, ψ) + (ψ, 1) + (ψ,ψ) (3.2)

Both have the vacuum in their fusion product which has zero spin. At
this point we have identified what the non-trivial excitations are with Bose-
statistics.
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3.2 Phase transitions

Figure 3.3: Self-monodromy of a boson b. In order to have invariance of
the system under exchange of two bosons we must demand that there is at
least one fusion channel c that has integer spin.

3.2.3 Branching rules

So far we are still in the upper bar of Fig. 3.1; it is the initial phase we are
dealing with. Now is the time that we make our first step of the symmetry
breaking scheme. This breaking occurs when the bosonic excitations form
a condensate. We must investigate what happens to our initial spectrum
when this condensate forms. The idea is that the condensate is our new
vacuum so it should not interact with the other excitations in the spectrum.
This means that the symmetry underlying the initial spectrum is broken and
we need to determine what our new spectrum is. The present subsection is
concerned with the interaction between the excitations and the condensate
through fusion.

Going back to the quantum group language we note that the initial spectrum
was labeled by irreps ofA. When a condensate forms the symmetry is broken
down to a smaller algebra T ⊂ A. This algebra has irreps that might differ
from the irreps of A. What could happen is the following:

• Whenever an irrep of A is also an irrep of T the excitations labeled
by it are still present in the broken phase.

• Irreps that were different under the initial symmetry could correspond
to the same irrep of T , so these excitations become identified with
each other in the broken phase.

• If an irrep of A is not an irrep of T it can be written as a direct sum of
representations that are irreducible under T . This means that these
excitations split up into two or more parts in the broken phase.

These three possibilities can be written in a compact form, which is called
the branching rules
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Chapter 3. Symmetry breaking by Bose condensation

a→
∑
t

nat t (3.3)

where a is an irrep of A and t an irrep of T . What appears after the arrow is
called the restriction of a. The coefficient nat ∈ N gives the number of times
t appears. In practice we find these branching rules by fusing the excitations
in the spectrum of A with the condensate.

Again due to physical requirements the fusion rules of this new spectrum
must also be associative, there must be a unique vacuum sector, and ev-
ery sector has a conjugate sector.2 Besides this, we have to put two more
constraints on the branching rules of the different sectors:

• The sector b that condenses must contain the vacuum in its branching
rule: b→ 1 +

∑
t n

b
tt.

• Fusion rules and branching should commute. In other words fusing
sectors labeled by A and then branching the result to T should be
equal to branching the sectors of A and then fusing the sectors of T .

A helpful tool in determining the branching rules comes from these two
conditions. It can be shown that quantum dimensions are preserved under
branching

da =
∑
t

nat dt (3.4)

where da is the quantum dimension of a ∈ A and dt is the quantum dimen-
sion of t ∈ T which are the fields a branches to.

Returning to our model we will show how this works. Even though there
are two non-trivial bosons (ψ,ψ) and (σ, σ), we will assume only the (ψ,ψ)
field condenses. If we look at the fusion rules of this condensate with the
other excitations that are present in the initial phase we find

2As an aside we mention that we do not demand consistent braiding at this point. We
will see later on in this section that this enables us to describe more than just the pointlike
excitations appearing after the phase transition occurred.
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3.2 Phase transitions

(1, 1) × (ψ,ψ) = (ψ,ψ)
(ψ, 1) × (ψ,ψ) = (1, ψ)
(σ, 1) × (ψ,ψ) = (σ, ψ)
(1, σ) × (ψ,ψ) = (ψ, σ)
(σ, σ) × (ψ,ψ) = (σ, σ)

(3.5)

The condensed field is a simple current of order 2. A simple current J is a
sector that has unit quantum dimension from which it follows that fusing
J with any other sector results in only one fusion channel [4]. The order
p of a simple current is defined through J×p = 1. This means that the
orbits under fusion with (ψ,ψ) have a maximum length of 2. From which
it follows that the first eight fields in (3.5) get pairwise identified, but the
(σ, σ) field is invariant under fusion with the condensate. Writing this in
terms of branching rules, this looks like

(1, 1), (ψ,ψ) → (1, 1)
(1, ψ), (ψ, 1) → (ψ, 1)
(σ, 1), (σ, ψ) → (σ, 1)
(1, σ), (ψ, σ) → (1, σ)
(σ, σ) → (σ, σ)1 + (σ, σ)2

(3.6)

Let us see why we have these particular branching rules. The first four lines
of (3.6) can be explained by looking at the quantum dimensions of the fields
at the left hand side, they all have di < 2. Since the quantum dimension
of a sector needs to be at least 1 and quantum dimensions are preserved
under branching it follows that the restriction of these sectors can only have
one part. Of the two fields that become pairwise identified we choose one of
those to label the restriction of them.3 The last line of (3.6) is a bit more
complicated since (σ, σ) has quantum dimension d = 2, so in priciple it could
split. Take a look at the fusion rule of this field with itself

(σ, σ)× (σ, σ) = (1, 1) + (1, ψ) + (ψ, 1) + (ψ,ψ) (3.7)
→ 2(1, 1) + 2(ψ, 1)

Since the restriction contains the vacuum twice (σ, σ) needs to split, other-
wise there is no unique way in which they annihilate. That the restriction

3We could have chosen totally new labels, but if we want to keep track of the corre-
spondence of sectors in A and T this is the easiest way to accomplish it.
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Chapter 3. Symmetry breaking by Bose condensation

Ising ⊗ Z2 (1, 1) (ψ, 1) (σ, 1) (1,−1) (ψ,−1) (σ,−1)
T (1, 1) (ψ, 1) (σ, 1) (1, σ) (σ, σ)1 (σ, σ)2

(ψ, 1) (1, 1) (σ, 1) (1, σ) (σ, σ)2 (σ, σ)1
(σ, 1) (1, 1) + (ψ, 1) (σ, σ)1 + (σ, σ)2 (1, σ) (1, σ)
(1, σ) (1, 1) + (ψ, 1) (σ, 1) (σ, 1)
(σ, σ)1 (1, 1) (ψ, 1)
(σ, σ)2 (1, 1)

Table 3.2: Fusion rules of the intermediate T -algebra corresponding to the
broken phase of Ising ⊗ Ising. These sectors have Ising ⊗ Z2 fusion rules,
which is made explicit by the top most line.

has precisely two fields directly follows from the quantum dimension being
equal to 2.

The six fields at the right hand side of (3.6) make up the spectrum of the
broken phase that is described by T . The fusion rules of these fields are
given in Tab. 3.2 and turn out to be the same as Ising ⊗ Z2.

At this point we have taken the first step of the symmetry breaking scheme,
shown in Fig. 3.1, by letting bosonic sectors form a condensate which breaks
the symmetry to a new algebra T . This broken phase is closed under fusion
but we have not demanded consistent braiding and spins so far.

3.2.4 Confinement

The condensate should not interact with the other excitations in the spec-
trum. The previous subsection took care of fusion interaction. To take the
last step of the symmetry breaking shown in Fig. 3.1 we need to look at
the braiding interaction of the different sectors in the spectrum with the
condensate.

Let us look at the monodromy of a sector a with the condensate b when are
in fusion channel c, this is shown in Fig. 3.4. If there should not be any
braiding interaction we have to demand

e2πi(hc−ha) = 1 ⇔ hc − ha ∈ Z (3.8)

To give a precise definition of which sectors have non-trivial braiding inter-
action with the condensate we first need to define the notion of lifts of a
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3.2 Phase transitions

Figure 3.4: There is no braiding interaction between the condensate b and
sector a as long as hc − ha ∈ Z.

sector

The lifts of a sector t̃ ∈ T are the sectors a ∈ A that have t̃
in their restriction:

a→ na
t̃
t̃+
∑
t

nat t

for nonzero na
t̃

Now that we defined the lifts of a sector in the broken phase we are able to
define which sectors in this broken phase must become confined.

If the lifts of a sector t ∈ T do not have equal spin factors
then this sector is confined

What does it mean when a field becomes confined? To answer this ques-
tion we will sketch an intuitive picture of confinement. The condensate can
be viewed as some background field. Just like the usual vacuum it can be
considered everywhere. If a particle is placed in the condensate it should
leave the condensate invariant, otherwise it does not belong to the spectrum
of this system. Let us assume that this particle braids non-trivially with
the particles forming the condensate. Instead of writing a phase factor we
shall denote braiding by some intrinsic orientation of the particles. The
condensate has such an intrinsic orientation. If a particle is placed in the
condensate this orientation will continuously change going around the parti-
cle, but it should go back to its initial value at a 2π angle. If it does not then
the order parameter of the condensate has a line singularity terminating in
the particle and it is not continuous anymore. This results in a branch cut
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Chapter 3. Symmetry breaking by Bose condensation

Figure 3.5: Left figure shows the order parameter of the condensate as
arrows pointing up. Bringing a particle into the condensate changes this
order parameter. When this particle braids non-trivially with the condensate
there will be a branch cut in the condensate. Physically this means that the
particle pulls a string attached to the boundary of the system.

which costs a certain amount of energy. Fig. 3.5 visualizes a particle that
pulls a string in the condensate. To minimize energy the particle will be
driven out of the bulk and will reside on the boundary of the system.

So we see that the fields that become confined are driven out of the bulk
of region II and must sit on the boundary between this region and region I
shown in Fig. 3.2.4

Going back to to the honeycomb model we identify which of the six fields
in the intermediate T -algebra will be confined. The fields of T are listed in
Tab. 3.3, together with their lifts in the unbroken phase and the difference
in spin between these lifts. The criterium for confinement tells us that the
fields (σ, 1) and (1, σ) are confined.

T Lifts hdif
(1, 1) (1, 1), (ψ,ψ) 2
(ψ, 1) (ψ, 1), (1, ψ) 1
(σ, 1) (σ, 1), (σ, ψ) 1/2
(1, σ) (1, σ), (ψ, σ) 1/2
(σ, σ)1 (σ, σ) 0
(σ, σ)2 (σ, σ) 0

Table 3.3: Determining which fields in T become confined, we look at the
difference in spin of their lifts. These are shown in the last column. When-
ever this difference is an integer the corresponding field will be unconfined
in the broken phase.

4There is a possibility for confined sectors to form a hadronic composite, which can
live in the bulk. This happens when at least two confined sectors are joined together by
their strings and have a combined charge that is unconfined. The T -algebra has to be
invoked to determine which hadrons are possible.
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3.2 Phase transitions

3.2.5 Effective theory

After the expulsion of the confined sectors we are left with an unconfined
broken theory in region II. This is the effective theory which has a certain
spectrum with underlying symmetry described by an algebra U . All the
excitations in this spectrum are closed under fusion and have well-defined
braiding interactions. We have arrived at the last station of the symmetry
breaking process displayed in Fig. 3.1.

Using this method we know which degrees of freedom are present in both
regions of Fig. 3.2. Besides this we also know what happens on the inter-
face between the two regions. This is a very important statement. In the
beginning of this section it was discussed that trying to explain a system
with two different topological phases just by bringing the separate phases
close together fails to reproduce what processes happen on the boundary
where the phases meet. The approach of symmetry breaking produced such
a two-phased diagram and tells us what happens on the interface.

This power comes from the intermediate T -algebra. It can be used to de-
scribe the excitations of region II by noting that these are just the unconfined
fields. The excitations of region I correspond to a T field modulo fusion with
the condensate. Then there are the wall excitations. Again these are also
fully described by the T -algebra. They are the fields that are confined in
the broken theory and cannot be identified with an excitation from region I.
These sectors are strictly confined to the wall, since they cannot move into
the bulk of region I nor the bulk of region II.

Another comment can be made concerning the T -algebra. It describes a
spectrum that is closed under fusion, but does not have well-defined braid-
ing statistics. Now we see that this is not a problem after all. Since the
T -algebra describes the excitations that live on the boundary, it is quite
logical that it does not exhibit well-defined braiding. The boundary of a
two dimensional system is one dimensional. So it is clear that no consistent
braiding is possible on this interface.

Returning to Kitaev’s honeycomb model for the last time, we note that
there are four unconfined fields present in the bulk of region II. Looking at
their spins, quantum dimensions and fusion rules we see that these are the
same as the Z2 toric code. This means that going back to Fig. 3.2 we have
produced this phase diagram where region I has Ising sectors and region II
has the same order as the Z2 toric code.5 The link between the excitations in

5Note that we assumed that only (ψ,ψ) formed a condensate. But there was another
non-trivial boson. Had we also demanded (σ, σ) to condense then we had found a diagram
with region I described by Ising and region II would have been just the vacuum.
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Chapter 3. Symmetry breaking by Bose condensation

Ising T − algebra Z2 toric code
(region I) (I/II wall) (region II)
1 (1, 1) 1
ψ (ψ, 1) em
σ (σ, 1)

(1, σ)
(σ, σ)1 e
(σ, σ)2 m

Table 3.4: First column shows the fields that can move into the bulk of
region I. The third column displays the fields moving into the bulk of region
II. Both have their corresponding T field in the second column.

these two regions and their corresponding field of the T -algebra is listed in
Tab. 3.4. This table also shows us that even though there were two confined
fields in the broken theory only one of them is a true boundary excitation.
The (σ, 1) field was confined, thus driven out of the bulk of region II, but it
can move into the bulk of region I. On the other hand, (1, σ) cannot move
into region I, so it has to stay on the wall between the two regions.

Note that there is one sector that can move freely through the whole phase
diagram, namely (ψ, 1). In region I it is identified with ψ and in region II
with em.

It is also interesting to consider some processes involving (1, σ) that could
occur:

• When two wall excitations (1, σ) fuse they may form a (ψ, 1) excitation,
which can move into the bulk of either region I as a ψ field or region
II as a em field, i.e. (1, σ)× (1, σ) = (1, 1) + (ψ, 1).

• A (1, σ) field can split into a σ field and either a e or m field, i.e.
(1, σ) ∈ (σ, 1)× (σ, σ)i.

These final statements take us to the end of this chapter. What we did is in-
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troduce the concept of topological symmetry breaking. This happens when
a bosonic excitation in the spectrum forms a condensate. Consequently, the
degrees of freedom need to be rearranged such that fields that differ by fu-
sion with the condensed particle are identified with each other. This new
spectrum is described by an intermediate symmetry. The last step is con-
cerned with the braiding interaction of the excitations with the condensate.
When an excitation braids non-trivially with the bosonic particles it pulls
a string in the condensate and will become confined to the boundary of the
system. This leaves us with a final phase that has a spectrum of excitations
with well-defined fusion and braiding interactions. The symmetry breaking
scheme can be used to describe a system that has different topological phases
separated by a boundary. In this way we can pin down all the degrees of
freedom that are present in those phases as well as on the interface between
them.

This rather technical concept has been applied to a simple, but instructive
model, namely Kitaev’s honeycomb model. We constructed a phase diagram
where region I carries non-Abelian Ising sectors and region II is Abelian
with the same order as the Z2 toric code. It turns out that there is one
excitation that is strictly confined to the boundary between both regions
and one excitation can move freely in both phases. Also we discussed two
specific fusion and splitting processes.

The rest of this thesis will be on applying topological symmetry breaking to
FQH states, we first study a specific case of interest and later will talk about
understanding complete hierarchies of states from our condensate point of
view.
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Interface between non-Abelian FQH states

The first part of this thesis was concerned with presenting the basic concepts
behind planar physics and with topological symmetry breaking. Now is the
time that we put all of this into practice. We do this by considering several
explicit topological phases of matter. This chapter will deal with a system
that has two different topological phases. Both phases are non-Abelian
FQH states. The first is the MR state which is a spin polarized state. This
state was proposed to describe the observed quantum Hall plateau at filling
fraction ν = 5/2. The excitations have a non-Abelian part that has the
same sectors as the Ising model and a chiral boson corresponding to electric
charge. The second phase is the non-Abelian spin-singlet (NASS) state at
ν = 4/7 [35]. The excitations in this phase also carry a non-Abelian part
which are SU(3)2/U(1)2 parafermions and an Abelian part consisting of two
chiral bosons carrying charge and spin. A system with these two phases was
also considered in Ref. [36]. The authors obtained a partition sum for the
edge between the two phases by using the ’giant hole approach’. They write
down a counting formula for NASS on a sphere and start adding spin up
quasiholes on a part of this sphere. In this way they create a MR state
in this region. Also there has been proposed a method in Ref. [37] where
1-dimensional anyonic spin chains lead to a 2-dimensional system with two
different phases that have this initial spin chain as the gapless excitations
of the boundary. At the end of this chapter we will compare our results to
the results of these references.
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Ising

c = 1/2 1 σ ψ

hi 0 1
16

1
2

di 1
√

2 1
σ × σ = 1 + ψ ψ × ψ = 1
σ × ψ = σ

Table 4.1: Sectors of the Ising model together with their spins, quantum
dimensions and fusion rules.

We will use topological symmetry breaking as described in chapter 3 to
obtain such a two-phased system. This is done by adding an auxiliary layer
to an MR phase. It will be shown that there is a bosonic excitation and
we condense it upon which the symmetry of the system is broken. After
determining the branching rules of the different sectors and the confinement
we will see that the final phase is described by the NASS state. The results
presented here have been published in a paper in collaboration with Bais
and Slingerland [38].

4.1 Constructing the two-phased system

Let us start this section by once again stressing the difficulty in obtaining a
system which has more than one topological phase. We cannot just bring two
phases close together to create a boundary between them. This would not
tell us what happens exactly at this boundary. Instead we use symmetry
breaking to go from one phase to the other. If we are able to set our
parameters in such a way that only a part of the system breaks its symmetry
and thus undergoes a phase transition we create a system with two regions
carrying different topological phases.

To accomplish a system where region I is in the MR state and region II
in the NASS state we want to add an auxiliary layer to MR and start the
symmetry breaking scheme. We will only be considering the non-Abelian
parts of the theory since the chiral bosons can be put back in at any time.

In order to choose what auxiliary layer should be used, we look at the
central charge of the different CFT’s describing the phases. The Ising CFT
has central charge c = 1/2 and the parafermions of NASS have c = 6/5.
The difference between the two is 7/10. It would sound like a natural choice
to choose an auxiliary layer that has a CFT with central charge c = 7/10.
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Chapter 4. Interface between non-Abelian FQH states

Figure 4.1: Start with phase I which carries Ising sectors. Partially let
it overlap with phase III described by M(4, 5). In the region where they
overlap a condensate may form which leads to a new phase II carrying NASS
excitations.

There is a minimal model denoted by M(4, 5), which is also called the
tricritical Ising model,1 that has exactly this central charge [39].

This tells us that we should start with a phase described by the Ising model
and a phase carrying sectors of M(4, 5). The sectors, their quantum num-
bers, and the fusion rules are listed in Tab. 4.1 and 4.2. Let the two theories
partially overlap which means that we take the tensor product of the two
models in this sector, see Fig. 4.1. This region is described by

A = Ising ⊗M(4, 5) (4.1)

A has 18 different sectors, that are given in Tab. 4.3. Also listed are their
quantum dimensions and spins. It shows that there is only one non-trivial
boson in this A-algebra: (ψ, ε′′).

h(ψ,ε′′) ∈ Z
(ψ, ε′′)× (ψ, ε′′) = (1, 1)

(4.2)

We see that this is a sector with spin factor equal to 1 and trivial self-
monodromy, thus it is a boson.

1The Ising model is also a minimal model, namely M(3, 4).
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M(4, 5)
c = 7/10 1 ε ε′ ε′′ σ̃ σ̃′

hi 0 1
10

3
5

3
2

3
80

7
16

di 1 1+
√

5
2

1+
√

5
2 1 1+

√
5√

2

√
2

ε 1 + ε′

ε′ ε+ ε′′ 1 + ε′

ε′′ ε′ ε 1
σ̃ σ̃ + σ̃′ σ̃ + σ̃′ σ̃ 1 + ε+ ε′ + ε′′

σ̃′ σ̃ σ̃ σ̃′ ε+ ε′ 1 + ε′′

Table 4.2: Spins, quantum dimensions and fusion rules of the tricritical
Ising model M(4, 5)

4.1.1 Broken theory

Now we assume that this bosonic sector forms a condensate and in this way
the A-theory is broken. This means that the condensate branches to the
vacuum of the theory described by a smaller symmetry T . Since (ψ, ε′′)
has unit quantum dimension it has no other sectors in its branching rules
besides the vacuum. We find the other sectors of the T -theory by looking
at the fusion rules of the condensate with the sectors in the spectrum of A.
This is relatively easy since the condensed sector is a simple current of order
2, which leads to orbits under fusion with (ψ, ε′′) containing a maximum of
two sectors. The orbits are as follows

A = Ising ⊗M(4, 5)
sector hi di sector hi di sector hi di

(1, 1) 0 1 (σ, 1) 1
16

√
2 (ψ, 1) 1

2 1
(1, ε) 1

10
1+

√
5

2 (σ, ε) 13
80

1+
√

5√
2

(ψ, ε) 3
5

1+
√

5
2

(1, ε′) 3
5

1+
√

5
2 (σ, ε′) 53

80
1+

√
5√

2
(ψ, ε′) 11

10
1+

√
5

2

(1, ε′′) 3
2 1 (σ, ε′′) 25

16

√
2 (ψ, ε′′) 2 1

(1, σ̃) 3
80

1+
√

5√
2

(σ, σ̃) 1
10 1 +

√
5 (ψ, σ̃) 43

80
1+

√
5√

2

(1, σ̃′) 7
16

√
2 (σ, σ̃′) 1

2 2 (ψ, σ̃′) 15
16

√
2

Table 4.3: Sectors of A-theory: Ising ⊗M(4, 5). Clearly, (ψ, ε′′) is the
only non-trivial boson candidate.
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(1, 1) × (ψ, ε′′) = (ψ, ε′′)
(1, ε) × (ψ, ε′′) = (ψ, ε′)
(1, ε′) × (ψ, ε′′) = (ψ, ε)
(1, ε′′) × (ψ, ε′′) = (ψ, 1)
(1, σ̃) × (ψ, ε′′) = (ψ, σ̃)
(1, σ̃′) × (ψ, ε′′) = (ψ, σ̃′)
(σ, 1) × (ψ, ε′′) = (σ, ε′′)
(σ, ε) × (ψ, ε′′) = (σ, ε′)
(σ, σ̃) × (ψ, ε′′) = (σ, σ̃)
(σ, σ̃′) × (ψ, ε′′) = (σ, σ̃′)

(4.3)

These orbits have a maximal order of two, so the above fusion rules give
all the information needed to find the identifications which will lead to the
T -algebra. The first eight rows each give two fields that get identified with
each other. This means that they have the same restriction when we look at
their branching rules. Furthermore they can only branch to a single sector,
since their quantum dimensions are all less than 2. The last two rows need
to be considered more closely. These two sectors get mapped to itself by the
bosonic sector. If we look at the fusion rules of those sectors we see that

(σ, σ̃)× (σ, σ̃) = (1, 1) + (ψ, 1) + (1, ε) + (ψ, ε) + (1, ε′)+
(ψ, ε′) + (1, ε′′) + (ψ, ε′′)

= 2(1, 1) + 2(1, ε′′) + 2(1, ε) + 2(1, ε′)
(σ, σ̃′)× (σ, σ̃′) = (1, 1) + (ψ, 1) + (1, ε′′) + (ψ, ε′′)

= 2(1, 1) + 2(1, ε′′)

(4.4)

Since both sectors contain the vacuum twice this means they must split. It
turns out that it is sufficient to split both into two parts

(σ, σ̃) → (σ, σ̃)1 + (σ, σ̃)2
(σ, σ̃′) → (σ, σ̃′)1 + (σ, σ̃′)2

(4.5)

This follows from the fact that three parts would result in at least nine fusion
channels when they are fused with themselves. When we consider (4.4) they
both have less fusion channels than this, so they must split into precisely
two parts. Furthermore, the restrictions of (σ, σ̃) and (σ, σ̃′) cannot be be
identified with the vacuum, since the vacuum in (4.4) appears only twice.
This means that the restrictions have to be non-trivial sectors. Also, this
implies that the two fields in the restriction cannot be equal to each other.
The branching rules of all the sectors of the initial A-algebra are
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4.1 Constructing the two-phased system

(1, 1), (ψ, ε′′) → (1, 1)
(1, ε), (ψ, ε′) → (1, ε)
(1, ε′), (ψ, ε) → (1, ε′)
(1, ε′′), (ψ, 1) → (1, ε′′)
(1, σ̃), (ψ, σ̃) → (1, σ̃)
(1, σ̃′), (ψ, σ̃′) → (1, σ̃′)
(σ, 1), (σ, ε′′) → (σ, 1)
(σ, ε), (σ, ε′) → (σ, ε)
(σ, σ̃) → (σ, σ̃)1 + (σ, σ̃)2
(σ, σ̃′) → (σ, σ̃′)1 + (σ, σ̃′)2

(4.6)

Note that we choose to label the sectors of the intermediate T -algebra in the
same way as we labeled their lifts. We could have chosen a totally new set
of labels, but now we are able to keep track of the correspondence between
A and T . We get a surjective map from A onto T .

The intermediate T -algebra has a spectrum with 12 different sectors. Let us
try to assign quantum dimensions to those sectors. Since quantum dimension
is preserved under branching the first eight sectors of (4.6) will inherit the
quantum dimension of their lifts. For the same reason and the fact that
(σ, σ̃′) has quantum dimension equal to 2, it follows that (σ, σ̃′)1 and (σ, σ̃′)2
both must have unit quantum dimension. Looking at the product (σ, σ̃) ×
(σ, 1) = 2(1, σ̃) we can conclude that the two sectors in the restriction of
(σ, σ̃) must have equal quantum dimensions, which means they will have
quantum dimension equal to 1+

√
5

2 .

sector hi di sector hi di

(1, 1) 0 1 (σ, σ̃′)1 1
2 1

(1, ε) 1
10

1+
√

5
2 (σ, σ̃)1 1

10
1+

√
5

2

(1, ε′) 3
5

1+
√

5
2 (σ, σ̃)2 1

10
1+

√
5

2
(1, ε′′) 3

2 1 (σ, σ̃′)2 1
2 1

(1, σ̃) confined 1+
√

5√
2

(σ, ε) confined 1+
√

5√
2

(1, σ̃′) confined
√

2 (σ, 1) confined
√

2

Table 4.4: T -algebra of the broken Ising ⊗M(4, 5) theory. Sectors that
cannot be assigned a spin factor become confined.

The sectors of the T -algebra are listed in Tab. 4.4 together with their
quantum dimensions. Not all of those sectors can be assigned spins though.
For instance, take the lifts of (1, σ̃), which are (1, σ̃) and (ψ, σ̃). They have
spin 3

80 and 43
80 , respectively. This means they do not have equal spin factors
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Chapter 4. Interface between non-Abelian FQH states

and so they must become confined. It is impossible to find a known quantum
group that is the same as this T -algebra, since not all sectors have spin. This
is not really a problem since our T -theory has a 1-dimensional interpretation
as explained before. So there is no such thing as braiding and spins have no
meaning in this context.

Even though the spin factors cannot be assigned, we can determine the
fusion rules of the T sectors. On every line of Tab. 4.4 there are two sectors
with the same quantum dimension. This suggests that we must be looking
for an algebra of the form “2 ⊗ 6”. Where the 2 stands for an algebra
with two sectors both having the same quantum dimension and 6 has six
sectors. It turns out that the algebra that does the job is Z2 ⊗M(4, 5).
This can be seen as follows. The sectors in the first column of Tab. 4.4
are evidently the elements (1,M(4, 5)). Now we need a sector from the
second column that corresponds to the non-trivial element of Z2, namely
−1. This means that upon fusion of this field with the fields in the first
column of Tab. 4.4 we get the fields in the second column. It turns out that
we have two options: both (σ, σ̃′)1 and (σ, σ̃′)2 have this property. Choose
(σ, σ̃′)1 → (−1, 1) ∈ Z2 ⊗M(4, 5)

(1, 1) × (σ, σ̃′)1 = (σ, σ̃′)1 → (−1, 1)
(1, ε) × (σ, σ̃′)1 = (σ, σ̃)1 → (−1, ε)
(1, ε′) × (σ, σ̃′)1 = (σ, σ̃)2 → (−1, ε′)
(1, ε′′) × (σ, σ̃′)1 = (σ, σ̃′)2 → (−1, ε′′)
(1, σ̃) × (σ, σ̃′)1 = (σ, ε) → (−1, σ̃)
(1, σ̃′) × (σ, σ̃′)1 = (σ, 1) → (−1, σ̃′)

(4.7)

We see that this produces all the fields of the T -algebra. The explicit fusion
rules of T are given in appendix A. So the T -algebra is equal to Z2⊗M(4, 5)
on the level of the fusion rules. Once more we would like to stress that the
spin factors are not the same as those of Z2 ⊗M(4, 5).

4.1.2 Effective theory: NASS

The last step will lead to the effective theory of region II as was shown in Fig.
4.1. The underlying symmetry is denoted by a U-algebra. To obtain this the
sectors that do not have well-defined spins must be left out. These sectors
are driven out of the bulk of region II and are confined to the boundary.

Tab. 4.4 shows that four sectors of the broken theory must become confined
and that we are left with eight sectors in the broken unconfined phase.
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4.1 Constructing the two-phased system

U (1, 1) (σ, σ̃)1 (σ, σ̃)2 (1, ε) (1, ε′) (σ, σ̃′)1 (σ, σ̃′)2 (1, ε′′)
NASS 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

hi 0 1
10

1
10

1
10

3
5

1
2

1
2

1
2

di 1 1+
√

5
2

1+
√

5
2

1+
√

5
2

1+
√

5
2 1 1 1

σ↑ 1 + ρ
σ↓ ψ12 + σ3 1 + ρ
σ3 ψ1 + σ↓ ψ2 + σ↑ 1 + ρ
ρ ψ2 + σ↑ ψ1 + σ↓ ψ12 + σ3 1 + ρ
ψ1 σ3 ρ σ↑ σ↓ 1
ψ2 ρ σ3 σ↓ σ↑ ψ12 1
ψ12 σ↓ σ↑ ρ σ3 ψ2 ψ1 1

Table 4.5: U-algebra turns out to be the same as the non-Abelian part of
the NASS state. Listed are the different sectors, their quantum numbers,
and fusion rules.

Looking at the fusion rules, spins, and quantum dimensions of these sectors
we can conclude that they are the same as those of the sectors that make
up the non-Abelian part of the NASS state, see Tab. 4.5.

At this point we have a full description of the system we were aiming for,
namely one that has an interface between the NASS and MR state. But the
minimal model M(4, 5) can also be included in this picture. Now we obtain
a diagram with three different phases as shown in Fig. 4.2. The field content
of these phases are given in Tab. 4.6. It shows us which sectors are present
in the bulk of the three phases. This is also written in terms of the tensor
product that came from the initial A-algebra Ising⊗M(4, 5). The last two
lines of the table are of special interest. It tells us which excitations are
strictly confined to the boundary between the phases. We get a non-trivial
description of what happens at a phase transition. The T -algebra serves as

Figure 4.2: System carrying three topological phases. The boundaries be-
tween the phases are described in a non-trivial way by the T -algebra. The
different fields in the bulk and on the boundaries are given in Tab. 4.6.
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Chapter 4. Interface between non-Abelian FQH states

T − theory 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12 σ σ̃ σ̃′ σ∗

Lifts in (1, 1) (σ, σ̃) (1, ε) (1, ε′) (σ, σ̃′) (1, ε′′) (σ, 1) (1, σ̃) (1, σ̃′) (σ, ε)
Ising ⊗M(4, 5) (ψ, ε′′) (ψ, ε′) (ψ, ε) (ψ, 1) (σ, ε′′) (ψ, σ̃) (ψ, σ̃′) (σ, ε′)
MR 1 ψ σ
NASS 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

M(4, 5) 1 ε ε′ ε′′ σ̃ σ̃′

MR/NASS σ̃ σ̃′ σ∗

NASS/M(4, 5) σ σ∗

Table 4.6: Spectra of the different phases. The T -theory is the dictionary
between the different phases and is shown in the top most line. The line
below gives the sectors that correspond to these T sectors written as a tensor
product of the initial A-algebra. The third, fourth and fifth line give the
sectors that are allowed in the bulk of respectively MR, NASS and M(4, 5).
The last two lines show which excitations are strictly confined to either the
wall between MR and NASS or the wall between NASS and M(4, 5).

a dictionary in this case. The fusion rules of T together with Tab. 4.6 give
us all the fusion and splitting processes that could possibly occur anywhere
in the diagram shown in Fig. 4.2.

4.2 Kinematics

In the previous section it was shown how to construct a configuration with
one region described by the MR state and the other by the NASS state. This
approach supplied us with a full description of the topological excitations
in the bulk of the two regions as well as the excitations that are strictly
confined to the boundary between the two regions. We know what fusion
and splitting processes are possible and what the braiding statistics are.

4.2.1 Splitting of a quasihole

We could consider many fusion and splitting processes, but let us use this
subsection to concentrate on one particular splitting process, namely the
decay of a spin-up quasihole (σ↑) on the NASS side. There are a couple
of scenarios which we can identify by looking for fusion products that have
σ↑ as an element. We have divided the fusion products that reach this
requirement up into five categories:

1. 1× σ↑, ψ12 × σ↓, ρ× ψ2, ρ× σ↑, σ3 × σ↓, σ3 × ψ1

These products happen solely on the NASS side. They are not that
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4.2 Kinematics

interesting since we did not need our whole breaking scheme to accom-
plish these results.

2. ε′′ × σ↓, ε′ × ψ2, ε′ × σ↑, ε× σ↓, ε× ψ1

All those fusion products come from taking the product of an M(4, 5)
excitation with a NASS excitation. Even so, these are not that relevant
either. This is because the M(4, 5) excitations are not truly confined
to the wall. They are identified with fields on the NASS side so there
is no reason for them to stay on the wall, e.g. ε′′ × σ↓ corresponds to
ψ12 × σ↓. Effectively this is the same as category 1.

3. ψ × σ↓
Here we are dealing with an excitation on the Ising side times an ex-
citation on the NASS side. However, the Ising sector (ψ) corresponds
to a NASS sector (ψ12) so it might as well stay on the NASS side of
the diagram.

4. σ̃′ × σ∗, σ̃ × σ∗

Finally we have reached a case that is of special interest. These two
products both happen on the wall. But this time the fields are true
wall excitations, i.e. they cannot move to the NASS side nor to the
Ising side. This means that whenever we drag the spin-up quasihole
through the boundary it might split up into two boundary excitations.

5. σ̃ × σ
The last category is one where upon dragging σ↑ through the boundary
it might split up into an Ising quasihole (σ) and a true boundary-
excitation (σ̃).

Evidently the last two categories are of special interest and are shown in Fig.
4.3. They contain the Ising-, M(4, 5)- and NASS-theory in a non-trivial way.

Figure 4.3: Both figures show the dragging of a spin-up quasihole through
the boundary. The left figure corresponds to category 4 where the quasihole
splits up into two excitations that are strictly confined to the boundary. The
right figure shows a process where it splits up into a boundary excitation and
a quasihole on the Ising side.
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Chapter 4. Interface between non-Abelian FQH states

Such an analysis can be done for all the sectors of the different phases and
the boundary. Even though a splitting process was considered, it should be
clear that the different fusion processes can be obtained in a similar fashion.

4.2.2 Qubit relaxation

As has been discussed before in section 2.3 we can use topological phases to
do quantum computations or to act as a quantum register. The excitations of
such phases are used to encode qubits and the logical gates are implemented
by braiding these quasiparticles. Since we describe two non-Abelian phases
in this chapter we can try to encode a qubit in these phases.

Tab. 4.6 together with the fusion rules and spins of these sectors tells us if we
can encode a qubit in this system. On the Ising side a qubit can be encoded
using two quasiholes: σ × σ = 1 + ψ, they can either fuse to the vacuum or
to the Majorana fermion. When there are two qubits like this the Hilbert
space is 2-dimensional, since topological charge is conserved. Creating four
quasiholes from the vacuum implies that they must ultimately fuse to the
vacuum again. So if the first qubit fuses to 1, the second must also fuse
to 1, but they could also both fuse to ψ and then to 1. This is shown
in Fig. 4.4. Even though we can make certain logical gates by braiding
these quasiparticles, the Ising model is not suitable for universal quantum
computation, when we only allow braiding of the particles [1].

The fusion rules of the NASS excitations show us that they have a Fibonacci
structure when we note that [40]

1 ↔ {1, ψ1, ψ2, ψ12} τ ↔ {σ↑, σ↓, σ3, ρ} (4.8)

As has been shown in subsection 2.3.2 the Fibonacci model does allow for
universal quantum computation. There are several possibilities to encode a
qubit on the NASS side, for instance

σ↑ × σ↓ = ψ12 + σ3 (4.9)
σ3 × σ3 = 1 + ρ (4.10)

The authors of Ref. [25] discuss that such a qubit can always change its
fusion channel by exchanging a topologically neutral particle with the edge
between the vacuum. They propose a device from which it could be possible
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Figure 4.4: Two qubits constitute a 2-dimensional space.

to recognize non-Abelian statistics of the RR and NASS state. They consider
electrical transport through a large quantum dot that is in the spin-singlet
state. The energy of the dot is changed by slowly varying the area of the
dot. When the energy in the presence of Ne electrons in the bulk of the dot
coincides with the energy of Ne + 1 electrons a small conductance can be
measured which results in so-called Coulomb blockade peaks. For an Abelian
quantum Hall fluid, these peaks are evenly separated. For the NASS state
there appears a periodicity in the spacing between the Coulomb blockade
peaks, which is a result of the different fusion channels of the bulk quasiholes.
They can change their fusion channel by exchanging ρ with the edge of the
dot in order to minimize energy.

We use this idea of changing the fusion channel by exchanging a neutral
particle with the edge of the system. For the Ising qubit this means that if
it is in the ψ channel it can relax to the vacuum by exchanging a Majorana
fermion with the boundary. For (4.9) and (4.10) the neutral particle is ρ.
That these are the particles that changes the fusion channel can be seen
from looking at the fusion rules. The cases of the Ising qubit and (4.10) are
rather trivial since ψ× 1 = ψ and ρ× 1 = ρ. For (4.9) it can be understood
by noting that ρ× ψ12 = σ3. So the qubits can change their fusion channel
by exchanging a neutral particle with the boundary of the system.

ρ
%%

σ↑ × σ↓ = ψ12 + σ3

(4.11)

But we not only have a boundary between the vacuum and a non-trivial
topological phase, we also have a boundary between two different phases.
To see what can happen we need to consult the fusion rules. As for the
previous discussion on dragging a spin-up quasihole through the boundary,
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the T -algebra is of great importance.

Whenever a qubit on the NASS side relaxes its state by exchanging ρ with
the boundary between the MR region, multiple splitting processes may oc-
cur. In principle it can split into two boundary excitations or one boundary
excitation and an Ising quasihole. Both scenarios are sketched in Fig. 4.5.
The two excitations drawn in the left figure can be: σ̃× σ̃, σ̃× σ̃′ and σ∗×σ∗.
The right figure has only σ × σ∗ as a possibility. The same analysis can be
done for an Ising qubit. When a Majorana fermion is exchanged with the
boundary it can split up into two boundary excitations σ̃ × σ̃, σ∗ × σ∗ and
σ̃′ × σ̃′. Also ψ can move from the boundary into the NASS region propa-
gating as a ψ12 excitation.

Figure 4.5: If a qubit is encoded in the NASS region it may relax its state
by exchanging a neutral ρ particle with the boundary separating this region
from the MR side. This ρ particle may split up into two boundary excitations
(left) where there are three possibilities of which only one is given. The other
two are σ̃ × σ̃ or σ̃ × σ̃′. Also ρ can split in a boundary excitation and an
Ising quasihole (right).

4.2.3 Some thoughts

To end this chapter we would like to give a quick overview of the results of
the authors in Ref. [36, 37] and some critical statements about our results.

Grosfeld and Schoutens also find the minimal model with c = 7/10 at the
interface between MR and NASS, but they do not have the extra Z2 part
that we find. This might be explained by the fact that they seem to throw
out the gapped modes that live on the edge, although this is not mentioned
explicitly in their paper. Using just the TQFT, it seems to be difficult to
determine which modes will be gapped and which are gapless on the edge.

This extra Z2 structure that we find on the interface gives more possibilities
for interface processes to occur. For example, the left figure in Fig. 4.3 is not
found in Ref. [36]. This is an explicit difference between the two approaches.
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Also, there is a difference in the predictions about qubit relaxation in the
NASS phase. Again, this comes from the difference between the CFT and
TQFT approach. It turns out that if one looks at the CFT of the NASS
state the ρ field has to split into two parts ρ → ρc + ρs. This comes from
the fact that ρ has two independent leading Virasoro primaries which would
lead to inconsistencies in the fusion rules of the primary fields if ρ would
not split [40]. In Ref. [36] it is stated that ρc is the neutral particle that
changes the fusion channel of σ3×σ3 and ρs does the same for σ↑×σ↓. This
leads to different boundary processes whenever such qubits relax their state.
The statement of Grosfeld and Schoutens is that a σ3 × σ3 qubit can relax
its state through the interface between NASS and MR, but a spin-up/spin-
down qubit can only manage to relax its state if simultaneously a σ × σ
qubit in the MR region exchanges a Majorana fermion with this interface.
We do not see a difference between the two qubit states in the NASS region.
On the other hand we predict other boundary processes that the authors of
Ref. [36] do not see.

Another subtlety we would like to mention concerns the U(1) factors that
were left out during the whole derivation. One would expect that there are
chiral bosonic modes on the interface. The sectors of the MR state have one
chiral boson and the NASS sectors have two. So it seems logical that the
interface sectors would also have a chiral boson. This chiral boson could not
just be any U(1) factor, it should somehow depend on the MR and NASS
U(1) factors. We expect that keeping track of all these factors during the
symmetry breaking scheme we would be able to find what the U(1) factor
of the interface should be. As an aside we mention that the approach in
Ref. [36] does not seem to keep track of chiral bosons either; they also only
focus on the parafermionic sectors. The method that the authors of Ref.
[37] use does assign a U(1) factor to the interface theory. But they have
not considered the NASS/MR interface yet. Instead they describe a phase
transition between a SU(2)2 and SU(2)3 liquid. The first is almost the same
as the Ising model and the second has a Fibonacci structure in it. Their
boundary CFT is M(4, 5)⊗ U(1).

In this chapter we showed how to construct a configuration with two different
non-Abelian FQH states. The states are the spin-polarized MR state at
ν = 5/2 and a spin-singlet state at ν = 4/7. The method we use provides us
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with a description of the bulk excitations as well as the boundary excitations.
Most of those boundary excitations can move into the bulk of either one of
the regions. Even so, there are three excitations that are strictly confined
to the boundary and there is one excitation, which turns out to be the
Majorana fermion of the MR state, that can move through the boundary
into the NASS region as the ψ12 parafermion. We also showed how to use the
fusion rules of the T -algebra to explore what fusion and splitting processes
are possible. Explicitly, we discussed dragging a spin-up quasihole from the
NASS side through the boundary. We ended this chapter by commenting
on the possibility of encoding a qubit consisting of two quasiholes. This can
happen either in the NASS region or the MR region. Such a qubit can relax
its state by exchanging a neutral particle with the boundary of the system.
We see what processes may occur when such a neutral excitation is inserted
on the boundary.
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CHAPTER 5

A quantum group approach to FQH hierarchy picture

The previous chapter dealt with a first explicit example of a phase transition
between two FQH states, induced by Bose condensation of quasiparticles.
This was a transition between the MR state and NASS state. The present
chapter will also be concerned with phase transitions between FQH states,
but now the hierarchy picture is the case of interest. This is a picture where
a new FQH state is obtained by building it on top of another FQH state.
Repeating this process builds a hierarchy of states.

The aim of this chapter is to reproduce the hierarchy picture by Bose con-
densation. In this way we induce a phase transition between two states of
some hierarchy, which can be repeated k times. Leading to k − 1 phase
transitions between k different states. Before we get to this point we start
with sketching some different hierarchies in section 5.1 that have been pro-
posed in the literature. Also Wen’s K-matrix formalism is introduced which
allows for a nice compact notation. In section 5.2 we consider two specific
examples, namely an Abelian hierarchy at νI = 1/3 and νII = 2/5 and a
non-Abelian hierarchy at νI = 5/2 and νII = 12/5. Section 5.3 will con-
tain a construction of a general hierarchy. Again, we will discuss both the
Abelian and non-Abelian case. The work described here will be published
in collaboration with Bais, Bonderson and Slingerland [41].
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5.1 Hierarchy picture to the FQH states

In 1983 Laughlin [13] proposed wavefunctions to describe the Hall plateaus
at ν = 1/m for m an odd integer. The fundamental quasiparticles have
fractional charge of 1/m and Abelian fractional statistics. Haldane and
Halperin generalized Laughlin’s scheme to a hierarchy of states with filling
fraction [14, 15]

ν =
1

m+ α1

p1+
α2

...+ αn
pn

(5.1)

where m = 1, 3, ..., αi = ±1, and pi = 2, 4, .... This is now known as
the Haldane-Halperin (HH) hierarchy. Clearly, the filling fraction of the
Laughlin states is reproduced when n = 0, so the parent state of the HH-
hierarchy is a Laughlin state. This hierarchy reproduces all odd denominator
filling fractions of the lowest Landau level.

In Ref. [42] a different hierarchy is developed by Bonderson and Slingerland.
It aims at describing the observed plateaus in the second Landau level.
Explicitly they show how to build a hierarchy of states on the MR state. The
hierarchization only occurs in the U(1) part of the theory, implying that all
daughter states will have the MR structure. They show that this Bonderson-
Slingerland (BS) hierarchy provides a candidate state for all observed filling
fractions in the second Landau level, including ν = 5/2.

Some other non-Abelian hierarchies have been proposed such as in Ref. [43]
where wavefunctions are constructed by taking correlators of vertexoperators
that insert electrons and non-Abelian quasiparticles. In Ref. [44] both non-
Abelian quasiholes and quasiparticles are inserted in these correlators.

m = 3
α1 = 1 α1 = −1

p1 = 2 2
7

2
5

p1 = 4 4
13

4
11

m = 3, p1 = p2 = 2
α1 = 1 α1 = −1

α2 = 1 5
17

5
13

α2 = −1 3
11

3
7

Table 5.1: Filling fractions of some hierarchy states for a Laughlin parent
state at ν = 1

3 . The left table shows the filling fractions at the first level of
hierarchy. Building a second level on top of the states shown in the first row
results in four new states which have filling fractions that are presented in the
right table. These specific values of ν have all been observed in experiments.
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5.2 Phase transitions between different levels of hierarchy

In the following we will focus on the HH and BS hierarchy. Whenever we
want to describe an arbitrary level of these hierarchies it turns out to be
useful to use the K-matrix formulation of Wen.

K-matrix formalism Chern-Simons theory can be used to describe FQH
states. When writing down the lagrangian describing the long-distance
physics of a FQH state a coupling matrix K can be extracted [45]. Many
quantities like the filling fraction, quasiparticle charge, and statistics can be
expressed in terms of this matrix. Also vertex operators are expressible in
terms of K and consequently, wavefunctions that are constructed by taking
correlators of these vertexoperators.

We will not be using the most general form of the K-matrix. Instead we
choose K00 odd, Kjj even for j > 0, Kj,j+1 = Kj+1,j = −sgn(Kj+1,j+1),
and all other entries are zero. The filling fraction can be expressed in terms
of the K-matrix as

ν = [K−1]00 =
1

K00 − 1
K11− 1

...− 1
Knn

(5.2)

This reproduces the filling fraction of the HH hierarchy. It can also be shown
that for certain levels of this hierarchy we obtain the Jain series.

In section 5.3 the K-matrix formalism will be used extensively. But first we
turn to two phase transitions between specific FQH states.

5.2 Phase transitions between different levels of
hierarchy

In this section two different examples of a phase transition by condensation
of bosonic quasiparticles are presented. First a transition between a state
at ν = 1/3 and a state at ν = 2/5 is discussed. These states fit into the
HH hierarchy, but are also part of the Jain series [16]. The second example
is a transition between ν = 5/2 and ν = 12/5, which is the first level of
the BS hierarchy. Both two-phased systems are accomplished by placing an
auxiliary layer on top of the initial phase.
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Chapter 5. A quantum group approach to FQH hierarchy picture

5.2.1 HH hierarchy at νI = 1
3

and νII = 2
5

The first transition that is considered is between two states of the HH hi-
erarchy. Region I is at the zeroth level and has filling fraction νI = 1/3.
Region II is the first level of hierarchy and has νII = 2/5. This is the con-
figuration that we would like to reproduce to try to predict the different
quantum numbers of this picture.

To obtain such a two-phased system, we start with a disc at ν = 1/3, add
an auxiliary layer to region II and condense the appropriate boson present
in this system. First we need to find the quantum groups that label the
excitations of the system. Looking at the CFT of the Laughlin state, the
vertex operators that insert an electron and a fundamental quasihole are

Ve(zi) = ei
√

3φ(zi) (5.3)

Vqh0(ui) = e
i 1√

3
φ(ui) (5.4)

The electron has charge e from which it follows that the quasihole has charge
Qqh0 = e/3 and the spins of the fields are the same as their conformal
dimensions. For a TQFT description we only keep sectors modulo two times
the electron. From this it follows that region I is described by a Z6 theory.
The different excitations carry a label a corresponding to the irreps of this
symmetry, i.e. a ∈ Z6. The electric charges, topological spins and quantum
dimensions of the spectrum are

Qa =
ea

3
, ha =

a2

6
, da = 1 (5.5)

Evidently, the electron is labeled by 3 and the fundamental quasihole by
1. Note that all the sectors have unit quantum dimension, since this is an
Abelian theory.

Building up the system we have A0 = Z6 in region I and as auxiliary
(smaller) disc we choose Z30 which results in A1 = Z6 × Z30 in region II.
There are more than one non-trivial bosons inA1, but we only let B1 = (1, 5)
condense. That this is indeed a boson follows from the fact that

d(1,5) = 1, h(1,5) =
1
6

+
52

30
∈ Z (5.6)
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5.2 Phase transitions between different levels of hierarchy

When the condensate forms, the initial symmetry is broken and is replaced
by a smaller symmetry. In practice, we should look at the fusion rules of
all the sectors that were present in A1 with this condensate. Since (1, 5) is
a simple current of order 6 and all sectors have quantum dimensions equal
to unity, none of the sectors will split and orbits under fusion with the
condensate consist of six sectors which become identified with each other.
For a ∈ Z6 and b ∈ Z30 this can be expressed as

(a, b) ∼ (a+ q, b+ 5q), for q = 0, ..., 5 (5.7)

To find the broken phase a representative must be chosen from every orbit.
A convenient choice turns out to be

T1 = {(0, a) : a ∈ Z30} (5.8)

These sectors are the excitations of the broken phase in region II. They obey
good fusion rules, but consistent braiding has not been considered so far.
In order to find which sectors braid non-trivially with the condensate and
thus become confined, we need to look at the spins of the lifts of each sector
(0, a) ∈ T . From (5.7) it is clear that the lifts of a general sector (0, a) are
(q, a+ 5q) for q = 0, ..., 5. All these lifts should have the same spin factor in
order to have consistent braiding with the condensed sector. The difference
in spin of the lifts is

hdif =
a2

30
− q2

6
− (a+ 5q)2

30
= −q2 − aq

3
(5.9)

Whenever this difference is an integer the lifts have equal spin factors. Ex-
plicitly this means that the sectors (0, a) that are unconfined must have
a ∈ 3Z. After expelling all confined excitations from the bulk of region II,
we are left with a broken unconfined phase that has excitations labeled by

U1 = {(0, 3b) : b = 0, 1, ..., 9} (5.10)

These sectors form a closed set under fusion and have good braiding statis-
tics. The spins of the sectors in region II are

hb =
3b2

10
(5.11)
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A0 T1 U1 A0 T1 U1

(0, 0) (0, 0) (0, 0) (3, 0) (0, 15) (0, 15)
(0, 3) (0, 3) (0, 18) (0, 18)

(5, 0) (0, 5) (2, 0) (0, 20)
(0, 6) (0, 6) (0, 21) (0, 21)
(0, 9) (0, 9) (0, 24) (0, 24)

(4, 0) (0, 10) (1, 0) (0, 25)
(0, 12) (0, 12) (0, 27) (0, 27)

Table 5.2: The excitations in region I and II can be expressed as sectors
of T1. All the sectors of T1 that are not listed in this table are confined to
the boundary between the two regions. We see that there is one non-trivial
excitation that can move through the wall between both regions, which is
(0, 15) and has unit electric charge.

Therefore, the fundamental quasihole in region II, q1 has spin hq1 = 3
10 . As

for the electric charge, we know that (3, 0) has charge e. To find the charge of
the fundamental quasihole in region II we need to compare it to (3, 0). This
can be done by fusing the quasihole five times with itself and then fusing
it three times with the boson B1, i.e. (0, 3)×5 = (0, 15) ∼ (3, 0). Since
electric charge adds under fusion it should be clear that the fundamental
quasihole has charge Qq1 = e

5 . This charge and statistics fully agree with
the predictions of Haldane and Halperin [14, 15].

This is the point where we have realized a configuration as in Fig. 3.2 where
region I is a FQH state at filling fraction νI = 1/3 with excitations given by
A0 and region II has νII = 2/5 with excitations (5.10). The excitations in
both regions can be expressed as sectors of T1, which is shown in Tab. 5.2.
Now we have a description of what processes are possible in each region and
on the domain wall between the two regions.

Let us take a closer look at this wall. There is one non-trivial excitation
that can move into both regions, which means it can travel through the
wall. This sector is labeled by (0, 15) in region II and by (3, 0) in region I.
We recognize this excitation as the electron. Furthermore, the fundamental
excitation confined to the wall has charge e/15.

The authors of Ref. [46] consider a setup with a quantum Hall droplet at
filling fraction νd that is surrounded by a quantum Hall fluid at νs 6= νd.
There are two point contacts where tunneling between the νs edges can occur
and there is tunneling between the νs edge and the edge of the droplet, see
Fig. 5.1. They charge the droplet by adding flux to it. This leads to a
certain periodicity of the ground state energy and radius of the droplet,
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5.2 Phase transitions between different levels of hierarchy

Figure 5.1: A system with quantum Hall states at three different filling
fractions νi. Flux is adiabatically inserted in the droplet leading to periodic-
ities in the ground state energy and the radius of the droplet. Figure taken
from Ref. [46].

which depends on the different filling fractions. As an example they focus
on νd = 2/5, νs = 1/3, and ν0 = 0, i.e. the case we just discussed. What
they find on the inner edge is a Laughlin state at ν = 1/15. This agrees
with our results, since the fundamental excitation we find is (0, 1), which
has a charge e/15.

Let us briefly sketch how they obtain their results of this specific case. The
idea is that inserting a flux quantum in the droplet will bind a charge of
2e/5. This charge must come from the other regions, so e/15 comes from
the inner edge and e/3 from the outer edge. Leading to negative charging
of the two edges every time that flux is inserted. Since the outer edge can
act as a reservoir it takes a period of 5Φ0 to reach the initial situation of
neutral edges. This period coincides with the measurements of Camino et al.
that were mentioned in subsection 2.2.3. Nevertheless, the authors of Ref.
[46] have a different interpretation of this period than Camino et al. They
explain the predicted period by charging of the edges instead of a result of
the statistics of the quasiparticles.

This was a first example of a phase transition between two FQH states
belonging to the same hierarchy. We considered two states from the HH
hierarchy, which are Abelian states. Now we move on to the next example
which will be somewhat different, since it deals with non-Abelian states.

5.2.2 BS hierarchy at νI = 5
2

and νII = 12
5

This subsection will be on an explicit example of the BS hierarchy, which
aims at describing the FQH effect in the second Landau level. We want
to induce a phase transition between the MR state at ν = 5/2 and the
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next level of the BS hierarchy which has filling fraction ν = 12/5. This
state is obtained by letting the quasiholes of the MR state favor the vacuum
channel.1 These states are of particular interest for TQC. Even though
the MR state allows for TQC, it is not universal. Other states have been
proposed for ν = 12/5. One of these is the Read-Rezayi state at k = 3
[17] which has a Fibonacci structure and thus allows for universal quantum
computation. If the BS hierarchy turns out to be the right description of
the state at ν = 12/5 it would mean that it does not allow for universal
quantum computation, since the non-Abelian part would be the same as for
the MR state. The authors of Ref. [47] present numerical data where they
compare the RR and BS state as well as the Abelian HH state at ν = 12/5.
Neither of these states can be ruled out so far.

Having said this, we proceed with topological symmetry breaking to go from
the MR state to the next level of the BS hierarchy. Again we will use an
auxiliary layer to obtain the desired phase in region II. First start with the
MR state as the zeroth level of hierarchy. In previous parts of this thesis
only the non-Abelian part of MR was included in the breaking scheme. Since
the hierarchization of Bonderson and Slingerland happens in the U(1) part
only, this alters our previous approach in some sense.

First go back to the CFT of the MR state. It has the following spectrum

C0 = {(I, n), (ψ, n), (σ, n+
1
2
) : n ∈ Z} (5.12)

Instead of using the full CFT we choose a description in terms of a TQFT.
This means we will not consider infinitely many sectors. The excitations in
region I can now be written as representations of the quantum group

A0 = Ising ⊗ Z4 (5.13)

Note that the excitations with σ in the Ising sector are elements of Ising⊗
(Z4 + 1

2), but we will not be mentioning this explicitly throughout. As
auxiliary layer we choose Z20, which leads to an unbroken phase in region
II described by

A1 = Ising ⊗ Z4 ⊗ Z20 (5.14)

1If instead quasiparticles pair into the vacuum channel, the first level of the BS hier-
archy would have ν = 8/3.
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The quantum dimension and spin of these sectors are

d(aI ,a,b) = daI , h(aI ,a,b) = haI +
a2

4
− b2

20
(5.15)

The electron, e0, fundamental quasihole, qh0 and a boson, B1 can be written
as

e0 = (ψ, 2, 0) (5.16)
qh0 = (σ, 1

2 ,
1
2) (5.17)

B1 = (I, 1, 5) (5.18)

The boson B1 is the one that needs to be condensed to get to the next level
of the hierarchy. Since the boson is trivial in the Ising sector we only need
to consider the U(1) part of the theory, as was mentioned before. The Ising
sectors can be put back in at any time. For simplicity we will not write
the half integer values of the excitations corresponding to the σ Ising sector.
Again this can be put back in at any time.

When B1 forms a condensate, the sectors of A1 will form orbits under fusion
with it that have a length of four sectors. Choosing a representative from
each orbit the broken phase in region II has an underlying symmetry

T1 = {(0, a) : a ∈ Z20} (5.19)

To find which fields become confined and which are unconfined, we need
to look at the spin factors of the lifts of the fields belonging to T1. An
arbitrary orbit can be written as (0, a) ∼ (q, a + 5q), where q = 0, 1, 2, 3.
The difference in spin between those fields is

hdif =
−a2

20
− q2

4
+

(a+ 5q)2

20
= q2 +

aq

2
(5.20)

If hdif ∈ Z then the fields have the same spin factor and are unconfined. We
see that the fields (0, a) which have a ∈ 2Z satisfy this condition. These
fields will form the broken unconfined phase of region II described by

U1 = {(0, 2a) : a = 0, 1, ..., 9} ⊂ Z20 (5.21)
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The topological spectrum of this new phase is

Ising ⊗ U1 = {(I, n), (ψ, n), (σ, n+
1
2
) : n ∈ U1} (5.22)

That this spectrum is indeed closed under fusion might not be clear at first
sight, because of the half integral values corresponding to σ. To see that it
is indeed closed, let us fuse two arbitrary quasiholes with each other:

(σ,
1
2
, 2a+

1
2
)× (σ,

1
2
, 2a′ +

1
2
) = (1/ψ, 1, 2(a+ a′) + 1)

∼ (1/ψ, 0, 2(a+ a′) + 16) (5.23)

which is clearly in Ising⊗U1. Furthermore, it can be shown that the spec-
trum in (5.22) is generated by two fundamental excitations: q1 = (I, 0, 2)
and qh1(σ, 1

2 ,
9
2).

We accomplished to describe a two-phased system where the excitations in
region I are labeled by A0 and in region II by Ising⊗U1, which have a wall
between them described by Ising ⊗ T1.

Braiding and electric charges In order to compare this result to those
of Ref. [42], we look at the predicted electric charge and spin of the funda-
mental excitations in region II2

hq1 = −22

20
= −1

5
(5.24)

hqh1 =
(1/2)2

4
− (9/2)2

20
= −19

20
(5.25)

The charge of these excitations can also be calculated. This is done by
noting that the electron (ψ, 2, 0) has charge e, which solely comes from the
U(1) part (2, 0). Fusing q1 five times with itself is equivalent to the electron,
i.e. (0, 2)×5 = (0, 10) ∼ (2, 0). This implies that q1 must have charge e/5.
To calculate the charge of qh1 note that (0, 4) which has charge 2e/5 can
split into two qh1 particles

2For qh1 we only consider the spin of the Abelian part. The σ sector gives an additional
factor of 1/16.
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(0, 4) ∼ (1, 9) → (1
2 ,

9
2)× (1

2 ,
9
2) (5.26)

From this it follows that qh1 also has charge e/5. The charges of all the
other excitations in (5.22) can be found by noticing that electric charges
add under fusion. As an exercise let us check that q1 is indeed fundamental,
i.e. it cannot split into two other excitations.

(I, 0, 2) ∼ (I, 1, 7) → (σ, 1
2 ,

7
2)× (σ, 1

2 ,
7
2) (5.27)

since (σ, 1
2 ,

7
2) is confined in region II, q1 cannot split into two bulk excita-

tions. Both the spin and charge that we find are the same as predicted in
Ref. [42].

Wall excitations Let us focus on the wall between the two phases. Not
all of the fields in T1 will stay on this wall. For convenience we drop the
Ising sectors and factors of 1/2 for the moment. The fields in the A0 phase
can be rewritten in terms of T1 fields as

(0, 0) ∼ (0, 0) (5.28)
(1, 0) ∼ (0, 15) (5.29)
(2, 0) ∼ (0, 10) (5.30)
(3, 0) ∼ (0, 5) (5.31)

Those four fields can move from the wall into the bulk of region I. The
fields (0, 2a) with a = 0, 1, ..., 9 can move from the wall into region II. The
correspondence between the bulk excitations and the fields of T1 is listed
in Tab. 5.3. All the T1 fields that are not listed in this table are strictly
confined to the wall. Notice that there is one non-trivial excitation which
can move from region I to region II through the wall. This is the field (0, 10),
which is equivalent to (2, 0) and has unit electric charge. Furthermore, the
excitation with smallest electric charge that is strictly confined to the wall
is (0, 1) and it has charge Q(0,1) = e/10.

This concludes the section where two examples of a transition between hier-
archical phases were presented. Next, we would like to show how a general
HH and BS hierarchy can be constructed by Bose condensation.
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Z4 T U Z4 T U
(0, 0) (0, 0) (0, 0) (2, 0) (0, 10) (0, 10)

(0, 2) (0, 2) (0, 12) (0, 12)
(0, 4) (0, 4) (0, 14) (0, 14)

(3, 0) (0, 5) (1, 0) (0, 15)
(0, 6) (0, 6) (0, 16) (0, 16)
(0, 8) (0, 8) (0, 18) (0, 18)

Table 5.3: The fields present in the bulk of region I and II are listed in
the Z4 and U1 column respectively. The T1 field corresponding to each of the
bulk fields is shown in the same row. There is one non-trivial field that can
be present in both phases and it has unit electric charge.

5.3 General hierarchy picture

This section is concerned with a more general description of phase transi-
tions between different levels of a hierarchy. First we will consider such a
transition between an arbitrary 0th and 1st level of the HH hierarchy. Once
we have obtained this we can consider phase transitions between an arbi-
trary number of levels of the HH hierarchy. Finally, we will use these results
to also obtain the BS hierarchy for arbitrary levels. The derivations in this
section will lean upon the K-matrix formalism, which allows for compact
notation.

5.3.1 Arbitrary K-matrix at 1st level of HH hierarchy

We start with the HH hierarchy where the 0th level is at filling fraction
ν = 1/m0, for m0 odd. This is an arbitrary Laughlin state. The vertex
operators corresponding to the insertion of an electron and fundamental
quasihole are

Ve0 = ei
√
m0φ0 (5.32)

Vq0 = e
i 1√

m0
φ0 (5.33)

This tells us that the 0th level is described by the quantum group

A0 = Z2m0 (5.34)
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which labels the spectrum of region I. Since we are dealing with just one
level so far the K-matrix is just a number: K00 = m0. To get to the 1st level
of the hierarchy Z2m0 needs to be tensored with an appropriate theory and
a bosonic field should be condensed. We know that the state at the next
level has K-matrix

K =
(
K00 K01

K10 K11

)
(5.35)

with K00 = m0 odd, K11 even, and K01 = K10 = −sgn(K11).

It turns out that we should use Z2m1m2
0

as an auxiliary layer in region II,
where mi>0 = Kii− 1

mi−1
. This choice leads to an unbroken phase in region

II described by

A1 = Z2m0 ⊗ Z2m1m2
0

(5.36)

The bosonic sector that forms the condensate is (K01, |m1m0|). This is
indeed a boson since it has spin

hB1 =
1

2m0
+
m1

2m0
2

2m1m0
2

=
1

2m0
+
m1

2
=
K11

2
(5.37)

which is an integer because K11 ∈ 2Z and it has quantum dimensions equal
to 1. The sectors of A1 form orbits under fusion with B1. Such an orbit
has length 2m0. After the appropriate identifications we reach the broken
T1-theory, which is given by

T1 = {(0, a) : a ∈ Z2m1m2
0
} (5.38)

Some of these T1 sectors must become confined. In order to see which, we
need to look at the difference in spin of sectors that belong to the same
orbit. Any orbit can be written as

(0, a) ∼ (K01q, a+ |m1m0|q) (5.39)

where q = 0, 1, ..., 2m0− 1. The difference in spin of (0, a) with an arbitrary
lift (K01q, a+ |m1m0|q) is
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hdif =
a2

2m1m0
2
− (K01q)2

2m0
− (a+ |m1m0|q)2

2m1m0
2

= −q
2

2
(

1
m0

+m1)−
q|m1|a
m1m0

(5.40)

Whenever hdif ∈ Z then (0, a) is unconfined. Since the first term of (5.40)
is an integer, this results in

(0, a) unconfined ⇔ a ∈ m0Z (5.41)

After the confined fields are driven out of the bulk of region II the unconfined
broken phase becomes

U1 = {(0,m0b) : b = 0, 1, ..., 2|m1m0| − 1} ⊂ Z2m1m2
0

(5.42)

Finally, this results in a configuration with region I described by A0 and
region II by U1. These phases are separated by a wall T1. Next, we want to
consider the possible boundary processes and see what quantum numbers
can be associated to the excitations of region II. These must be compared
to the numbers that follow directly from the K-matrix.

Wall excitations The excitations that can move freely in region I are
given by (a, 0) ∼ (0, a|m1m0|), where a ∈ Z2m0 . In region II the fields
(0, bm0), for b = 0, 1, ..., 2|m1m0| − 1 can move from the wall into the bulk.
All the other T1 fields are strictly confined to the wall between both regions.

There is also a possibility for some fields to move through the wall from
one region to the other. In order to find those fields, note that we have to
demand

(0, a|m1m0|) = (0, bm0) (5.43)

This implies that these fields must have a = m0Z. Since a ∈ Z2m0 there are
only two values that meet this requirement, namely a ∈ {0,m0}. So the two
fields that can move freely on the entire disc are (0, 0) and (0, |m1|m2

0), the
latter being equivalent to (m0, 0), which has unit electric charge.
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5.3 General hierarchy picture

The fundamental excitation that is strictly confined to the wall is (0, 1) and
it has electric charge Q(0,1) = e

|m1m2
0|

.

Braiding and electric charge Let us consider the spin and electric
charge of the fields in the U1-algebra and compare them with the results
from the K-matrix. The spins of these fields are

hb =
(m0b)2

2m1m0
2

=
b2

2m1
(5.44)

The spin obtained for the fundamental quasihole from the K-matrix formal-
ism where t̂i = δji is

hq1 =
1
2
t̂†1 ·K

−1 · t̂1 =
K00

2detK
=

m0

2(K00K11 − 1)
=

1
2m1

(5.45)

All excitations can be reached under fusion of the fundamental quasihole
with itself. So the spin of an excitation nq1 is hnq1 = n2

2m1
, which is the same

as the spins obtained from the condensation process.

The electric charge of q1 can be found by comparing it to the electron e0 =
(m0, 0), which is equivalent to (0,m0|m1m0|). On the other hand, if we
fuse the quasihole |m1m0| times with itself we also get (0,m0|m1m0|). This
means that it must have charge Qq1 = e

|m1m0| .

The electric charge obtained from the K-matrix formalism is given by

Qq1 = et̂†0 ·K
−1 · t̂1 =

−eK01

detK
=
−eK01

m1m0
=
esgn(m1)
m1m0

=
e

|m1m0|
(5.46)

which agrees with our results. Since any excitation can be reached by fusing
q1 an appropriate number of times with itself, the electric charge of an
arbitrary excitation in region II is

Qnq1 =
ne

|m1m0|
(5.47)

Here we want to conclude this subsection by mentioning that the results
obtained in subsection 5.2.1 are recovered by plugging in K00 = 3 and
K11 = 2.
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5.3.2 Arbitrary K-matrix at kth level of HH hierarchy

The above strategy can be repeated k times which will lead to the kth

level of the HH hierarchy. All the information that is needed is contained
in the K-matrix. In the following we will sketch how this works and give
general formulae for this breaking process. Recall that the K-matrix has
nonzero entries: K00 odd, Kjj even for j > 0, and Kj,j+1 = Kj+1,j =
−sgn(Kj+1,j+1).

The 0th level is again described by A0 = Z2m0 . To obtain k levels on top of
A0 we should start with k auxiliary layers:

Ak = Z2m0 ⊗ Z2m1m2
0
⊗ ...⊗ Z2mkm

2
k−1...m

2
0

(5.48)

Note that we use Ak to describe all regions. The way to look at this is
that in the outermost region we have A0 = Z2m0 ⊗ {0} ⊗ ... ⊗ {0} ⊂ Ak.
Even though only the A0 labels are present in the outermost region an
excitation also carries the trivial label from all other regions. To induce
phase transitions between the k regions the following k bosons need to form
condensates

Bj = (0, 0, ..., 0︸ ︷︷ ︸
j−1 times

,−sgn(mj−1mj)|mj−2...m0|, |mjmj−1...m0|, 0, ..., 0︸ ︷︷ ︸
k−j times

)

If the bosons condense one by one it will lead to k phase transitions where
the broken unconfined theories are A0 and

Figure 5.2: Building a hierarchy of k levels. The outermost region is the
0th level of the hierarchy, going inwards means moving up in the hierarchy.
Finally the inner region is the kth level. Note that there are k boundaries in
this configuration.
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Uj = {(0, ..., 0︸ ︷︷ ︸
j times

, |mj−1...m0|b, 0, ..., 0︸ ︷︷ ︸
k−j times

) : b = 0, 1, ..., 2|mj ...m0| − 1} (5.49)

for j = 1, 2, ..., k. There are k walls between those phases, namely

Tj = {(0, ..., 0︸ ︷︷ ︸
j times

, a, 0, ..., 0︸ ︷︷ ︸
k−j times

) : a ∈ Z2mjm2
j−1...m

2
0
} (5.50)

Wall excitations To see which of the Tj fields can move into the bulk of
the two regions which it separates, the fields of the outer region described
by Uj−1 need to be rewritten explicitly. The fields of Uj living in the inner
region are already in the same form as the Tj fields. To write the Uj−1

fields in the same form as Tj we need to fuse it ±b times with the boson Bj
depending on the sign of mj−1mj . This results in

( 0, ..., 0︸ ︷︷ ︸
j−1 times

, b, 0, ..., 0)︸ ︷︷ ︸
k−j+1 times

∼ (0, ..., 0︸ ︷︷ ︸
j times

, sgn(mj−1mj)b|mj ...m0|, 0, ..., 0︸ ︷︷ ︸
k−j times

) (5.51)

These fields can move from the wall into the outer region and the ones in
(5.49) can move into the inner region. All the other Tj excitations will be
strictly confined to the Uj−1/Uj wall. The smallest Tj excitation is confined
and has charge e/|mjm

2
j−1...m

2
0|.

Braiding and electric charge The spins of the excitations present in
the jth level, for j = 1, ..., k are given by

hb =
(|mj ...m0|b)2

2mjm2
j−1...m

2
0

=
b2

2mj
(5.52)

To calculate the spins directly from the K-matrix, first note that in regions
for j < k we should not use the whole K-matrix. As in the discussion under
(5.48), we used an artificial way to write the auxiliary layers also in the
regions where they are not present. The K-matrix should not notice these
artificial layers. Hence, let us define K(j) as the first j × j block of the
full K-matrix. This enables us to calculate the spins and electric charges for
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Chapter 5. A quantum group approach to FQH hierarchy picture

every level j = 1, ..., k directly from the K-matrix so that it can be compared
to our results. The spin of the fundamental quasihole at level j is

hqj =
1
2
t̂†j · (K

(j))−1 · t̂j =
1
2
[(K(j))−1]jj =

detK(j−1)

2detK(j)
=

1
2mj

(5.53)

For an arbitrary excitation in the jth level the spin is given by hnqj = n2

2mj
.

These are the same spins as found in (5.52).

The electric charges for the fields in Uj can be found by comparing the
fundamental excitation, qj to the electron, e0. It can be shown that the Uj
field that is equivalent to the electron is

e0 ∼ (0, ..., 0︸ ︷︷ ︸
j times

, |mjm
2
j−1...m

2
0|, 0, ..., 0︸ ︷︷ ︸

k−j times

) (5.54)

Since the fundamental excitation is

qj = (0, ..., 0︸ ︷︷ ︸
j times

, |mj−1...m0|, 0, ..., 0︸ ︷︷ ︸
k−j times

) (5.55)

it must fuse |mj ...m0| times with itself in order to be equal to (5.54). This
means that the charge of qj is given by e/|mj ...m0| and any other excitation
labeled by b from (5.49) is

Qbqj =
eb

|mj ...m0|
(5.56)

Again, compare this with the electric charge of the fundamental excitation
obtained from the K-matrix formalism

Qqj = et̂†0 · (K
(j))−1 · t̂j = e

(−1)jKj−1,j ...K12K01

detK(j)

= e
(−1)j(−1)jsgn(mj ...m1)

mj ...m0
=

e

|mj ...m0|
(5.57)

76



5.3 General hierarchy picture

Clearly, the electric charges from both approaches are in agreement once
again.

Let us end this subsection on the HH hierarchy by mentioning that the spins
and electric charges agree with the special cases treated in subsection 5.2.1
and 5.3.1.

5.3.3 BS hierarchy on MR state

In subsection 5.2.2 we presented an example of the BS hierarchy, where one
level was built on the MR state. Now we can do this for an arbitrary number
of levels. This follows from the fact that the BS hierarchy is only built in
the Abelian part of the MR state, enabling us to use the K-matrix as before.
What is different is that we must choose K00 = m0 = 2 instead of odd, if
we want to build a hierarchy on the MR state.3

With this subtlety in mind we can copy the results of the previous subsection
and directly move on to the theories that describe the broken unconfined
phases at each level of the BS hierarchy. The charge spectrum of each phase
for j = 1, 2, ..., k is

Ising ⊗ Uj = {(I, n), (ψ, n), (σ, n+
1
2
) : n ∈ Uj} (5.58)

where Uj is given in (5.49).

Wall excitations Once more let us consider the wall excitations. In this
case there are k different walls and the theory that describes all possible
fields on each wall for j = 1, 2, ..., k is

Ising ⊗ Tj = {(I, n), (ψ, n), (σ, n+
1
2
) : n ∈ Tj} (5.59)

Not all of these fields are strictly confined to the wall. We have to determine
which fields can move into the bulk of one or both of the two adjacent regions.
The fields that can move into the bulk of the inner region are given in (5.58)
which is a subset of Ising⊗Tj . To find the fields that can move into the bulk
of the outer region we need to rewrite the fields in Ising⊗Uj−1 somewhat in

3The quasiholes of the MR state could also choose to fuse to the ψ channel. When this
is the case K00 = 1 [42].
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Chapter 5. A quantum group approach to FQH hierarchy picture

order to match them with the fields in Ising ⊗ Tj . An arbitrary excitation,
with b ∈ Uj−1, can be written as

(I/ψ,

j−1 times︷ ︸︸ ︷
0, ..., 0 , b,

k−j+1 times︷ ︸︸ ︷
0, ..., 0) ∼ (I/ψ,

j times︷ ︸︸ ︷
0, ..., 0, pb|mj ...m0|,

k−j times︷ ︸︸ ︷
0, ..., 0)

(σ, 1
2 , ...,

1
2︸ ︷︷ ︸

j−1 times

, b+ 1
2 ,

1
2 , ...,

1
2)︸ ︷︷ ︸

k−j+1 times

∼ (σ, 1
2 , ...,

1
2︸ ︷︷ ︸

j times

, pb|mj ...m0|+ 1
2 ,

1
2 , ...,

1
2)︸ ︷︷ ︸

k−j times

(5.60)

where p = sgn(mj−1mj). These fields can move into the bulk of the outer
region.

The spins of the fields with I or ψ are the same as those given in (5.52)
where 1/2 has to be added for ψ. The charges for those fields are shown in
(5.56). For the σ fields future work is needed to find a general formula for
spins and charges.

In this chapter it has been shown that topological symmetry breaking can be
used to describe phase transitions between different levels of the hierarchy
picture. This picture is a way to generate FQH states building them on top
of some initial parent state. In this way all observed filling fractions can be
covered. Usually these hierarchy pictures give wavefunctions for the differ-
ent states. In general, it is difficult to find analytic wavefunctions or even
numerical ones. Therefore, we tried to reconstruct a hierarchy by applying
topological symmetry breaking. For this we do not need wavefunctions, just
the excitation spectrum with the appropriate quantum numbers is needed.

Explicitly, we have considered the HH and BS hierarchy. The former being
a hierarchy of Abelian states building on a Laughlin state and the latter
a non-Abelian hierarchy building on the MR state where all the daughter
states have the same non-Abelian sectors as the MR state. After presenting
two explicit examples of both hierarchies, we showed how to obtain topolog-
ical spectra for an arbitrary number of levels as well as expressions for the
excitations on the boundary between two adjacent regions. The spins and
electric charges are in agreement with what is found in the literature. The
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5.3 General hierarchy picture

only difficulty that remains is obtaining generalized expressions of spins and
charges for the sectors that contain σ for the BS hierarchy with k arbitrary
levels.

Besides this challenge there are some more questions that we would like to
answer. What we have not done yet is try to reproduce other hierarchies,
such as those proposed by Hermanns and Levin-Halperin which were briefly
touched upon in the first section of this chapter.

Furthermore, it would be interesting to write down wavefunctions from the
spectra we find. This can be done by writing vertex operators for the dif-
ferent excitations and taking correlators of these operators. The difficulty
in this is that we need to go from a TQFT to a CFT. At first sight there
seems to be some ambiguity in the fact that for the TQFT description we
are dealing with a finite number of sectors, but these become infinite when
the CFT is considered.

Moreover, Wen has formulated the edge properties of FQH states in terms
of the K-matrix [48]. It would be interesting to compare the spectrum of
edge excitations we find to his results.

Lastly, there is a possibility that the quasiholes in the zeroth level of the BS
hierarchy pair up into the ψ fusion channel as was mentioned in a footnote in
subsection 5.3.3. This should not lead to too much difficulty since it seems
that the only difference is that the K11 should be chosen odd instead of even
[42]. Probably this leads to the same expressions as found in subsection 5.3.3,
but we have not yet tested this explicitly.
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CHAPTER 6

Conclusions and outlook

This final chapter offers some conclusions with respect to the results obtained
and gives an outlook on interesting projects for future work.

We have applied topological symmetry breaking to different FQH states. In
order to do this, we introduced the main concepts of planar physics in chap-
ter 2. Here we saw how (non-)Abelian anyons arise naturally considering
the quantum statistics of particles in 2D. These anyons carry quantum num-
bers associated to fusing and rotating the particles. Also FQH fluids have
been discussed, since these are real physical systems that exhibit topologi-
cal phases and can carry anyonic excitations. A nice application of particles
with non-Abelian anyonic statistics is TQC. We showed that a qubit can
be encoded in a set of anyons and how it can be manipulated by braiding
anyons around each other.

In chapter 3 the different steps of topological symmetry breaking have been
presented. Starting with a topological phase, its excitations are labeled
by irreps of a quantum group describing the underlying symmetry of the
system. If there is a bosonic excitation in the spectrum and it condenses,
the initial symmetry is broken. The excitations rearrange themselves where
some may become confined. Eventually, we reach a phase with an excitation
spectrum described by a different quantum group. Most importantly, this
method naturally provides a description of the domain wall between the two

80



phases.

In the second part of this thesis we have applied topological symmetry break-
ing to several FQH states. In chapter 4 we describe a system with a domain
wall between the MR and NASS state, both being non-Abelian FQH states.
This configuration is obtained by using an auxiliary layer carrying excita-
tions of the minimal model M(4, 5) and tensoring it with the Ising sectors
of the MR region. After Bose condensation and confinement of the appro-
priate fields, this leads to the NASS state. Tab. 4.6 shows the spectra of
the excitations that are present in the bulk of the MR and NASS states, as
well as the excitations that are strictly confined to the wall between both
states. The fusion rules of the wall excitations are of the Z2⊗M(4, 5) type.
Knowing all the fusion rules of the phase diagram we can investigate what
kind of processes could occur. For instance, the Majorana fermion can move
through the wall from the MR phase into the NASS phase appearing as a
ψ12 fermion there. Also, dragging a spin-up quasihole from the NASS side
through the domain wall results in two types of splitting processes: one
where the quasihole splits into two wall excitations and one where it splits
into a wall excitation and a quasihole in the MR region. Furthermore, we
show how a qubit comprised of two NASS quasiholes can relax its state by
exchanging a neutral particle with the boundary, where again it can split
into two excitations strictly confined to this boundary.

Chapter 5 presents the results we have obtained by applying symmetry
breaking to the hierarchy picture of the FQH states. Several pictures have
been proposed in the literature and we have investigated two of these. The
HH hierarchy presents states to account for all odd denominator filling frac-
tions in the lowest Landau level. We have induced a phase transition between
a state at ν = 1/3 and one at ν = 2/5, where we have found the charges and
spins of the excitations in both regions as well as on the boundary between
them. The particle with unit electric charge can move between both phases
without any interaction with the boundary. Furthermore, the fundamen-
tal boundary excitation has charge e/15, which agrees with the literature.
We also deduce expressions for a system with k general levels of the HH
hierarchy. Again, the particle with unit electric charge is able to pass each
boundary without leaving a trace. Besides the HH hierarchy, we have inves-
tigated the BS hierarchy which aims at describing FQH states in the second
Landau level. We concentrated on building the hierarchy on top of the MR
state, i.e. building on the state at ν = 5/2. The hierarchization takes place
in the U(1) part of the sectors, which enables us to use the results from
the HH hierarchy with some small adjustments for the Ising σ sector. First
of all, the spectra and quantum numbers of a system with a quantum Hall
state at ν = 12/5 built on top of the MR state is obtained. The bulk of the
daughter state has two fundamental excitations. Both the spin and elec-
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tric charge that we find for these agree with the literature. Moreover, the
excitations that can move from the boundary into the bulk of either states
are listed in Tab. 5.3. Thus, the other fields are strictly confined to this
boundary. The smallest excitation that has to stay on the wall has charge
e/10. Also, expressions are given of the bulk and boundary spectra for k
levels of the BS hierarchy built on top of the MR state.

The deeper one moves into a subject the more questions seem to appear.
Therefore, we conclude this thesis by mentioning what remains interesting
to consider in future research. For the NASS/MR system we suggest the
following two points:

• Since the spectrum we find for the interface between the NASS and
MR state differs by a Z2 factor from the spectrum found in Ref. [36]
this should be considered more carefully. For instance, our method
does not enable one to directly notice which modes on the interface
are gapless and which are gapped. It would be interesting to see if we
can manage to distinguish between those modes. Also, we could try to
start from a different geometry and see if that reproduces the results
of Ref. [36].

• The quantum group breaking only occurred in the non-Abelian part
of the MR state. This led to the correct sectors of the NASS state,
but we lost the information of the U(1) factors that are possible on
the interface between the MR and NASS state. Therefore, it would
be interesting to redo the derivation keeping the Abelian part as well.
The difficulty in this is that we should start with M(4, 5)⊗U(1) where
we do not know which factors we should choose yet. Most likely, the
best way to tackle this problem is by breaking the quantum group
MR⊗NASS and see what U(1) factors we get out of this.

The symmetry breaking of a hierarchy of states also has a few open ends:

• Each level of the BS hierarchy has two fundamental excitations, where
one contains the trivial sector of the Ising model and the other the σ
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sector. Expressions for the charge and spin of the latter remain difficult
to find when considering a general level of the BS hierarchy. Therefore,
let us sketch where the difficulty lies by first noting how we managed
to do it for a specific case. In subsection 5.2.2 we discuss going from
the MR state to a phase at ν = 12/5 and for this particular case
we do manage to find values of the electric charge for the excitations
containing σ. The approach there is to fuse the fundamental excitation
q1 = (I, 0, 2) with itself and see how this product can split into two
sectors containing σ. Explicitly this is

q1 × q1 = (I, 0, 4) ∼ (I, 1, 9) → (σ,
1
2
,
9
2
)× (σ,

1
2
,
9
2
)

Noting that electric charges add under fusion and that q1 has charge
e/5, (σ, 1

2 ,
9
2) must also have this charge and is the other fundamental

excitation and was denoted by qh1. Since they generate the spectrum
of the first level this enables us to find the electric charges and spins
of all the other sectors in the spectrum. For an arbitrary level of the
BS hierarchy the difficulty lies in splitting qk × qk into two sectors
containing σ, in order to find qhk.

• So far we have only considered the BS hierarchy where the quasiholes
in the 0th level pair up in the trivial fusion channel. It would be
interesting to see if we find the same states as in Ref. [47], when the
quasiholes pair up in the ψ channel.

• We would like to check if we are able to write down wavefunctions for
the states at the different levels of the BS and HH hierarchy. This may
be done by taking correlators of vertex operators that insert particles.
Since different CFT’s can be associated to the same TQFT it is not
immediately clear how to do this. Still, we would like to determine
how much information is lost when the TQFT is considered instead of
the full CFT.

• One of the biggest advantages of the topological symmetry breaking
approach is that it naturally gives a description of the edge states in
terms of the T -algebra. For the hierarchies we considered everything
could be expressed in terms of Wen’s K-matrix. We compared our
results of the bulk spectra to the results obtained directly from the
K-matrix. However, in Ref. [48] it is shown that the K-matrix can
also be used to describe the edges of FQH states. Therefore, we would
like to compare our results of the edge modes to those of Wen.

• In section 5.1 we mentioned that other hierarchies have been proposed
in the literature. Two non-Abelian hierarchies are those of Hermanns
in Ref. [43] and Levin and Halperin in Ref. [44]. Both construct
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wavefunctions by taking correlators of vertex operators. The former
builds a hierarchy by inserting quasiparticles instead of quasiholes. As
an explicit example they use the bosonic MR state at ν = 4/3 as the
parent state. The higher levels of the hierarchy are all non-Abelian,
but the non-Abelian part does differ from the MR state. The latter
builds a hierarchy on the fermionic MR state by inserting quasiholes
as well as quasiparticles. Remarkably, all the daughter states turn out
to be Abelian. It would be a challenge to try to recover their results
by applying topological symmetry breaking.

Even though we have successfully applied topological symmetry breaking to
several FQH states, much future work remains to be done.
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ory. Springer, 1997.

[40] E. Ardonne and K. Schoutens. Wavefunctions for topological quantum
registers. Annals of Physics, 322:201, 2007.

[41] F.A. Bais, P. Bonderson, S.M. Haaker, and J.K. Slingerland. A quan-
tum group approach to the fractional quantum Hall hierarchy picture.
in preparation.

[42] P. Bonderson and J.K. Slingerland. Fractional quantum Hall hierarchy
and the second Landau level. Phys. Rev. B, 78:125323, 2008.

[43] M. Hermanns. Condensing non-Abelian quasiparticles.
ArXiv:0906.2073, 2009.

[44] M. Levin and B.I. Halperin. Collective states of non-Abelian quasipar-
ticles in a magnetic field. ArXiv:0812.0381, 2008.

[45] X.G. Wen and A. Zee. Classification of Abelian quantum Hall states
and matrix formulation of topological fluids. Phys. Rev. B, 46:2290,
1992.

[46] G.A. Fiete, G. Refael, and M.P.A. Fisher. Universal periods in quantum
Hall droplets. Phys. Rev. Lett., 99:166805, 2007.

[47] P. Bonderson, A.E. Feiguin, G. Möller, and J.J. Slingerland. Numerical
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APPENDIX A

Fusion rules MR/NASS interface

In this appendix the fusion rules of the T -algebra corresponding to the
MR/NASS interface are shown explicitly in Tab. A.1. We adopt the labeling
associated with the NASS and MR sectors. For those sectors that do not
belong to either of these theories we use the M(4, 5) labeling. There is one
sector that does not fit into the minimal model either so we will just denote
this sector by σ∗. There is also a dictionary given in Tab. A.2 that translates
between different types of labeling. In this way the initialA sectors are easily
recognized as well as the Z2 ⊗M(4, 5) structure of the fusion rules.
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Chapter A. Fusion rules MR/NASS interface

1 σ3 ρ ψ σ̃′ σ̃ ψ1 σ↑ σ↓ ψ2 σ σ∗

1 1 σ3 ρ ψ σ̃′ σ̃ ψ1 σ↑ σ↓ ψ2 σ σ∗

σ3 1 + ρ ψ + σ3 ρ σ̃ σ̃ + σ̃′ σ↑ ψ1 + σ↓ ψ2 + σ↑ σ↓ σ∗ σ + σ∗

ρ 1 + ρ σ3 σ̃ σ̃ + σ̃′ σ↓ ψ2 + σ↑ ψ1 + σ↓ σ↑ σ∗ σ + σ∗

ψ 1 σ̃′ σ̃ ψ2 σ↓ σ↑ ψ1 σ σ∗

σ̃′ 1 + ψ ρ+ σ3 σ σ∗ σ∗ σ ψ1 + ψ2 σ↑ + σ↓
σ̃ 1 + ψ+ σ∗ σ + σ∗ σ + σ∗ σ∗ σ↑ + σ↓ ψ1 + ψ2+

ρ+ σ3 σ↑ + σ↓
ψ1 1 σ3 ρ ψ σ̃′ σ̃
σ↑ 1 + ρ ψ + σ3 ρ σ̃ σ̃ + σ̃′

σ↓ 1 + ρ σ3 σ̃ σ̃ + σ̃′

ψ2 1 σ̃′ σ̃
σ 1 + ψ ρ+ σ3

σ∗ 1 + ψ+
ρ+ σ3

Table A.1: Fusion rules of the T -algebra, which describes the interface
between a region with Ising sectors and a region with the parafermions of
the NASS theory. The colored sectors are confined in the NASS phase.
Note that fusing confined sectors (C) and unconfined sectors (UC) has a Z2

structure: C × C = UC, C × UC = C and UC × UC = UC.

1 σ3 ρ ψ σ̃′ σ̃ ψ1 σ↑ σ↓ ψ2 σ σ∗

(1, 1) (1, ε) (1, ε′) (1, ε′′) (1, σ̃′) (1, σ̃) (σ, σ̃′)1 (σ, σ̃)1 (σ, σ̃)2 (σ, σ̃′)2 (σ, 1) (σ, ε)
(1, 1) (1, ε) (1, ε′) (1, ε′′) (1, σ̃′) (1, σ̃) (−1, 1) (−1, ε) (−1, ε′) (−1, ε′′) (−1, σ̃′) (−1, σ̃)

Table A.2: Relabeling the sectors can be useful. The top row gives the
labeling as used in Tab. A.1. The second row translates to a labeling in
terms of the initial A-algebra, where we have chosen a representatives of
the fields that became identified with each other in the broken phase. Upon
fusion with (ψ, ε′′) the other A sectors can be found. The last line shows the
Z2 ⊗M(4, 5) structure of these fusion rules explicitly.
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