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A very short introduction to this thesis

The content of this thesis is based on the research I did during my time as a Ph.D. stu-
dent and it focuses on topological phases in condensed matter systems from a theoretical
physics point of view. This is a rapidly developing branch of low-energy physics and
started with the unexpected observations of the quantized Hall conductance σH = n e

2

h
in an experiment performed by von Klitzing et al. in 1980 [1]. What makes this branch
of physics so exciting in my opinion, is the beautiful interplay between theoretical and
experimental physics. I will illustrate this symbiotic relationship by highlighting several
experimental observations and theoretical predictions which followed from one another
that are all in some way related to the subject of topological phases, and will appear at
certain stages of this thesis.

Initially the quantization of the Hall conductance was not well understood until the
theorist Laughlin gave a plausible argument explaining this precise quantization [2], which
was later reformulated by several different theorists and cast into a general framework of
topology [3–6]. Mathematicians developed the concept of topology to classify different
spaces by invariant properties under continuous deformations. The classic example is that
a coffee cup is topologically equivalent to a donut, as both of the objects have one hole
and can be transformed into each other by stretching and bending. Only two years after
the discovery of the integer quantum Hall effect, the experimentalists obtained another
surprising result, when Tsui et al. observed plateaus of the Hall conductance at fractional
values σH = ν e

2

h [7]. These results inspired Laughlin to propose a multi-particle wave
function explaining the observations [8]. If one were to believe his proposal, an imme-
diate consequence would be that the low-lying excitations must have fractional charge of
e∗ = e/3, with e the electron charge. This was indeed confirmed by two experimental
groups in 1997 [9, 10].

In the meantime, the theory of the quantum Hall effect had developed at a rapid pace
and concepts from many different fields in physics were adopted and put to use. In 1991,
Moore and Read wrote a seminal paper in which they express Laughlin’s wave function
in terms of conformal field theory correlators [11]. This enabled them to propose many
other trial quantum Hall wave functions by using different conformal field theories, with
their most prominent outcome being a wave function which is now a leading candidate for
the plateau observed at ν = 5/2 [12]. This result in turn predicted that the fundamental
quasiparticles of the ν = 5/2 phase must have non-Abelian statistics, which gave a huge
boost to the research on fractional quantum Hall states, as these theoretically predicted
quasiparticles could serve as qubits of a fault-tolerant (topological) quantum computer
[13].

It might not have escaped the reader with a background in this field that yet another
boost came after the turn of the millennium. This time it was the theorists who realized
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that certain band insulators with spin-orbit coupling were topologically different from
trivial insulators. These time-reversal invariant topological insulators have an insulating
bulk and topologically protected edge modes which are helical instead of chiral [14, 15].
Shortly after this realization, these topological phases were indeed observed [16]. This
eventually led to an entire classification of topological noninteracting fermionic phases
in every spatial dimension [17–19]. Some of these phases have been predicted to carry
Majorana particles [20–22], which are highly sought-after particles in many branches of
physics. Not only would the observation of such a particle confirm the predictions made
by Ettore Majorana in 1937 [23], they also have non-Abelian statistics in the present
context. In 2012 the group of Kouwenhoven from Delft reported on strong signatures
that they had observed these Majorana particles at the endpoints of a one-dimensional
topological wire [24] and more experiments obtaining similar results followed subse-
quently [25–29].

With this short overview of some selected topics within the framework of topological
phases in condensed matter system, I hope to have convinced the reader of the rapid
development and utmost importance of this branch of physics.

Let me conclude this very short introduction by guiding the reader through the outline
of this thesis. The first two chapters are introductory, meaning that the stage is set and
notation fixed for the chapters to follow.

In chapter 1 we focus on the topological phases that stem from an underlying nonin-
teracting system. We start by showing how the concept of topology emerges in physics
and focus mainly on the integer quantum Hall effect. By introducing concepts like the
Berry phase, parallel transport and Chern numbers we demonstrate how the quantized
Hall plateaus can be explained by topological invariants. Then we digress from condensed
matter physics to ultracold atomic systems, which may function as quantum simulators.
We show how artificial gauge fields arise from such systems and how they can generalize
to non-Abelian gauge fields. The different components of non-Abelian gauge fields do
not commute with each other unlike the conventional U(1) Maxwell theory. In the final
part of this chapter we return to topological phases and discuss topological insulators and
the emergence of Majorana fermions.

In chapter 2 the focus lies on (2 + 1)-dimensional topological phases that have an un-
derlying strongly correlated microscopic theory. We show how the topological excitations
of these phases may be labeled by irreducible representations of a quantum group and
that these particles together with their interactions form an anyonic model. The quantum
numbers associated with their fusion and braiding interactions are presented, and we show
how a phase transition between two topological phases can be driven by the condensation
of a nontrivial quasiparticle, thus breaking the underlying symmetry. This formalism is
called topological symmetry breaking and the main ingredients are discussed. The chap-
ter is concluded with a section on the effective field theory of the fractional quantum Hall

2
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phases and how it is related to conformal field theory.
After these introductory chapters we move to chapter 3, where the symmetry algebra

of a spin-orbit coupled harmonic oscillator in three dimensions is derived. This model
was proposed as a continuum model of a three-dimensional topological insulator. Its
spectrum has finite and infinite degeneracies and we determine the symmetry operators
that are associated with these degeneracies. The operators form a nonlinear algebra, but
after a simple rescaling SO(3, 2) commutation relations are obtained. At the end of the
chapter the algebra of operators that connect the different energy levels is derived.

In chapter 4 the effect of non-Abelian gauge potentials on two-dimensional integer
quantum Hall states is investigated. First we discuss the problem of a spin- 1

2 particle
confined to a sphere in a perpendicular U(2) background magnetic field. Its spectrum
is derived and falls into SU(2) irreps reflecting the rotational symmetry of the system.
The large radius limit is obtained and we retrieve the corresponding configuration on the
plane. In the second part of this chapter we probe a planar quantum Hall system by
inserting a non-Abelian flux. Starting from a spin-polarized state, the adiabatic insertion
of the flux results in a state with nontrivial spin-texture which is recognized as a quantum
Hall skyrmion.

Chapter 5 focuses on fractional quantum Hall states and topological symmetry break-
ing. Certain states with chiral edge modes may undergo a phase transition to a state
at higher filling fraction. We then show that a careful treatment of topological symme-
try breaking results in a possible degeneracy of ground states in the broken phase. The
system chooses one of these ground states resulting in a spontaneous breaking of the sym-
metry. As a consequence different domains may appear with domain walls in between.
We discuss this phenomenon in detail on the edge as well as in the bulk of the system.
A thorough study of confined particles is presented where we show that they are indeed
confined in the bulk, but not on the edge. Even though they are not confined they do
become massive and break the chiral symmetry.

In chapter 6 we study phase transitions induced by multilayered condensates, which
vastly increases the number of phases topological symmetry breaking can be applied to.
In the first part we examine non-Abelian phases and in the second part we address an
entire hierarchy of fractional quantum Hall states. A special focus is given to the study of
the one-dimensional boundary between the two phases.

This thesis is concluded in chapter 7, where we give an outlook of open problems and
suggest possible interesting topics for future research.
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CHAPTER 1

Topology, condensed matter systems
and artificial gauge fields

In this first chapter we present the main concepts that part of the research dealt with in this
thesis was based on and inspired by. As such this chapter does not contain any original
results, but serves to set the stage for later chapters. In one way or another these topics are
linked to noninteracting topological systems. We start, in section 1.1, by recalling how
the concept of topology recently reemerged in condensed matter physics in a novel guise
referred to as topological ordered phases of matter. In section 1.2 we show how topo-
logical invariants come about by guiding the reader through diverse concepts including
the quantum Hall effect, Berry phases and Chern numbers. Section 1.3 addresses artifi-
cial gauge fields and how they can be created in cold atomic systems. These cold atoms
are not actual dynamical degrees of freedom of the condensed matter system but rather
furnish an effective highly controllable setup to represent specific effects that are present
in the system. They even allow for a generalization in the form of non-Abelian gauge
fields, which is presented in section 1.4. Finally, in section 1.5, we briefly touch upon
a new class of topological phases, called topological insulators, which were discovered
less than a decade ago.

1.1 Topological phases of matter
The topic that binds all the chapters of this thesis together is the notion of topological
phases of matter, which has matured over the last two decades into an important field of
condensed matter physics. But let us take a step back and start with topology. It is a
branch of mathematics which studies certain global properties of a space. Roughly stated,
it studies the properties of a space that stay invariant under continuous deformations of the
geometry of the space, which excludes cutting or gluing. Manifolds that are locally differ-
ent are considered to have the same topology if they can be transformed into each other
by the aforementioned continuous deformations. Perhaps the simplest example of two
spaces which are topologically different is a cylinder of finite length versus the Möbius
strip. Both objects are depicted in fig. 1.1 along with a finite strip from which they can be
obtained. At any point, i.e. locally, the Möbius strip can be smoothed in such a way that
it is identical to the cylinder. But globally we can never get rid of the twist, which makes
the Möbius strip topologically different from the cylinder.

Topology arises in many different fields of physics. An excellent historical discussion

5



1. TOPOLOGY, CONDENSED MATTER SYSTEMS AND ARTIFICIAL GAUGE FIELDS

Figure 1.1: The difference in topology between a finite cylinder and the Möbius strip is shown.
Starting from a finite strip we can either glue the short edges together in such a way that the red
part connects to the red and the green to the green, giving a cylinder which has trivial topology.
Alternatively, we can glue the red to the green part, thus obtaining a Möbius strip. Note that there
has to be a twist somewhere along the Möbius strip resulting in a nontrivial topology. Moreover the
cylinder has two sides, whereas the Möbius strip has only one.

of the connection between topology and physics is given by Nash in chapter 12 of [30].
Here we give one well-known example: the possible existence of a magnetic monopole1

due to Dirac [31]. Consider the magnetic field of a magnetic monopole with charge qm,
which is of the form

B(r) =
qm
r2
r̂ . (1.1)

It obeys Maxwell’s equations everywhere except at the origin. We may choose an appro-
priate gauge and express the field in terms of a vector potential

A+(r) =
qm
r

1− cos θ

sin θ
φ̂ , (1.2)

which satisfies B = ∇×A+ and is expressed in spherical coordinates, with r the distance
to the origin, θ the polar coordinate, and φ the azimuthal coordinate. Note that this field
configuration has a line singularity which runs from the monopole along the negative ẑ-
axis, i.e. for θ = π. This reflects the singularity of the magnetic field at the origin and it
is called the Dirac string. Of course, we could have chosen a different gauge-equivalent
vector potential

A−(r) =
qm
r

−1− cos θ

sin θ
φ̂ , (1.3)

1The existence of a magnetic monopole implies that electric charge is quantized. Even though magnetic
monopoles have not yet been observed, the quantization of electric charge is a fact.
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1.1. TOPOLOGICAL PHASES OF MATTER

which has a singularity at θ = 0. These two potentials are related by a gauge transfor-
mation U = e2iqmφ. If we now use A+ for the upper hemisphere and A− for the lower
hemisphere, we have a well-defined field covering the entire space. The Dirac string can
be moved around, but cannot be removed: it is a gauge artifact.

If we have a particle with electric charge qe subject to this field configuration, a gauge
transformation influences the wave function of the particle. In the upper hemisphere we
have ψ+(r) and in the lower part ψ−(r). In the region where the two configurations
overlap, the two wave functions have to be related by a gauge transformation

ψ+ = e
2iqeqm

~c φψ− . (1.4)

The wave function of this particle should be single-valued, leading to 2iqeqm
~c ∈ Z, which

is Dirac’s quantization condition. These integers can be understood by considering a
mapping between different topological spaces, called a homotopy group. In the present
case the mapping is from the overlap region which is a circle in real space S1, to the
U(1) ∼ S1 gauge group, i.e. π1(S1) = Z.

The connection between topology and physics that we are interested in, is what is
called topological phases of matter. These are phases in condensed matter that are not
characterized by some local order parameter, but still can be distinguished from a trivial
phase (which has the same symmetry) by some topological invariant [3, 32, 33]. It is a
relatively young subject, and the definition of a topological phase of matter varies in the
literature [34]. Some say it is a phase which has a low energy effective description in
terms of a topological field theory. Others state that if such a phase shares an edge with a
different topological phase (which could be a trivial phase), it must carry robust gapless
edge excitations. Yet another definition might be that it is a phase whose quasiparticle
excitations in the bulk are anyons. We will not attempt to give a precise definition in this
thesis, instead we will discuss several different phases of matter that can be characterized
by some topological invariant and investigate what their properties are. In chapters 3 and
4 we will treat noninteracting systems, whereas chapters 5 and 6 deal with the interacting
case.

It is important to mention one of the major features of topological phases at this point.
Some of these phases can carry quasiparticles which could serve as robust fundamental
building blocks for the future hardware of a decoherence-free quantum computer [13].
Information can be stored in the nonlocal nature of these particles and the qubits are
manipulated by exchanging the particles in space. An example of such a phase is the
Moore-Read state which is discussed in chapter 6.

After this short general introduction in topological phases of matter we will dedicate the
next section to the quantum Hall effect, with a focus on its connection to topology.

7



1. TOPOLOGY, CONDENSED MATTER SYSTEMS AND ARTIFICIAL GAUGE FIELDS

1.2 Quantum Hall physics and topology
Although it was not immediately clear at the time when von Klitzing conducted his fa-
mous experiment leading to the discovery of the quantum Hall effect [1], it is now con-
sidered to be the first example of a topological phase of matter. He discovered that under
certain extreme conditions a two-dimensional electron gas in a perpendicular strong mag-
netic field has an off-diagonal resistance that does not depend linearly on the strength of
the magnetic field. Instead, for certain ranges it develops a plateau, i.e. it becomes quan-
tized and the Hall conductance can be expressed as σH = n e

2

h , with n a positive integer.
This result was totally unexpected, because it implied that in a complicated medium such
as a Hall conductor, a physical quantity could be quantized exactly in terms of the ratio
of two fundamental constants of nature.

The scientific community has not been standing by idly since then. Much progress has
been made and a lot has been written on this subject. Therefore, we will select a few topics
within the broad field of quantum Hall physics to present in this part of the introduction,
since these are related most to our results in chapters 3 and 4. We limit ourselves to
discussing topological aspects of the one-particle problems that underly quantum Hall
phases, and postpone the treatment of the fractional quantum Hall effect until chapter 2.
There is also extensive literature about the integer quantum Hall effect (IQHE), including
reviews to which we refer the reader for a more detailed account [35–38].

1.2.1 Landau problem
A basic starting point for understanding the IQHE is the Landau problem [39]. It describes
a particle of charge q and massm in R2 subject to a perpendicular constant magnetic field
B = Bẑ. The corresponding Hamiltonian can be exactly solved and is given by

H =
1

2m
(p− qA)

2
, (1.5)

with A the vector potential for which B = ∇ × A. There are several ways one can
solve this system and in chapter 3 we will solve it explicitly by identifying its spectrum
generating algebra, but for now we merely give some results. Its spectrum is

En = ~ωc(n+ 1
2 ) , n = 0, 1, . . . , (1.6)

where every integer n labels a so-called Landau level and ωc = qB
m is the cyclotron

frequency associated with the orbit of a classical particle. Choosing the symmetric gauge
A(r) = 1

2B × r, the normalized eigenstates of the lowest Landau level (LLL) in polar

8



1.2. QUANTUM HALL PHYSICS AND TOPOLOGY

Figure 1.2: Density profiles of a few orbitals in the LLL, namely k = 2, 12 and 30. The rotational
symmetry, stemming from the symmetric gauge, is clearly visible.

coordinates are

ψn=0,k(r) =
1√
2π

rkeikφ√
2kk!

exp(−r2/4`2) . (1.7)

These states are rotationally symmetric and are localized around r ∼ `
√

2k, where k is
the eigenvalue of the angular momentum operator Lz = −i∂φ. The density profiles of
three of these eigenstates are plotted in fig. 1.2.

The quantum problem has a characteristic length scale `2 = ~
qB , called the magnetic

length, which dictates the area occupied by a particle as can be seen from the Gaussian
factor in (1.7). In an infinite sample each Landau level (LL) is infinitely degenerate,
since the energy does not depend on k, but for a finite sample of area A there are Nφ =
BA
φ0

states available, where φ0 = h/q is a flux quantum. The number of filled orbitals
Ne divided by the number of available states is the filling fraction ν = Ne

Nφ
. The Hall

conductance can be expressed in terms of the filling fraction as σH = ν e
2

h . When the
system is at one of the plateaus, i.e. the conductance does not change as a function
of magnetic field, the filling fraction is exactly an integer. This phenomenon can not
be explained from the Landau problem alone, and one needs to incorporate a confining
potential and random impurities, as is the case in real experiments. The next topic we
address is Laughlin’s argument for the quantization of the Hall conductance.

1.2.2 Laughlin argument

The exact quantization of the Hall conductance σH = n e
2

h strongly suggests that there
must be some underlying topological invariant. The first attempt to explain this quantiza-
tion was made by Laughlin [2], nowadays known as the Laughlin argument, in which he
uses gauge invariance to show that the conductance must be quantized.

9



1. TOPOLOGY, CONDENSED MATTER SYSTEMS AND ARTIFICIAL GAUGE FIELDS

Consider a ribbon of lengthLwith periodic boundary conditions along the x-direction.
It has a constant magnetic field perpendicular to its surface and a potential difference V
between the two edges of the ribbon. Imagine that a flux is switched on which pierces
through the hole of the ribbon. The changing flux corresponds to a term δAx(t) in the
Hamiltonian.

For a clean system the density of states consists of sharp delta functions at every
Landau level, but when there is disorder in the system, the peaks broaden into extended
states close to the Landau energy with tails of localized states. If all states were localized,
the addition of δAx would only result in multiplying the one-particle wave functions by a
phase exp(ieδAxx/~), but when there are extended states we must have δAx = n′ heL =
n′φ0/L, with n′ ∈ Z for the states to be single-valued. The effect of δAx is that the
energy of a single-particle state increases linearly and the position around which it is
centered also shifts linearly.

After adding one flux quantum to the system, it is a gauge transformation away from
the situation without flux so the increase of energy has to come from the charge transfer of
one edge of the ribbon to the other. The current is given by I = n e

2

h V = σHV , where n
is the number of filled LLs. Note that this quantization occurs whenever the Fermi energy
lies in a mobility gap, meaning that only localized states can be excited at this energy.
Whenever we sweep the chemical potential away from the mobility gap, σh is no longer
quantized and we are at a transition between two plateaus.

A number of questions can be raised considering Laughlin’s argument, for instance:
how does the particular geometry influence the results? What happens in the presence
of large disorder? To fully understand the quantization of the Hall conductance we need
heavier machinery, which is presented in the following paragraphs. Still, Laughlin’s ar-
gument has proved useful in many different situations, since the response of a system to
the insertion of flux can give you much insight into the topology of the phase. This tool
is encountered again in chapter 4, where we use it to show the emergence of excitations
with a nontrivial spin-texture after inserting ‘non-Abelian’ flux.

To show how the quantized Hall conductance can be linked to a topological invariant
we first need to introduce several notions: the Berry phase, parallel transport, and Chern
numbers. A review on this can be found in [37]. For a review on Berry phases related to
electronic properties we recommend [40].

1.2.3 Berry phase
In 1984 Berry showed, in a beautifully written paper, that an energy eigenstate of a quan-
tum system described by a HamiltonianH(R) picks up a phase when the set of parameters
R on which the Hamiltonian depends is varied adiabatically from an initial value Ri to
some final value Rf [41]. The phase factor consists of two parts: the dynamical phase
and the geometric phase, where the latter is now widely known as the Berry phase. Let
us follow his derivation in some detail.
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1.2. QUANTUM HALL PHYSICS AND TOPOLOGY

Consider a Hamiltonian H(R), which depends on a set of parameters R = (R1,
R2, . . .). Imagine that the parameters R(t) are varied between times t = 0 and t = T ,
where we will consider a closed loop C in parameter space, meaning R(0) = R(T ). The
Hamiltonian can be diagonalized at each point R and we choose an orthonormal set of
eigenstates

H(R)|n(R)〉 = En(R)|n(R)〉 . (1.8)

Now assume that the ground state at every point in parameter space has a gap to the
excited states. We want to follow its adiabatic evolution under the change of R and since
it starts out as an eigenstate of H it must stay an eigenstate, but there is freedom in the
phase it picks up. The ground state |ψ(t)〉 must obey the Schrödinger equation at any
point in parameter space

H(R(t))|ψ(t)〉 = i~
d

dt
|ψ(t)〉 , (1.9)

which we may employ to find the phase of the eigenstate. Denoting the initial state as
|ψ(0)〉, and adiabatically following the loop C, the final state is

|ψ(T )〉 = exp
(−i

~

∫ T

0

dtEn(R(t))
)

exp(iγn(C))|ψ(0)〉 , (1.10)

where the Berry phase can be expressed as

γn(C) = i

∫

C
〈n(R)|∇Rn(R)〉 · dR . (1.11)

A beautiful aspect of the Berry phase is its analogy to gauge theories. For instance, the
Aharonov-Bohm effect of a charged particle traveling around a flux tube, can be under-
stood in terms of the Berry phase. In that case the Berry phase is equal to the flux enclosed
by the loop and the quantity A = i〈n(R)|∇Rn(R)〉which is known as the Berry connec-
tion, is equal to the electromagnetic vector potential. Its connection to gauge theory can
also be seen by noting that under a U(1) transformation |n〉 → eif(R)|n〉, the Berry con-
nection transforms as a U(1) gauge field A→ A−∇Rf(R). Obviously, this makes the
Berry phase a gauge invariant object as is the case for magnetic flux in electrodynamics:∮

AED · dl = Φ.

11



1. TOPOLOGY, CONDENSED MATTER SYSTEMS AND ARTIFICIAL GAUGE FIELDS

Figure 1.3: Parallel transport of a vector around the finite cylinder and the Möbius strip. In the
latter case one sees that parallel transport leads to a nontrivial holonomy corresponding to an angle
π, indicating that the Möbius strip has a nontrivial topology. This holonomy does not depend on the
vector chosen and in quantum theory it corresponds to an observable because it is gauge invariant.

1.2.4 Parallel transport
It was Simon who pointed out to Berry that his geometric phase factor can be associated to
the notion of parallel transport, where the Berry phase is the holonomy of the connection
A [5]. We will explain this terminology in more detail, because it will ultimately give us
a topological interpretation of the quantized Hall conductance.

In flat space we can easily determine if two vectors are parallel to each other, but to
compare two vectors at different points in a curved space we need the notion of parallel
transport of a vector along a certain path. In order to use parallel transport, a connection
A needs to be defined on that space. If we now parallel transport a vector (for instance a
quantum state) around a closed loop with a given connection it may happen that the vector
ends up pointing in a different direction compared to the initial vector. If this is the case
we speak of a nontrivial holonomy, which usually signals the presence of a curvature or a
nonvanishing field strength B somewhere inside the loop. Two examples are graphically
depicted in fig. 1.3.

It should be clear how this notion relates to the Berry phase. The Berry connection A
allows us to parallel transport an energy eigenstate along a path in parameter space. The
Berry phase γ(C) gives the mismatch between the initial state and the final state obtained
after transportation around the loop C, and therefore is associated to the holonomy.

1.2.5 Chern numbers
A well-known relation between geometry and topology is the Gauss-Bonnet theorem. For
a surface without a boundary it is given by

1

2π

∫

S
KdA = 2(1− g) , (1.12)

where the integral of the local curvatureK is taken over the surface S and g is the number
of handles of S, which is the invariant characterizing its topology. This was generalized

12



1.2. QUANTUM HALL PHYSICS AND TOPOLOGY

by Chern to apply also to eigenstates parametrized by two periodic variables forming a
torus.

The quantization of the Hall conductance can be understood most easily from a min-
imally coupled Hamiltonian with a periodic potential. For a description in terms of a
random potential we refer to refs. [42, 43]. Thouless et al. were the first to show that the
quantization of the Hall conductance could be obtained from the bulk properties instead
of using edges, as was the case for the Laughlin argument [3]. The invariant they obtained
is now widely known as the TKNN number and the connection with topology was made
by a number of authors [4–6].

In a periodic potential and a perpendicular uniform magnetic field we can define a
two-dimensional magnetic Brouillon zone, which is equivalent to a torus T2. The Hall
conductance can be expressed as

σH =
e2

h

1

2πi

∫

T2

(
∇k ×A(k)

)
· dk , (1.13)

where A(k) is the Berry connection in terms of Bloch states. This results in zero con-
ductance if the Berry connection is smooth and single-valued through the entire Brouillon
zone. Imagine there is a point in the Brouillon zone for which A is singular. We can
perform a gauge transformation and define a new connection A′ which has its singularity
at a different point. Now split the torus into two parts T and T ′, where A is single-valued
in T and A′ is single-valued in T ′, and the connections are related by a gauge transfor-
mation A′ = A−∇kf(k). Stokes’ theorem can be applied to rewrite the surface integral
in (1.13) to a line integral

σH =
e2

h

1

2π

∫

C
(A−A′) · dl =

e2

h

1

2π

∫

C
∇kf(k) · dl = n

e2

h
. (1.14)

The origin of this integer n can be understood by noticing that the phase eif(k) should be
single-valued along the contour C, but that it can have nontrivial winding. For the IQHE
the number of filled LLs n is associated with the number of flux quanta piercing a unit
cell. Thus somewhere in such a unit cell there has to be a vortex of vorticity n. This is the
singularity that causes the nontrivial winding number and as a result the quantized Hall
conductance.

After this introduction to the topology behind the IQHE, we would like to shift our atten-
tion to a different branch of physics: ultracold atoms. At first sight it may seem unrelated
to quantum Hall physics, but we will see shortly how the two are connected through the
concept of artificial gauge fields.
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1.3 Artificial gauge fields
In both chapters 3 and 4 we will encounter physical models that are generalizations of
the IQHE, but are somewhat exotic from a condensed matter point of view. Studying a
theoretical model is interesting in its own right, but in our case we can find a realization
in the realm of ultracold atoms. These systems are often used to mimic all sorts of phys-
ical settings, because they can be controlled with such great precision. For instance, the
dimensionality of the system can be controlled, which opens the door to investigate all
sorts of one- or two-dimensional phenomena. Also, the atoms can be loaded into optical
lattices making it possible to probe all kinds of lattice models which are of theoretical
interest. Using Feshbach resonance, the interaction between the atoms can be set to any
type: strongly attractive, strongly repulsive, noninteracting. The power of ultracold atoms
not only lies in mimicking certain systems in, for instance, condensed matter theory or
high energy physics, but they can even generalize those systems.

In chapters 3 and 4 we will encounter a generalization of the magnetic field, which is
responsible for the formation of LLs. These generalized gauge fields can be created in a
cloud of neutral cold atoms and are called artificial gauge fields. We emphasize that these
artificial gauge fields are external, their configuration is fixed by the choice of the external
control parameters and they do not have any dynamics themselves.

In the remainder of this section we will focus on three different setups that are used to
generate artificial gauge fields. For more information on ultracold atoms in general, we
refer the reader to a review article of Bloch et al. and the references therein [44].

1.3.1 Rotating cold atoms
Rotating ultracold atomic gases are the first example of a system in which an artificial
gauge field can be realized. It is well known that a type II superconductor subject to a
uniform magnetic field is characterized by the formation of a vortex lattice. An image
of such a lattice is shown in fig. 1.4a. Of course, a superconductor consists of charged
electrons and they are subject to a real magnetic field, not an artificial field. In 2000
the group of Dalibard conducted an experiment on a rotating cloud of neutral ultracold
atoms [45]. Their data, depicted in fig. 1.4b, clearly shows the formation of vortices.
This rotating gas of neutral atoms behaves as though it consists of charged particles in a
magnetic field.

Let us sketch why a rotating gas of neutral particles behaves like a system with charged
particles coupled to a magnetic field. Following [46], the Hamiltonian of a noninteracting
gas of N identical particles confined to a cylindrically symmetric trap is

H =

N∑

i=1

( p2
i

2m
+

1

2
mω2
⊥(x2

i + y2
i ) +

1

2
mω2
‖z

2
i

)
, (1.15)
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perconductivity, and managed to solve the mystery of
the finite Knight shift at low temperatures, introducing
the spin-orbit scattering !Abrikosov and Gor’kov, 1962".

After the discovery of high-temperature superconduc-
tivity in layered copper oxides by J. G. Bednorz and K.
A. Mueller !1986" I became interested in their proper-
ties. There existed many different approaches to these
unusual substances and virtually all of them postulated
some exotic mechanism of superconductivity. I based my
approach on the BCS theory, taking into account the
specific features of the electron spectrum, mostly the
quasi-two-dimensionality and the so-called “extended
saddle point singularities,” or “flat regions” in the elec-
tron spectrum !Abrikosov, 2000". Another idea was the
resonant tunneling connection between the CuO2 layers
!Abrikosov, 1999", which is responsible for conductivity
and superconductivity. On this basis I was able to ex-

plain most of the experimental data about layered cu-
prates without dividing them into “good” ones, which
should be mentioned on every possible occasion, and
“bad” ones, which should be forgotten. As a result I can
state that the so-called “mystery” of high-Tc supercon-
ductivity does not exist.
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vortices did not form a lattice and the positions of the vortices were
irreproducible between different experimental realizations, consist-
ent with our GPE simulations. We measured Nv as a function of
detuning gradient d0 at two couplings, BVR5 5.85EL and 8.20EL
(Fig. 2). For each VR, vortices appeared above a minimum gradient
when the corresponding field B!h i~d’ LA!

x

!
Ld

" #
exceeded the crit-

ical field B!
c . (For our coupling, B* is only approximately uniform

over the system and ÆB*æ is the field averaged over the area of the
BEC.) The inset shows Nv for both values of VR plotted versus
WB!=W0~Aq! B!h i=h, the vortex number for a system of area
A~pRxRy with the asymptotic vortex density, where Rx (or Ry) is
the Thomas–Fermi radius along x̂x or ŷyð Þ. The system size, and thus
B!
c , are approximately independent ofVR, so we expected this plot to

be nearly independent of Raman coupling. Indeed, the data for
BVR5 5.85EL and 8.20EL only deviated for Nv, 5, probably owing
to the intricate dynamics of vortex nucleation27.

Figure 3 illustrates a progression of images showing that vortices
nucleate at the system’s edge, fully enter to an equilibrium density
and then decay along with the atom number. The timescale for vortex
nucleation depends weakly onB*, and ismore rapid for largerB*with
more vortices. It is about 0.3 s for vortex number Nv$ 8, and
increases to about 0.5 s forNv5 3. ForNv5 1 (B* near B!

c ), the single
vortex always remains near the edge of the BEC. In the dressed state,
spontaneous emission from the Raman beams removes atoms from
the trap, causing the population to decay with a 1.4(2)-s lifetime, and
the equilibrium vortex number decreases along with the area of the
BEC.

To verify that the dressed BEC has reached equilibrium, we pre-
pared nominally identical systems in two different ways. First, we
varied the initial atom number and measured Nv as a function of
atom number N at a fixed hold time of th5 0.57 s. Second, starting
with a large atom number, we measured both Nv and N, as they
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Figure 2 | Appearance of vortices at different detuning gradients. Datawas
taken for N5 1.43 105 atoms at hold time th5 0.57 s. a–f, Images of the
|mF5 0æ component of the dressed state after a 25.1-ms TOF with detuning
gradient d0/2p from 0 to 0.43 kHzmm21 at Raman coupling BVR5 8.20EL.
g, Vortex numberNv versus d

0 at BVR5 5.85EL (blue circles) and 8.20EL (red
circles). Each data point is averaged over at least 20 experimental

realizations, and the uncertainties represent one standard deviation s. The
inset displaysNv versus the synthetic magnetic fluxWB!=W0~Aq! B!h i=h in
the BEC. The dashed lines indicate d0, below which vortices become
energetically unfavourable according to our GPE computation, and the
shaded regions show the 1s uncertainty from experimental parameters.
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dressed state after a 30.1-ms TOF for hold times th between 20.019 s and
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coupling BVR5 5.85EL. g, Top panel shows time sequence of d0. (a.u.,
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atom number N (open symbols) versus th with a population lifetime of
1.4(2) s. The number in parentheses is the uncorrelated combination of
statistical and systematic 1s uncertainties.
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(c)

Figure 1.4: A vortex lattice can emerge in different physical systems. In fig. (a) we see a lattice in
a type II superconductor subject to a perpendicular magnetic field [47]. Fig. (b) shows a lattice in
a rotating gas of neutral atoms [45]. The lattice in fig. (c) was realized in a gas of neutral atoms
which are coupled to laser fields [48].

with ω⊥ and ω‖ the trapping frequencies. Now imagine that the gas is rotating around the
ẑ-axis so the angular momentum Lz is conserved. When we switch to a rotating reference
frame, with angular momentum Ω = Ωẑ, the Hamiltonian in the rotating frame Hrot for
one particle can be expressed as

Hrot = H(1) −Ω · L

=
1

2m
(p− q∗A∗)2 +

1

2
m(ω2

⊥ −Ω2)(x2 + y2) +
1

2
mω2
‖z

2 . (1.16)

The first term is recognized as the kinetic term of a particle with charge q∗ minimally
coupled to an effective gauge field A∗ = m

q∗Ω× r, which corresponds to a magnetic field
B∗ = 2m

q∗ Ω.
Even though we were considering neutral particles, in the rotating frame they are

mathematically equivalent to a charged particle confined in a harmonic trap and subject
to a uniform magnetic field pointing in the ẑ-direction. For rotations of order Ω ∼ ω⊥,
the system is uniform in the plane perpendicular to ẑ, which leads to the Hamiltonian
of the Landau problem in (1.5) plus a confining potential in the ẑ-direction. In the limit
where the chemical potential is much smaller than ~ω⊥ and ~ω‖, the system is in a quasi
two-dimensional LLL regime. This regime has been reached in experiments, see for
instance [49].
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1.3.2 Atom-laser coupling
The next setup in which artificial gauge fields can be realized, is an ultracold atomic cloud
with atom-laser coupling. The main idea behind this scheme is that a neutral atom which
is coupled through its internal degrees of freedom to a well-designed laser field, may pick
up a Berry phase after traveling around a closed loop [50, 51]. As we saw in section 1.2
this phase is similar to the Aharonov-Bohm phase that a charged particle picks up when
moving in a background magnetic field. So the Berry connection associated to such a
setup can be thought of as an artificial (or geometric) gauge field.

Following ref. [51] we present a simple two-level system in which an artificial gauge
field can be implemented. The atom of our toy model has two internal degrees of freedom
which we will denote by |g〉 and |e〉. A general Hamiltonian can be written as

H =
( p2

2m
+ V

)
I + U , (1.17)

where the first part is diagonal in {|g〉, |e〉} and the mixing term can be expressed as

U =
~Ω

2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
. (1.18)

This term lifts the degeneracy of the system and can be realized by coupling the atom to
a spatially dependent laser, where Ω gives the strength of the coupling, θ is the mixing
angle and φ is the phase angle. The eigenstates of U are called dressed states and we
denote them by |χ1(r)〉 and |χ2(r)〉 with eigenvalues ±~Ω

2 .
Imagine we start out in |χ1(r)〉 and the atom moves adiabatically under influence of

the laser. It will stay in the same eigenstate and after completing an entire loop the Berry
phase it picks up is given by

γ(C) = i

∮

C
〈χ1|∇χ1〉 · r . (1.19)

The artificial gauge potential that can be associated to this Berry phase is

A = i〈χ1|∇χ1〉 =
1

2
(cos θ − 1)∇φ , (1.20)
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and the magnetic field can be expressed as

B = −1

2
sin θ∇θ ×∇φ . (1.21)

Note that we have set the ‘charge’ q to unity. This field configuration is nontrivial as long
as θ and φ are spatially dependent.

In an experiment performed by the Spielman group, atoms with more than two internal
degrees of freedom were used [48]. They managed to produce an artificial gauge potential
A = Byx̂, which corresponds to a uniform magnetic field pointing in the ẑ-direction.
Images of vortex lattices in their atomic cloud are displayed in fig. 1.4c.

1.3.3 Optical lattices
The atom-laser configuration we just discussed is a continuum model, but ultracold atoms
also allow for a discrete setting. With optical lattices the periodic ionic potential of real
materials can be mimicked. The authors of ref. [52] proposed a two-dimensional lattice
setup for neutral atoms with an artificial magnetic field. When the atoms hop around a
unit cell of the lattice, they pick up a phase, again in the same way as a charged particle
on a lattice does in a real magnetic field. Let us briefly illustrate how such a setup can be
accomplished.

A three-dimensional periodic potential can be created by standing wave laser fields.
It results in a potential

V (r) = Vx sin2(kx) + Vy sin2(ky) + Vz sin2(kz) , (1.22)

where the wave vector of the light is k = 2π/λ. Assume the lattice traps atoms with two
different internal degrees of freedom {|g〉, |e〉} and that Vx and Vz are so large that hop-
ping in those directions can be neglected. In the x̂-direction the polarization is adjusted in
such a way that the minima which trap the different internal states of the atoms are shifted
by ∆x = λ/4. Applying a static electric field in the x̂-direction creates an offset of ∆
between two adjacent minima. This is schematically shown in fig. 1.5.

Hopping along the x̂-direction can be controlled by two Raman lasers Ω1,2 = Ωe±iqy

which drive transitions between the two internal states of the atom and along the ŷ-
direction by the depth of the potential. Taking all contributions into account, the total
Hamiltonian can be expressed as

H = J
∑

n,m

(
e2πiαma†n,man+1,m + a†n,man,m+1 + h.c.

)
, (1.23)
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Figure 1.5: Potential landscape in the x̂-direction. The local minima of the potential lie at xn =
nλ/4, where they alternate between an internal state denoted by |g〉 and |e〉. Hopping in this
direction is accomplished by coupling to two Raman lasers Ω1,2.

where n and m label the minima of the potential at xn = nλ/4 and ym = mλ/2, and
α = qλ

4π is the artificial flux through a unit cell. This Hamiltonian is the same studied
by Hofstadter in ref. [53], which has the famous fractal spectrum nowadays called the
Hofstadter butterfly. The flux through a unit cell depends on the strength of the magnetic
field times the area of the cell, therefore it is difficult to reach high values of the flux in
real metals as the unit cell is very small. When producing artificial gauge fields much
higher values can be reached.

As mentioned before, not only can ultracold atomic settings be used to mimic certain
condensed matter systems such as the IQHE and its lattice version, they also allow for
certain generalizations. Non-Abelian gauge fields are one of these generalizations and
the topic of the next section.

1.4 Non-Abelian gauge fields
Non-Abelian gauge fields give a proper description of interactions between elementary
particles in high-energy physics, but in other fields of physics their presence is less obvi-
ous. After Berry’s publication and Simon’s interpretation of the geometric phase, Wilczek
and Zee generalized their idea to a quantum system with a degenerate ground state man-
ifold [54]. Before we introduce the non-Abelian geometric potential and show how this
can be realized in ultracold atomic systems, we briefly mention some characteristics of
non-Abelian gauge fields. In this introduction the main focus lies on their differences with
U(1) gauge fields.
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1.4.1 Basic features of non-Abelian gauge fields
We are interested in the quantum problem of a particle coupled to an external non-Abelian
gauge fieldAµ, so we will not focus on the dynamics of the gauge fields themselves. Note
that we use Greek indices to indicate the components of (3 + 1)-dimensional space-time,
whereas a boldface character represents spatial components.

The Hamiltonian for a nonrelativistic particle of mass m in an external magnetic field
is

H =
1

2m
(p−A)2 , (1.24)

where the charge is set to q = 1. In the non-Abelian setup we generalize the framework
to multicomponent wave functions, meaning that the vector potential or connection be-
comes Lie algebra valued, i.e. matrix valued. The non-Abelian cases we discuss have
a two-component wave function, therefore the gauge group is SU(2) and a local gauge
transformation acts on the states as

ψ(x)→ ψ′(x) = U(x)ψ(x) , (1.25)

where x is a space-time coordinate. The gauge potential takes values in the Lie algebra
corresponding to SU(2) and can be decomposed into the Pauli matrices Aµ = Aaµσ

a,
which generate this algebra. Introducing the covariant derivative

Dµ = ∂µ −
i

~
Aµ , (1.26)

and demanding that it transforms covariantly, i.e. D′µ = U(x)DµU
†(x), imposes that the

gauge potential has to transform as a connection

Aµ → A′µ = U(x)AµU
†(x) + i~U(x)∂µU

†(x) . (1.27)

This guarantees that the Hamiltonian in (1.24) transforms covariantly under the non-
Abelian gauge group SU(2).

Having defined the gauge potentials the non-Abelian version of the magnetic field or
curvature can be introduced. It is also matrix valued like the gauge potential, and we want
it to be a covariant quantity. This leads to the unique expression

B = ∇×A− i

~
A×A . (1.28)
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1. TOPOLOGY, CONDENSED MATTER SYSTEMS AND ARTIFICIAL GAUGE FIELDS

The first term is the usual curl, while the second term A × A vanishes identically for
Abelian gauge fields. In contrast to the Abelian case, even a uniform potential can produce
a nonzero magnetic field. Another important difference is that in the Abelian case, two
field configurations A yielding the same magnetic field are necessarily equivalent up to
a gauge transformation (on a simply connected space), but this is not the situation for
non-Abelian gauge groups. Let us consider a specific example to make this statement
explicit.

It is known from ref. [55] that there are two gauge-inequivalent kinds of non-Abelian
vector potentials which produce a uniform magnetic field. This uniformity is defined in
such a way that the gauge field at any two points in space is related by a gauge transforma-
tion. When this condition is met, a gauge can be chosen such that all the components of
the corresponding curvature are constant. In this particular context we choose a magnetic
field of the form B = 2σz ẑ. The first option is an Abelian gauge field, which depends
linearly on position

A(1) =
1

2
B× r = σz



−y
x
0


 , (1.29)

for which only ∇ × A contributes to the field strength. The second possibility can be
expressed as a non-Abelian gauge field that is spatially independent

A(2) =



−σy
σx
0


 , (1.30)

such that B = − i
~A ×A. Although these two kinds of potentials give rise to the same

magnetic field, they lead to completely different physical properties, as is to be expected
due to their gauge inequivalency. While the first kind has a discrete Landau level spectrum
for a particle in a background of such a gauge potential, the second one has a continuous
spectrum. Part of the two different spectra are sketched in fig. 1.6.

1.4.2 Berry matrix
After introducing some basic features of non-Abelian gauge fields we turn to generalizing
the Berry phase. In section 1.2 it was shown how the Berry connection could be inter-
preted as an (Abelian) gauge field. The topic we address next is how to generalize this to
a non-Abelian gauge field.

Although parallel transport in the non-Abelian gauge theory setting was considered in
detail before, for example in ref. [56], Wilczek and Zee generalized the Berry phase to a
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Figure 1.6: Lowest energy bands of a spin- 1
2

particle minimally coupled to an SU(2) gauge field,
corresponding to B = 2σz ẑ. There are two gauge inequivalent choices for the vector potential.
The spectrum in fig. (a) results from an Abelian spatially dependent gauge field and the continuous
spectrum in fig. (b) follows from a uniform non-Abelian configuration.

non-Abelian setting [54]. They consider a quantum system with a ground state degeneracy
and they investigate a Hamiltonian H(R) that depends on parameters R. Similarly to the
derivation presented in section 1.2, at each point R in parameter space we may choose a
basis of states {|n(R)〉}, but now we assume that there is a ground state degeneracy. Let
us denote the basis that spans the N -dimensional ground state manifold as |gi(R)〉 with
i = 1, . . . , N . Starting in some ground state |ψ(0)〉 and adiabatically following a closed
loop through parameter space, without closing the energy gap between the ground state
manifold and the excited states, the final state |ψ(T )〉 can be expressed as

|ψ(T )〉 = exp
(−i

~

∫ T

0

dtEn(R(t))
)
UB(C)|ψ(0)〉 , (1.31)

where the Berry phase has been replaced by the Berry matrix

UB(C) = P exp
(
i

∮

C
A · dR

)
, (1.32)

which is a path-ordered exponential of the Berry connection Aij ≡ i〈gi(R)|∇Rgj(R)〉.
Upon a basis transformation Uij(R)|gj(R)〉, the Berry connection transforms as a non-
Abelian gauge field as in (1.27). The Berry matrix will be encountered in more detail in
chapter 4.
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1.4.3 Cold atoms
In 2005 two groups proposed an experimental setup to realize non-Abelian gauge fields
in ultracold atoms. Both are based on the interpretation of the Berry matrix as an artificial
non-Abelian gauge field.

Atom-laser coupling The group of Fleischhauer proposed a system based on atom-laser
coupling [57]. Neutral multilevel atoms that move adiabatically in spatially dependent
laser fields can have multiple degenerate dressed states. When a particle that is prepared
in one of these dressed states moves adiabatically along a closed path in a background
of the laser fields it can pick up a nontrivial Berry matrix. Thus it behaves as a charged
particle coupled to a non-Abelian magnetic field.

Optical lattices The group of Lewenstein use the approach with an optical lattice [58].
Their strategy is very similar to the setup presented in ref. [52], except it is applied to
atoms with k degenerate ground states and excited states {|gi〉, |ei〉} with i = 1, . . . , k.
Returning to fig. 1.5, the laser assisted tunneling is now a matrix that mixes the different
states. To obtain a truly non-Abelian configuration the hopping in the ŷ-direction also has
to be laser assisted, since at least two components of the gauge potential should not com-
mute. The Hofstadter butterfly spectrum is generalized to what they call the Hofstadter
moth.

This ends our digression into ultracold atomic systems. The last section of this chapter is
devoted to topological phases in condensed matter physics. We will briefly mention some
key notions involving a new class of phases, called topological insulators.

1.5 Topological insulators
In section 1.2 we have focused on the integer quantum Hall (IQH) phase and it has long
been thought that these were the only noninteracting topological phases in condensed
matter physics. Over the past decade different types have been predicted in band insulators
and some have even been observed [34, 59, 60]. It is now understood that these phases,
including the IQH phase fall into a framework called topological insulators [17–19]. It is
a classification of noninteracting fermions with a bulk energy gap.

The different phases are determined by the number of spatial dimensions and the
symmetries of the Hamiltonian and can be characterized by a topological invariant. For
instance, in the IQHE time-reversal symmetry (TRS) is broken due to the presence of the
magnetic field, whereas the two-dimensional quantum spin Hall effect (QSHE) preserves
TRS. The QSHE was predicted in graphene [14], in strained semiconductors [15] and
in HgTe quantum wells [61]. The latter led to the discovery of this effect in an exper-
iment performed by the group of Molenkamp [16]. The QSHE belongs to the class of
two-dimensional topological insulators with TRS and we will discuss it in the following
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subsections.

1.5.1 2D time-reversal invariant topological insulator
The Hall conductivity is odd under time-reversal (TR), therefore it has to be zero for such
a TR invariant topological insulator. How does a topological invariant arise for this type
of insulator? A nice intuitive argument is given in ref. [33] for spin- 1

2 band insulators
in two spatial dimensions. The TR operator for spin- 1

2 particles can be represented by
Θ = exp(iπσy/2~)K, where K denotes complex conjugation and the operator obeys
Θ2 = −1. If the system is TR invariant the Bloch Hamiltonian HB(k) has the property

ΘHB(k)Θ−1 = HB(−k) . (1.33)

It follows that all states labeled by k have a degenerate partner at −k. Focusing on the
edge states, there are two TR invariant points in the Brillouin zone, kx = 0 and kx = π,
with x the coordinate along the edge and the lattice constant set to unity. These points
have to be at least twofold degenerate, which follows from Kramers’ theorem. The proof
of this goes as follows. Assume there is a nondegenerate state |ψ〉. As Θ is a symmetry
of the system, acting on the state would result in Θ|ψ〉 = c|ψ〉, with c a constant. Acting
twice gives Θ2|ψ〉 = |c|2|ψ〉, but we also had Θ2 = −1 which leads to an inconsistency
since |c|2 6= −1.

Two situations can occur and they are schematically depicted in fig. 1.7. Note that only
half of the Brillouin zone is illustrated in these figures and all states have a TR invariant
partner as a mirror image in the other half. In both figures Kramers degenerate pairs are
located at the TR invariant points of the Brillouin zone and the Fermi energy lies between
the valence band and the conduction band. In fig. 1.7a an even number of edge states
crosses the Fermi energy. By modifying the Hamiltonian near the edge, the dispersion
can be changed and this configuration can be continuously deformed into a state with
no crossings, i.e. it is topologically equivalent to a trivial insulator. In fig. 1.7b there is
an odd number of edge states crossing the Fermi energy, which makes it impossible to
remove all edge states without closing the energy gap of the system or breaking TRS. In
subsection 1.2.5 we saw how the IQHE could be labeled by a Chern number Z, now we
see that the TR invariant topological insulators in two dimensions are labeled by a Z2

invariant.
One particular model for a two-dimensional TR invariant topological insulator was

proposed by Bernevig and Zhang [15]. Even though it has not been experimentally re-
alized it gives a nice connection between several topics we have encountered in this in-
troduction. The Hamiltonian they study describes a spin- 1

2 particle in R2 and is given
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Figure 1.7: Z2 invariant for a TR invariant topological insulator is shown in a schematic way. Half
of the Brillouin zone is shown as the other half is a mirror image. At the TR invariant points of the
Brillouin zone, Kramers degenerate pairs must occur. The edge state crosses the Fermi energy an
even or odd number of times, resulting in a trivial or nontrivial topological insulator.

by

H =
p2

2m
− Lzσz , (1.34)

where the angular momentum in the perpendicular direction is coupled to the spin state.
There are several different physical systems that obey the same mathematics.

1. When considering the nonrelativistic limit of a particle in electromagnetic fields, the
spin-orbit coupling (SOC) term naturally arises as (p×E) · σ. Consequently, the Hamil-
tonian in (1.34) corresponds to a charged particle in the interior of a uniformly charged
cylinder.

2. It can also be described by a charged particle minimally coupled to a ‘non-Abelian’
gauge field A = 1

2B × r, with B = Bσz ẑ the magnetic field, which we encountered
in (1.29) before. Of course this is not really a non-Abelian gauge field, since the com-
ponents of the gauge field commute. This model effectively describes two layers of IQH
states, where the two particle species feel an opposite magnetic field. Even though there
is a magnetic field, TRS is not broken, since the field averages to zero. Methods for
implementing these gauge fields in the cold atomic gases have been proposed in [62, 63].

3. The authors of [15] propose a zinc-blende semiconductor with shear strain gradients as
most realistic model. The off-diagonal terms of the strain tensor can be chosen in such a
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way that it results in the Hamiltonian in (1.34).

The model in (1.34) will reappear in chapters 3 and 4 as it is closely related to the models
we discuss there.

1.5.2 Majorana fermions
Topological insulators come in many different flavors depending on their dimensionality
and symmetries. This field of research is developing rapidly, and many of these classes of
topological insulators have been realized experimentally, effective field theories have been
written down and they have been generalized to interacting systems. However, probably
the most exciting direction of research is the possible emergence of Majorana fermions
γ [64,65], spin- 1

2 particles that were predicted in 1937 by Ettore Majorana [23]. As these
particles are their own antiparticle, i.e. γ = γ†, they do not carry any charge or energy
and it is very difficult to create let alone detect them.

Since the Majorana particles do not carry charge one of the obvious places to search
for them is in superconductors as these systems do not require charge conservation. But
the ordinary s-wave superconductors have Cooper pairs with electrons of opposite spin,
and this pairing makes it impossible to build a Majorana fermion from these fundamental
particles. Even though it is a far more exotic phase, Majorana particles do emerge as zero-
modes in spinless superconductors, the so-called p-wave paired [20] and (p + ip)-paired
superconductors [21, 22] in one and two dimensions, respectively. It is now understood
that these two systems fall into the classification of topological insulators and supercon-
ductors.

Two of these Majorana modes make up one conventional fermion f = 1
2 (γ1 + iγ2),

but the Majorana’s can have positions that are arbitrarily far apart making f a highly
nonlocal object. Moreover there is a degeneracy between f and f†, which results in non-
Abelian statistics when Majorana modes are exchanged. We will return to a discussion of
non-Abelian statistics in chapter 2.

It is challenging to create Majorana fermions in real experiments, but Fu and Kane
led the way by realizing that the proximity effect between an s-wave superconductor
and the surface states of a topological insulator could result in an effective (p + ip)-
superconductor [66]. In 2010 a proposal by two independent groups was made, where
a one-dimensional wire with spin-orbit coupling subject to an external magnetic field, is
placed on top of a conventional s-wave superconductor [67,68]. This eventually led to an
experiment conducted by the Kouwenhoven group, in which they observed very strong
signatures of emerging Majorana zero-modes at the end points of such a wire [24]. This
is a very exciting result and even though the observations are not yet conclusive, many
other groups have obtained similar results [25–29]. It does seem like the condensed matter
physicists have managed to be the first to create and detect a Majorana fermion since their
theoretical prediction in 1937.
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In this first chapter we introduced several topics all closely related to noninteracting topo-
logical phases of matter. The IQHE was discussed from a topological point of view, which
enabled us to introduce topics like the Berry phase, parallel transport and Chern numbers.
The Berry connection behaves as a gauge field and this correspondence is used to show
how artificial gauge fields can be created in ultracold atomic clouds. These systems al-
low for a generalization to non-Abelian gauge fields by considering the Berry matrix.
We showed some important differences between Abelian and non-Abelian gauge fields
and commented on explicit realizations in ultracold atoms. We concluded the chapter
with a discussion on topological insulators, which is a classification of noninteracting
fermionic topological phases based on their symmetries and dimensionality. The IQHE
fits in this classification and we treated an example of a two-dimensional insulator with
TRS. Moreover, it was mentioned that Majorana fermions emerge in some of these topo-
logical phases.

The next chapter is an introduction to interacting topological phases. We will mainly
focus on the quasiparticles of such phases and show how transitions between different
topological phases come about.
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CHAPTER 2

Topological symmetry breaking and
fractional quantum Hall states

In the previous chapter we focused mostly on single-particle physics. Topological phases
of matter that arise from an underlying strongly correlated theory are the topic of the
present chapter. We do not treat the interactions explicitly, but rather use effective descrip-
tions to capture the principal physical aspects of the collective behavior of such interacting
systems. Unlike the traditional many-body field theories, different topological phases can-
not be described by Landau’s symmetry breaking principle. Instead, many topologically
different phases may have the same symmetry and therefore have to be characterized by
something else which is called topological order [69]. This can for instance be done by
their ground state degeneracy on the torus [70], by their quasiparticle statistics [71,72] or
their edge states [73, 74].

The following discussion will set the stage for the content of chapters 5 and 6 without
presenting any new results here. We start with a short introduction to (2+1)-dimensional
topological quantum field theory in section 2.1, where the main focus lies on the topo-
logical excitations carried by such phases and the interactions they have. In section 2.2
we present topological symmetry breaking, which is a concept that describes how transi-
tions between different topological phases can take place, and is a main pillar on which
chapters 5 and 6 are built. Section 2.3 serves to show how the excitations of fractional
quantum Hall (FQH) states can be formulated in a Chern-Simons approach developed by
Wen and a conformal field theory approach developed by Moore and Read.

2.1 Topological excitations in (2 + 1) dimensions
If we wish to understand a condensed matter many-body problem we are forced to find
other ways than by simply solving the Schrödinger equation. We cannot solve for all the
particles that make up the system. Instead we need to find some effective low-energy field
theory which describes experimental observations of the particular system well enough.
The effective theories that describe phases with topological order such as the FQH phases
are topological quantum field theorys (TQFTs) [69]. These are theories that do not depend
on the metric, they are invariant under diffeomorphisms. TQFT will not be discussed at
length in this thesis, instead we are mainly interested in the excitations which can be
carried by such topological phases and especially their interactions.

For an ordinary (non-topological) field theory, the excitations fall into representations
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of a symmetry group, which corresponds to the symmetry of the Lagrangian or Hamilto-
nian of the system. When there is a ground state degeneracy, the different states can be
related by the action of such a symmetry operator. Moreover, when there are different
phases, these are characterized by the expectation value of some local order parameter,
and transitions between different phases are induced by Landau’s symmetry breaking.
These are all well-known concepts within the framework of quantum field theory, but
topological phases do not follow such a description. There is often no local order parame-
ter and the Lagrangian (if there is one) does not have a symmetry in the manner described
above. Still as it turns out, topological excitations can be labeled by representations of
some underlying quantum group. The definition of a quantum group differs in the lit-
erature, but the precise mathematical structure is beyond the scope of this thesis. For a
thorough treatment of the definitions that apply to our results we would like to refer the
reader to the Ph.D. thesis of Slingerland [75].

The point of departure we take is that we view the set of topological excitations as
a given ‘anyonic model’ [76, 77]. To clarify this, compare it to conformal field theory
(CFT). One can start from a Lagrangian that is conformally invariant and find the algebra
that correspond to that particular model. But there are many CFTs that do not have an
effective Lagrangian description and still we can study their representation theory.

Starting from an anyonic model describing the excitations of some underlying topo-
logical phase, we label these quasiparticles by a finite set of topological charges a, b, c, . . ..
They carry topological quantum numbers associated with the interactions between them.
The types of interaction for a (2 + 1)-dimensional TQFT are fusion and braiding, which
are discussed in the following.

2.1.1 Fusion and splitting
The fusion of two particle types labeled by a and b is denoted by

a× b =
∑

c

N c
ab c , (2.1)

whereN c
ab ∈ Z≥0 gives the number of independent ways that a and b can fuse to c. These

fusion rules are symmetric under interchange of a and b, i.e. N c
ab = N c

ba. For the fusion
rules to make sense in any physical system, there has to be a unique sector representing
the vacuum, for now denoted by I, which means no particle at all. Also, we need to
demand that for every particle a there is an antiparticle ā, in the sense that when these
sectors fuse, they must have the vacuum sector in one of their fusion channels

a× ā = I +
∑

c

N c
aāc . (2.2)
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In other words, N I
aā = 1 for all sectors in the theory. To make the discussion more

tangible let us consider the Ising model, which has three sectors labeled by {I, ψ, σ}.
Their fusion rules are given by

I× I = I ψ × I = ψ σ × I = σ (2.3)
I× ψ = ψ ψ × ψ = I σ × ψ = σ (2.4)
I× σ = σ ψ × σ = σ σ × σ = I + ψ . (2.5)

One can easily verify that this set of fusion rules satisfies the conditions just listed.
Quite naturally, when there is fusion the reverse can also be defined, which we call

splitting. This just means that if N c
ab 6= 0, then the particle labeled by c can split into

the particles a and b. The fusion of three (or more) sectors needs to be associative (a ×
b) × c = a × (b × c). This highly restricts such an anyon model and is related to the
so-called pentagon equations of the theory, which are just the consistency conditions to
assure associativity. For a derivation of the pentagon equations we refer the reader to the
literature [76, 77].

The fusion of two or more particles {a1, . . . , an} to a sector b, spans a Hilbert space
with dimension equal to the number of ways they can fuse to b. When a sector labeled
by a is fused N times with itself the asymptotic growth of available fusion channels is
given by (da)N , where the positive real number da is called the quantum dimension of a.
This quantum number is preserved under fusion which means that for sectors which have
fusion rules as in (2.1), their quantum dimensions obey

dadb =
∑

c

N c
abdc . (2.6)

For Abelian models, the quantum dimensions are all equal to unity. Clearly, the Ising
model presented above is a non-Abelian model, since the σ particle has more than one
fusion channel. The quantum dimensions of the three sectors are dI = dψ = 1 and
dσ =

√
2.

2.1.2 Braiding and topological spin
The statistics of particles is governed by two important principles: (i) particles of the same
type are indistinguishable and (ii) they may exclude each other from being in the same
state. We may think of particles as points in space, and we may interchange two particles
twice which is equivalent to moving one particle around the other. Such an operation
is called a monodromy and it may introduce a nontrivial phase factor in the two-particle
wave function.
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Figure 2.1: Exchanging two indistinguishable particles twice is equivalent to bringing one particle
around the other. In fig. (a) a top view of this process is shown. A side view is depicted in fig. (b)
where time flows upwards. Exchanging these point particles results in a nontrivial braid in (2 + 1)-
dimensional space-time.

In three or more spatial dimensions all such paths can be contracted to a point and
therefore belong to the same topological class, meaning that such a monodromy always
produces a trivial phase. If the particles are identical one could also consider a single
interchange of the particles leading to the same indistinguishable configuration and cor-
responding to the square root of the monodromy. This implies that in three or more
dimensions it could generate a phase equal to ±1 on the state. It is this phase difference
which underlies the fundamental distinction we make between bosons and fermions. The
interchange ofN identical particles is governed by the permutation group SN , which only
has one-dimensional representations.

This changes dramatically in two spatial dimensions, the case of our interest. When
we have only two spatial dimensions at our disposal, the world lines of particles cannot
cross, meaning that exchanging two indistinguishable particles twice does not yield the
same configuration as the initial one. The braids of world lines encode the precise phase
evolution of a multi-particle state, which is the origin of the existence of so-called anyons
exhibiting fractional spin and statistics properties. The interchanges are now generated by
elements of the braid group BN , which acts on N strands. But it can get even more exotic
than that. The braid group has nontrivial higher dimensional representations, meaning
that the system can pick up a matrix instead of just a phase. Particles for which this
is the case are called non-Abelian anyons. The adjective ‘non-Abelian’ indicates that it
matters in which order they are interchanged, as opposed to Abelian anyons which only
pick up a phase. These non-Abelian anyons are of high interest for the implementation of
fault-tolerant quantum computation [13].

Braiding can be understood in terms of the Aharanov-Bohm effect that was encoun-
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tered in the previous chapter, where a charged particle which is brought around a flux
picks up a nontrivial phase factor. In an anyonic model the particles carry both ‘charge’
and ‘flux’, thus moving them around each other may have a nontrivial effect. Like the
pentagon equations, there is another set of consistency conditions on the anyonic model
associated to the order of braiding and fusing particles, which is called the hexagon equa-
tions.

Another important quantum number that we will use extensively is associated to a
rotation of a particle of type a over a 2π angle, which we call the topological spin ha.
Under such a rotation, the wave function picks up a phase θa = e2πiha . The monodromy
of anyons can also be expressed in terms of the spin. Assume that two particles a and b
fuse to a specific channel c. Then the monodromy is given by

Mc
ab = hc − ha − hb . (2.7)

Let us once more return to the Ising model. The different sectors have spin hI = 0,
hψ = 1

2 and hσ = 1
16 , from which we can calculate the monodromy.1

After this brief introduction into anyonic models, where we presented the interactions
between anyons and their quantum numbers, the next section is dedicated to transitions
between different topological phases, i.e. phases carrying a different set of anyons.

2.2 Topological symmetry breaking
The transitions between different topological phases that we will study, are induced by the
condensation of bosonic quasiparticles, very similar to what happens in a superconductor.
In that case the electrons form Cooper pairs, which allows them to condense into a collec-
tive ground state, breaking the U(1) gauge symmetry of electromagnetism. The transition
between topological phases is called topological symmetry breaking, a formalism which
has been developed in a series of papers [79–81] and successfully applied to many phase
transitions between topological phases [82–87]. A more mathematical treatment can be
found in [88, 89]. This formalism is the main building block for the results obtained in
chapters 5 and 6. In the following, the different steps are presented in quite some detail.

Unbroken phase A
As mentioned before we consider some topological phase without dealing with the ex-
act underlying Lagrangian or Hamiltonian of the system. Rather, we start from a set of

1We wish to remark that an anyonic model with sectors which are labeled by the three Wess-Zumino-Witten
primary fields of the SO(n)1 model, have exactly the same fusion rules as the Ising model [78]. For n = 1 the
spins are also identical and we are dealing with the same anyonic model, but for n = 2r + 1 the non-Abelian
sector has spin h = 2r+1

16
. Even though the fusion rules are still the same, these are different models.
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quasiparticles which comprise an anyonic model. They interact with one another through
fusion, splitting and braiding and we denote the phase carrying these topological excita-
tions by A.

A transition to a new phase can be driven by the formation of some nontrivial con-
densate. First, we should ask ourselves what the characteristics of the particles forming
a condensate should be. The particles that may form a condensate have to be bosonic.
Now, we have to be careful about what exactly we mean by this, since we are in two
spatial dimensions. The two properties a bosonic sector labeled by b should have are

1. Trivial spin: θb = e2πihb ⇔ hb ∈ Z.

2. Partially trivial self-monodromy: When fusing with itself there has to be at least
one fusion channel with trivial spin, i.e. for b × b =

∑
a∈AN

a
bba there is a sector

ã ∈ A with N ã
bb 6= 0 and θã = 1.

When such a bosonic sector is present in the topological phase denoted by A, we can
apply the formalism of topological symmetry breaking (TSB) to induce a phase transition
to a broken phase labeled by U . Before we reach this broken phase there is an intermediate
step in the formalism, which we will describe below.

Intermediate phase T
Imagine that some parameters of the underlying microscopic system change in such a
way that a condensate of bosonic quasiparticles forms. In chapter 5 we will go into more
detail about the formation of a condensate, but for now we consider it as given.

When a condensate forms it breaks the initial symmetry denoted by A down to a
different residual symmetry which we call T . Again compare this to a superconductor.
After condensation of the Cooper pairs, electric charge is conserved modulo 2e, and pairs
of electrons can be created and annihilated for free. When a condensate of topological
quasiparticles forms, the topological charge is defined modulo the charge of b. For in-
stance, when one of the original fusion rules of A is a1 × b = a2, after the formation
of a condensate it is impossible to distinguish between a1 and a2, and they become iden-
tified with each other. This immediately implies that the bosonic particle forming the
condensate becomes identified with the vacuum of the initial phase A: b ∼ I.2

There is another situation that could (and often does) occur for some of the sectors in
a non-Abelian theory. Consider the following fusion rule of a sector a ∈ A

a× a = I + b+ . . . . (2.8)
2When b is a non-Abelian particle, it has to split up into several particles in the broken phase T and one of

these particle is identified with the vacuum, while the others are excitations in T . However, in this thesis we
will not encounter such a bosonic particle.
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1

UA

T
Quasiparticle
condensation

Figure 2.2: The topological phase on the left of the diagram is the original unbroken phase A
which contains a nontrivial bosonic sector b. When a condensate of these bosonic sectors forms,
the system is driven through a phase transition, ultimately resulting in a broken unconfined phase
U . The confined particles are expelled from the bulk of U and reside at the boundary of the system.
This boundary contains all the sectors of U plus the confined particles and therefore is given by T .

To bring our point across we do not have to indicate the terms that could follow after the
first two. The sector b is the boson that forms the condensate and should be trivial in the
intermediate phase T , i.e. it becomes identified with the vacuum sector I ofA. Therefore,
the particle denoted by a has two different ways of fusing to the ‘vacuum’ when we are
in the phase T , which should not be possible in a physically consistent phase. Therefore
such a sector should split into two or more sectors in the intermediate phase. This is
quite similar to ordinary group theory. For instance, when we have a three-dimensional
representation of SU(3) it is not irreducible under the subgroup SU(2), it decomposes as
3→ 1+2. The splitting and identification of sectors can be summarized in the branching
rules

a→
∑

t

ntat , (2.9)

where a ∈ A, t ∈ T and nta is a positive integer. For future reference, we call the sectors
a ∈ A that branch to the same sector t ∈ T the lifts of t.

Branching and fusion should commute, which severely restricts the branching rules
and implies that quantum dimensions are preserved under branching, i.e. da =

∑
t n

t
adt.

In general, it is a very nontrivial task to determine a new consistent set of fusion rules for
the intermediate phase T . Fortunately, the phases we will consider in this thesis have a
fairly simple structure.

Broken unconfined phase U
Once the sectors of T and their fusion rules have been determined, there is one last step
we should take. When different sectors of the initial phaseA become identified with each
other in the intermediate phase, it does not imply that they have well-defined braiding
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2. TOPOLOGICAL SYMMETRY BREAKING AND FQH STATES

interactions in T . To illustrate this, consider two sectors a1, a2 ∈ A which become
identified with each other, i.e. a1×b = a2, where b is a bosonic sector that condenses and
drives the transition to T . Now imagine we bring a1 around b in the condensed phase T .
Since b represents the vacuum in T there should not be any nontrivial interaction between
a1 and b, and to ensure this we have to demand that the monodromy of any sector in the
new phase with the condensate is trivial, i.e. θa2

θ−1
a1
θ−1
b = 1. As b is a bosonic sector this

boils down to ha2
− ha1

∈ Z. The sectors of T that do not have trivial braiding with the
new vacuum, have to be expelled from the bulk, because they would cause a domain wall
of finite energy in the condensate. In chapter 5 we will go into more detail regarding the
interpretation of these confined particles.

After following all the steps presented above, we are left with a broken unconfined
phase U which carries topological excitations with well-defined fusion and braiding re-
lations. The boundary of U with a trivial phase, for instance the vacuum, is not simply
described by U , as would have been the case had we started from a phase U without ap-
plying TSB to an initial phase A. The boundary must also contain the confined sectors
that were expelled from the bulk. The correct description of the boundary is therefore
given by the intermediate phase T . In chapter 6 we will consider a boundary between U
and another nontrivial topological phase. A schematic overview of the phase transition is
depicted in fig. 2.2.

Now that we have explained the formalism of TSB we turn to the specific anyonic models
that we will treat in chapters 5 and 6. These are the topological excitations of certain FQH
phases. Therefore, the next section will be devoted to the effective theory describing these
phases and in particular to the quantum numbers of the topological excitations.

2.3 Effective theory FQH states
After the discovery of the IQHE, yet another, even more far reaching observation was
made. In 1982 Tsui et al. reported on an experiment where they observed a plateau in
the Hall conductance at a fractional value σH = 1

3e
2/h [7]. This is now known as the

fractional quantum Hall effect (FQHE) and has been observed at several other fractions as
well. The FQHE cannot be understood from a noninteracting perspective, as the Coulomb
interaction between the electrons needs to be incorporated to understand this fractional
effect. Laughlin was the first to write down a trial wave function for the ν = 1/3 effect [8]
and to recognize that the excitations over the ground state should have fractional charge,
after which Halperin showed that these quasiparticles obey fractional statistics [71, 72].

In the previous section we set the stage for TSB in a general topological phase. In
this section we want to present the quantum numbers associated with the excitations of
certain FQH states. These will cover the states on which we apply TSB in chapters 5 and
6. We first show how the FQH states are related to Chern-Simons (CS) theory and later
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we present its connection to CFT. These descriptions allow us to extract the quantum
numbers of the topological excitations and give a useful interpretation in terms of vertex
operators. There is much more that can be said about FQH states, but that is beyond the
scope of this thesis.

2.3.1 K matrix formalism
A powerful tool to describe highly correlated systems is writing down an effective low-
energy field theory. For the FQHE these are Ginzburg-Landau or CS Lagrangians [90–
92]. In this thesis we will use the description in terms of CS theory and follow the logic
presented in ref. [32]. The Lagrange density can be written as

L =
1

4π
εµνλ

(
ai,µKij∂νaj,λ + 2eAµ∂νtiai,λ

)
, (2.10)

where ai,µ, with i = 1, . . . , N , are N U(1) gauge fields and Aµ is the external elec-
tromagnetic field. The specific topological state is characterized by an integer valued
coupling matrix Kij and an integer valued N -dimensional charge vector ti. The filling
fraction of the quantum Hall phase can be expressed in terms of this K matrix and the
charge vector as

ν = tiK
−1
ij tj . (2.11)

A generic quasiparticle is characterized by an N -dimensional integer vector l and its
charge Ql is given by

Ql = etiK
−1
ij lj . (2.12)

The monodromy of two particles labeled by l and m can be expressed as

Ml,m = liK
−1
ij lj , (2.13)

where the topological spin is given by hl = 1
2Ml,l. These quantities are all invariant

under a SL(N,Z) transformation, therefore phases with different K matrices and charge
vectors belong to the same universality class whenever they are related by an SL(N,Z)
transformation.

The simplest examples are the Laughlin states, for which the K matrix is an odd
integer K = M and the charge vector has only one component t = 1. This gives a
filling fraction of ν = 1/M , the fundamental quasiparticle l = ±1 has self-monodromy
(statistics) M±1 = π/M and chargeQ±1 = ±e/M . The Laughlin states can be viewed as
a state in which the electrons form a collective ground state, with fundamental excitations
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2. TOPOLOGICAL SYMMETRY BREAKING AND FQH STATES

of charge e/M . But this picture can be extended by assuming that these quasiparticles can
again form a new collective state with new quasiparticles as excitations. This construction
is called the Haldane-Halperin (HH) hierarchy [71, 93] and is one of the main topics of
chapter 6. The K matrix and charge vector of the HH hierarchy are

Kij = piδij − δi,j−1sgn(pi+1)− δi,j+1sgn(pi) , ti = δ1i , (2.14)

with no summation over the repeated indices, and p0 is an odd integer and pi>0 are even
integers.

We will use this notation in chapter 6 extensively, however in the next subsection we
would like to introduce a different description of FQH states, in terms of CFTs. We do
this because it has been quite an important development in the understanding of FQH
states, especially on the level of wave functions, and we feel that this gives a better sense
of the quantum numbers involved.

2.3.2 CFT description
In 1984 Witten proposed and proved a deep connection between (2 + 1)-dimensional
CS theory and (1 + 1)-dimensional CFT [94]. In the following we briefly discuss this
connection in relation to the wave functions describing the bulk of FQH states and the
edge states of a finite quantum Hall (QH) system.

Bulk wave functions In a seminal paper written by Moore and Read, a connection was
established between CFT correlators and QH wave functions [11]. The main idea is that
the ground state wave function of a FQH state can be described by a correlator of CFT
vertex operators Ve(zi) at N electron position zi, i = 1, . . . , N . This correlator can
be decomposed into conformal blocks. When the correlator is evaluated a background
charge needs to be inserted by hand in order to get a nontrivial result. Quasiparticles
can be incorporated into this scheme by inserting suitable vertex operators Vqp(wi) at
position wi. Moore and Read show how the Laughlin wave functions can be derived
from a U(1) CFT: the compactified chiral boson. Then they generalize this to more
complicated CFTs, where they show the emergence of non-Abelian quasiparticles. The
state they propose derives from an Ising CFT and is now widely known as the Moore-
Read (MR) state, which is a leading candidate for the plateau observed at filling fraction
ν = 5/2 [95, 96]. An insightful review of the connection between CFT and QH wave
functions can be found in [97].

From the CFT point of view fusion of quasiparticles can be understood by taking
the operator product expansion of the fields which represent these quasiparticles. Deter-
mining the statistics of quasiparticles is a very nontrivial task. Once the wave function
is obtained from the above description (taking the CFT correlator), adiabatically braiding
one quasiparticle around another results in a Berry holonomy and the explicit monodromy
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where the physical observable is the combination of the two [98]. To find the true mon-
odromy one can use the plasma analogy. For the Laughlin states this was done in ref. [72]
and for the MR state in refs. [99, 100].

CFTs usually describe critical phenomena, but bear in mind that the description of the
FQH bulk states in terms of CFT correlators does not imply that the FQH state is a critical
theory. As we have mentioned before, it is a theory with a bulk gap and the quasiparticles
are massive localized topological excitations.

Next we consider the edge of a FQH state and see that it is described by a critical
theory, which is the same CFT from which the bulk states are built.

Edge states In an experimental setup the FQH sample will always have an edge. In
1982, Halperin argued that the current is carried along the edges because the confining
potential lifts the Landau levels at the edge of the sample [73]. Around a decade later, Wen
showed that the edge states can be understood from an effective field theory perspective
[74, 101, 102], which can be argued from gauge invariance. The CS term is no longer
gauge invariant when the manifold has an edge, but when we include a term in the action
defined on the edge of the system, which exactly cancels the boundary term of the bulk
after a gauge transformation, the total system S = Sbulk + Sboundary is gauge invariant.
Wen showed that for the U(1) CS gauge fields, this boundary term corresponds to a chiral
Luttinger liquid [103, 104]

Sboundary =
1

4π

∫
dxdt

(
(∂tφ)2 − v2(∂xφ)2

)
, (2.15)

where x is the coordinate along the boundary and the field φ is subject to the chiral
constraint ∂tφ = v∂xφ. The conserved current of this theory is Jµ = εµν∂

νφ and its
modes form a U(1) Kac Moody algebra. The action in (2.15) is a CFT with central
charge c = 1. In chapter 5 we will go into more detail about this CFT and consider
specific boundary conditions which lead to a compactified chiral boson.

Quasiparticles are now represented by inserting the appropriate conformal operators at
either the edge or in the bulk. In chapters 5 and 6 we apply TSB to several FQH states,
where in the former chapter we will mainly use the CFT description and in the latter we
will mostly use the K matrix notation.

Let us conclude this last introductory chapter with a short recap of the topics that we en-
countered. No new results were presented, instead we set the stage and fixed notations
for chapters 5 and 6. This chapter commenced with an introduction to particle-like exci-
tations that are carried by a topological phase. These particles interact with one another
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through fusion and braiding, and such a set of topological particles together with their
specific interactions is called an anyonic model.

We proceeded by explaining the formalism called topological symmetry breaking,
which is a way of describing phase transitions between different topological phases. A
transition via this formalism takes place when a condensate of bosonic excitations forms.

The last section focused on the fractional quantum Hall phases. The effective low-
energy description of most FQH states are Chern-Simons theories which are indeed topo-
logical field theories. The excitations of these phases form an anyonic model and it was
shown how the quantum numbers of these particles can be obtained from the K matrix
formalism. We ended by pointing out the connection between the FQH phases and con-
formal field theory, which describes the bulk wave functions as well as the gapless edge
excitations.
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CHAPTER 3

Noncompact dynamical symmetry of a
spin-orbit coupled oscillator

This chapter is based on the following publication:

S.M. Haaker, F.A. Bais, and K. Schoutens, NONCOMPACT DYNAMICAL SYMMETRY OF
A SPIN-ORBIT-COUPLED OSCILLATOR, Phys. Rev. A 89, 032105 (2014).

It is the rich structure revealed by topological phases of matter which inspires the inves-
tigation of model systems where such phases can be realized. In chapter 1 we discussed
an example, the IQH phase, and briefly touched upon a larger class of such phases called
topological insulators. We introduced the Landau problem which describes a charged
particle confined to two dimensions and subject to a perpendicular magnetic field. This
system is characterized by its highly degenerate spectrum, the levels of which are called
the Landau levels. Even though it is a simple single-particle problem, much of the IQHE
can be understood from this basic picture.

In the present chapter we study a three-dimensional analog of the Landau problem,
which was proposed by Li and Wu as a continuum model for TR invariant topological
insulators in three dimensions [105]. They study a particular model (which we will in-
troduce in more detail below) for spin- 1

2 fermions in the background of a non-Abelian
gauge potential, tuned in such a way that a flat dispersion is achieved. The authors argue
that this model has helical Dirac surface modes if open boundary conditions are imposed.
These modes are protected by TRS and are indicative of a nontrivial three-dimensional
topological insulator phase.

The authors focus on the construction of the eigenfunctions of the model, revealing
some remarkable properties such as a form of quaternionic analyticity. In this chapter
we present a complementary algebraic approach to the problem. A particular goal is to
understand the degeneracies in the spectrum from an underlying symmetry algebra point
of view. In general, compact symmetry algebras lead to finite degeneracies, whereas non-
compact symmetries give rise to infinite degeneracies.1 In our work we are confronted
with a mixture of finite and infinite degeneracies in the spectrum, posing a puzzle as to

1This is true for the unitary representations we are interested in, it does not hold for the nonunitary ones.
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the nature of the underlying symmetry algebra. This problem was studied in [106] as
well, where the authors conclude that an accidental degeneracy does not always imply an
underlying symmetry, precisely because of the mixture of infinite and finite degeneracies
in this model. We will show that there is a finite number of operators commuting with
the Hamiltonian which forms a nonlinear algebra, which we recognize as a ‘deformed’
SO(3, 2) symmetry. These generators include the spin- 1

2 generalization of a pair of sym-
metry vectors that are reminiscent of the Runge-Lenz vector of the Kepler problem. After
a simple rescaling of the operators we obtain the linear noncompact Lie algebra SO(3, 2),
which generates the corresponding Anti de Sitter group. The so-called singleton represen-
tation of this algebra plays a key role in explaining both the infinite and finite degeneracies
that feature in the spectrum.

We remark that, quite generally, an insight into the symmetry algebra underlying a
quantum problem is quite useful. On the one hand, the representation theory provides a
catalogue of possible families of quantum states; on the other hand an algebraic struc-
ture may contain clues to an underlying geometric picture. An example featuring both
these aspects is the W1+∞ symmetry of quantum Hall phases [107, 108]. This symme-
try reflects the incompressibility of the quantum Hall liquids and it enables an algebraic
organization of edge excitations of these same liquids.

This chapter is organized as follows. In section 3.1 we present the Hamiltonian of
interest, and discuss its spectrum and its degeneracies. Section 3.2 is devoted to the sym-
metry algebra of the system. We write down all the symmetry operators in a coordinate
independent form and show that they form a nonlinear algebra. Moreover, we show that
a simple rescaling of the operators results in a linear algebra and give the representations
of this Lie algebra. In section 3.3 we present the operators that allow us to connect states
of different energies, the so-called spectrum generating algebra.

3.1 Spin-orbit coupled harmonic oscillator
The model proposed in [105], to describe a continuous three-dimensional topological
insulator, is a spin- 1

2 fermion in a three-dimensional harmonic potential with a SOC term
of fixed strength. The Hamiltonian reads

H =
p2

2m
+

1

2
mω2r2 − ωL · σ , (3.1)

where Li is the usual orbital angular momentum and σi are the Pauli matrices. The model
is mathematically equivalent to a spin- 1

2 particle minimally coupled to a static external
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SU(2) gauge field plus a particular scalar potential

H =
1

2m
(p− qA)

2
+ V (r) . (3.2)

The components of the vector potential are Ai = 1
2ωεijkσjrk and the harmonic potential

is given by V (r) = − 1
2mω

2r2. Note that the components of A are 2× 2 matrices. Since
these components do not commute with each other, this is a so-called non-Abelian gauge
field, which we encountered in section 1.4.

The field strength associated to this gauge field points in the radial direction and grows
with r. This gauge potential can be seen as the three-dimensional version of two different
two-dimensional ones. For fixed radius r = 1, this is a spin- 1

2 particle confined to S2 in a
perpendicular magnetic field, resulting in non-Abelian Landau levels on the sphere, which
we will encounter in chapter 4. In R2 it describes two decoupled layers of quantum Hall
states where the two types of particles feel an opposite perpendicular magnetic field. We
came across this configuration in chapter 1 and it serves as a toy model for the QSHE [15].

In the remainder of this chapter we use the notation in the form of the three-dimensional
spin-orbit coupled harmonic oscillator given in (3.1) and work in units where m = 1/2,
ω = 1, ~ = 1.

Since this is a single-particle radial problem there are several ways of solving the
system. As we are interested in the algebraic approach we will look for operators that
commute with the Hamiltonian. First of all, H commutes with the total angular momen-
tum operators J = L + 1

2σ. The Hilbert space arranges into SU(2) multiplets, where
every irreducible representation may be labeled by its J2 eigenvalue j±(j± + 1). Here
j± = l ± 1

2 , and l = 0, 1, ... is associated with the orbital angular momentum L2, which
also commutes with the Hamiltonian. We can diagonalize in J2 and J3 as is standard in
the SU(2) case, but we will choose a slightly different convention. Instead, we first define
A3 ≡ L · σ + 1. This operator commutes with H and with J2 and its eigenvalue can be
easily obtained from the relation A3 = J2 − L2 + 1

4 . We will label the eigenstates of H
by their A3 and J3 eigenvalues

A3 ψn,l′,m = l′ ψn,l′,m , J3 ψn,l′,m = mψn,l′,m , (3.3)

where l′ = ±1,±2, ... and −(|l′| − 1
2 ) ≤ m ≤ |l′| − 1

2 . The eigenvalues of J2 in terms
of l′ follow from the relation J2 = A2

3 − 1
4 .

In section 3.3 we will derive the spectrum by constructing energy ladder operators,
but at this point we simply solve the Schrödinger equation, giving us the spectrum and the
energy eigenstates. Switching to spherical coordinates and using separation of variables,
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3. NONCOMPACT DYNAMICAL SYMMETRY OF A SPIN-ORBIT COUPLED OSCILLATOR

the angular part is found to be a linear combination of spherical harmonics Ylm(Ω̂)

χ+
lm =

√
l +m+ 1

2l + 1
Ylm

(
1
0

)
+

√
l −m
2l + 1

Yl,m+1

(
0
1

)
(3.4)

χ−lm =

√
l −m
2l + 1

Ylm

(
1
0

)
−
√
l +m+ 1

2l + 1
Yl,m+1

(
0
1

)
, (3.5)

where the spin states are diagonal in σz . Note that we momentarily switched to labeling
the states by l and ±, where L2χ±lm = l(l+ 1)χ±lm. The (unnormalized) radial part of the
eigenstates is the same for both ± states

Rkl(r) = rle−r
2/4L(−2k, 2l +

5

2
, r2/2) . (3.6)

The generalized Laguerre polynomial L, has a finite number of terms for these particular
values. The spectrum is given by

E =

{
2k + 3

2 l′ > 0

2k − 2l′ + 5
2 l′ < 0

, (3.7)

where k = 0, 1, . . .. The energy does not depend on m, which reflects the conservation
of total angular momentum J, but there is a bigger (accidental) degeneracy in the system.
For the +branch, the energy does not depend on l′, resulting in an infinite degeneracy at
every energy level. On the other hand, the –branch also has a degeneracy in l′, but it is
finite. We can express the energy in terms of a new quantum number n as

E = n+ 3
2 ,

{
l′ > 0 : n = 0, 2, . . .

l′ < 0 : n = 3, 5, . . .
. (3.8)

For n even, the energy levels have an infinite degeneracy, and for n odd, the allowed
values of l′ are l′ = −1, . . . , 1

2 (1 − n). The spectrum is depicted in fig. 3.1. We want to
stress that the infinite degeneracy of the +branch is only present when the strength of the
SOC term in the Hamiltonian is exactly ±ω.2

2If the strength is +ω, there is an infinite degeneracy in the –branch.
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FIG. 1: The spectrum of the spin-orbit coupled harmonic
oscillator. The blue dots represent the states of the +branch.
At each energy level they are infinitely degenerate with only
a lower bound at l� = 1. The green squares represent a state
of the finitely degenerate –branch. For every value of l� there
is at most one SU(2) multiplet.

where l� = ±1,±2, ... and −(|l�|− 1
2 ) ≤ m ≤ |l�|− 1

2 and
the eigenvalues of J2 follow from the relation J2 = A2

3− 1
4 .

The spectrum is the following

Enl�m = n + 3
2 , n = 0, 2, 4, . . . ; 3, 5, 7, . . . (3)

The even n states constitute the +branch (l� > 0) and
the odd n states the –branch (l� < 0). The spectrum is
shown in Fig. 1. Clearly, the energy does not depend on
m due to rotational symmetry, so the states form SU(2)
multiplets. But there is a bigger (accidental) degeneracy
in the system, due to the particular tuning of the strength
of the SO coupling. At each energy level of the +branch,
A3 takes values l� = 1, 2, ... giving infinite degeneracy.
On the other hand, the –branch has a finite degeneracy,
since l� = −1,−2, ..., 1

2 (1− n).
The aim of this paper is to understand the degenera-

cies in the spectrum from the point of view of an underly-
ing symmetry algebra. We therefore set out to construct
operators that commute with H and couple the differ-
ent SU(2) multiplets. Consider the following two vectors

(under �J) of Hermitian operators

M̃i = 1
4 (riA3 + A3ri) + 1

2

�
(�p× �J)i − ( �J × �p)i

�
(4)

Ñi = 1
2 (piA3 + A3pi)− 1

4

�
(�r × �J)i − ( �J × �r)i

�
(5)

Note the symmetry in the two definitions above under the
map ri → 2pi and pi → − 1

2ri, which is in fact of order

four. We remark that the Hamiltonian has not just this
discrete symmetry but the continuous U(1) version of it.
One may explicitly show that these two vectors commute
with the Hamiltonian, and are like spin- 1

2 generalizations
of a pair of classical symmetry vectors similar to the well-
known Runge-Lenz vector present in the Kepler problem.
When we compute the commutation relations of these op-
erators amongst themselves we run into terms nonlinear
in H and A3. This is very similar to what happens in the
Kepler problem, where the Runge-Lenz vector needs to
be rescaled in order to get the SO(4) symmetry algebra.

We will rescale the operators using the operator F =
H + 2A3 − 5

2 , which commutes with H,A3 and Ji and
has the following eigenvalues

Fψnl�m = (n + 2l� − 1)ψnl�m, (6)

Now define a set of rescaled operators in terms of M̃z, Ñz,
M̃± = 1√

2
(M̃x ± iM̃y) and Ñ± = 1√

2
(Ñx ± iÑy) in the

following way

A+ =
1√
2F

(M̃z − iÑz) (7)

B+ = − 1√
2F

(M̃+ − iÑ+) (8)

C+ =
1√
2F

(M̃− − iÑ−) (9)

A− = (M̃z + iÑz)
1√
2F

(10)

B− = −(M̃− + iÑ−)
1√
2F

(11)

C− = (M̃+ + iÑ+)
1√
2F

. (12)

For the scaling factor F to make sense we need to make
sure that F > 0 for all states in the Hilbert space. This
condition is met for the states of the +branch, but the
–branch includes states for which F = 0. We will address
this point after discussing the representations of SO(3, 2).

From the definitions of �J , A3 and (7-12) we can ex-
plicitly compute the commutation relations of the sym-
metry operators. They form a 10-dimensional (linear)
Lie algebra of rank 2, corresponding to the noncompact
algebra SO(3, 2). We recall that the corresponding group
consists of transformations that leave the quadratic form
x2

1 + x2
2 + x2

3 − x2
4 − x2

5 invariant. As Cartan subalgebra
we choose {J3, A3}, which both are compact generators,
leading to the root diagram shown in Fig. 2. The nonzero

Figure 3.1: The spectrum of the spin-orbit coupled harmonic oscillator. The blue dots represent the
states of the +branch. At each energy level they are infinitely degenerate with only a lower bound
at l′ = 1. The green squares represent states of the finitely degenerate –branch. In both cases, for
every value of l′ there is at most one SU(2) multiplet.

3.2 Symmetry algebra
The aim of the present chapter is to understand the degeneracies in the spectrum from
an underlying symmetry algebra. The authors of ref. [106] raised the following ques-
tion: does an accidental degeneracy always imply a symmetry algebra? They investigated
the degeneracies of the Hamiltonian in (3.1) and concluded that there is no such algebra.
Their conclusions were mainly based on the fact that a Lie algebra has either finite dimen-
sional nontrivial irreducible representations or only infinite dimensional ones, depending
on whether it is a compact or a noncompact algebra, respectively. As background mate-
rial, we work out the representation theory of SO(3) and its noncompact form SO(2, 1)
in appendix 3.A, where we explicitly show the differences in dimensionality of their rep-
resentations. Clearly, the spectrum of H contains both finite and infinite dimensional
representations, which is indeed puzzling. Moreover, the authors of ref. [106] constructed
operators that connect different SU(2) multiplets within one energy level by mapping
SU(2) highest weight states onto each other, but these operators do not commute with
the Hamiltonian. We will show that it is possible to construct operators that commute
with H and couple the different SU(2) multiplets, and that these operators have an un-
derlying noncompact Lie algebra structure.
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Consider the following two Hermitian vector operators

M̃i = 1
4 (riA3 +A3ri) + 1

2 ((p× J)i − (J× p)i) (3.9)

Ñi = 1
2 (piA3 +A3pi)− 1

4 ((r× J)i − (J× r)i) . (3.10)

One may explicitly show that M̃ and Ñ both transform as vectors under J and that they
commute with the Hamiltonian. Moreover they connect different SU(2) irreducible rep-
resentations with each other, so they are exactly the operators that we were looking for.
These operators are spin- 1

2 generalizations of the well-known Runge-Lenz (RL) vector
present in the Kepler problem.

We wish to determine the algebra M̃ and Ñ form together with J and A3, which
are the other symmetry operators. When computing the commutation relations of these
operators we run into terms nonlinear in H and A3. The explicit commutation rela-
tions are given in appendix 3.B. The nonlinearity encountered here is very similar to
what happens in the Kepler problem. In that case the RL vector ARL transforms as
a vector under orbital angular momentum L, but the different components commute as
[ARL
i , ARL

j ] = −iεijk2HKARL
k , where HK is the Hamiltonian of the Kepler problem.

The RL vector needs to be rescaled by (−2HK)−
1
2 in order to obtain the well-known

SO(4) commutation relations.3

3.2.1 Rescaled operators
With this in mind we set out to find an appropriate rescaling factor, which would enable
us to get a grip on the problem. The easiest way to find the correct rescaling is by looking
at the action of the symmetry operators on an energy eigenstate ψn,l′,m. In order to do so
we write the operators in a Cartan basis. First we redefine

M̃± = 1√
2
(M̃x ± iM̃y) (3.11)

Ñ± = 1√
2
(Ñx ± iÑy) . (3.12)

As Cartan subalgebra we choose {J3, A3} and the operators corresponding to the root
vectors are

J± = 1√
2
(Jx ± iJy) (3.13)

3For positive energy eigenstates, they form an SO(3, 1) algebra.
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Ã+ = 1√
2
(M̃z − iÑz) (3.14)

Ã− = 1√
2
(M̃z + iÑz) (3.15)

B̃+ = − 1√
2
(M̃+ − iÑ+) (3.16)

B̃− = − 1√
2
(M̃− + iÑ−) (3.17)

C̃+ = 1√
2
(M̃− − iÑ−) (3.18)

C̃− = 1√
2
(M̃+ + iÑ+) . (3.19)

The action of these operators on an energy eigenstate is

J±ψn,l′,m =
√

1
2 (l′ −m∓ 1

2 )(l′ +m± 1
2 )ψn,l′,m±1 (3.20)

Ã±ψn,l′,m =
√

1
2 (l′ −m± 1

2 )(l′ +m± 1
2 )(n+ 2l′ ± 1)ψn,l′±1,m (3.21)

B̃±ψn,l′,m =
l′

2|l′|
√

(l′ +m± 1
2 )(l′ +m± 3

2 )(n+ 2l′ ± 1)ψn,l′±1,m±1 (3.22)

C̃±ψn,l′,m =
l′

2|l′|
√

(l′ −m± 1
2 )(l′ −m± 3

2 )(n+ 2l′ ± 1)ψn,l′±1,m∓1 . (3.23)

Now it is straightforward to find the appropriate rescaling operator. Consider the operator
F = H+2A3− 5

2 , which commutes withH,A3 and Ji and has the following eigenvalues

Fψn,l′,m = (n+ 2l′ − 1)ψn,l′,m . (3.24)

The operators in eqs. (3.14-3.19) commute with F as [F, Ã±] = ±2Ã± , and similarly
for B̃± and C̃±. Now rescale them as

A+ =
1√
F
Ã+ , A− = Ã−

1√
F
, (3.25)

and again similarly for B̃± and C̃±. Note that the order of the operators is important
to ensure that A†+ = A− and that the right factor is obtained when acting on an energy
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3

A+

A−

J− J+

B+

B−

C+

C−

FIG. 2: Root diagram of the rescaled algebra corresponding
to SO(3, 2). It is of rank 2, where we choose as Cartan sub-
algebra {J3, A3}. The 8 roots are shown in the figure.

The action of these operators when acting on an H eigen-
state are

J±ψnl�m =
�

1
2 (l� −m∓ 1

2 )(l� + m ± 1
2 )ψnl�m±1 (21)

A±ψnl�m =
�

1
2 (l� −m ± 1

2 )(l� + m ± 1
2 )ψnl�±1m (22)

B±ψnl�m =
l�

2|l�|
�

(l� + m ± 1
2 )(l� + m ± 3

2 )ψnl�±1m±1

(23)

C±ψnl�m =
l�

2|l�|
�

(l� −m ± 1
2 )(l� −m ± 3

2 )ψnl�±1m∓1.

(24)

For the scaling factor F to make sense we need to make
sure that F > 0 for all states in the Hilbert space. This
condition is met for the states of the +branch, but the –
branch includes states where F = 0. We will address this
point after discussing the representations of SO(3, 2).

The unitary infinite dimensional representations of the
covering group of SO(3, 2) have been studied by a num-
ber of authors [6, 7], while they were completely classified
by Evans [8]. One of the reasons why they attracted a
lot of attention is because SO(3, 2) and SO(4, 1) are the
only simple Lie groups which can be contracted to the
Poincaré group.

The structure and weight multiplicities of the represen-
tations can be well described by studying the decomposi-
tions under the various maximal subalgebras of SO(3, 2)
We have the following possibilities:
(i) SO(2)× SO(3) generated by A3 and �J ,
(ii) SO(2, 1)× SO(2) generated by A3, A± and J3,
(iii) SO(2, 1)×SO(2, 1) = SO(2, 2) generated by B±, C±
and A3 ± J3.
Following Evan’s notation, a representation can be la-
beled by its extremal weight (q, s) in the same way that
one usually labels a representation of a compact group
by its highest weight. In this case q is the lower bound of
A3 and s labels the lowest SU(2) multiplet of the irrep,
i.e. q = 1 and s = 1

2 .
This representation was first classified by Ehrman [6]

and later Dirac wrote an explicit form of this representa-
tion [7], which is known as the Dirac singleton of spin 1

2 .

It is one of the singleton representations, because all its
weights have unit multiplicity. Whereas representations
of compact groups are uniquely labeled by the value of
the Casimir operators, non-compact groups might allow
more than one inequivalent irrep. This is the case for
the representation that we are considering. The weight
decomposition under the subalgebras (i-iii) is shown in
Fig. 3 for the irrep with l� > 0. The weight diagram of
the inequivalent irrep with l� < 0 is obtained by reflection
in the m-axis.

¶Stukje over niet-reguliere SO(3,1) inbedding¶
Now let us return to the physical unrescaled operators

Ã+ =
√

FA+ =
1√
2
(Mz − iNz) (25)

Ã− = A−
√

F =
1√
2
(Mz − iNz), (26)

where B̃±, C̃± are defined in the same fashion. We want
to check what the influence is of the rescaling factor F
on the singleton representation. In other words, knowing
the SO(3, 2) representation, how do we obtain the spec-
trum of the physical system? First note that the SU(2)
multiplets are not affected by the rescaling factor since
the Ji did not have to be rescaled. We mentioned before
that F > 0 for all the states of the +branch, so the coeffi-
cients of the physical unrescaled operators will be altered
by this factor, but we will still be left with an infinite di-
mensional representation characterized by the same lower
bound l� = 1 and with the same multiplicities. The –
branch, the states with negative A3 eigenvalue, also form
an infinite representation under SO(3, 2) in this case with
an upper bound, l� = −1, but the physical lowering op-
erators annihilate the states for l� = 1−n

2 . So this creates
a lower bound depending on the energy level, resulting
in a finite dimensional truncation of the representation.
This all perfectly agrees with the spectrum in Fig. 1.

We remark that the operator-dependent scale transfor-
mations (??,??) are very similar to the so-called Holstein-
Primakoff transformations [9]. The latter relate bosonic
oscillators (a, a†) to SU(2) spin-operators (S+, S−, Sz)
through

S+ =
�

(2s− a†a) a, S− = a†�(2s− a†a),

Sz = (s− a†a). (27)

The vanishing of S− acting on the state with Sz = −s
arises from the vanishing of the scale factor on this state,
which has a†a = 2s. We recall that a transformation very
similar to eq. (27) relates the symmetry operators for 2D
Landau levels on the plane to those pertaining to (finite
dimensional) Landau levels in a spherical geometry [1].

¶Dit moet herschreven worden¶Tentative geometrical
picture for 3D Landau levels. Explicit inspection of the
wavefunctions makes clear that the J operators pertain
to rotations in 3-space, while A± give scalings in radial

Figure 3.2: Root diagram of the rescaled algebra corresponding to SO(3, 2). It is of rank 2, where
we choose as Cartan subalgebra {J3, A3}.

eigenstate. For the scaling operator F to be well defined we need to make sure that F > 0
for all states in the Hilbert space. This condition is met for the states of the +branch, but
the –branch includes states for which F = 0. We will address this point after discussing
the representations of SO(3, 2).

From the definitions of Ji, A3, A±, B± and C± we can explicitly compute the com-
mutation relations of the rescaled symmetry operators, by acting on an energy eigenstate.
They form a ten dimensional (linear) Lie algebra of rank 2, corresponding to the noncom-
pact algebra SO(3, 2). The corresponding group consists of transformations that leave
the quadratic form x2

1 + x2
2 + x2

3 − x2
4 − x2

5 invariant. The two generators of the Car-
tan subalgebra {J3, A3} are compact generators, leading to the root diagram shown in
fig. 3.2. The nonzero commutators are

[A3, A±] = ±A± [J3, J±] = ±J±
[A3, B±] = ±B± [J3, B±] = ±B±
[A3, C±] = ±C± [J3, C±] = ∓C±
[J±, A±] = ±B± [J∓, B±] = ±A±
[J∓, A±] = ±C± [J±, C±] = ±A±
[A∓, B±] = ±J± [A±, C∓] = ∓J±
[J+, J−] = J3 [B+, B−] = −(A3 + J3)

[A+, A−] = −A3 [C+, C−] = −(A3 − J3) . (3.26)

Since the symmetry operators {Ji, A3, M̃i, Ñi} and the rescaling operator F are Hermi-
tian, we need to study the unitary representations of SO(3, 2), in order to describe the
spectrum in fig. 3.1. As we mentioned before, it is well known that the nontrivial uni-
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tary irreducible representations of a noncompact group are all infinite dimensional. The
unitary representations of the covering group of SO(3, 2) have been studied by a number
of authors [109, 110], and were completely classified by Evans [111]. One of the reasons
why they attracted a lot of attention is because SO(3, 2) and SO(4, 1) are the only simple
Lie groups which can be contracted to the Poincaré group.

3.2.2 SO(3, 2) representation theory
Following Evan’s notation, a representation can be labeled by its extremal weight (q, s)
in the same way that one usually labels a representation of a compact group by its highest
weight. The lower bound of A3 is indicated by q and the lowest SU(2) multiplet of the
irreducible representation is labeled by s. The representation that forms the +branch has
q = 1 and s = 1

2 . This representation was first found by Ehrman [109] and later Dirac
wrote an explicit form of this representation [110], which is known as the Dirac singleton
of spin- 1

2 . It is one of the singleton representations, because all its weights have unit
multiplicity. While representations of compact groups are uniquely labeled by the value
of the Casimir operators, noncompact groups might allow more than one inequivalent
representation, which is the case for the representation that we are considering.

For completeness we give the action of the rescaled SO(3, 2) operators on the eigen-
states of H , which is indeed in exact agreement with the singleton representation

J±ψn,l′,m =
√

1
2 (l′ −m∓ 1

2 )(l′ +m± 1
2 )ψn,l′,m±1 (3.27)

A±ψn,l′,m =
√

1
2 (l′ −m± 1

2 )(l′ +m± 1
2 )ψn,l′±1,m (3.28)

B±ψn,l′,m =
l′

2|l′|
√

(l′ +m± 1
2 )(l′ +m± 3

2 )ψn,l′±1,m±1 (3.29)

C±ψn,l′,m =
l′

2|l′|
√

(l′ −m± 1
2 )(l′ −m± 3

2 )ψn,l′±1,m∓1 . (3.30)

The structure and weight multiplicities of the representations can be well described by
studying the decompositions under the various maximal subalgebras of SO(3, 2). The
following are the regular subalgebras that share the same Cartan subalgebra:

(a) SO(2)× SO(3) generated by A3 and Ji ,
(b) SO(2, 1)× SO(2) generated by A3, A± and J3 ,
(c) SO(2, 1)× SO(2, 1) = SO(2, 2) generated by B±, C± and A3 ± J3 .

The weight decomposition under these subalgebras is shown in fig. 3.3 for the represen-
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Figure 3: The three decompositions of the singleton under the subalgebras (a-c). The
drawn lines connect the weights corresponding to the irreducible representations of these
subalgebras. The figure shows the irrep with l� > 0. The inequivalent irrep with l� < 0 can
be obtained by reflecting in the m-axis.

For completeness we give the action of the SO(3, 2) operators on the eigenstates of H, which
are indeed in exact agreement with those on the states of the singleton representation.

J±ψn,l�,m =
�

1
2(l� −m∓ 1

2)(l� + m ± 1
2)ψn,l�,m±1 (62)

A±ψn,l�,m =
�

1
2(l� −m ± 1

2)(l� + m ± 1
2)ψn,l�±1,m (63)

B±ψn,l�,m =
l�

2|l�|
�

(l� + m ± 1
2)(l� + m ± 3

2)ψn,l�±1,m±1 (64)

C±ψn,l�,m =
l�

2|l�|
�

(l� −m ± 1
2)(l� −m ± 3

2)ψn,l�±1,m∓1. (65)

The structure and weight multiplicities of the representations can be well described by
studying the decompositions under the various maximal subalgebras of SO(3, 2). The fol-
lowing are the regular subalgebras that share the same Cartan subalgebra:
(a) SO(2)× SO(3) generated by A3 and �J ,
(b) SO(2, 1)× SO(2) generated by A3, A± and J3,
(c) SO(2, 1)× SO(2, 1) = SO(2, 2) generated by B±, C± and A3 ± J3.

The weight decomposition under these subalgebras is shown in Fig. 3 for the irrep with
l� > 0. The weight diagram of the inequivalent irrep with l� < 0 is obtained by reflection in
the m-axis.

It turns out that there is one more regular maximal subalgebra of interest in this problem.
Clearly the SO(3, 2) has not just the SO(2, 2) we just discussed, but also a SO(3, 1) sub-
algebra which is maximal. It is generated by the Ji operators where we add the rescaled
M̃i operators, denoted by Mi (picking Ñi instead of M̃i gives an equivalent representation).
The Mi operators can be expressed in terms of the SO(3, 2) roots as follows

Mz = 1√
2
(A+ + A−), M± = 1√

2
(C∓ −B±) (66)
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Figure 3: The three decompositions of the singleton under the subalgebras (a-c). The
drawn lines connect the weights corresponding to the irreducible representations of these
subalgebras. The figure shows the irrep with l� > 0. The inequivalent irrep with l� < 0 can
be obtained by reflecting in the m-axis.

For completeness we give the action of the SO(3, 2) operators on the eigenstates of H, which
are indeed in exact agreement with those on the states of the singleton representation.

J±ψn,l�,m =
�

1
2(l� −m∓ 1

2)(l� + m ± 1
2)ψn,l�,m±1 (62)

A±ψn,l�,m =
�

1
2(l� −m ± 1

2)(l� + m ± 1
2)ψn,l�±1,m (63)

B±ψn,l�,m =
l�

2|l�|
�

(l� + m ± 1
2)(l� + m ± 3

2)ψn,l�±1,m±1 (64)

C±ψn,l�,m =
l�

2|l�|
�

(l� −m ± 1
2)(l� −m ± 3

2)ψn,l�±1,m∓1. (65)

The structure and weight multiplicities of the representations can be well described by
studying the decompositions under the various maximal subalgebras of SO(3, 2). The fol-
lowing are the regular subalgebras that share the same Cartan subalgebra:
(a) SO(2)× SO(3) generated by A3 and �J ,
(b) SO(2, 1)× SO(2) generated by A3, A± and J3,
(c) SO(2, 1)× SO(2, 1) = SO(2, 2) generated by B±, C± and A3 ± J3.

The weight decomposition under these subalgebras is shown in Fig. 3 for the irrep with
l� > 0. The weight diagram of the inequivalent irrep with l� < 0 is obtained by reflection in
the m-axis.

It turns out that there is one more regular maximal subalgebra of interest in this problem.
Clearly the SO(3, 2) has not just the SO(2, 2) we just discussed, but also a SO(3, 1) sub-
algebra which is maximal. It is generated by the Ji operators where we add the rescaled
M̃i operators, denoted by Mi (picking Ñi instead of M̃i gives an equivalent representation).
The Mi operators can be expressed in terms of the SO(3, 2) roots as follows

Mz = 1√
2
(A+ + A−), M± = 1√

2
(C∓ −B±) (66)
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Figure 3: The three decompositions of the singleton under the subalgebras (a-c). The
drawn lines connect the weights corresponding to the irreducible representations of these
subalgebras. The figure shows the irrep with l� > 0. The inequivalent irrep with l� < 0 can
be obtained by reflecting in the m-axis.

For completeness we give the action of the SO(3, 2) operators on the eigenstates of H, which
are indeed in exact agreement with those on the states of the singleton representation.

J±ψn,l�,m =
�

1
2(l� −m∓ 1

2)(l� + m ± 1
2)ψn,l�,m±1 (62)

A±ψn,l�,m =
�

1
2(l� −m ± 1

2)(l� + m ± 1
2)ψn,l�±1,m (63)

B±ψn,l�,m =
l�

2|l�|
�

(l� + m ± 1
2)(l� + m ± 3

2)ψn,l�±1,m±1 (64)

C±ψn,l�,m =
l�

2|l�|
�

(l� −m ± 1
2)(l� −m ± 3

2)ψn,l�±1,m∓1. (65)

The structure and weight multiplicities of the representations can be well described by
studying the decompositions under the various maximal subalgebras of SO(3, 2). The fol-
lowing are the regular subalgebras that share the same Cartan subalgebra:
(a) SO(2)× SO(3) generated by A3 and �J ,
(b) SO(2, 1)× SO(2) generated by A3, A± and J3,
(c) SO(2, 1)× SO(2, 1) = SO(2, 2) generated by B±, C± and A3 ± J3.

The weight decomposition under these subalgebras is shown in Fig. 3 for the irrep with
l� > 0. The weight diagram of the inequivalent irrep with l� < 0 is obtained by reflection in
the m-axis.

It turns out that there is one more regular maximal subalgebra of interest in this problem.
Clearly the SO(3, 2) has not just the SO(2, 2) we just discussed, but also a SO(3, 1) sub-
algebra which is maximal. It is generated by the Ji operators where we add the rescaled
M̃i operators, denoted by Mi (picking Ñi instead of M̃i gives an equivalent representation).
The Mi operators can be expressed in terms of the SO(3, 2) roots as follows

Mz = 1√
2
(A+ + A−), M± = 1√

2
(C∓ −B±) (66)

12

(c)

Figure 3.3: The three decompositions of the singleton under the subalgebras (a)-(c). The drawn
lines connect the weights corresponding to the irreducible representations of these subalgebras.
The figure shows the representation with l′ > 0. The inequivalent representation with l′ < 0 can
be obtained by reflection in the m-axis.

tation with l′ > 0. The weight diagram of the inequivalent representation with l′ < 0 is
obtained by reflection in the m-axis.

It turns out that there is one more regular maximal subalgebra of interest in this prob-
lem. Clearly the SO(3, 2) does not only have the SO(2, 2) we just discussed, but also
the conformal SO(3, 1) subalgebra which is maximal. It is generated by the Ji opera-
tors where we add the rescaled M̃i operators, denoted by Mi (picking Ñi instead of M̃i

gives an equivalent representation). The Mi operators can be expressed in terms of the
SO(3, 2) roots as follows

Mz = 1√
2
(A+ +A−) , M± = 1√

2
(C∓ −B±) . (3.31)

Note that we cannot choose the same Cartan subalgebra since A3 is not part of this sub-
algebra. When acting on the eigenstates of the Hamiltonian, we obtain exactly the same
coefficients and multiplicities as described by Harish-Chandra in ref. [112], where he
constructs the unitary infinite dimensional representations of SO(3, 1) in terms of the
irreducible representations of the SO(3) subalgebra. From this we may conclude that
the degeneracies in the spectrum also form an irreducible representation (principal se-
ries) under the (3 + 1)-dimensional Lorentz algebra. Bearing in mind the inclusions
SO(3, 2) ⊃ SO(3, 1) ⊃ SO(3), it is not so surprising that the singleton remains irre-
ducible under SO(3, 1), in contrast with the situation for SO(2, 2) depicted in fig. 3.3c.
However, the largest symmetry in our problem remains the SO(3, 2) algebra.
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3.2.3 Representations of the physical operators
Now let us return to the physical unrescaled operators

Ã+ =
√
FA+ =

1√
2

(M̃z − iÑz)

Ã− = A−
√
F =

1√
2

(M̃z − iÑz) , (3.32)

where B̃±, C̃± are defined in the same fashion. We want to determine what the influence
is of the rescaling factor F on the singleton representation. In other words, knowing
the SO(3, 2) representation, how do we obtain the spectrum of the physical system? First
note that the SU(2) multiplets are not affected by the rescaling factor since J has not been
rescaled and commutes with F . So we need to figure out which SU(2) representations
are present in the physical spectrum.

As was mentioned before F > 0 for all the states of the +branch, meaning that the
coefficients of the physical unrescaled operators will be altered by this factor, but we will
still be left with an infinite dimensional representation characterized by the same lower
bound l′ = 1 and with the same multiplicities. The –branch, the states with negative A3

eigenvalue, also form an infinite representation under SO(3, 2) in this case with an upper
bound l′ = −1, but the physical lowering operators annihilate the states for l′ = 1

2 (1−n).
This creates a lower bound depending on the energy level, resulting in a finite dimensional
truncation of the representation. This all perfectly agrees with the spectrum in fig. 3.1.

We remark that the operator-dependent scale transformations in (3.32) are very sim-
ilar to the so-called Holstein-Primakoff transformations [113]. The latter relate bosonic
oscillators {a, a†} to SU(2) spin operators {S±, Sz} through

S+ =
√

(2s− a†a) a , S− = a†
√

(2s− a†a) ,

Sz = (s− a†a) . (3.33)

The bosonic operators have infinite dimensional representations, but in this form they be-
come finite dimensional. For instance, when we act with S− on a state with Sz eigenvalue
−s it annihilates this state because a†a = 2s and the coefficient vanishes. A transforma-
tion very similar to (3.33) relates the symmetry operators for two-dimensional Landau
levels on the plane to those pertaining to finite-dimensional Landau levels in a spherical
geometry [93], as we will also see in chapter 4.
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3.3 Spectrum generating algebra
After determining the symmetry algebra and explaining why there are both finite and
infinite degeneracies present in this system, we will now describe operators that connect
different energy levels, the so-called spectrum generating algebra (SGA).4 Two operators
that commute with J3 and A3 are

K+ = − 1
2b
†
i b
†
i

K− = − 1
2bibi , (3.34)

where the b†i and bi are the usual bosonic raising and lowering operators

b†i = ri/2− ipi
bi = ri/2 + ipi

[bi, b
†
j ] = δij , [bi, bj ] = [b†i , b

†
j ] = 0 , (3.35)

in terms of which the harmonic oscillator part of the Hamiltonian can be expressed as
HHO = b†i bi + 3

2 . The operators K± raise or lower the energy by steps of two as can be
seen from their commutator

[H,K±] = ±2K±

[K+,K−] = −(H +A3 − 1) . (3.36)

It is evident that they form an SO(2, 1) algebra when we define K3 = H + A3 − 1.
The representation theory of this algebra is well known [114] and again the unitary irre-
ducible representations are all infinite dimensional, reflecting the fact that the energy is
not bounded from above.

The coefficients of these operators, when acting on an energy eigenstate, are

K±ψn,l′,m = 1
2

√
(n+ 1± 1)(n+ 2l′ ± 1) ψn±2,l′,m . (3.37)

4The authors of [105] also construct operators that connect different energy levels, but they use the radial
symmetry of the system and only consider one-dimensional radial operators. Our construction is coordinate
independent.
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Unitary irreducible representations of SO(2, 1) have either a lower or an upper bound
and can be uniquely defined by this bound. For every value of l′ and m there is an
infinite tower of states, corresponding to one such representation. From the coefficients
of K±, we see that for the +branch all representations have a lower bound n = 0 and the
representations of the –branch have a lower bound n = −2l′ + 1, in perfect agreement
with the physical spectrum.

Note that the algebra SO(2, 1) × SO(3) spanned by Ki and Ji is associated with
the radial symmetry of the system, allowing us to write the wave function as a product
of a radial and an angular function, see for example [115]. We would like to mention

that when we rescale K± by a factor of
√

(H − 1
2 )/F , these operators commute with the

entire symmetry algebra, resulting in a dynamical algebra SO(2, 1)× SO(3, 2).
We can also construct operators that move between the two branches. Consider

T+ =
∑

i

b†iσi , T− =
∑

i

biσi , (3.38)

in terms of which the Hamiltonian can be expressed as H = T+T−+ 3
2 .5 These operators

anticommute with A3 and map +branch states onto –branch states and vice versa: the
action on an energy eigenstate is

T+ψn,l′,m =
√
n+ 2l′ + 1 ψn+2l′+1,−l′,m

T−ψn,l′,m =
√
n ψn+2l′−1,−l′,m . (3.39)

We have not yet succeeded in extending the SO(3, 2) symmetry algebra to a complete
spectrum generating (super) algebra including both the K± and T± operators.

Let us end this chapter by summarizing the main results that have been presented. We
have explicitly constructed the symmetry algebra of a spin-orbit coupled harmonic os-
cillator given in (3.1). Besides the SU(2) symmetry coming from conservation of total
angular momentum we have identified six other operators that commute with H , and
which are a spin-generalized version of the Runge-Lenz vector. Commuting these sym-
metry operators results in nonlinear commutation relations, which were expected since
there are finite and infinite degeneracies in this model. We showed that a simple rescaling

5This structure clearly shows the supersymmetry of this model. H has a supersymmetric partner given by
H− = T−T+ + 3

2
. For more details see [116].
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of the operators leads to linear commutation relations which we recognize as an SO(3, 2)
algebra. The infinite degenerate branches of the spectrum are the singleton representation
of SO(3, 2) and the finite degenerate levels are a truncated version of the singleton. We
also identify four operators that connect different energy levels with each other, forming
the spectrum generating algebra.
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Appendix

3.A Representation theory SO(3) versus SO(2, 1)

In this appendix we classify all unitary representations of SO(3) and its noncompact
variant SO(2, 1). We do not present any new results, but rather show some features of
noncompact groups, which are often a less common topic in physics books than compact
groups. Moreover, both groups are subgroups of SO(3, 2), which was the symmetry
group that we studied in this chapter.

The algebra of the groups have three generators and their commutation relations are

[J1, J2] = ig33J3 , [J2, J3] = iJ1 , [J3, J1] = iJ2 , (3.40)

where g33 = 1 corresponds to SO(3) and g33 = −1 to SO(2, 1). All operators commute
with the Casimir operator defined by

J2 = J2
1 + J2

2 + g33J
2
3 . (3.41)

We choose to diagonalize in J2 and J3, which is the compact SO(2) subgroup in both
cases

J2|Xa〉 = X|Xa〉 , X ∈ R (3.42)

J3|Xa〉 = a|Xa〉 , a ∈ R . (3.43)

For the compact group it does not matter in which generator we choose to diagonalize,
but this is not true for SO(2, 1). Diagonalizing in one of the noncompact operators J1,2,
which generates an SO(1, 1) algebra, we are forced to choose a continuous basis rather
than a discrete one. For more details on this choice we refer to the literature [117, 118].
Here we continue with a discrete basis diagonal in the compact generator J3.

We can define raising and lowering operators J± = 1√
2
(J1 ± iJ2), which commute

as

[J+, J−] = g33J3 , [J3, J±] = ±J± , (3.44)

J2 = g33J
2
3 + 2J±J∓ ∓ g33J3 . (3.45)
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Rewriting the Casimir operator in terms of these ladder operators we find the coefficients

J±|Xa〉 =
1√
2

√
X − g33a(a± 1)|Xa± 1〉 . (3.46)

We see that the unitary representation must have

X − g33a(a± 1) ≥ 0 , (3.47)

and we know from [J3, J±] = ±J± that the value of a takes steps of unity. From this
point on let us consider the compact and noncompact cases separately.

Compact SO(3) We know from (3.41) that X ≥ 0 and it is easy to see that a(a± 1) ≥
− 1

4 , which means that the representations must have an upper and lower bound. Writing

X = amax(amax + 1) = amin(amin − 1) , (3.48)

implies that amin = −amax and a must be an integer or half integer. With amax = j and
a = m, we obtain

J2|j m〉 = j(j + 1)|j m〉 , j = 0,
1

2
, 1, . . . (3.49)

J3|j m〉 = m|j m〉 , −j ≤ m ≤ j (3.50)

J±|j m〉 =
1√
2

√
j(j + 1)−m(m± 1) |j m± 1〉 . (3.51)

Note that these coefficients are invariant under

j → −j − 1 (3.52)
m→ m , (3.53)

which would map to an equivalent representation. The multiplets of this compact group
are depicted in fig. 3.4, where we also indicated the equivalent irreps.

Noncompact SO(2, 1) Because of the minus sign in (3.41), X ∈ R can be negative
and the representations do not have to have two bounds, which implies the emergence of
infinite dimensional multiplets. Another difference is that this noncompact group has con-
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j

m

Figure 3.4: The irreducible unitary representations of SO(3). The states belonging to the same
multiplet are connected by dashed lines. Note that all multiplets are finite dimensional. The blue
solid circles and the red open squares are equivalent ways of labeling the irreps.

tinuous and discrete representations. The former has no bounds and the latter has either
an upper or a lower bound. Here we are only interested in the discrete representations, i.e.
the half-infinite ones.

Assume there is a lower bound X = −amin(amin − 1) or an upper bound X =
−amax(amax +1). Again it follows that amin = −amax, but we must conclude that amin ≥ 0
and amax ≤ 0, so we get two infinite representations labeled by the same J2 eigenvalue.
Writing amin = k ≥ 0 we get

J2|k a〉 = k(1− k)|k a〉 , k =
1

2
, 1,

3

2
, . . . (3.54)

J3|k a〉 = a|k a〉 , a = ±k,±(k + 1), . . . (3.55)

J±|k a〉 =
1√
2

√
k(1− k) + a(a± 1) |k a± 1〉 . (3.56)

The only finite dimensional representation is the trivial one labeled by k = 0. The repre-
sentations are shown in fig. 3.5 by blue solid circles. Note that the value of the Casimir
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a

k

1

2

1 2 3

Figure 3.5: The blue solid circles indicate the irreps of the covering group of SO(2, 1). States
belonging to the same multiplets are connected by dashed lines. The eigenvalue of the Casimir
operator does not determine the representation, there are two inequivalent irreps corresponding to
the same value k. An equivalent set of representations is depicted by the open red squares.

operator no longer uniquely labels an irrep. These coefficients are invariant under

k → −k + 1 (3.57)
a→ a , (3.58)

implying the existence of an equivalent set of representations, which is depicted in fig. 3.5
by red open squares.
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3.B Commutation relations physical operators
As mentioned in section 3.2 the commutation relations of the unrescaled symmetry oper-
ators contain nonlinear terms. We will explicitly give the nonzero commutation relations
here. The following five commutation relations are linear and are the same as those of
SO(3, 2)

[Ji, Jj ] = iεijkJk

[Ji, M̃j ] = iεijkM̃k

[Ji, Ñj ] = iεijkÑk

[A3, M̃i] = −iÑi
[A3, Ñi] = iM̃i . (3.59)

The next three nonzero commutation relations are nonlinear and therefore are not similar
to those of SO(3, 2)

[M̃i, M̃j ] = −iεijkJk(H + 3A3 − 3
2 )

[Ñi, Ñj ] = −iεijkJk(H + 3A3 − 3
2 )

[M̃i, Ñj ] = iδijA0(H + 3A3 − 3
2 ) + 1

4 iδij − i
2 (JiJj + JjJi) . (3.60)
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CHAPTER 4

Non-Abelian gauge potentials: Landau
problem and non-Abelian flux

This chapter is based on the following publication:

B. Estienne, S.M. Haaker, and K. Schoutens, PARTICLES IN NON-ABELIAN GAUGE PO-
TENTIALS: LANDAU PROBLEM AND INSERTION OF NON-ABELIAN FLUX, New J. Phys.
13, 045012 (2011).

In the previous chapter we considered a generalization of the two-dimensional Landau
levels to a three-dimensional system, where a non-Abelian background gauge field re-
sulted in a flat spectrum. We focused on understanding the degeneracy from the construc-
tion of a symmetry algebra. In the present chapter we will yet again investigate a system
with degenerate Landau levels. We return to two dimensions and analyze noninteracting
spin- 1

2 particles in an external non-Abelian field. The spectrum on a compact manifold
is found and the response to insertion of non-Abelian flux is investigated. Inspired by
the usual Abelian setting we will reflect on some of the fundamental differences with our
non-Abelian setup. This chapter can be divided into two main parts.

In section 4.1 we analyze and solve the Landau level problem in spherical geometry,
highlighting the fundamental role of the total angular momentum J = L+S, which com-
mutes with the Hamiltonian. In this setup, the non-Abelian field penetrating the sphere
agrees with the asymptotic (large radius) limit of the non-Abelian magnetic monopoles
first discussed by ’t Hooft and Polyakov [119, 120]. One reason to focus on spherical
geometry is that this context is known to be particularly useful for the purpose of a nu-
merical study of many-body states arising upon adding interactions to the Landau level
problem [93].

In section 4.2 we proceed to the process in which a non-Abelian flux is inserted in
a background of otherwise Abelian flux. Thought experiments involving insertion of
(Abelian) flux are often invoked as a probe of the characteristics of the quantum phase
of a many-body system. One well-known example is the argument by Laughlin that
we encountered in section 1.2. It originally showed that the Hall conductance must be
quantized, but it has another consequence. The insertion of a unit flux through a gapped
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medium with fractional Hall conductance σH = νe2/h leads to the nucleation of an exci-
tation with fractional electron charge e∗ = νe at the edge of the sample. Another example
is the case of the quantum spin Hall state, where insertion of flux leads to spin-full exci-
tations at the edge [14]. A motivation for the present study has been the desire to extend
these considerations to non-Abelian flux.

The first case we will consider is such that Jz = Lz + Sz remains a good quantum
number during the flux insertion. This suggests a prominent role for transitions where
particles flip their spin while at the same time changing their Lz quantum number by
(plus or minus) one unit, i.e. they jump to an adjacent Landau level orbital of the Abelian
problem. The resulting state is a spin-texture of unit electric and topological charge,
which is easily identified as a quantum Hall skyrmion. More general external fields lead
to more intricate textures as we will also show.

The appendices contain further details and background material. In appendix 4.A we
recall the main results of the Landau problem on the plane, and in appendix 4.B we treat
the S2 case. In appendix 4.C we present more details on the derivation of the spectrum
on the sphere in a non-Abelian background, and in appendix 4.D a detailed derivation of
non-Abelian flux insertion is given.

4.1 The non-Abelian Landau problem
In the present chapter we focus on the simplest case of non-Abelian gauge fields, where
the gauge field A and the field strength B are 2 × 2 Hermitian matrices. For the basics
on non-Abelian gauge fields and how they are realized we refer the reader to section 1.4.
The gauge group we focus on here is U(2) = U(1) × SU(2) and it decomposes into
an Abelian U(1) part, namely the fields proportional to the identity matrix I, and a non-
Abelian SU(2) component, whose fields are linear combinations of the Pauli matrices
σi.

The U(2) case is a natural choice as it is the simplest one allowing non-Abelian gauge
fields. However there is a deeper reason to focus on U(2) gauge fields. The physics
corresponding to a particle coupled minimally to such a non-Abelian gauge field is math-
ematically equivalent to the physics arising in a two-dimensional electron gas when taking
into account relativistic corrections in the Pauli-Schrödinger equation, such as the Thomas
term

HT = − q~
4m2c2

σ · (E× p) . (4.1)

This SOC term mimics the effect of a non-Abelian gauge potential

A ∼ E× σ . (4.2)
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4.1. THE NON-ABELIAN LANDAU PROBLEM

In this section we study the quantum problem of a nonrelativistic particle confined to a
two-dimensional manifold in the background of a uniform perpendicular U(2) magnetic
field. We present the spectra for two different geometries: the plane and the sphere.
It turns out that this Hamiltonian can be mapped exactly to that of an electron in two
dimensions in a perpendicular U(1) magnetic field, when the Thomas term is present and
an additional perpendicular U(1) electric field E is applied.

4.1.1 On the plane
In order to set this problem on the plane, we consider a perpendicular, uniform magnetic
field B = Bz ẑ, where Bz is a 2 × 2 Hermitian matrix. A basis can be chosen such that
the matrix Bz is diagonal

Bz = BI +
2

~
β′2σz = B

(
I + 2β2σz

)
, (4.3)

where we introduced the pure number β = β′

`B involving the magnetic length ` =
√

~
B

(for B > 0). We will set ~ = 1 in the following. The magnetic field is a U(2) matrix, and
is a superposition of a U(1) field B and a SU(2) field 2β2Bσz .

Since the magnetic field is no longer gauge invariant, as was discussed in section 1.4,
one has to specify the non-Abelian part of the potential A. The first kind of potential A =
1
2B×r boils down to an Abelian U(1)×U(1) gauge group, and the physics is simply that
of two noninteracting species of particles coupled to different Abelian magnetic fields,
like we encountered in the context of the QSHE. The second kind however, a constant
and noncommutative potential given by

A =
B

2



−yI
xI
0


+ β′



−aσy
a−1σx

0


 , (4.4)

is much more interesting and leads to new physics [121–124]. The Hamiltonian describ-
ing a particle confined to a plane in this non-Abelian background is

H =
1

2m
(p−A)2 . (4.5)

It turns out that this problem can be mapped exactly to the Hamiltonian of a two-dimensional
electron in the presence of both Rashba and Dresselhaus spin-orbit interactions, and it was
first solved in this context by Zhang [125].
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The system in (4.5) enjoys the translation symmetry of the plane. The magnetic trans-
lation operators are insensitive to the non-Abelian part of A since it is uniform, and have
the usual expressions

Tx =
(
−i∂x −

y

2`2

)
, Ty =

(
−i∂y +

x

2`2

)
, (4.6)

which implies the following commutation relations

[a ·T,b ·T] = −i (a× b) · ẑ
`2

I . (4.7)

The r.h.s. is simply the flux of the Abelian part of the magnetic field BI through the
parallelogram delimited by the vectors a and b, and the (Abelian) magnetic length scale
is `. Only the Abelian part of the magnetic field is quantized, and the number of states in
a given Landau level will therefore depend on the Abelian field strength B.

In the next section we will solve this problem on the sphere. With this in mind, we
demand rotational symmetry around the ẑ-axis, and focus on the symmetric gauge

A =
B

2



−yI
xI
0


+ β′



−σy
σx
0


 . (4.8)

This gauge choice corresponds to the absence of Dresselhaus interaction, and the Hamil-
tonian in (4.5) is much simpler to solve in this case. Moreover it can be mapped to a
Thomas term in (4.1) in the presence of a perpendicular uniform electric field E ∼ β′ẑ.

The Hamiltonian can be expanded as

H = ωc

(
a†a+

√
2β(a†σ+ + aσ−) +

1

2
(1 + 2β2)

)
, (4.9)

where a, a† are the usual annihilation and creation operators appearing in the Landau
problem (see appendix 4.A). Up to a change of spin basis U = σx, eq. (4.9) is equal
to the celebrated Jaynes-Cummings Hamiltonian, and it is a straightforward exercise to
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4.1. THE NON-ABELIAN LANDAU PROBLEM

obtain its spectrum

E0 = ωc
(

1
2 + β2

)
, (4.10)

E±n = ωc

(
n±

√
2β2n+ 1

4 + β2

)
. (4.11)

4.1.2 On the sphere
It can be rather instructive to solve such a problem on a sphere instead of the plane. Since
the surface of the sphere is finite, the degeneracy of the Landau levels becomes finite too,
which is very interesting for numerical studies. Moreover the translation invariance of the
plane is promoted to the rotational symmetry of the sphere, and the spectrum decomposes
into SU(2) multiplets. In the Abelian case this geometry was first solved in [126, 127],
and later used by Haldane [93] in the context of the QH effect. We refer the reader to
appendix 4.B for more details on the Abelian problem on the sphere.

Field configuration

A uniform perpendicular magnetic field implies the presence of a magnetic monopole at
the center of the sphere. In the Abelian case, as explained in section 1.1 and repeated
in appendix 4.B, the corresponding potential AAb must have a singularity (Dirac string)
somewhere on the sphere, for instance at the south pole θ = π

AAb =
NΦ

2

1− cos(θ)

r sin(θ)
φ̂ . (4.12)

When Dirac’s quantization condition NΦ ∈ Z is satisfied, this singularity has no physical
consequence as it can be moved around through gauge transformations [31]. It implies the
well-known quantization of the magnetic flux piercing the sphere, which must be equal to
an integer number of flux quanta NΦ

∫

S

B · dS = 2πNΦ ⇒ Br =
NΦ

2r2
. (4.13)

To the U(1) potential in (4.12) we add an SU(2) component A(α) = AAb + ANA(α),
where

ANA(α) = α
r× σ

r2
. (4.14)
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Once again this corresponds to a Thomas term as in (4.1) with a radial uniform electric
field E ∼ αr̂. As we will see below, this is the correct extension of the symmetric gauge
on the plane in (4.8). The corresponding magnetic field is

Br =
NΦ

2r2
− 2α(1− α)

(r · σ)

r3
. (4.15)

As the radial U(1) field is created by a magnetic monopole, it is not very surprising that
the SU(2) counterpart involves a non-Abelian monopole. Indeed, the potential ANA =
α r×σ

r2 is the large distance asymptote of a true non-Abelian monopole [119,120], and has
no singularity on the sphere. Since we only consider external fields, ANA does not have
to satisfy the field equations and α can be any real number.

Hamiltonian and spectrum

The details about the derivation of the spectrum of a particle confined to a sphere of radius
r in this non-Abelian background can be found in appendix 4.C, while here we give the
main results. The Hamiltonian is given by

H(α) =
1

2mr2

[
r× (p−A(α))

]2
, (4.16)

which is a scalar under global rotations generated by J = L + S, where L generates
magnetic angular momentum (see appendix 4.C) and S = 1

2σ is the spin operator. Its
eigenstates form SU(2) multiplets corresponding to the decomposition of the Hilbert
space into irreducible representations of J

H = (j0)⊕ 2 (j1)⊕ 2 (j2)⊕ · · · ⊕ 2 (jn)⊕ · · · , (4.17)

where jn = NΦ−1
2 + n. The corresponding eigenvalues are

E0(α) =
1

2mr2

(
NΦ

2 − 2α(1− α)
)
, (4.18)

E±n (α) =
1

2mr2

(
n(NΦ + n)− 2α(1− α)±

√
(2α− 1)

2
n (NΦ + n) +

(
NΦ

2

)2)
.

(4.19)

As can be seen in fig. 4.1, multiple level crossings occur. This also happens in the planar
case [123], which can be recovered from the sphere in the limit of infinite radius as we
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Figure 4.1: Band structure for the non-Abelian Landau problem on the sphere as a function of the
non-Abelian field strength α. This case corresponds to NΦ = 7 Abelian flux quanta, and only the
lowest part of the spectrum is shown.

will show now.

Recovering the plane

The non-Abelian field ANA we considered on the sphere, is indeed the correct extension
of the planar symmetric gauge in (4.8). The planar problem is recovered by taking the
sphere radius r →∞ while keeping constant the gauge field strength on the surface

NΦ

2r2
∼ B ,

α

r
∼ β′ =

β√
B
. (4.20)

The vector potential and the magnetic field in this limit become

A→ B

2



−yI
xI
0


+ β′



−σy
σx
0


 , B→ B

(
I + 2β2σz

)
ẑ . (4.21)
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It is straightforward to check that the eigenvalues of the Hamiltonian E±n (α) behave in
the planar limit as

E0(α) → ωc
(

1
2 + β2

)
, (4.22)

E±n (α) → ωc

(
n±

√
2β2n+ 1

4 + β2

)
, (4.23)

reproducing the planar spectrum. Moreover one can expand the Hamiltonian on the sphere
in terms of L

H =
1

2mr2

[
L2 −

(
NΦ

2

)2

+ 2α

(
L +

NΦ

2

r

r

)
· σ + 2α2

]
, (4.24)

and using the Holstein-Primakoff representation

L+ = b†
√
NΦ + 2a†a− b†b , (4.25)

L− =
√
NΦ + 2a†a− b†b b , (4.26)

Lz = b†b− NΦ

2
− a†a , (4.27)

we recover the planar Hamiltonian

H → ωc

[(
a†a+ 1

2

)
+
√

2β
(
aσ + a†σ+

)
+ β2

]
. (4.28)

That we indeed recover the planar Hamiltonian is not surprising in view of the mapping
of this problem consisting of a spin- 1

2 electron under an effective non-Abelian potential,
to the Thomas term with a perpendicular electric field. Indeed, the infinite radius limit of
a sphere in a radial E and B field is clearly equal to the plane under perpendicular E and
B fields (keeping the field strength constant).

In summary, in this section we analyzed the non-Abelian Landau problem on the sphere
and obtained the spectrum. The degeneracy of Abelian Landau levels is preserved, and
the number of states per area remains 1/`2, as we expected since the magnetic translation
operators were not affected by the non-Abelian part of the field configuration. In the next
part of this chapter we will focus on the response of an Abelian configuration on the plane
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to the insertion of non-Abelian flux.

4.2 Adiabatic insertion of non-Abelian flux
We wish to consider the insertion of non-Abelian flux in an IQH fluid. In the Abelian
case, the celebrated Laughlin argument shows that the insertion of a quantum of Abelian
flux leads to the accumulation of electric charge ±νe, with ν the filling fraction of the
QH liquid. In section 1.2 we repeated the argument of Laughlin and showed how the
adiabatic insertion of flux leads to a shift of the single-particle states. This argument is
easily adjusted to a disc geometry, which we will use in the following.

The background magnetic field corresponds to a vector potential Aφ = Br/2 and we
adiabatically insert flux by adding δAφ = Φ(t)/φ0r to the Hamiltonian. This does not
result in a contribution to the magnetic field away from the origin. After inserting one unit
of flux, the system can be mapped back to the original one and the LLL states labeled by
their Lz quantum number shift like

|m〉 → |m+ 1〉 . (4.29)

For more details on these eigenstates see appendix 4.A.
In the present chapter we will start from an IQH system and insert a non-Abelian field

configuration δA centered around the origin as done for the Abelian situation described
above. We choose δA in such a way that

(i) it generates no magnetic field away from the origin,
(ii) it can be removed by a gauge transformation.

We start from a system where a nonrelativistic spin- 1
2 particle confined to the plane is

subject to an external perpendicular magnetic field, Bz = BI. For the vector potential we
choose the symmetric gauge and express it in cylindrical coordinates as

Aφ =
Br

2
I . (4.30)

The Hamiltonian of the system H = 1
2m (p− qA)2I, acts identically on both spin states,

i.e. the Landau levels are doubly degenerate. We only consider the LLL and write for the
eigenstates |m, ε〉 where ε ∈ {↑, ↓} are the σz eigenstates.

In the main part of this section we will present two particular field configurations la-
beled byM = 0 andM = −1, and derive the effect of inserting such a field configuration
into the system. A generic configuration, labeled by an integer M of which these two are
specific cases, can be found in appendix 4.D. There we also give a more detailed deriva-
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Figure 4.2: Mixing coefficients um(λ) and vm(λ), for two different values of λ. Around m ∼
1/(2λ2), um(λ) and vm(λ) are equal to each other.

tion, to avoid any cumbersome equations in the main body of this chapter, and we explain
how the label M can be interpreted.

Mimicking the insertion of Abelian flux briefly mentioned at the start of this section,
we will insert a gauge field in such a way that no additional magnetic field is created away
from the origin. Furthermore, we choose a symmetric gauge and make the simplification
∂z(δA) = 0. The field can be expressed as a pure gauge

δA = iU(λ)∇U†(λ) , (4.31)

for some unitary matrix U(λ), which depends on a parameter λ controlling the adiabatic
process. The evolved Hamiltonian is now easily found to be

H(λ) =
1

2m

(
(p− qA)I− qδA

)2
= U(λ)H(0)U†(λ) . (4.32)

Since this is just a gauge transformation, we immediately see that the gap ~ωc separating
the subspace of ground states from excited states at every point in parameter space re-
mains unchanged. Also, the eigenstates of the evolved Hamiltonian in (4.32) are simply
U(λ)|m, ε〉. To find the state we end up in after this adiabatic process, we need to include
the Berry matrix as was explained in section 1.4. We now turn to explicit results for the
gauge configurations with M = 0 and M = −1.
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The case M = 0

The M = 0 non-Abelian field configuration is as follows

δAr(λ) =
−λ

1 + (λr)2
σφ

δAφ(λ) =
−λ2r

1 + (λr)2
σz +

λ

1 + (λr)2
σr , (4.33)

where we introduced the Pauli matrices in cylindrical coordinates, σr = σ · r̂ and σφ =

σ · φ̂. The reason we label this field by M = 0 is stated in appendix 4.D and will become
especially clear for the caseM = −1. Note that for r � 1/λ this field configuration does
not depend on λ and behaves as

δAφ ∼ −
1

r
σz +O(

1

r2
) . (4.34)

The field configuration in this limit corresponds to shifting the orbital of a spin-↑ (spin-↓)
particle by +1 (−1), precisely what would happen by inserting an Abelian flux quantum,
where the sign depends on the spin of the particle. From this point onwards, we will refer
to such a field as a σz-flux quantum, to explicitly distinguish it from an insertion of a spin
independent Abelian flux quantum.

Our starting point is a fully polarized IQH state, represented as a product state|ψ(0)〉 =⊗mf
m=0 |m ↑〉, which has the first (mf + 1) LLL orbitals filled with spin-↑ particles. We

adiabatically insert the non-Abelian flux of (4.33) by slowly sweeping the parameter from
λ = 0 to its final value. Precisely as in the Abelian case, the evolved state is gauged back
to the initial situation so that the final state lives in the same Hilbert space as the initial
one. The explicit calculation of the Berry matrix can be found in appendix 4.D, and here
we merely give the final state

|ψ0(λ)〉 =

mf⊗

m=0

(
um(λ)|m ↑〉 − vm(λ)|m+ 1 ↓〉

)
. (4.35)

The mixing coefficients um(λ) and vm(λ) depend on both the orbital quantum numberm
and the adiabatic parameter λ. Their explicit form is given in (4.75) and they are plotted
in fig. 4.2 as a function of m, for two values of λ. Around orbital number m ∼ 1/(2λ2),
um(λ) and vm(λ) cross, resulting in a vanishing of the z-component of the spin. The
asymptotic behavior of the mixing coefficients as m → ∞ can be read off from (4.76).
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Figure 4.3: Density profile for different values of λ of a product state where the first 150 orbitals
are filled with spin-↑ particles. Before flux insertion (λ = 0), there is a flat profile, but for finite
values of λ, a quasihole of unit charge is created around the origin.

For large m, corresponding to a radius r � 1/λ, the adiabatic process boils down to a
shift |m ↑〉 → |m + 1 ↓〉. This follows directly from the Berry matrix calculation, but
it can be understood simply from the conservation of Jz = Lz + 1

2σz . At large distance
the flux we insert is essentially a σz-flux quantum as in (4.34), and it induces a charge
transfer |m〉 → |m + 1〉, since all particles are spin-↑, changing the angular momentum
Lz by one unit. Then the only way to accommodate the conservation of Jz is through an
accompanying spin flip | ↑〉 → | ↓〉.

We can analyze the effect of this adiabatic insertion on the product state by looking at
the density and spin profile of the final state in (4.35). The density is given by

ρ(r;λ) =

mf∑

m=0

r2me−r
2/2

2mm!2π

(
um(λ)2 + vm(λ)2 r2

2(m+ 1)

)
, (4.36)

and is shown in fig. 4.3 for four different values of λ. The solid line is a flat profile and
shows the droplet before insertion of the non-Abelian field configuration. Once the flux is
inserted, charge is depleted from the origin and deposited at the edge of the droplet. This
corresponds to exactly one unit of charge.

The expectation value of spin in the z-direction of these configurations is depicted in
fig. 4.4. The state prior to flux insertion is the blue solid line, which has a trivial spin-
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Figure 4.4: Expectation value of the z-component of the spin field in a product state where the initial
state has its first 150 orbitals filled with spin-↑ particles. These profiles occur after insertion of non-
Abelian flux, for different values of λ. An insertion of finite λ creates a nontrivial spin-texture. The
radius at which the expectation value of σz equals zero is around r ∼ 1/λ.

texture. Upon increasing λ, particles move one orbital out while flipping their spin. This
motion starts at the outer edge of the sample and propagates towards the center. When the
final value of λ has been reached, the particles constitute a spin-texture of size 1/λ with
spin-↑ at the origin and spin-↓ at the edge of the droplet. Fig. 4.5a shows the spin field
after inserting a flux parameterized by λ = 1/3. Fig. 4.5b displays the (x, y)-components
of the spin field, showing that the spins have an in-plane winding number of 1.

The charged spin-texture created by the insertion of non-Abelian flux is recognized
as a quantum Hall skyrmion of unit electric charge, q = e, and unit topological charge,
Qtop = 1. The topological charge, given by the Pontryagin index Qtop, measures the
winding of the spin vector around the system (see, for example, chapter 7 of ref. [128]).
The plane can be mapped to a sphere by identifying the points at infinity with the south
pole, resulting in a mapping of the spin field to the sphere characterized by the homotopy
group π2(S2) = Z.

The case M = −1

The second non-Abelian field configuration we will treat corresponds to the M = −1
case of the generic flux presented in appendix 4.D. We will insert the field adiabatically

71



4. NON-ABELIAN GAUGE POTENTIALS: LANDAU PROBLEM AND NON-ABELIAN FLUX

(a)
-20 -10 0 10 20

-20

-10

0

10

20

(b)

Figure 4.5: Spin-texture obtained after inserting non-Abelian flux with λ = 1/3. The three compo-
nents of the spin field are shown in fig. (a). At the origin the spin points up and at the edge it points
down. Fig. (b) depicts the x- and y-components of the spin field. These two figures clearly show
that a skyrmion with in-plane winding 1 is created.
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Figure 4.6: Mixing coefficients of (4.39) for two different values of the adiabatic parameter λ. The
point where um(λ) = vm(λ) is around m ∼ λ2/2. The asymptotes of the coefficients are exactly
opposite to the M = 0 case.
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Figure 4.7: Density of a product state before and after flux insertion for different values of λ. The
flat profile depicts the initial product state. For λ = 0 a σz-flux quantum is inserted creating a
quasihole at the origin. At finite λ, there is still a density depletion around the origin, but it is less
sharp.

into the initial setting of (4.30) and it is given by

δAr(λ) =
λ

λ2 + r2
σφ

δAφ(λ) = − r

λ2 + r2
σz −

λ

λ2 + r2
σr . (4.37)

There is a subtlety which did not arise in the previously discussed configuration and which
will shed light on why we label the different fields by an integerM . In this case δAφ(0) =
−1
r σz 6= 0, which is the insertion of a σz-flux quantum, resulting in a shift of orbital

number depending on the spin of the particle

|m ↑〉 → |m+ 1 ↑〉 , |m ↓〉 → |m− 1 ↓〉 . (4.38)

The adiabatic process consists of two parts now. We start by adiabatically inserting a
σz-flux quantum, leading to the configuration in (4.37) at λ = 0. After that we slowly
sweep λ to its final value. Note that at every point of the adiabatic process we are able to
find the eigenstates of the evolved Hamiltonian and therefore we know the Berry matrix.
Again starting from a product state of spin-↑ particles and gauging back to the original
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Figure 4.8: Expectation value of the z-component of the spin field, in a product state in (4.39) for
different values of λ. The radius at which the state is unpolarized is around r ∼ λ.

Hamiltonian after the adiabatic process we get a final state

|ψ−1(λ)〉 =

mf⊗

m=0

(
um+1(λ)|m+ 1 ↑〉 − vm+1(λ)|m ↓〉

)
, (4.39)

where the coefficients can be found in (4.75) and are plotted in fig. 4.6. The scale at which
the spins are flipped is set by r ∼ λ.

The density of the state in (4.39) is shown in fig. 4.7, before flux insertion, and for the
values λ = 0, 1, 10. Again charge is depleted from the origin, but this time the depth of the
hole is largest for λ = 0, i.e. after the insertion of a σz-flux quantum. Upon increasing λ,
particles move inward while flipping their spin. This motion starts at the origin and moves
out towards the edge of the sample. The resulting spin-texture is depicted in figs. 4.8 and
4.9. The electric charge q = e is the same as for M = 0, but the topological charge
Qtop = −1 has opposite sign.

Before we turn to the conclusions of this chapter, we would like to remark on the non-
triviality of the final state after a flux insertion. At first sight it may seem that the system
should stay trivial, as we are always a gauge transformation away from the original setup.
Recall that a changing flux induces an electric field. So even though the magnetic field
does not change due to the flux insertion and we are always a gauge transformation away
from the initial state, there is an electric field that acts on the charges of the system, caus-
ing the nontrivial charged spin-texture.
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Figure 4.9: Fig. (a) shows the spin field for a final state labeled by λ = 5. At the origin the spin is
pointing down, at the edge it points up. Fig. (b) shows the x- and y-components of the same spin
field, from which we see that this flux insertion creates a skyrmion with in-plane winding number
−1.

In this chapter we solved the non-Abelian Landau problem on the sphere, and analyzed
the charge and spin dynamics induced by the insertion of non-Abelian flux in an otherwise
Abelian background. Let us end now with a few remarks.

In the usual (Abelian) QH setting, skyrmions arise due to a balance between the effects
of the Zeeman energy, which favors single overturned spins, and the Coulomb interaction,
which favors configurations with small spin-gradients [129]. It is quite remarkable that
our procedure of driving the noninteracting polarized electron gas with non-Abelian ex-
ternal flux leads to the very same skyrmion configurations.

Repeating the non-Abelian flux insertion in a background of a ν = 2 IQH state, with
both the spin-↑ and spin-↓ LLLs completely filled, has a very different effect. In this case,
the bulk state cannot accommodate any spin-flips and the effects of the flux insertion are
limited to the edges. Inserting non-Abelian flux through the central hole in a Corbino disc
leads to neutral Sz = ±1 excitations at both the inner and the outer edge. This situation is
in many ways reminiscent of a thought experiment, where a minimal amount of Abelian
flux inserted into a two-dimensional quantum spin Hall topological phase acts as a spin
pump, resulting in neutral Sz = ±1/2 excitations at the edges [33].

The details of the charge and spin dynamics associated to the insertion of non-Abelian
flux depend on the specific form of our gauge potentials and on the way these depend
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on the sweep-parameter λ. One expects that many features, in particular the topolog-
ical quantum numbers characterizing the resulting spin-textures, will be robust against
changes in the detailed shape of the external gauge potentials.
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4.A. LANDAU LEVELS ON THE PLANE

Appendix

4.A Landau levels on the plane
For the purpose of being self-contained, and also in order to fix notations, we recall the
main results of the Landau problem on the plane. Some aspects have been discussed in
chapter 1 as well, but we will go into more detail here.

We consider a particle of charge q and mass m confined to a plane, under an external
perpendicular magnetic field B = Bẑ (with qB > 0). We choose the symmetric gauge

A =
B

2



−y
x
0


 =

Br

2
φ̂ , (4.40)

which behaves as a vector under rotations around ẑ. The only scale of the classical prob-
lem is the cyclotron frequency ωc

ωc =
qB

m
. (4.41)

The quantum mechanical problem has an additional scale, the magnetic length `

` =

√
~
qB

. (4.42)

The Hamiltonian in the symmetric gauge reads

H =
1

2
ωc

((
−i`∂x +

y

2`

)2

+
(
−i`∂y −

x

2`

)2
)
. (4.43)

It is very convenient to go to complex coordinates (rescaled by the magnetic length), and
to introduce two commuting families of creation and annihilation operators

a =
√

2
(
∂̄ +

z

4

)
a† =

√
2
(
−∂ +

z̄

4

)
(4.44)

b =
√

2
(
∂ +

z̄

4

)
b† =

√
2
(
−∂̄ +

z

4

)
, (4.45)
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where ∂ = ∂
∂z and ∂̄ = ∂

∂z̄ . In this notation the Hamiltonian and angular momentum take
the following form

H = ωc
(
a†a+ 1

2

)
, Lz = b†b− a†a , (4.46)

from which the spectrum En = ωc(n + 1/2) follows immediately. Since b and b† com-
mute with the Hamiltonian, states labeled by different eigenvalues of Lz are infinitely
degenerate. The subspace of energy En = ωc(n+ 1/2) is called the nth LL.

Denoting by n and m the eigenvalues of a†a and b†b respectively, the Hilbert space
is spanned by the states |n,m〉 for n,m ≥ 0. The quantum number m is related to the
value of the angular momentum as follows Lz|n,m〉 = (m−n)|n,m〉. The explicit form
of the wave functions is known and involves a special class of functions called Hermite
polynomials. Here we focus on the LLL n = 0, which is obtained by acting with b† on
the state |0, 0〉

|0,m〉 =

(
b†
)m

√
m!
|0, 0〉 → 〈z|0, n〉 =

1√
2π

zm√
2mm!

exp(−zz̄/4) . (4.47)

4.B Landau levels on the sphere
In this section of the appendix we will state the main results of the Landau problem on
the sphere, and set q = ~ = 1.

Field configuration: magnetic monopole

On the sphere, a uniform perpendicular magnetic field B(r) = NΦ

2r2 r̂ implies the presence
of a magnetic monopole at the center of the sphere, and the potential A(r) must have a
Dirac string, as we already encountered in section 1.1. The gauge where the singularity
lies at the south pole

A =
NΦ

2

1− cos(θ)

r sin(θ)
φ̂ , (4.48)

and the gauge where the singularity lies at the north pole

A = −NΦ

2

1 + cos(θ)

r sin(θ)
φ̂ , (4.49)

are related by the unitary transformation U = eiNΦφ, which implies that NΦ has to be an
integer.
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Hamiltonian and spectrum

The Hamiltonian of a particle confined to the sphere of radius r in the background of such
a magnetic monopole is

H =
Λ2

2mr2
, with Λ = r× (p−A) . (4.50)

The operators Λa have the following (gauge invariant) commutation relations

[Λa,Λb] = iεabc

(
Λc + (r ·B)rc

)
, (4.51)

and the generators of (magnetic) rotations have the form

L = Λ− (r ·B)r = Λ− NΦ

2
r̂ . (4.52)

They generate an SU(2) algebra

[La, Lb] = iεabcLc , (4.53)

and the Hamiltonian can be expressed as a Casimir L2. Indeed the relation

Λ2 = L2 −
(
NΦ

2

)2

, (4.54)

ensures that all La commute with the Hamiltonian and gives the spectrum of the Hamil-
tonian

El =
1

2mr2

(
l(l + 1)−

(
NΦ

2

)2
)
. (4.55)

The last statement simply comes from the SU(2) algebra obeyed by La, which forces
the eigenvalues of L2 to be of the form l(l + 1) where l ∈ 1

2N. However, not all the
values of l are part of the physical spectrum. Using the explicit expression of L, Wu and
Yang [126,127] obtained the following decomposition of the Hilbert space into irreducible
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representations of the SU(2) algebra generated by L

H =

(
NΦ

2

)
⊕
(
NΦ

2
+ 1

)
⊕ · · · ⊕

(
NΦ

2
+ n

)
⊕ · · · (4.56)

and the (Abelian) spectrum on the sphere reads

En =
1

2mr2

(
n(Nφ + n+ 1) +

NΦ

2

)
, n ≥ 0 . (4.57)

4.C Details about the non-Abelian field on the sphere
In this section of the appendix we derive the spectrum of the Hamiltonian

H(α) =
1

2mr2

[
r×

(
p−A(α)

)]2
, (4.58)

which describes a particle confined to a sphere of radius r in the non-Abelian background
potential

A(α) = AAb + α
r× σ

r2
, (4.59)

where AAb is the U(1) potential given in (4.48). Note that there is a gauge transformation
mapping α→ 1− α implemented by the unitary transformation U = r̂ · σ = σr.

Rotational symmetry and decomposition of the Hilbert space

There are two sets of SU(2) generators in this problem:

(i) the usual (Abelian) action on the coordinates implemented by
L = r× (p−AAb)− NΦ

2 r̂ defined in (4.52) ,

(ii) the rotations in spin space generated by S = 1
2σ .

The Hamiltonian we are considering is not invariant under L and S separately. However,
it is a scalar under global rotations generated by J = L + S, as can be seen from the
expansion in terms of J

H(α) =
1

2mr2

[
J2 +

1

4
− 2α(1− α) + (2α− 1)

(
J · σ − 1

2
+
NΦ

2
U

)
+
NΦ

2
U

]
. (4.60)

Therefore this Hamiltonian is block diagonal with respect to the decomposition of the
Hilbert space into irreducible representations of J. This decomposition follows directly

80



4.C. DETAILS ABOUT THE NON-ABELIAN FIELD ON THE SPHERE

from the Abelian one in (4.56)

H =

(
NΦ − 1

2

)
⊕ 2

(
NΦ + 1

2

)
⊕ 2

(
NΦ + 3

2

)
⊕ 2

(
NΦ + 5

2

)
⊕ · · · . (4.61)

Spectrum

Working in the subspace J2 = j(j + 1), we simply need to diagonalize the term X =
(2α− 1)

(
J · σ − 1

2 + NΦ

2 U
)

+ NΦ

2 U . We first derive the following two relations

{
U,
(
J · σ − 1

2 + NΦ

2 U
)}

= 0 (4.62)

(
J · σ − 1

2

)2
= J2 + 1

4 . (4.63)

The first one is a consequence of the gauge equivalence UH(α)U = H(1 − α), and the
second one can be checked using the explicit form of J. From this we deduce that X2 is
a constant

X2 = (2α− 1)
2 (

J2 + 1
4

)
+ α(1− α)N2

Φ , (4.64)

and we get the following spectrum for X

λ±(j) = ±
√

(2α− 1)
2
((
j + 1

2

)2 −
(
NΦ

2

)2)
+
(
NΦ

2

)2
. (4.65)

As can be seen in (4.17), for j ≥ NΦ+1
2 there are two representations of spin-j. However

there is a unique representation of spin j = NΦ−1
2 . Rewriting j = n+ NΦ−1

2 , we get the
following spectrum for the Hamiltonian

E0(α) =
1

2mr2

(
NΦ

2
− 2α(1− α)

)
(4.66)

E±n (α) =
1

2mr2

(
n(NΦ + n)− 2α(1− α)±

√
(2α− 1)

2
n (NΦ + n) + (NΦ

2 )2

)
.

(4.67)
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4.D Generic non-Abelian field configuration
In this appendix, we give a detailed derivation of the final state obtained after an adia-
batic insertion of non-Abelian flux into a background given in (4.30). This is done for
the generic case of which two specific examples are discussed in section 4.2. The field
configuration we insert is the following

δAr(λ) =−
(
M +

1

2

)
2λr2M

1 + λ2r2+4M
σφ

δAφ(λ) =

(
M +

1

2

)
1− λ2r2+4M

1 + λ2r2+4M

1

r
σz +

(
M +

1

2

)
2λr2M

1 + λ2r2+4M
σr −

1

2r
σz ,

(4.68)

where M can be interpreted as the number of σz-flux quanta inserted, which will be
explained below (4.70). When we insert this field the Hamiltonian can be expressed as
HM (λ) = UM (λ)H(0)U†M (λ), where

UM (λ) =
1√

1 + λ2r2+4M

(
1 −λz̄r2M

λzr2M 1

)
exp(iMφσz) . (4.69)

At every point of the adiabatic process we know the LLL eigenstates of the evolved Hamil-
tonian, and they are given by

|α(λ)〉 = UM (λ)|m, ε〉 . (4.70)

Before we proceed with calculating the Berry matrix an important subtlety needs to be
considered. We wish to insert this field configuration into a background given in (4.30).
But at λ = 0 and for M 6= 0 (4.68) is given by δAφ(0) = (M/r)σz 6= 0, which means
we have to start by adiabatically inserting M σz-flux quanta, resulting in a shift of the
orbitals depending on the spin of the particle

|m ↑〉 → |m−M ↑〉 , |m ↓〉 → |m+M ↓〉 . (4.71)

After the insertion of these σz-flux quanta, we slowly sweep λ from zero to some final
value resulting in (4.68). Now we can use the eigenstates in (4.70) to compute the Berry
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connection

Aα,β ≡ i〈α(λ)| d
dt
|β(λ)〉 = i〈α(0)|U†M U̇M |β(0)〉 , (4.72)

where

iU†M U̇M =
iλ̇

1 + λ2r2+4M

(
0 −z̄2M+1

z2M+1 0

)
. (4.73)

The Berry connection only has nonzero elements between states of the form {UM (λ)
|m ↑〉, UM (λ)|m+ 2M + 1 ↓〉}. Written in this basis, for every m the Berry matrix is a
2× 2 matrix

UmB = cos(θ(M)
m (λ))I + i sin(θ(M)

m (λ))σy , (4.74)

where the angle is given by

θ(M)
m (λ) =

∫ ∞

0

dr arctan(λr1+2M )
r2+2M+2me−r

2/2

2m+M
√

2m!(m+ 2M + 1)!
. (4.75)

This angle has interesting asymptotes in two different limits

lim
m→∞

θ(M)
m = arctan(λ(2m)M+1/2) (4.76)

lim
λ→∞

θ(M)
m =

π

2

Γ(m+M + 3/2)√
m!(m+ 2M + 1)!

. (4.77)

After the adiabatic insertion of flux we gauge the system back to the initial one. This
cycle has the following effect on a single particle state |m ↑〉

U†M (λ)UmB (λ)UM (λ)|m ↑〉 = u(M)
m (λ)|m ↑〉 − v(M)

m (λ)|m+ 2M + 1 ↓〉 , (4.78)

where the mixing coefficients are expressed in terms of (4.75)

u(M)
m (λ) ≡ cos(θ(M)

m (λ)) , v(M)
m (λ) ≡ sin(θ(M)

m (λ)) . (4.79)
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We can see that the equality in (4.78) holds by inserting unity

I =
∑

m′,ε

UM (λ)|m′, ε〉〈m′, ε|U†M (λ) , (4.80)

between U†M and UmB . After deducing the effect of the two stages of the adiabatic process,
we can combine them to find the final state.

Before we give the final state, one last remark needs to be made. Since we want to stay
in the LLL, we have to put the state on a Corbino disc, meaning that we fill the orbitals
of the initial product state with spin-↑ particles starting from some initial orbital mi up
to a final orbital mf . The two specific adiabatic flux insertions given in section 4.2 are
actually the only two situations for which the Corbino disc is not a necessary geometry
for staying in the LLL.

Starting from a product state on a Corbino disc where the orbitals are filled with spin-↑
particles, the final state after first adiabatically inserting M σz-flux quanta, then cranking
up the value of λ in (4.68), and finally gauging back to the initial configuration, is given
by

|ψM (λ)〉 =

mf⊗

m=mi

(
u

(M)
m−M (λ)|m−M ↑〉 − v(M)

m−M (λ)|m+ 1 +M ↓〉
)
. (4.81)
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CHAPTER 5

Topological symmetry breaking:
Domain walls and an instability of

chiral edges

This chapter is based on unpublished work:

F.A. Bais and S.M. Haaker, TOPOLOGICAL SYMMETRY BREAKING: DOMAIN WALLS
AND PARTIAL INSTABILITY OF CHIRAL EDGES, arXiv:1407.5790.

After focusing on one-particle models in chapters 3 and 4, we now turn to the character-
istics of the collective behavior of topological phases that result from underlying inter-
actions between the basic degrees of freedom. In chapter 2 we gave an introduction to
such phases where we showed how the topological excitations of these phases and their
fusion and braiding interactions form an anyonic model. The FQH phases probably are
the most studied of these and we showed how the Abelian states can be expressed in terms
of Wen’s K matrix stemming from a CS theory in the bulk. These states as well as many
non-Abelian states allow for a CFT description, where the gapless edge modes correspond
to CFT vertex operators and the bulk wave functions can be expressed as correlators of
these same operators. This bulk-boundary correspondence strongly suggests that as long
as the bulk is topologically ordered, no perturbations can destroy the chiral gapless edge
theory. For nonchiral edges there is the possibility of counter-propagating edge modes
gapping out, and a criterium for stable edges is given in terms of a Lagrange subgroup
criterion [130, 131], which has recently also been formulated in terms of so-called sym-
metry enriched phases [132–135].

In the current chapter, we point out a particular incompleteness of this picture. We
show that a careful treatment of the problem necessarily has to take into account the pos-
sibility of Bose condensation in the bulk corresponding to TSB. This formalism has been
presented in section 2.2, and it describes phase transitions between different topologically
ordered phases due to the condensation of bosonic quasiparticles breaking the quantum
group symmetry. Here we will show how simple chiral models corresponding to specific
Laughlin states may be unstable due to TSB and decay into a different topological phase.
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The simplest of these are states describing QH fluids at filling fractions ν = 1/8 and
ν = 1/9.

The second part of this chapter will be devoted to showing how a careful treatment
of TSB gives rise to a degeneracy in vacuum states in the broken phase. This eventually
results in a spontaneous breaking of the symmetry when the system chooses one of these
vacua as its ground state. This picture allows for the possibility of different domains
within one broken phase and we give a description of the domain walls between them.
It turns out that the stability of such a wall is related to the presence of particles that
are confined in the bulk and therefore expelled to the boundary. These particles are not
confined at the boundary, but they do acquire a mass as solitons. This mechanism is
interesting because it shows that gapping out by creating a conventional mass term and
therefore breaking the chiral symmetry, is not the only way to create massive excitations.

5.1 Unstable chiral U(1) states
As explained in section 2.3 many FQH states have a CFT description. In this chapter
we focus on the Laughlin states, which describe Abelian FQH liquids at filling fraction
ν = 1/M , whereM is a positive integer. ForM even it is a bosonic system and forM odd
fermionic. The Laughlin states have a description in terms of fairly simple chiral CFTs,
namely the compactified boson. In appendix 5.A we will derive the spectrum of this
CFT and show for which particular compactification radii the theory becomes rational,
i.e. containing a finite number of primary fields under an extended algebra. Appendix 5.B
will be devoted to the quantum numbers of the bosonic and fermionic Laughlin states and
how they can be expressed in terms of this chiral CFT. In the present section we show
which Laughlin states can be driven through a transition by applying TSB, treating the
bosonic and fermionic cases separately.

5.1.1 Unstable bosonic Laughlin states
In appendix 5.B.1 we illustrate how the topological excitations of the bosonic Laughlin
state at filling fraction ν = 1/M can be described by a U(1)M/2 theory. We will now
show that phases with filling fraction

ν =
1

M
=

1

2l2k
, l = 2, 3, . . . , k = 1, 2, . . . , (5.1)

have at least one nontrivial boson that can drive a transition to a broken phase carrying
less sectors.

The initial phase is A = U(1)l2k, corresponding to a chiral boson compactified at
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radius R = l
√

2k, which has 2l2k sectors with spins

hn =
n2

4l2k
, n = 0, 1, . . . , 2l2k − 1 . (5.2)

It contains a nontrivial bosonic sector b = 2lk, which has spin hb = k. When this boson
forms a condensate, the other sectors arrange in orbits of length l under fusion with the
boson

n ∼ n+ 2lk ∼ . . . ∼ n+ 2lk(l − 1) , (5.3)

which means that the sectors belonging to the same orbit get identified with each other as
they are equal up to fusion with the condensate. This results in an intermediate phase T
which carries excitations with fusion rules Z2lk.

As we saw in section 2.2 these sectors in general do not have well-defined braiding
interactions. To check which sectors become confined in the broken phase, we consider
the monodromy of a sector n with the boson

Mn,b = hn+b − hn − hb =
n

l
. (5.4)

Clearly, the unconfined sectors can be expressed as n = ml, where m = 0, 1, . . . , 2k −
1 and we see that they have spin hm = m2

4k . This we recognize as the sectors of a
compactified boson at radius R =

√
k, so the broken unconfined phase is U = U(1)k. Of

course if this k is again of the form k = l2k′ there will be other bosons left in the theory,
which can also condense.

We observe that the highest unstable filling fractions occur at ν = 1/8, 1/16, 1/18, . . ..
We must conclude that even though they are chiral theories, i.e. protected from back-
scattering, the edge current is not entirely protected since a condensate can form. Never-
theless, there are channels that are still protected, so there should still be a current along
the edge.

Example l = 2, k = 1

We will work out one specific example of an unstable bosonic Laughlin state, which
describes a QH liquid at filling fraction ν = 1/8. The reason for this is twofold: it will
shed some light on the general procedure described above, and we will use this particular
state at length in the second part of this chapter.

We start from a phase with A = U(1)4, which corresponds to a compactified chiral
boson at radius R = 2

√
2. There are eight sectors in the theory which are labeled by

n = 0, . . . , 7. The conformal weights are hn = n2

16 and the sector n = 4 has spin h4 = 1,
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which is the only nontrivial boson in this theory. When it condenses the original sectors
get identified in the following way

0 ∼ 4 (5.5)
1 ∼ 5 (5.6)
2 ∼ 6 (5.7)
3 ∼ 7 . (5.8)

The intermediate phase T carries four sectors which have Z4 fusion rules. The only sector
that is local with respect to the condensate is labeled by n = 2, therefore we end up with
a broken unconfined phase described by U = U(1)1.

5.1.2 Unstable fermionic Laughlin states
The same analysis can be performed for the fermionic Laughlin states. In appendix 5.B.2
we show that a state at ν = 1/M for odd M , has sectors belonging to U+(1)2M . As we
will demonstrate now for filling fraction

ν =
1

M
=

1

l2k
, l = 3, 5, . . . , k = 1, 3, . . . , (5.9)

a phase transition can occur.
Starting from A = U+(1)2l2k corresponding to a chiral boson compactified at radius

R = l
√
k, there are 2l2k sectors with spins

hn =
n2

2l2k
, n = 0, 1, . . . , 2l2k − 1 . (5.10)

The charge e fermion is given by f = l2k and has spin hf = l2k/2. There is a nontrivial
boson in this theory b = 2lk, which has spin hb = 2k. When these particles form a
condensate the original A sectors rearrange into orbits of length l identical to (5.3). The
broken intermediate phase has fusion rules T = Z2lk and the monodromy of these sectors
with the bosonic particle is

Mn,b =
2n

l
. (5.11)

The unconfined particles are those for which n = ml with m = 0, 1, . . . , 2k− 1 and their
spins are given by hm = m2

2k . They form a broken unconfined phase U = U+(1)2k at
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radius R =
√
k, corresponding to a fermionic Laughlin state at filling fraction ν = 1/k.

The highest fractions at which this occurs are ν = 1/9, 1/25, 1/27, . . .. For instance, the
state at ν = 1/9 breaks to a Laughlin state at ν = 1, which is an IQH phase.

In this first section we showed that simple chiral models are not completely stable. Even
though the edge modes are protected from backscattering, some of these models have
a nontrivial bosonic sector in its spectrum, which may form a condensate. Topological
charge is no longer conserved and certain sectors may disappear into the new vacuum or
become confined.

5.2 Domain walls and confinement
In the previous section we applied TSB to drive a phase transition from a Laughlin state,
which describes an Abelian FQH liquid at filling fraction ν = 1/M , to another Laughlin
state at larger filling fraction. In this section we wish to take a closer look at the nature
of the confined particles. We know that they must be expelled from the bulk of a broken
phase, but what happens at the boundary? Moreover, we will demonstrate that different
domains can appear in the broken U phase and show how the confined particles play a
prominent role in the stability of the domain walls separating different domains.

5.2.1 Vertex operators and Wilson loops
To be definite and explicit we will consider the specific example of an unstable bosonic
Laughlin state at ν = 1/8. In subsection 5.2.5 we will comment on how to generalize this
to other unstable Laughlin states presented in the previous section.

Instead of simply considering the distinct topological sectors and their quantum num-
bers, we will cast them in a more familiar CFT form. The bulk is described by a U(1)
CS field at level k = 8 and the edge has gapless edge modes corresponding to a chiral
boson theory compactified at radius R =

√
8. In the bulk the CS field can be written as a

pure gauge ai(z) = ∂iφ(z), but on the boundary there are dynamical degrees of freedom
corresponding to U(1)4. The mode expansion of φ(x) compactified on a radius R =

√
8

on a cylinder of circumference L is

φ(x) =
2πN̂√

8L
x+
√

8 χ̂+ oscillator modes , (5.12)

where x is the spatial coordinate along the edge, and we will discard the oscillator modes
as we are only interested in the distinct topological sectors. The conserved current ∂xφ
leads to a conserved charge 1

2πR

∫ L
0
∂xφdx = N̂/R2. The charge operator and the zero

mode have commutation relations [χ̂, N̂ ] = i.
Let us define several operators that play a crucial role in our subsequent analysis.
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The operators that create a localized topological charge are the normal ordered vertex
operators

Vn(x) =:e
i n√

8
φ(x)

: , (5.13)

where we will omit writing the normal ordering symbol from now on. The vertex oper-
ators are invariant under φ(x) → φ(x) + 2πR, have conformal weights hn = n2

16 and
transform under the global symmetry φ(x) → φ(x) + f as irreps: Vn → einf/RVn. The
operators that measure charge take the form of a Wilson loop, a nonlocal object defined
as

Wq = exp
[ iq√

8

∫ L/2

−L/2
axdx

]
= e2πiqN̂/8. (5.14)

It is the exponentiated conserved global charge operator which is invariant under the
global U(1) symmetry. Note that this operator can be extended to the bulk where it
becomes locally gauge invariant under the transformation φ(z) → φ(z) + f(z) for any
value of q, and we will use it at various values of q to probe the phase structure of the
theory later on.

It is also interesting to consider open Wilson line operators

Wq(x1, x2) = exp
[ iq√

8

∫ x2

x1

∂xφ(x)dx
]
, (5.15)

which are still invariant under the global U(1) symmetry, but if extended to the bulk
are not invariant under the local U(1). For our analysis, an interesting gauge invariant
operator is obtained by attaching quasiparticles represented by vertex operators to these
Wilson lines with an integer value q = n

Vn(z1)Wn(z1, z2)V †n (z2) . (5.16)

From this expression it follows naturally that a quasiparticle of charge n cannot exist
alone. There is always an antiparticle present and they are connected by a Wilson line
which in the present case is just a Dirac string, a gauge artifact that can be moved around
without changing the physics. This reflects the bulk-boundary correspondence: if we
want to insert a single quasiparticle in the bulk there has to be an antiparticle somewhere
on the boundary too.1

1The bulk-boundary correspondence is usually motivated by demanding charge neutrality.
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Let us return to the edge theory. We label the distinct topological charge sectors by
n = 0, . . . , 7, which are the eigenvalues of N̂ and they can be created using the operators

Vn = exp
[
i
n√
8L

∫ L/2

−L/2
φ(x)dx

]
= einχ̂ . (5.17)

These are nonlocal operators that act on the vacuum state as Vn|0〉 = |n〉 and commute
with the charge operatos as [N̂ ,Vn] = nVn , so they act as ladder operators on the charge
eigenstates

Vn|n′〉 = |n+ n′〉 mod 8 . (5.18)

The eight topological sectors form irreps of a global Z8 group generated by W1 = e
2πi
8 N̂

(W 8
1 = 1) and the ground state |0〉 is unique. The algebra of the operators that create a

unit of charge and measure charge is

WmVn = VnWme
2πnmi/8 , (5.19)

which holds for bothVn and Vn(x).
Now that we have presented the relevant operator content of the chiral compactified

boson of the A theory, we will move to a description of the formation of a condensate in
this context.

5.2.2 Vacuum expectation value and ground state degeneracy
We are interested in which part of the topological structure of the bulk and boundary
theory is preserved and what novel structures we may encounter if we assume that some
nontrivial operator condenses. Phase transitions are usually accompanied by some order
parameter obtaining a finite expectation value in the new phase, and the operators we
have at our disposal are the vertex operators. Clearly, in the unbroken phase A they all
have vanishing vacuum expectation value, but in the broken phase we will assume that for
some Vb we have

|〈Vb〉|2 6= 0 . (5.20)

This implies that the ground state should be of the form

|n〉b =
∑

t

ct|n+ tb〉 , (5.21)
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where t is an integer and ct some coefficient, which should be chosen such that the states
form an orthonormal set. In addition we require this new ground state to be invariant
under rotations of 2π generated by R̂ = ei2πN̂

2/16, which acts on the states as

R̂ |n〉b =
∑

t

cte
i2π(n+tb)2/16|n+ tb〉 . (5.22)

From the first term with t = 0, we see that we should have n = 0 or n = 4. For both
of these values of the charge we need to set b = 4, from which it follows that in this new
phase there are two possible ground states given by

|0〉± =
1√
2

(
|0〉 ± |4〉

)
. (5.23)

The condition that the ground state is invariant under R̂ is equivalent to demanding integer
spin which is a property a condensable sector should have. The difference with older work
on TSB is that we recognize two different ground states instead of only |0〉+, which may
result in different domains due to spontaneous symmetry breaking as we will see below.

The operator V4 has nonzero expectation value, which can be interpreted in the same
fashion as creating Cooper pairs in a superconductor. In our case, we can freely create
and annihilate particles of topological charge n = 4. The states rearrange themselves as
eigenstates of V4

|n〉± =
1√
2

(|n〉 ± |n+ 4〉) , n = 0, . . . , 3 . (5.24)

They form an orthonormal and a complete set of representations of the group G = Z4 ⊗
Z2, generated by W2 = e2πiN̂/4 and V4. These two operators commute: [W2, V4] = 0,
and the action on the states is

W2 |n〉± = e2πin/4|n〉± (5.25)
V4 |n〉± = ±|n〉± . (5.26)

In the broken phase the ground state is twofold degenerate and the operator that maps
these two states onto each other is W1

W1 |0〉± = |0〉∓. (5.27)
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These states carry a Z2 charge generated by W1, but no Z4 charge under W2.
Due to the degeneracy the system eventually chooses a vacuum expectation value.

This is similar to what happens in the Ising model on a square lattice in two dimensions
without an external field. The ground state corresponds to either all spins pointing up |↑〉
or all pointing down |↓〉. The operator that flips all spins simultaneously commutes with
the Hamiltonian and generates a global Z2 symmetry. The operator that measures which
ground state we are in is M = 1

N

∑N
i σ

z
i . In our case W1 maps the two ground states

onto each other and V4 measures which state we are in.

5.2.3 Domain walls
Since there is a twofold degenerate ground state in the broken phase, the system eventu-
ally chooses one of these states resulting in a spontaneous breaking of the Z2 symmetry.
However, it could happen that part of the system is in the + ground state and the other
part in the – state. Intuitively this would result in different domains separated by domain
walls carrying energy, as also happens in the Ising model described above.

Let us first focus on the edge of our configuration and consider the kink solutions. Say
we start from a state where the entire edge is in the ground state |0〉+ and apply the open
Wilson line operator

W1(x1, x2) = exp
[ i√

8

∫ x2

x1

∂xφ(x)dx
]
, (5.28)

which creates a domain in the |0〉− phase in between the points x1 and x2. At the edge we
only have the global symmetry of shifting φ(x) by a constant. Clearly the Wilson line on
the edge is invariant under this transformation and creating these different domains does
not require the introduction of the V1 sectors at the endpoints. The kinks located around
x1 and x2 however have finite energy, so restricting our consideration to the edge theory,
we may conclude that the kinks are massive solitons which are not confined as there is
only vacuum in between them.

As remarked before we can extend the operators Wq(C) and Vn(z) to well-defined
operators referring to closed loops C and points (punctures) z in the bulk. In discussing
the phase structure of the broken phase U , it is important to make a clear distinction
between whether we permit insertions in the bulk of the confined sector V1(z) or not.
This distinction can be made because there are two scales in the problem: the gap or
mass of the Vn excitations, and the presumably smaller energy scale associated with the
condensate. It is most natural to start with a situation where we do not include them, but
we may still consider the Wilson loop operators with arbitrary q and in particular also
with q = 1. The interpretation of closed loops is similar to the boundary and the Wilson
loop operator now creates a domain of – vacuum in the bulk, and a domain wall along
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Figure 5.1: A disc in the broken phase U with two possible vacua: the + vacuum is indicated by
grey stripes, and the − vacuum by a red mesh. In fig. (a) we start with the disc entirely in the
+ vacuum. In fig. (b) we have created a Wilson loop W1 along a contour C, which creates a −
vacuum inside it and a physical domain wall along the loop. It can be deformed to lie partially on
the boundary as indicated in fig. (c). The boundary now has two different domains where the kinks
located around point A and B carry energy and they are connected to the wall going across the disc
through the bulk, which also carries energy. In fig. (d) the entire Wilson loop lies on the boundary
and the entire disc is in the − vacuum state.

the contour C. It is interesting to deform this configuration as indicated in fig. 5.1. In
fig. (a) and (b) we have sketched the situation we just discussed. However, the loop can
be moved around at will, and in particular we may put it partially along the edge as in
fig. (c). How do we interpret this physically? When looked at from the perspective of the
boundary we see that at the points A and B where the closed loop leaves the boundary, the
vacuum flips and therefore there should be a kink in the field on the boundary. The other
part of the contour, going from B to A through the bulk, is a massive domain wall ending
at the kink-antikink pair. The situation is comparable to the states created by Vn(z) which
represent massive localized anyons in the bulk and massless modes on the edge.

When there are different domains we have to probe the system locally to measure
which domain we are in. We cannot simply use V4(z) as it is not gauge invariant. Instead
we need to use the gauge invariant object in (5.16) with n = 4, which gives +1 if the
end points are in the same vacuum and −1 if they are in different vacua, i.e. crossing
the wall either an even or an odd number of times. The coloring of domains in fig. 5.1 is
well defined at this stage, therefore in this restricted setting without V1 quasiparticles the
vacuum states can be unambiguously carried over to the bulk.

5.2.4 Confined particles
So far we have established a detailed, consistent picture of the physics of TSB except
that we have to consider one more ingredient, and that is the role of the confined vertex
operator V1(z) in the bulk of U . We will see below that it plays a major role in the stability
of domain walls.
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Figure 5.2: Fig. (a) shows a closed W1 loop, which runs partially along the boundary and in fig. (b)
the loop is broken through the creation of a V1-V †1 pair. Probing with aW4 Wilson line to a point on
the boundary is still consistently and unambiguously defined. It makes no difference whether this
line crosses the wall or passes through the opening. In the one case the phase jump occurs because
of the crossing, and in the other it comes from braiding with the V1 vertex. However, it is also clear
that the coloring of the domains in the bulk does not make any sense if we allow the V1 anyons to
be produced, but the coloring still makes sense if one restricts oneself only to the edge.

We can distinguish two types of instability. One is a global instability meaning that
a closed loop in the bulk can shrink to zero. Since the domain wall has a fixed energy
per unit length, shrinking lowers the total energy of the configuration and there is no
topological obstruction to fully contract. More interesting is a local topological instability
of the wall, where it can in principle break upon the creation of a V1-V †1 particle-hole pair
attached to the new endpoints of the broken wall. This process is depicted in fig. 5.2.
Whereas the V1 quasiparticles were not confined on the boundary as we argued before,
they are linearly confined in the bulk exactly because they have to be attached to a domain
wall of finite energy. The walls are metastable because the creation of a massive pair
requires an energy of at least twice the particle gap. Another important consequence of
the metastability of the wall in the bulk, is that the domain structure of the vacuum is no
longer protected.

A topological argument explaining this goes as follows [136]. In the unbroken phase
V1 is still present and we have a full U(1)/Z8 gauge group in the bulk with topological
flux/particle sectors π1(U(1)/Z8) = π0(Z8) = Z8, corresponding to representations of
the Z8 group generated by W1. After breaking, the gauge group is formally changed to
U(1)/Z4 corresponding to the Z4 subgroup of Z8 consisting of the even elements, and
π0(Z4) refers to the even sectors created by V2n. The homotopy sequence of interest here
is

π0(Z4)→ π0(Z8)→ π0(Z8/Z4) , (5.29)

implying that the Image of the first mapping is the Kernel of the second. In physical
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terms this means that the even sectors of π0(Z8) get mapped onto the trivial sector of
π0(Z8/Z4) = Z2, where the latter group labels per definition the new types of domain
walls that arise in the broken phase. In other words, the odd charges of the π0(Z8) are
mapped onto the nontrivial domain walls and are therefore confined, exactly as advertised.

The overall picture remains completely consistent if one takes into account that now
there are two ways to go from a + state created by (Vn(x) + Vn+4(x))|0〉 at a position
x on the edge to the left of point A in fig. 5.2, to the corresponding − state at a position
on the right. The first option is to ‘cross’ the wall by transforming a vertex operator with
W1 using (5.19). The other is by moving the vertex operators involved through the bulk
and around the endpoint at the opening in the wall, which in fact means acting with the
monodromy operator. Let us demonstrate this explicitly by considering this question in
the original unbroken A theory, and see what can be carried over to the broken phase.
Given that the monodromy, i.e. encircling an anyon Vn with Vm (in the original A theory
with n,m = 0, . . . , 7), yields a phase factor

exp(2πi(hm+n − hn − hm)) = e2πinm/8 , (5.30)

we can make some important observations. Since the A sectors become combined (iden-
tified) as in (5.24) in the broken phase, encircling them around another T sector gives
different monodromy phases. For n,m = 0, . . . 3 and k, k′ = 0, 1, the different phases of
the monodromy can be expressed as

2π

16

(
(n+m+ 4k + 4k′)2 − (n+ 4k)2 − (m+ 4k′)2

)
=

=
2π

8
(nm+ 4nk′ + 4mk) mod 2π . (5.31)

Two T sectors have consistent braiding if their monodromy is independent of k and k′,
which leaves us with only the sectors n = 0 and n = 2 as expected. One also may
verify that only these sectors are mutually local with respect to the new vacuum and
therefore survive as unconfined particles. Note that from the monodromy phase we learn
that if we have the fundamental quasiparticle corresponding to V1 in the bulk and bring
the new vacuum V0 ± V4 around it, that would map the two vacua onto each other, i.e.
(V0 ± V4) → (V0 ∓ V4). This means that the net effect of moving around the confined
particle is the same as crossing the wall as we have described above, where the ± state
transforms under W1 and gets mapped to the ∓ state at the other side of the wall.

This shows once more that the wall is not locally stable, and it can break under the
creation of a fundamental quasiparticle/hole pair, each of them remaining attached to the
newly created end points. Alternatively one may consider starting from a disc entirely in
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one of the vacua and creating the V1-V †1 pair somewhere in the bulk. When the particles
are moved apart they stay connected by a wall which explicitly follows from (5.16). So
their appearance will be exponentially suppressed not only because of their mass but also
because of their interaction energy that rises linearly with distance, and they indeed are
confined.

5.2.5 Unstable general Laughlin states
In this chapter we mainly focused on the specific Laughlin state at ν = 1/8 in order to
clearly present our results, but the construction is easily generalized to the other unstable
Laughlin states that were presented in section 5.1. Even though the notation for fermionic
and bosonic states is a bit different,

Bosonic: M = 2l2k A = U(1)l2k l = 2, 3, . . . , k = 1, 2, . . . (5.32)

Fermionic: M = l2k A = U+(1)2l2k l = 3, 5, . . . , k = 1, 3, . . . , (5.33)

what they have in common is that V2lk acquires a vacuum expectation value, resulting
in l different vacua. There are l − 1 different Wilson loops as in (5.14), that create the
different domains, and there are l−1 distinct confined particles corresponding to Vn, with
n = 1, 2, . . . , l − 1, that can be attached at the end of a Wilson line as in (5.28).

Let us end this chapter by summarizing our results. Even though there can be no backscat-
tering in a chiral system, we have shown that certain chiral edges labeled by two integers
l and k are not entirely protected because TSB may occur. When a condensate of bosonic
particles forms, certain topological sectors can disappear in this condensate and others be-
come confined. After breaking the topological symmetry we are left with a phase which
is still chiral, but has less sectors in its spectrum.

Furthermore, we have extended our understanding of the original TSB picture pro-
posed in 2002, by finding an explicit expression of an order parameter which obtains a
finite expectation value in the broken phase. This leads to degenerate ground states and
different domains separated by domain walls. Moreover this gives us a good understand-
ing of the confined particles in the bulk, that turn out to be unconfined on the edge of
the sample. We give simple criteria for the stability of the domain walls. This work also
clearly shows the essential observable differences between an exact U theory and the U
phase obtained after applying TSB to an A theory.
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Appendix

5.A CFT description of U(1) chiral states
As explained in section 2.3 many FQH states have a CFT description. In the bulk, the
wave functions can be expressed as CFT correlators and on the edge of a finite system
the particle spectrum coincides with the CFT spectrum. In this chapter we focused on
the Laughlin states, which describe Abelian FQH states at filling fraction ν = 1/M ,
where M is a positive integer. These systems have a description in terms of simple chiral
CFTs, namely the compactified boson. Therefore, we will use this section to present
some results about this CFT. We will derive the spectrum and show for which particular
compactification radii the CFT becomes rational, i.e. has a finite number of primary fields.
For more information on CFTs in general, we refer the reader to [78].

The Lagrangian of the chiral compactified boson was given in (2.15). The boson field
φ(x, t) is compactified on a circle of radius R, meaning that we identify φ ∼ φ + 2πR.
The modes of the conserved current form a Kac-Moody algebra and the spectrum of this
system falls into irreps labeled by the lowest weight states |n,m〉 which have conformal
weight

hn,m =
1

2
(n/R+mR/2)2 . (5.34)

There are an infinite number of primary fields in this theory, where n labels the charge and
m the winding number of the field configuration corresponding to the boundary conditions
φ(x+ L, t) = φ(x, t) + 2πmR. Whenever R2 is rational, i.e.

R =

√
2p′

p
, p, p′ are coprime , (5.35)

the infinite number of lowest weight states can be rearranged into a finite number by
adding a specific generator to the current algebra. The only available operators in the free
boson theory are vertex operators Vα = eiαφ, and following ref. [78] the operator which
is added to the chiral algebra is

i∂φ , Γ± = e±i
√

2pp′φ . (5.36)
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This operator Γ+ has integer weight and is invariant under φ → φ + 2πR. The primary
fields of the extended theory must have local OPEs with the currents and are of the form

Vn = einφ/
√

2pp′ . (5.37)

Their weights are

hn =
n2

4pp′
, n = 0, . . . , 2pp′ − 1 , (5.38)

and the Hilbert space falls into irreps of the extended algebra which will be denoted by
U(1)pp′ . Note that all of the above is invariant under the interchange p ↔ p′, which
corresponds to the invariance under modular transformations.

5.B Laughlin states
How does U(1)pp′ relate to the Laughlin states at ν = 1/M? For the bosonic case it is
quite straightforward, but for the fermionic states we need to be more careful as we will
show below.

5.B.1 Bosonic Laughlin states
We first turn to the bosonic Laughlin states at filling fraction ν = 1/M , withM even. The
theory can be described by a compactified chiral boson at radius R =

√
M . Comparing

to (5.35), we should choose p′ = M/2 and p = 1, leading to an algebra U(1)M/2. Note
that this form can only apply to even M . The theory we start from has M sectors with
conformal weights (spins)

hn =
n2

2M
, n = 0, ...,M − 1 . (5.39)

The vertex operator that describes the physical boson of charge e is precisely the extended
operator that gets added to the chiral algebra Ve = ei

√
Mφ, with weight he = M/2, which

is an integer for even M .

5.B.2 Fermionic Laughlin states
If we follow the same strategy for the fermionic Laughlin states we run into trouble. Take
for instance the ν = 1/3 Laughlin state. This corresponds to a compactified boson at
R =

√
3. Following the definition in (5.35) we should choose p′ = 3 and p = 2, which

is a U(1)6 algebra and has 12 sectors, with weights hn = n2/24. The charge e fermion
corresponds to sector f = 6 and has spin h6 = 3/2. From the physics of this particular
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system we get an extra condition on the allowed vertex operators, since all quasiparticles
need to be local with respect to the fermion. For instance, the monodromy with the
fundamental quasiparticle is θ1,e = 1/2, from which it follows that they are nonlocal.

Moore and Read treated the fermionic case in [11]. They choose the electron oper-
ator Ve = ei

√
Mφ as extended generator even though it has half integer spin. As in ap-

pendix 5.A they choose the other operators such that they are mutually local with the elec-
tron operator. The weights of these other operators are hn = n2

2M , with n = 0, . . . ,M −1
and they indeed carry the right quantum numbers associated with the quasiholes of the
FQH state. The reason why we do not adopt their formulation is that they do not distin-
guish between the electron operator and the trivial operator, therefore we would never be
able to distinguish between a fully gapped (edge) system and a ν = 1 state.

Therefore we will follow a different strategy. For ν = 1/M , with M odd we have a
compactified boson at R =

√
M . Since M is odd we can choose p′ = M and p = 2 as

coprime integers, resulting in a U(1)2M theory. The weights are

hn =
n2

8M
, n = 0, ..., 4M − 1 . (5.40)

The sector with f = 2M corresponds to the charge e fermion and it has spin h2M = M/2.
We want all the sectors to be local with respect to this operator, and the monodromy is
given by

Mn,f =
4Mn

8M
= −n

2
, (5.41)

which means that only the even sectors are local and are good operators in this theory.
Rewriting 2m = n, we are left with 2M sectors, labeled by m = 0, . . . , 2M − 1, with
weights hm = m2

2M . Let us call this theory U+(1)2M , where the + denotes the even
sectors of U(1)2M . The only difference with the literature is that we count up until twice
the fermion.
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CHAPTER 6

Boundaries between topological phases
induced by a multilayer Bose

condensate

This chapter is based on the following publication:

F.A. Bais, J.K. Slingerland, and S.M. Haaker, THEORY OF TOPOLOGICAL EDGES AND
DOMAIN WALLS, Phys. Rev. Lett. 102, 220403 (2009).

and the following unpublished work:

S.M. Haaker, F.A. Bais, and J.K. Slingerland, A QUANTUM GROUP APPROACH TO FRAC-
TIONAL QUANTUM HALL HIERARCHIES, working title.

In this chapter1 we study the boundaries between phases of different topological order. A
clear understanding of such boundaries is very important but often lacking. In FQH sys-
tems, where experimental support for the existence of a variety of topological phases is
strongest, observations are almost entirely restricted to edge transport, and proposed de-
vices for probing the topological order rely on interference of tunneling currents between
edges [13, 138, 139]. In such experiments the electron density is usually not constant
throughout the sample and islands with different filling fractions form. In lattice models
with several topological phases, one may induce phase boundaries by varying the local
couplings. By applying TSB we will construct regions with different topological phases
and study their boundaries. This technique was used in chapter 5 as well, where transi-
tions between different Laughlin states were induced.

The transitions we discuss in the present chapter are between phases with different
central charges, which alters the approach to some extent and involves the introduction of
extra layers. This allows application in a greater variety of physical settings. In section 6.2
we work out two such examples, which involve Kitaev’s spin model on the honeycomb
lattice [77] and a domain wall between spin polarized and unpolarized non-Abelian FQH

1Part of the results in this chapter appeared before in the master’s thesis [137].
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liquids [140]. In section 6.3 we discuss a transition between two Abelian FQH states
belonging to the Haldane-Halperin (HH) hierarchy at ν = 1/3 and ν = 2/5, which we
generalize to an arbitrary number of states in appendix 6.A. But let us first explain how to
apply TSB to a system with an auxiliary layer.

6.1 Multilayer condensation
One way to match two different phases I and II at a domain wall is to treat them as
independent systems without interaction and then bring the edges close together. The
sectors that reside on the wall are then simply pairs of phase I and phase II sectors. How-
ever, this is not always the situation observed in experiments. For example, Camino et
al. [141, 142] created a setup with a FQH state at filling fraction νI = 1/3 surrounding a
state at νII = 2/5. They found that the boundary separating the two phases has excita-
tions of charge e/15 which cannot be explained as a simple product of the νI = 1/3 and
νII = 2/5 boundaries. In section 6.3 we will construct a similar situation and show how
our approach agrees with the charge e/15 boundary excitation.

To describe these general interfaces, we start with two layers in phases I and III, which
we allow to partially overlap as indicated in fig. 6.1. If we bring the layers close together
a bosonic composite of excitations from the two layers could occur, and consequently, a
condensate of such bosons may form. This condensation will lead to a different phase for
the middle region, which we denote by phase II.

If we are given topological theories C1 and C3 describing phases I and III, the sectors
of the layered system will initially be labeled by pairs (a, b) ∈ C1⊗C3. These sectors do
not interact with each other, e.g.

(a1, b1)× (a2, b2) = (a1 × a2, b1 × b2) , (6.1)

but combined their quantum dimensions multiply d(a,b) = dadb and their spins will add
h(a,b) = ha + hb. This implies that even though the separate phases might not have a
nontrivial bosonic particle, the combined phases could carry such a sector.

If we assume that a condensate of such bosonic quasiparticles forms this causes a
change in the topological spectrum and fusion rules exactly along the same lines as was
presented in section 2.2. Sectors of the C1 ⊗ C3 theory branch into sectors of the inter-
mediate phase T according to branching rules of the form

(a, b)→
∑

c∈T
N c

(a,b)c . (6.2)

While all T sectors have good fusion rules, some do not inherit well-defined spin factors
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1

C2
C1

C1

T
T

Quasiparticle
condensation

C1 ⊗ C3

C3

C3

Phase I

Phase I

Phase III

Phase III

Phase II

Figure 6.1: Side view of two overlapping layers supporting topological phases I and III. If we
bring the layers close together a condensate may form in the overlap region leading to a phase II,
which is no longer a direct product of phases I and III. The theory T on the left boundary describes
excitations that can be divided into bulk excitations of phase I and of phase II, and excitations that
can only propagate along the boundary. On the right boundary a similar situation occurs for the
same theory T , now with I replaced by III.

from the uncondensed theory, because they have nontrivial braiding interaction with the
condensed excitation and become confined. After all confined excitations are expelled
from the bulk we are left with a C2 theory, which describes the fusion and braiding of
excitations in phase II.

We now make the crucial observation that, after condensation, excitations in all parts
of the system can be labeled by sectors of the T theory. More precisely, the bulk excita-
tions of phase II correspond to unconfined T sectors, while those of phases I and III are
pairs (a, I) and (I, b) of C1 ⊗ C3 labels, which correspond to T sectors indicated by the
branching rules in (6.2). Most importantly the excitations on the boundary between the
phases are also T sectors and we can investigate the kinematics of all processes that may
occur when excitations are moved toward or through walls. For example, any C1 particle
that branches to an unconfined T particle can pass through the boundary between phase
I and II unnoticed and vice versa, while a C1 particle that corresponds to a confined T
sector cannot enter the region in phase II. Reversely, T particles that are confined in phase
II but have lifts corresponding to a C1 sector, can pass into the area in phase I after being
driven out of phase II. Hence the excitations that must stay on the boundary are labeled
by confined T sectors which do not correspond to C1 sectors.

For processes involving three or more excitations, we need to use the fusion rules
of T . Any process allowed by these rules could in principle occur. For example, a C1

particle corresponding to a confined T sector c could hit the phase boundary and split
into a boundary excitation t and a bulk excitation u of phase II, provided that c ∈ t × u
according to the fusion rules of T . To actually perform the fusions involved, it will usually
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Ising
c = 1/2 1 σ ψ
h 0 1/16 1/2

d 1
√

2 1

Z2 toric code
c = 0 1 e m em
h 0 0 0 1/2

d 1 1 1 1

Table 6.1: Quantum dimension and topological spin of the sectors of the Ising and toric code model.

be necessary to bring the quasiparticles from the bulk regions close to the boundary.

With this new approach where multiple layers are used, we can apply TSB to a wide
variety of phases. In the next section we will study two different phase transitions between
non-Abelian phases and investigate the excitations of the boundary between them.

6.2 Phase transition between non-Abelian states
After introducing the general idea of using auxiliary layers to create phase diagrams as
depicted in fig. 6.1, we now move on to two explicit examples in the present section. Both
of these involve topological phases that carry non-Abelian excitations. The first example
covers Kitaev’s honeycomb model and the second one treats two non-Abelian FQH states.

6.2.1 Kitaev’s honeycomb and the toric code
Kitaev’s honeycomb model [77] is a model of spins living on the sites of a honeycomb lat-
tice and interacting through nearest neighbor Ising-like interactions. The model is exactly
solvable and displays two types of phases.2 There are three equivalent gapped Abelian
topological phases with the same topological order as the Z2 toric code with central charge
c = 0. And there is a gapless phase, which becomes gapped when a Zeeman term is added
to the Hamiltonian and then displays non-Abelian topological order described by the Ising
TQFT at c = 1/2.

The Abelian phase has four sectors with Z2 ⊗ Z2 fusion rules and the Ising model
has three sectors labeled by {1, σ, ψ}, where 1 denotes the vacuum. The Ising model was
encountered before in section 2.1, but for clarity we mention the characteristics again.
The nontrivial fusion rules are given by

σ × σ = 1 + ψ , σ × ψ = σ , ψ × ψ = 1 , (6.3)

and the spins and quantum dimensions of the Ising model as well as the toric code are
given in table 6.1.

2In extensions of the model, a third type of gapped phase has been found in [143].
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1

C1 ⊗ C3

C1C1

T

Quasiparticle
condensation

C2

Figure 6.2: Starting from a disc in phase I which carries C1 excitations, we place a smaller disc C3
on top of it. We call this overlapping part region II and it contains sectors from C1 ⊗ C3. After the
formation of a quasiparticle condensate, region II contains the unconfined sectors given by C2. The
sectors at the boundary between the two phases are labeled by the intermediate phase T .

We wish to consider a situation with an island in the Abelian phase surrounded by a
medium in the Ising phase. As the two phases have different central charge we must use
an auxiliary layer as discussed before. We take a large disc in the C1 = Ising phase and
place a smaller disc on top of it as depicted in fig. 6.2. C3 should be chosen in such a way
that a Bose condensate can form, leaving the bulk of the small disc in the Z2 × Z2 phase.
The addition of the auxiliary layer should lower the central charge by 1/2 and so we use
an opposite chirality Ising model for it, which has the same fusion rules as the c = 1/2
Ising model and therefore the same quantum dimensions, but opposite topological spins.

We start from Ising ⊗ Ising in region II and take a condensate in the bosonic (ψ,ψ)
sector. This example has been worked out in detail in section X of ref. [81]. Condensation
leads to the identifications

(1, 1) ∼ (ψ,ψ) (6.4)
(ψ, 1) ∼ (1, ψ) (6.5)
(σ, 1) ∼ (σ, ψ) (6.6)
(1, σ) ∼ (ψ, σ) , (6.7)

while the remaining sector is fixed under fusion with the condensate and has to split

(σ, σ)→ (σ, σ)1 + (σ, σ)2 . (6.8)

Hence, the intermediate T theory has six sectors and one finds that it has Ising ⊗ Z2

fusion rules.
Next we analyze the braiding interactions with the condensate to find which of these
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M(4, 5)

c = 7/10 1 ε ε′ ε′′ σ̃ σ̃′

h 0 1
10

3
5

3
2

3
80

7
16

d 1 1+
√

5
2

1+
√

5
2 1 1+

√
5√

2

√
2

ε 1 + ε′

ε′ ε+ ε′′ 1 + ε′

ε′′ ε′ ε 1
σ̃ σ̃ + σ̃′ σ̃ + σ̃′ σ̃ 1 + ε+ ε′ + ε′′

σ̃′ σ̃ σ̃ σ̃′ ε+ ε′ 1 + ε′′

Table 6.2: Spins, quantum dimensions and fusion rules of the tri-critical Ising modelM(4, 5).

T sectors become confined. It turns out that the sectors (σ, 1) and (1, σ) have nontrivial
monodromy with (ψ,ψ) and hence become confined. When we check the spins and
fusion rules of the remaining unconfined sectors {(1, 1), (σ, σ)1, (σ, σ)2, (ψ, 1)}, they
correspond precisely to the toric code whose sectors 1, e,m and em are given in table 6.1.

Let us now look at the wall in between the phases. Of the nontrivial excitations in
the interior bulk, the fermionic (ψ, 1) excitation can freely move through the wall into the
exterior region while the other two bulk excitations cannot. This corresponds well to the
results of ref. [144] where it was shown that free fermionic excitations occur throughout
the phase diagram. The confined excitations are expelled from the interior, but the (σ, 1)
excitation can move into the exterior region, while the other (1, σ) excitation is strictly
confined to the wall.

Now consider the following process, where a (σ, 1) excitation from the exterior region
hits the boundary. From the fusion rules of the T theory we see that

(σ, 1) = (1, σ)× (σ, σ)1 = (1, σ)× (σ, σ)2 . (6.9)

Hence, the (σ, 1) particle can split into a boundary excitation and either an e or an m
type toric code sector. This corresponds well with the results of ref. [145], where σ-
like excitations were exhibited in the toric code using superpositions of e and m type
excitations. Pushing another (σ, 1) particle through the phase boundary will allow the
confined (1, σ) excitations to annihilate, yielding either (1, 1) or (ψ, 1). This depends on
the fusion channel the initial two (σ, 1) particles were in, thus conserving T charge.
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6.2.2 The Pfaffian/NASS interface
Now we turn to the interface between the MR Pfaffian FQH state [11] and the non-Abelian
spin-singlet (NASS) state proposed by Ardonne and Schoutens [146,147], which are can-
didate states for QH liquids at filling fraction ν = 5/2 and ν = 18/7, respectively. Such
an interface was also considered in ref. [140].

The NASS state was originally proposed as a candidate state for the plateau at ν =
18/7, but numerical calculations show that with Coulomb interactions it is a better candi-
date for the LLL at ν = 4/7. This would suggest that the study of an interface between
MR and NASS is solely a theoretical exercise, but preliminary studies [148] indicate that
there exists well-chosen modifications of the Coulomb interaction that could stabilize
both the MR and NASS phases in the second LL. Moreover, we remark that FQH states
can in principle be produced in cold atoms with artificial gauge fields, thus in practice an
interface between a bosonic MR state at ν = 1 and a bosonic NASS state at ν = 4/3
seems to be promising [149].

In this section we leave out the U(1) charge factors and focus on the non-Abelian
parts of the MR and NASS theories which are the same regardless of the LL they are in.
The condensation process that drives the phase transition only takes place in the neutral
part for these particular models and the U(1) charges can be put back in at any point.

Let us return to fig. 6.2 and consider a disc with a C1 = Ising CFT, corresponding to
the non-Abelian part of the MR state, with a smaller disc with C3 = M(4, 5) on top of
that. The latter CFT is a minimal model with c = 7/10 corresponding to a tri-critical Ising
model [78]. The field content of the Ising and M(4, 5) theories are given in tables 6.1
and 6.2, respectively.

In the overlapping region we start from a theory Ising ⊗ M(4, 5). The (ψ, ε′′) sector
is the only bosonic channel and as this is a simple current it is straightforward to determine
the fate of the various fields in the model. Of the initial 18 sectors, 16 become pairwise
identified, because they are equivalent modulo fusion with (ψ, ε′′). The remaining two
sectors (σ, σ̃) and (σ, σ̃′), are invariant under fusion with the condensate and therefore
split, resulting in a total of 12 T sectors, which are listed at the top of table 6.4. An
analysis along the lines of ref. [81] shows that the fusion rules of the intermediate phase
are given by T = M(4, 5) ⊗ Z2. Again, not all of the T fields can live in the bulk of
region II and after explicitly calculating the monodromies with the condensate, we find
that the T sectors that are not confined correspond to the sectors of the NASS state, and
form the residual bulk theory in region II. The quantum numbers and fusion rules of the
NASS sectors are given in table 6.3.

In table 6.4 we have explicitly indicated which T sectors correspond to excitations
in the various regions, and which are strictly confined to particular walls. Note that in
this table the configuration depicted in fig. 6.1 is considered, meaning that there are three
different phases.
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U (1, 1) (σ, σ̃)1 (σ, σ̃)2 (1, ε) (1, ε′) (σ, σ̃′)1 (σ, σ̃′)2 (1, ε′′)

NASS 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

h 0 1
10

1
10

1
10

3
5

1
2

1
2

1
2

d 1 1+
√

5
2

1+
√

5
2

1+
√

5
2

1+
√

5
2 1 1 1

σ↑ 1 + ρ
σ↓ ψ12 + σ3 1 + ρ
σ3 ψ1 + σ↓ ψ2 + σ↑ 1 + ρ
ρ ψ2 + σ↑ ψ1 + σ↓ ψ12 + σ3 1 + ρ
ψ1 σ3 ρ σ↑ σ↓ 1
ψ2 ρ σ3 σ↓ σ↑ ψ12 1
ψ12 σ↓ σ↑ ρ σ3 ψ2 ψ1 1

Table 6.3: The sectors of the broken unconfined phase U in region II are given in the first row. They
turn out to be the same as the non-Abelian part of the NASS state. The sectors and their quantum
numbers and fusion rules are given.

Let us highlight a few processes which could occur in such a phase diagram. The ψ12

sector of the NASS phase is identified with the MR sector ψ, which means that the ψ or
ψ12 excitations can propagate right through the wall separating the two phases. Again,
the fusion rules of the T theory fix the kinematically allowed channels by which particles
hitting the wall can split. For instance, from the T fusion rule σ × σ̄ = σ↑ + σ↓, we
find that a σ↑ coming from region II can split into a σ going into the MR region and a σ̄
staying on the wall. However, since σ̄× σ∗ = σ↑ + σ↓ +ψ1 +ψ2 is also a correct fusion
rule, the σ↑ excitation may instead split into two wall-excitations σ̄ and σ∗. Likewise,
this scenario may be turned around by noticing that two strict boundary excitations may
fuse into a state that is not confined to the wall. Obviously there are many more possible
processes, but we refrain from listing them all here.

A final comment concerns the relaxation of qubits near a wall [150]. If we encode a
topological qubit in the NASS phase, for example in the fusion channel of a pair of excita-
tions, the qubit may relax to the lowest energy state by transferring a neutral excitation to
the boundary. For example, pairs of σ type excitations have fusion rules σ3 × σ3 = 1 + ρ
and σ↓ × σ↑ = ψ12 + σ3, so these pairs can relax under emission of a ρ excitation. This
excitation may convert into one of the pairs σ∗×σ∗, σ̄× σ̄, or σ̄× σ̄′, which are all strictly
confined to the interface. Alternatively we may have ρ→ σ∗×σ where σ∗ is confined to
the wall but σ can enter the MR region.

Having examined two specific examples of a phase transition between non-Abelian topo-
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T theory 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12 σ σ̄ σ̄′ σ∗

Corresponding sectors in (1, 1) (σ, σ̃) (1, ε) (1, ε′) (σ, σ̃′) (1, ε′′) (σ, 1) (1, σ̃) (1, σ̃′) (σ, ε)
Ising ⊗M(4, 5) (ψ, ε′′) (ψ, ε′) (ψ, ε) (ψ, 1) (σ, ε′′) (ψ, σ̃) (ψ, σ̃′) (σ, ε′)

d 1 1+
√

5
2

1+
√

5
2

1+
√

5
2

1+
√

5
2 1 1 1

√
2 1+

√
5√

2

√
2 1+

√
5√

2

Phase I : MR 1 ψ σ
Phase II : NASS 1 σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

Confined on I/II wall σ̄ σ̄′ σ∗

Phase III :M(4, 5) 1 ε ε′ ε′′ σ̄ σ̄′

Confined on II/III wall σ σ∗

Table 6.4: The field content of the T theory resulting from a (ψ, ε′′) condensate in the Ising ⊗
M(4, 5) model is listed in the top row. The following rows give the correspondence between these
T sectors and the excitations of the different phases and walls. The sectors σ̄, σ̄′ and σ∗ are strictly
confined to the I/II boundary. The same T theory describes a domain wall between NASS and
M(4, 5) phases, where σ and σ∗ would be strictly confined to the II/III boundary.

logical phases at different central charges, we return to Abelian phase transitions in the
next section.

6.3 Phase transitions between different levels of the HH
hierarchy

In the previous section we discussed phase transitions between non-Abelian phases due
to Bose condensation of a topological sector. We showed how we can circumvent the
problem of having phases at different central charges by adding an auxiliary layer to the
system, and how this gives a good description of the boundary between the two phases.
In the present section we will discuss a transition between two FQH states belonging to
the same hierarchy, but which have different filling fractions. In chapter 5 we treated
very specific examples of Laughlin states that contain a bosonic sector in their particle
spectrum, but in this section we want to describe a transition from a phase that does not
contain such a bosonic candidate. Once more we have to use an auxiliary layer to induce
the transition and be able to investigate the boundary between these phases.

We will discuss a transition from a Laughlin state A0 at ν = 1/3 to a state U1 at
the 1st level of the HH hierarchy at filling fraction ν = 2/5. More details on the HH
hierarchy were presented in section 2.3. We choose this specific example to motivate our
formalism and give a general treatment of the entire HH hierarchy in appendix 6.A.

As explained in appendix 5.B, excitations of the initial phase are labeled by irreps of
the quantum group A0 = U+(1)6, which has a total of six sectors corresponding to the
CFT vertex operators

Vn(z) = einφ(z)/
√

3 , n = 0, . . . , 5 . (6.10)
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1

A1

A0

Figure 6.3: Phase diagram of the initial situation before the formation of a condensate. Since
A0 ⊂ A1 the boundary between the two regions has sectors labeled by A1.

The electron operator is given by V3 = ei
√

3φ, and V6 = e2i
√

3φ is added to the current al-
gebra resulting in this finite number of sectors. In terms of the K matrix (see section 2.3),
this phase is characterized by KA0 = 3 and has charge vector tA0 = 1. At this point
there is no big advantage to using the K matrix approach over the explicit CFT operators,
as both give all the relevant quantum numbers. But when we treat a general level of the
hierarchy in appendix 6.A we will encounter more complicated structures, which makes
the K matrix formalism the preferable one, and therefore we adopt it right away.

The electric charges (in units e = 1), monodromy and topological spins of the differ-
ent sectors are

Qn = tA0 ·K−1
A0
· n =

n

3
(6.11)

Mn,m = n ·K−1
A0
·m =

nm

3
(6.12)

hn =
1

2
Mn,n =

n2

6
, (6.13)

which confirms the fermionic nature and charge of the electron n = 3. Moreover, note
that all sectors are local with respect to the electron operator. Since we will be dealing
with Abelian theories throughout the rest of this chapter, we will not be mentioning the
quantum dimension of the sectors explicitly as they are all equal to unity. We can easily
see that none of these excitations are a candidate to form the condensate, as A0 does not
contain any bosonic sectors.

A1 phase

We add a conveniently chosen auxiliary layer to A0, which we choose to be a fermionic
Laughlin state of the same chirality at filling fraction ν = 1/15. It is described by a
U(1)+

30 theory. As we wish to investigate a boundary between a ν0 = 1/3 state and
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ν1 = 2/5, we add a smaller auxiliary layer to A0, thus creating a system as depicted
in fig. 6.3 in which region I consists of a phase with A0 = U+(1)6 and region II with
A1 = U+(1)6 ⊗ U+(1)30. The phase in region II is now described by

KA1
=

(
3 0
0 15

)
, tA1

=

(
1
1

)
. (6.14)

This is a double layered phase where both layers carry electric charge. The filling fraction,
charge, and monodromy are given by (see eqs. (2.11 –2.13))

νA1
=

2

5
(6.15)

Ql =
l1
3

+
l2
15

(6.16)

Ml,m =
l1m1

3
+
l2m2

15
. (6.17)

T1 phase

A1 has more than one nontrivial boson, but we choose to let the charge neutral (modulo
2e) boson B1 = (1,−5) ∼ (1, 25) condense. That this is indeed a bosonic sector follows
from

h(1,−5) =
1

6
+

(−5)2

30
∈ Z . (6.18)

When these sectors form a condensate a transition to a new phase U1 is driven. In light
of the results of chapter 5, this means that the operator creating such a bosonic particle
gets a finite expectation value. Since (1,−5) is a simple current of order six, there are six
different possible vacua. In the present chapter we will just consider one of these vacua,
say

|v〉 =

5∑

v′=0

(v′,−5v′) , (6.19)

but keep in mind that the formation of different domains within the final U1 phase due to
spontaneous symmetry breaking also holds in this context. The other states rearrange as
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follows

|a〉 =

5∑

a′=0

(a′, a− 5a′) , a = 1, . . . , 29 , (6.20)

and together they have fusion rules Z30 forming the intermediate phase T1.

U1 phase

Next, we will check for consistent braiding, i.e. the sectors that survive should have trivial
monodromy with the condensate. Since a T1 sector consists of several A1 sectors, all of
these should have trivial monodromy with all the lifts of the T1 vacuum |v〉. Let us first
write an expression for the monodromy of two T1 sectors |a〉 and |b〉

Ma,b = (a′, a− 5a′) ·K−1
A1
· (b′, b− 5b′)T

= 2a′b′ +
1

15
ab− 1

3
(ab′ + a′b) . (6.21)

This should be independent of a′ and b′ modulo integers. Therefore it follows that a, b ∈
3Z. The monodromy of |a〉 with the condensate is given by

Ma,v = 2a′v′ − av′

3
, (6.22)

resulting in the same condition, namely a ∈ 3Z for the unconfined sectors. After all con-
fined excitations are expelled from the bulk of region II, for the same reasons as explained
in chapter 5, we are left with a broken unconfined phase

U1 = {|3u〉| u = 0, 1, ..., 9} . (6.23)

These sectors form a closed set under fusion and have well-defined braiding statistics.
The monodromy of the unconfined sectors in region II is

Mu1,u2
= (u′1, 3u1 − 5u′1) ·K−1

A1
· (u′2, 3u2 − 5u′2)T

=
3

5
u1u2 mod 1 , (6.24)

which corresponds to a topological spin of hu = 3u2/10.
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Comparing to HH hierarchy state

The easiest way to recognize which state we have obtained, is by returning to the original
A1 sectors. The monodromy of a state l = (l1, l2) with the condensate is

Ml,B1 =
l1 − l2

3
, (6.25)

so an unconfined sector has lifts with l1 − l2 ∈ 3Z. An arbitrary integer vector l can be
mapped to an unconfined U1 sector by the transformation

W =

(
1 0
1 3

)
: l 7→ W l =

(
l1

l1 + 3l2

)
. (6.26)

Let us check what this means for the monodromy in the initialA1 phase of two states W l
and Wm mapped in such a way

MW l,Wm = (W l)T ·K−1
A1
· (Wm)

= lT · (WT ·K−1
A1
·W ) ·m . (6.27)

We recognize this as the monodromy of two sectors l and m in a different theory with K
matrix

K−1
U1

= WT ·K−1
A1
·W =

1

5

(
2 1
1 3

)
. (6.28)

Calculating the charge of a W l sector we find

QW l = tT ·K−1
A1
· (W l)

= (W−1t)T · (WT ·K−1
A1
·W ) · l (6.29)

where we define a new charge vector tU1
= W−1tA1

. All of this leads to a new phase
characterized by

KU1
=

(
3 −1
−1 2

)
, tU1

=

(
1
0

)
, (6.30)

113



6. BOUNDARIES BETWEEN TOPOLOGICAL PHASES

which is precisely the ν = 2/5 FQH state at the 1st level of the HH hierarchy as in (2.14).
To summarize, the connection between the two phases is

tA1 = W tU1 (6.31)

KA1
= WKU1

WT . (6.32)

Boundary excitations

As was discussed in section 6.2, the particles in both region I and II as well as on the
boundary separating them, can be expressed in terms of T1 sectors. In region I described
by A0, the sectors are labeled lA0 = (l1, 0)A1 , which is a lift of the T1 sector

|a = 5l1〉 =

5∑

l′=0

(l′, 5l1 − 5l′)A1
, l1 = 0, . . . , 5 . (6.33)

To express the particles of U1 in terms of the T1 sectors, let us first establish a connection
between the A1 sectors and those of U1 in terms of the W matrix. We can go back and
forth between them as follows

l ∈ A1 ⇒ W−1l ∈ U1 , provided l1 − l2 ∈ 3Z (6.34)
l ∈ U1 ⇒ W l ∈ A1 . (6.35)

We know from (6.23) that an unconfined particle has |a = 3u〉, which can be expressed
in U1 sectors as

|3u〉 =

5∑

u′=0

(u′, 3u− 5u′)A1 (6.36)

=

5∑

u′=0

(u′, u− 2u′)U1 , u = 0, . . . , 9 . (6.37)

We can now draw the following conclusions. First of all, the T1 sectors which are of the
form in (6.33) and (6.37) can move into the bulk of region I and region II, respectively.
There is one excitation that can move into both regions and it is given by |a = 15〉. In
region I it carries a label l = (3, 0)A1

and in region II lU1
= W−1lA1

= (3,−1).
We immediately see that this is the electron operator in both regions. Lastly we may
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conclude that the fundamental quasiparticle that lives on the boundary between phase I
and II is given by |a = 1〉, it has charge Q = e/15 and this excitation is strictly confined
to the wall. These results agree perfectly with those of Camino et al. mentioned in the
introduction of this chapter [141, 142].

In this chapter we have investigated phase transitions between FQH states at different
filling fraction. We used the formalism of TSB, where we had to add an auxiliary layer
to an initial phase in order to obtain a bosonic quasiparticle that could condense and drive
the phase transition. Adding a smaller layer on top of the original phase A0 enabled us to
study a boundary between A0 and the broken unconfined phase U1, as was explained in
the first section.

The second section of this chapter was concerned with a transition between non-
Abelian states. We started with a transition between an Ising CFT and the gapped Z2

toric code, by using an auxiliary layer which was also an Ising CFT but of opposite chi-
rality. After a careful treatment of the boundary between the two phases, we could deduce
that its gapless modes were again described by an Ising CFT. The second type of transi-
tion we studied was between two non-Abelian FQH states, namely the MR and the NASS
state. As auxiliary layer we used a minimal modelM(4, 5) with central charge c = 7/10.
After the transition we ended up with a MR and a NASS phase separated by a boundary,
whose gapless excitations corresponded precisely to the M(4, 5) CFT. This gave us a
detailed dictionary of which particles may move into the bulk of either phase I or phase II
and which are strictly confined to the boundary.

In the last part of this chapter we used TSB to describe phase transitions between
different levels of the FQH hierarchy picture. Explicitly, we considered the HH hierarchy,
which is a hierarchy of Abelian states in the lowest Landau level, building on the Laughlin
state. We presented an explicit example of a phase transition between a ν = 1/3 Laughlin
state and a ν = 2/5 state at the first level of the hierarchy. A detailed account was given
regarding which auxiliary layer should be used and what the connection is between the
two phases in terms of aW matrix. We gave expressions of the spectrum on the boundary
between the two adjacent phases. The spins and electric charges are in agreement with
what is found in the literature. In the appendix we generalize our derivation to a transition
between two arbitrary levels of the HH hierarchy.
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Appendix

6.A General HH hierarchy
In section 6.3 we focused on one specific example of a phase transition between states
belonging to the same FQH hierarchy, and in this appendix these ideas are extended to
transitions at a general level of the hierarchy. First we consider a transition between an
arbitrary 0th and 1st level of the HH hierarchy, and in the second part we move on to
transitions between an arbitrary number of levels of the HH hierarchy.

6.A.1 From the 0th to the 1st level
The K matrix that describes a state at the kth level of the HH hierarchy was given in
(2.14). It shows that the 0th level of this hierarchy corresponds to

K = m0 , t = 1 , (6.38)

for m0 a positive odd integer. It describes a FQH state at filling fraction ν = 1/m0 and is
recognized as a Laughlin state, which we encountered in chapter 5. The vertex operators
corresponding to the insertion of an electron and fundamental quasiparticle are

Ve = ei
√
m0φ0 (6.39)

Vqp = e
i 1√

m0
φ0 , (6.40)

and the entire topological spectrum of phase I can be labeled by irreps of the quantum
group

A0 = U+(1)2m0 . (6.41)

The particles have Z2m0
fusion rules and a sector corresponding to an insertion of Vn =

einφ0/
√
m0 has charge and monodromy

Qn =
n

m0
(6.42)

Mn,n′ =
nn′

m0
. (6.43)
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Note that the electron operator n = m0 has unit charge and is local with respect to all
other sectors in the theory.

To get to the 1st level of the hierarchy we add a smaller auxiliary layer to this Laughlin
state. We know that the state at the next level has K matrix

K =

(
K00 K01

K10 K11

)
, (6.44)

and we use this knowledge to choose an auxiliary layer in region II such that

A1 = U+(1)2m0 ⊗ U+(1)2m1m2
0
, (6.45)

where mi>0 = Kii − 1
mi−1

. This phase can be described by K matrix and charge vector

KA1 =

(
m0 0
0 m1m

2
0

)
, tA1 =

(
1
1

)
. (6.46)

We can check explicitly that a charge neutral sector B1, i.e. for which

QB1
= 0 , (6.47)

is of the form B1 = (1,−m0m1) and that it has topological spin

hB1 =
1

2m0
+
m1

2
=
K11

2
, (6.48)

which is an integer because K11 ∈ 2Z by definition. It is therefore a suitable candidate
to form a quasiparticle condensate. When it condenses, the sectors of A1 form orbits of
length 2m0 under fusion with the condensate B1, resulting in an intermediate phase T1

with sectors

|a〉 =

2m0−1∑

a′=0

(a′, a−m0m1a
′) , a ∈ Z2|m1m2

0| . (6.49)

We can check for confinement by considering the monodromy of the different lifts of
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these sectors

Ma,b =
ab

m1m2
0

− 1

m0
(ab′ + a′b) mod 1 . (6.50)

As this should be independent of a′ and b′, the unconfined sectors are those for which
a, b ∈ m0Z. The particle spectrum of the unconfined broken phase U1 is therefore given
by

U1 = {|m0u〉|u ∈ Z2|m0m1|} , u ∈ Z2|m1m0| . (6.51)

In order to find the HH hierarchy state that corresponds to this particle spectrum we use
the transformation

W =

(
1 0
1 −K01m0

)
, (6.52)

which results in a K matrix and charge vector for the phase described by U1

tU1 = W−1tA1 =

(
1
0

)
(6.53)

KU1 = W−1KA1(WT )−1 =

(
K00 K01

K10 K11

)
. (6.54)

From this we deduce that the broken unconfined phase in region II indeed corresponds to
the 1st level of the HH hierarchy.

Boundary excitations

Let us investigate which particles are allowed in region I and/or II. Region I is described
by (6.38), region II by (6.54) and the boundary between the two has excitations given
in (6.49). How do we go back and forth between these different types of labeling? The
easiest thing to do is to express all sectors in terms of T1 labels.

The particles in region I can be written as lA0
= (l, 0)A1

and these correspond to
boundary excitations |m0m1l〉, with l ∈ Z2m0

. In order to translate the sectors in region
II to A1 particles we will use the W matrix

l ∈ A1 ⇒ W−1l ∈ U1 , provided l1 − l2 ∈ m0Z (6.55)
l ∈ U1 ⇒ W l ∈ A1 . (6.56)
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We use the first line to express the boundary excitations into U1 particles

|m0u〉 =

2m0−1∑

u′=0

(u′,−K01u+K01K11u
′)U1

, u ∈ Z2|m1m0| . (6.57)

All the boundary excitations that are not of the form |m0m1l〉 with l ∈ Z2m0
, or |m0u〉

with u ∈ Z2|m1m0|, are strictly confined to the boundary and cannot move into region I
nor II. The fundamental particle at the boundary |a = 1〉 is one of these strictly confined
sectors and it has charge Q = 1

m1m2
0

. On the other hand, there is one nontrivial particle
that can travel undisturbed from region I to region II and it is the electron le = (m0, 0)A1

.
At the boundary it belongs to the orbit

∣∣m1m
2
0

〉
and in region II it is given by lU1

=
W−1lA1 = (m0,K01).

6.A.2 Transitions to kth level of the HH hierarchy
The above strategy can be repeated k times which will lead to the kth level of the HH
hierarchy, with k+ 1 different regions. All the information we need is contained in the K
matrix. In the following we will sketch how this works and give general formulas for this
breaking process.

The 0th level is again described by A0 = U+(1)2m0
and to obtain k levels on top of

A0 we should start with k auxiliary layers, resulting in an initial phase structure

Ak = U+(1)2m0
⊗ U+(1)2m1m2

0
⊗ · · · ⊗ U+(1)2mkm2

k−1...m
2
0
. (6.58)

This initial phase is described by the following K matrix and charge vector

KAk = Diag(m0,m1m
2
0, . . . ,mkm

2
k−1 . . .m

2
0) (6.59)

tAk = (1, 1, . . . , 1)T . (6.60)

Note that Ak is the full theory for the innermost region, but it can be used to describe all
of them, for instance in the outermost region we would have A0 = U+(1)2m0

⊗ {0} ⊗
· · · ⊗ {0} ⊂ Ak.

To induce phase transitions between the k+ 1 regions we start by condensing the first
boson B1 = (1,−m1m0, 0, . . . , 0) and repeat the exercise of the previous subsection.
Ultimately we end up with unconfined sectors l = (0,m0u, l3, l4, . . . , lk+1)Ak . We repeat
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this process, and the bosons that drive the k different phase transitions are

Bj>1 = (0, 0, . . . , 0︸ ︷︷ ︸
j−1 times

,mj−2 . . .m0,−mj . . .m0, 0, . . . , 0︸ ︷︷ ︸
k−j times

) . (6.61)

It can be easily checked that these are indeed charge neutral bosons whenever the K
matrices have Kii ∈ 2Z, i > 0 as is the case for the HH hierarchy. When Bj condenses
the sectors rearrange in orbits of length 2|mj−1 . . .m0| and the Tj sectors can be written
as

|a〉 =

2|mj−1...m0|−1∑

a′=0

(0, . . . , 0,mj−2 . . .m0a
′, a−mj . . .m0a

′, lj+2, . . . , lk+1) , (6.62)

with a ∈ Z2|mjm2
j−1...m

2
0|. From the monodromy of two such sectors we learn that the

unconfined particles have a ∈ mj−1 . . .m0Z, resulting in a number of 2|mj . . .m0| un-
confined sectors.

When all k bosons have condensed we obtain the phase diagram with k + 1 different
phases Uj , for j = 0, . . . , k and U0 = A0. Every two adjacent phases Uj−1 and Uj are
separated by a wall Tj which has sectors

|a〉Tj =

2|mj−1...m0|−1∑

a′=0

(0, . . . , 0,mj−2 . . .m0a
′, a−mj . . .m0a

′, 0, . . . , 0) . (6.63)

They have Z2|mjm2
j−1...m

2
0| fusion rules and the fundamental excitation with a = 1 has

charge Q1 = 1
mjm2

j−1...m
2
0

and is strictly confined to the boundary. The sectors that can
move into the phase Uj−1 and Uj are, respectively,

|a = mj . . .m0u〉 u ∈ Z2|mj−1...m0| (6.64)

|a = mj−1 . . .m0u
′〉 u′ ∈ Z2|mj ...m0| . (6.65)

There is one Tj sector that can move into both phases. It has charge Q = e, half-integer
spin, and it is given by

∣∣a = mjm
2
j−1 . . .m

2
0

〉
.

The W matrix that transforms the KAk matrix into the KUk matrix corresponding to
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the kth level of the HH hierarchy is

W =




1 0 0 0 . . . 0
1 −K01m0 0 0 . . . 0
1 −K01m0 (−K01m0)(−K12m1) 0 . . . 0

...
...

...
. . .

...
...

...
...

. . . 0
1 −K01m0 (−K01m0)(−K12m1) . . . . . . (−Kk−1,kmk−1) . . . (−K01m0)




(6.66)
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CHAPTER 7

Outlook

Part of doing research is that the job is never completely done: answers usually raise
new questions. Therefore, in this last chapter we will present some of the questions that
naturally follow from the results presented in this thesis, and we will indicate possible
paths for future research.

Topological invariant The Hamiltonian in (3.1) was proposed as a continuum model
for a three-dimensional topological insulator, but so far no explicit topological invariant
has been written down to unambiguously confirm this. The classification of topological
insulators [17–19] suggests that in three dimensions for a system with TRS, the invariant
should take values in Z2, but these results are obtained from lattice models. The problem
with the model we investigate is that the number of available states grows with distance,
so it is not possible to define a (magnetic) Brillouin zone.

A route that could be pursued is to investigate edge states. When the edge does not
break the TRS and our system is indeed a topological insulator, then the edge to a trivial
phase necessarily has to carry protected gapless edge modes. It might be easier to choose
a different gauge in the formulation of (3.2) and consider a half infinite system with a
boundary along the ẑ-axis. The system could be probed by, for instance, the insertion of
some (possibly non-Abelian) flux along the lines of the Laughlin argument.

Fractional topological insulators Still focusing on the model of (3.1) we would like
to remark that flat energy bands are very interesting if one wants to study interactions.
Analogous to the FQHE, we could partially fill the LLL and try to find an interaction term
that makes the partially filled system an exact ground state. This would be an interest-
ing candidate for a fractional topological insulator, which would then exhibit fractionally
charged particles. Studying interactions is most easily done on a compact manifold like
the three-sphere, because such a system would only have a finite number of states mak-
ing it feasible to do numerics. This construction would give a continuum version of the
fractional Chern insulators.

Geometric picture Our results in chapter 3 suggest a geometrical picture for three-
dimensional Landau levels based on four-dimensional Anti de Sitter space (AdS4), whose
isometries are precisely SO(3, 2). We have established that, as far as their quantum or-
bitals are concerned, particles in the three-dimensional Landau levels experience a ge-
ometry that is a radial deformation of AdS4 rather than flat space. We expect that this
qualitative observation can be made more precise, for example in the form of accurate
statements about magnetic translations.
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Higher dimensions and spin representations Another observation about chapter 3 is
that in three dimensions one may choose a different spin representation in the Hamil-
tonian, H = H0 − αL · S, where α is a constant. For spin-s particles this gives us
2s + 1 branches, of which one can always be made flat by adjusting the coefficient α.
Presumably a higher spin representation will not change the fundamental structure, but
will change the representation content to a corresponding higher spin representation of
the group SO(3, 2).

The system can also be analyzed in higher dimensions to determine whether a generic
hierarchy of symmetries arises similar to what happens for the ordinary harmonic oscilla-
tor, which has a SU(d) symmetry in d-dimensional space.

TSB with more domains In chapter 5 we extended our understanding of TSB by rec-
ognizing a ground state degeneracy after the formation of a condensate. This degeneracy
could result in the formation of different domains in the bulk and on the boundary of a
system in the broken unconfined U phase. We discussed the specific example of a chiral
compactified boson CFT and mainly focused on a system with a two-dimensional ground
state manifold.

It would be intriguing to extend these derivations to systems with more structure. For
instance, the FQH state at ν = 1/9 allows a similar discussion as was already presented in
section 5.1. Now we obtain three degenerate ground states and we can imagine that three
different domains may touch at a point somewhere in the bulk of the system. It would be
interesting to investigate what could happen at such a point.

Also we can imagine starting from a bulk in one of the ground states and then creating
two different domains somewhere in the bulk by acting with the Wilson loop operators
W1 andW2. Now if we break both loops into Wilson lines by attaching V1-V †1 and V2-V †2
pairs at the endpoints we still have two gauge invariant operators. But what would happen
if we fuse an endpoint of the first line with an endpoint of the other Wilson line? This
would again create a loop but now with point excitations attached to the loop.

Domains in non-Abelian system In chapter 5 we have only focused on the U(1) CFTs,
but another interesting generalization are systems which are described by a WZW theory.
Also, the NASS state discussed in section 6.2, would be a nice starting point. One could
investigate how the non-Abelian nature of the quasiparticles affects the formation and
stability of domain walls in the NASS state when it is obtained from breaking Ising ⊗
M(4, 5).

Effective theory TSB We would like to show explicitly how TSB occurs from the ef-
fective Lagrangian of the topological phase. This could give much insight into the precise
energy scales of the problem, and could ultimately help in designing experiments where
these phase transitions could be explicitly realized.

124



TSB and other hierarchies The HH hierarchy that was constructed in chapter 6 by
applying TSB to multilayered systems, could be generalized to other hierarchies and pos-
sibly be used to create entirely new ones. One particular hierarchy that we want to study
in future work is the Bonderson-Slingerland (BS) hierarchy, which describes FQH states
in the second Landau level. It contains non-Abelian states as opposed to the HH hierar-
chy. One of the states of this hierarchy is a candidate for the plateau observed at ν = 12/5
and its neutral sectors are labeled by the Ising model [151].

It would be especially interesting to investigate possible boundaries with other FQH
states. One obvious route is to study a transition between this state and one that has
the same neutral sectors as the NASS state. This is because the parent state of the ν =
12/5 phase of the BS hierarchy is precisely the MR state. Presumably, adding a layer of
M(4, 5) to this BS state would drive a transition to some ‘daughter’ state of the NASS
phase.

TSB and orbifolds We would like to conclude the outlook by pointing out a possible
connection between TSB and orbifolds. Breaking an initial phase with Ising ⊗ Ising
sectors by condensing (ψ,ψ), results in a compactified boson theory at radius R = 2,
which was described in appendix 5.A and corresponds to U(1)2. Conversely, the Z2

orbifold of a U(1)2 theory is equivalent to Ising ⊗ Ising.
According to ref. [78], in general the partition function of a Z2 orbifolded theory at

radius R obeys

Zorb(R) =
1

2

(
Z(R) + 2Z(2

√
2)− Z(

√
2)
)
. (7.1)

For radii of the form R =
√

2p with p a positive integer, it can be shown that the orbifold
of U(1)p is some generalized Ising ⊗ Ising model. This model has p + 7 operators and
one of these has conformal weight 1. We can break this generalized model, which we
will denote by Ising(p), by condensing this boson to obtain U(1)p as broken unconfined
phase. For p = 4, we get

(Ising)4 TSB−−−→ U(1)4
TSB−−−→ U(1)1 , (7.2)

and conversely by Z2 orbifolding (see (7.1))

(Ising)4 Z2←− U(1)4
Z2←− U(1)1 . (7.3)
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7. OUTLOOK

Whenever p = k2 applying TSB gives

(Ising)k
2 TSB−−−→ U(1)k2

TSB−−−→ U(1)1 . (7.4)

Orbifolding takes us in the other direction

(Ising)k
2 Z2←− U(1)k2

?←− U(1)1 . (7.5)

It seems tempting to conjecture that the missing link, U(1)k2 ← U(1)1, could be accom-
plished by a Zk orbifold, which corresponds to the fusion rules of the different vacua of
U(1)k2 when breaking to U(1)1.
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TSUI L.N. PFEIFFER, K.W. BALDWIN, AND K.W. WEST. Exact quantization
of the even-denominator fractional quantum Hall states at ν = 5/2 Landau level
filling factor. Phys. Rev. Lett., 83, 3530, 1999.

[97] E. ARDONNE. A conformal field theory description of fractional quantum Hall
states. PhD thesis, University of Amsterdam, 2002.

[98] B. BLOK AND X.G. WEN. Many-body systems with non-abelian statistics. Nucl.
Phys. B, 374, 615, 1992.

[99] V. GURARIE AND C. NAYAK. A plasma analogy and Berry matrices for non-
abelian quantum Hall states. Nucl. Phys. B, 506, 685, 1997.

[100] P. BONDERSON, V. GURARIE, AND C. NAYAK. Plasma analogy and non-Abelian
statistics for Ising-type quantum Hall states. Phys. Rev. B, 83, 075303, 2011.

[101] X.G. WEN. Chiral Luttinger liquid and the edge excitations in the fractional
quantum Hall states. Phys. Rev. B, 41, 12838, 1990.

[102] X.G. WEN. Gapless boundary excitations in the quantum Hall states and in the
chiral spin states. Phys. Rev. B, 43, 11025, 1991.

[103] D.J. GROSS, J.A. HARVEY, E. MARTINEC, AND R. ROHM. Heterotic string
theory (I). The free heterotic string. Nucl. Phys. B, 256, 253, 1985.

[104] R. FLOREANINI AND R. JACKIW. Self-dual fields as charge-density solitons.
Phys. Rev. Lett., 59, 1873, 1987.

[105] Y. LI AND C. WU. High-dimensional topological insulators with quaternionic
analytic Landau levels. Phys. Rev. Lett., 110, 216802, 2013.

[106] H. UI AND G. TAKEDA. Does accidental degeneracy imply a symmetry group?
Prog. Theor. Phys., 72, 266, 1984.

[107] A. CAPPELLI, C.A. TRUGENBERGER, AND G.R. ZEMBA. Infinite symmetry in
the quantum Hall effect. Nucl. Phys. B, 396, 465, 1993.

[108] M. FLOHR AND R. VARNHAGEN. Infinite symmetry in the fractional quantum
Hall effect. J. Phys. A: Math. Gen., 27, 3999, 1994.

[109] J.B. EHRMAN. On the unitary irreducible representations of the universal covering
group of the 3 + 2 deSitter groups. Proc. Cambridge Philos. Soc., 53, 290, 1956.

134



BIBLIOGRAPHY

[110] P.A.M. DIRAC. A remarkable representation of the 3+2 de Sitter group. J. Math.
Phys., 4, 901, 1963.

[111] N.T. EVANS. Discrete series for the universal covering group of the 3+2 de Sitter
groups. J. Math. Phys., 8, 170, 1967.

[112] HARISH-CHANDRA. Infinite irreducible representations of the Lorentz group.
Proc. R. Soc. London Ser. A, 189, 372, 1947.

[113] T. HOLSTEIN AND H. PRIMAKOFF. Field dependence of the intrinsic domain
magnetization of a ferromagnet. Phys. Rev., 58, 1098, 1940.

[114] V. BARGMANN. Irreducible unitary representations of the Lorentz groups. Ann.
Math., 48, 568, 1947.

[115] B.G. WYBOURNE. Classical groups for physicists. John Wiley & Sons, 1974.

[116] B. BAGCHI. Supersymmetry in quantum and classical mechanics. Chapman &
Hall/CRC, 2001.

[117] N. MUKUNDA. Unitary representations of the group O(2, 1) in an O(1, 1) basis.
J. Math. Phys., 8, 2210, 1967.

[118] J.G. KURIYAN, N. MUKUNDA, AND E.C.G SUDARSHAN. Master analytic rep-
resentation: reduction of O(2, 1) in an O(1, 1) basis. J. Math. Phys., 9, 2100,
1968.

[119] G. ’T HOOFT. Magnetic monopoles in unified gauge theories. Nucl. Phys. B,
79, 276, 1974.

[120] A.M. POLYAKOV. Particle spectrum in the quantum field theory. JETP Lett.,
20, 194, 1974.

[121] N. GOLDMAN, A. KUBASIAK, P. GASPARD, AND M. LEWENSTEIN. Ultracold
atomic gases in non-Abelian gauge potentials: The case of constant Wilson loop.
Phys. Rev. A, 79, 023624, 2009.

[122] N. GOLDMAN, A. KUBASIAK, A. BERMUDEZ, P. GASPARD, M. LEWENSTEIN,
AND M.A. MARTIN-DELGADO. Non-Abelian optical lattices: Anomalous quan-
tum Hall effect and Dirac fermions. Phys. Rev. Lett., 103, 035301, 2009.

[123] M. BURRELLO AND A. TROMBETTONI. Non-Abelian anyons from degenerate
Landau levels of ultracold atoms in artificial gauge potentials. Phys. Rev. Lett.,
105, 125304, 2010.

135



BIBLIOGRAPHY

[124] R.N. PALMER AND J.K. PACHOS. Fractional quantum Hall effect in a u(1) ×
su(2) gauge field. New J. Phys., 13, 065002, 2010.

[125] D. ZHANG. Exact Landau levels in two-dimensional electron systems with Rashba
and Dresselhaus spin-orbit interactions in a perpendicular magnetic field. J. Phys.
A: Math. Gen., 39, L477, 2006.

[126] T.T. WU AND C.N. YANG. Dirac monopole without strings: monopole harmon-
ics. Nucl. Phys. B, 107, 365, 1976.

[127] T.T. WU AND C.N. YANG. Some properties of monopole harmonics. Phys. Rev.
D, 16, 1018, 1977.

[128] Z.F. EZAWA. Quantum Hall Effects. Singapore: World Scientific, 2nd edition,
2008.

[129] S.L. SONDHI, A. KARLHEDE, S.A. KIVELSON, AND E.H. REZAYI. Skyrmions
and the crossover from the integer to fractional quantum Hall effect at small Zee-
man energies. Phys. Rev. B, 47, 16419, 1993.

[130] F.D.M. HALDANE. Stability of chiral Luttinger liquids and Abelian quantum Hall
states. Phys. Rev. Lett., 74, 2090, 1995.

[131] M. LEVIN. Protected edge modes without symmetry. Phys. Rev. X, 3, 021009,
2013.

[132] Y.-M. LU AND A. VISHWANATH. Theory and classification of interacting integer
topological phases in two dimensions: A Chern-Simons approach. Phys. Rev. B,
86, 125119, 2012.

[133] L.-Y. HUNG AND Y. WAN. K matrix construction of symmetry-enriched phases
of matter. Phys. Rev. B, 87, 195103, 2013.

[134] L.-Y. HUNG AND Y. WAN. Symmetry enriched phases via pseudo anyon-
condensation. arXiv:1308.4673v1, 2013.

[135] Y. GU, L.-Y. HUNG, AND Y. WAN. A unified framework of topological phases
with symmetry. arXiv:1402.3356v2, 2014.

[136] F.A. BAIS. The topology of monopoles crossing a phase-boundary. Phys. Lett. B,
98, 437, 1981.

[137] S.M. HAAKER. Phase transitions between fractional quantum Hall states: a Bose
condensation approach. Master’s thesis, University of Amsterdam, 2009.

136



BIBLIOGRAPHY

[138] S. DAS SARMA, M. FREEDMAN, AND C. NAYAK. Topologically protected
qubits from a possible non-Abelian fractional quantum Hall states. Phys. Rev.
Lett., 94, 166802, 2005.

[139] P. BONDERSON, K. SHTENGEL, AND J.K. SLINGERLAND. Interferometry of
non-Abelian anyons. Ann. Phys., 323, 2709, 2008.

[140] E. GROSFELD AND K. SCHOUTENS. Non-Abelian anyons: when Ising meets
Fibonacci. Phys. Rev. Lett., 103, 076803, 2009.

[141] F.E. CAMINO, W. ZHOU, AND V.J. GOLDMAN. Realization of a Laughlin
quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B,
72, 075342, 2005.

[142] F.E. CAMINO, W. ZHOU, AND V.J. GOLDMAN. Aharonov-Bohm superperiod in
a Laughlin quasiparticle interferometer. Phys. Rev. Lett., 95, 246802, 2005.

[143] C. NASH AND D. O’CONNOR. Zero temperature phase diagram of the Kitaev
model. Phys. Rev. Lett., 102, 147203, 2009.

[144] G. KELLS, A.T. BOLUKBASI, V. LAHTINEN, J.K. SLINGERLAND, J.K. PA-
CHOS, AND J. VALA. Topological degeneracy and vortex manipulation in Kitaev’s
honeycomb model. Phys. Rev. Lett., 101, 240404, 2008.

[145] J.R. WOOTTON, V. LAHTINEN, Z. WANG, AND J.K. PACHOS. Non-Abelian
statistics from an Abelian model. Phys. Rev. B, 78, 161102(R), 2008.

[146] E. ARDONNE AND K. SCHOUTENS. New class of non-Abelian spin-singlet quan-
tum Hall states. Phys. Rev. Lett., 82, 5096, 1999.

[147] E. ARDONNE AND K. SCHOUTENS. Wavefunctions for topological quantum
registers. Annals of Physics, 322, 201, 2007.

[148] N. Regnault. Private communication.

[149] K. Schoutens. Private communication.

[150] R. ILAN, E. GROSFELD, K. SCHOUTENS, AND A. STERN. Experimental sig-
natures of non-Abelian statistics in clustered quantum Hall states. Phys. Rev. B,
79, 245305, 2009.

[151] P. BONDERSON AND J.K. SLINGERLAND. Fractional quantum Hall hierarchy
and the second Landau level. Phys. Rev. B, 78, 125323, 2008.

[152] S.M. HAAKER, F.A. BAIS, AND K. SCHOUTENS. Noncompact dynamical sym-
metry of a spin-orbit-coupled oscillator. Phys. Rev. A, 89, 032105, 2014.

137



138



Samenvatting

In de volgende pagina’s zal ik een overzicht geven van het vakgebied waarbinnen het
werk, beschreven in dit proefschrift, zich afspeelt. Aan het eind zal ik ingaan op specifieke
details van mijn onderzoek, maar ik richt mij dus met name op het grotere plaatje.

1 De angst voor natuurkunde komt vaak voort uit
de wiskunde waarmee het beschreven wordt. Wis-
kunde is als een taal en het is niet verwonderlijk dat
het niet zomaar te begrijpen valt. Ten onrechte denkt
men vaak dat je er nu eenmaal goed of slecht in bent,
terwijl zoals bij iedere taal men er veel mee moet oe-
fenen om er vaardig in te worden.

Natuurkunde aan de andere kant, kan op een heel
ander niveau begrepen worden. Vergelijk het met de
Oeigoeren in China. We hoeven geen Oeigoers of
Chinees te beheersen om toch een idee te krijgen van
de geschiedenis van deze volkeren en hun conflict.

Op zo’n niveau kan de natuurkunde ook begrepen
worden. Er zijn bijvoorbeeld verschillende type deel-
tjes in het universum en verschillende krachten werk-
zaam. Sommige deeltjes trekken elkaar aan, andere
stoten elkaar af. Als er heel veel deeltjes samen ko-
men kunnen ze bepaalde materialen vormen en ga zo
maar door.

Deze beknopte samenvatting is gericht
op de lezer die geen achtergrond heeft in
de natuurkunde, maar wel graag meer over
dit onderwerp te weten wil komen. Om te
voorkomen dat het geheel te lang wordt en
het woord samenvatting geen recht meer
doet aan dit stuk, zal ik in de tekst verwij-
zen naar kaders waarin bepaalde begrip-
pen toegelicht worden. Deze kunnen der-
halve overgeslagen worden om een korte
versie te krijgen, of bestudeerd worden
door de lezer die specifieke voorbeelden
wil zien.

Het is alles behalve triviaal om een on-
derwerp uit de theoretische natuurkunde
op zo’n manier uiteen te zetten dat het
voor de lezer zonder enige wiskundige
achtergrond begrijpbaar wordt. Ik zal dan
ook mijn best doen om hier toch zoveel mogelijk in te slagen. Tegelijkertijd is een tekst
zonder lezer zinloos en heeft de lezer in mijn ogen ook een belangrijke taak in het be-
grijpen van de tekst. Vertel uzelf niet bij voorbaat dat u niets van het onderwerp begrijpt,
maar probeer bij alles wat onduidelijk lijkt te bedenken wát er precies onduidelijk is. Soms

2 Beschouwen we bijvoorbeeld de klassieke na-
tuurkunde, dan vertelt Newton’s tweede wet F =
ma ons dat als een kracht F werkt op een object
met massa m dat het een acceleratie krijgt gegeven
door a. Je zou kunnen zeggen dat je een natuurkun-
dig fenomeen hebt omschreven met een wiskundige
formule, maar nu zijn we er nog niet. We willen na-
melijk weten hoe het object zich gedraagt hoe ver we
ook terug gaan in het verleden of vooruit kijken naar
de toekomst. We kennen zijn versnelling, maar wat is
de positie en zijn snelheid?

moet men over bepaalde onduidelijkheden
heen stappen zonder bang te zijn dat de
rest ook onbegrijpelijk zal zijn 1 .

Theoretische natuurkunde Natuurkun-
de is de wetenschap die zich bezighoudt
met het beschrijven van de natuur. Wat
voor type deeltjes zijn er en wat voor
krachten zijn er werkzaam? De meest
voor de hand liggende manier om iets te
testen is door een experiment uit te voeren,
deze tak van de natuurkunde wordt dan
ook experimentele natuurkunde genoemd.
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We kunnen bijvoorbeeld de tijd meten die een bal met een massa van 3 kg er over doet
om van een bepaalde helling af te rollen. Maar wat vertelt dit resultaat ons? Het doet
alleen een uitspraak over dit hele specifieke geval. Zijn we vervolgens geı̈nteresseerd in
hetzelfde experiment maar dan met een bal met een massa van 3,1 kg, dan zouden we het
moeten herhalen.

3 Ik wil twee voorbeelden uitlichten, één waar-
bij de experimentatoren voorop liepen en een ander
waarbij de theoretici eerst waren.

In 1879 ontdekte Edwin Hall dat wanneer er een
elektrische stroom loopt in een bepaalde richting door
een geleidend materiaal en daar vervolgens loodrecht
een magneetveld op wordt aangebracht, er een span-
ningsverschil ontstaat in de richting die loodrecht is
op zowel de stroom als het magneetveld. Tegenwoor-
dig wordt dit het Hall effect genoemd. Het spannings-
verschil kunnen we nu verklaren doordat de elektro-
nen die bewegen in een magneetveld worden afge-
bogen door de Lorentz kracht, waardoor er ophoping
van lading ontstaat en dus een spanningsverschil dat
evenredig is met het magneetveld. Maar bedenk dat
Hall zijn ontdekking deed bijna 20 jaar voordat het
elektron ontdekt werd.

Als voorbeeld waarbij de theorie iets nieuws voor-
spelde wil ik het Majorana deeltje bespreken. In 1928
formuleerde Paul Dirac een vergelijking die het elek-
tron beschreef binnen de theorie van de quantum me-
chanica, wat tot dan toe nog niet gelukt was. Eén
van de implicaties was dat antimaterie zou moeten be-
staan, maar dat terzijde. Een ander werd afgeleid in
1937 door Ettore Majorana. Hij besefte dat er een op-
lossing bestond van de Dirac vergelijking waarbij een
deeltje beschreven wordt dat zijn eigen antideeltje is,
het zogeheten Majorana deeltje. Dat deze voorspel-
ling uit zijn theorie komt rollen betekent niet dat het
al waargenomen is. Een kandidaat is de neutrino, die
in overvloed in ons universum aanwezig is, maar heel
moeilijk te detecteren. Sinds een jaar of 10 is er in
het vakgebied waar mijn onderzoek ook deel van uit-
maakt het besef ontstaan dat Majorana deeltjes ook
‘gemaakt’ kunnen worden als er op een slimme ma-
nier materialen gecombineerd worden. In 2012 is een
experiment gedaan in Delft waarbij het er op lijkt dat
het Majorana deeltje voor het eerst is geobserveerd,
hoewel het nog niet onomstotelijk is vastgesteld.

Dit is waar theoretische natuurkunde
om de hoek komt kijken. Men probeert
aan de hand van wiskundige structuren (de
taal van de natuur) het gedrag van deeltjes
en krachten te beschrijven en met name te
voorspellen. Het opschrijven van een the-
orie is uiterst niet-triviaal. Men kan niet
zomaar zijn fantasie erop loslaten, want
het geheel moet zelf-consistent zijn, even-
tueel passen binnen andere bestaande the-
orieën en te rijmen zijn met wat er daad-
werkelijk wordt waargenomen. (In dit op-
zicht loopt de vergelijking die sommige
mensen maken tussen religie en weten-
schap in mijn ogen spaak.) En als de theo-
rie is opgeschreven, betekent het nog niet
dat hij is opgelost 2 . Vaak is de theorie te
ingewikkeld als we alle effecten mee wil-
len nemen en zal men een aantal aannames
moeten doen, bijvoorbeeld dat de aanwe-
zigheid van een vlinder in Brazilië geen
invloed heeft op een experiment met een
deeltjesversneller in Texas.

De experimentele en theoretische fy-
sica hebben een mooie wisselwerking,
welke ik nogmaals wil benadrukken, om-
dat dit in het speciaal iets is wat mij zo
aantrekt binnen het veld waarin ik mijn
onderzoek heb gedaan. Soms worden er
tijdens een experiment ontdekkingen ge-
daan die theoretisch nog niet te verklaren
zijn (er bestaan geen formules of model-
len die dat fenomeen omschrijven). De
gemeenschap van theoretische natuurkun-

digen doet er dan alles aan om het theoretisch kader aan te passen zodat het fenomeen
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verklaard kan worden. Anderzijds kunnen formuleringen vanuit de theorie bepaalde im-
plicaties hebben die experimenteel nog niet zijn waargenomen. Experimentele natuurkun-

4 In 3 noemde ik al de Dirac vergelijking om
het Majorana deeltje in te leiden, maar de ontdekking
van Paul Dirac is een mooi voorbeeld waarbij hij de
relativiteitstheorie van Albert Einstein combineerde
met de quantum mechanica, om zo een correcte be-
wegingsvergelijking voor het elektron op te stellen.

De relativiteitstheorie is nodig om de natuurkunde
te beschrijven van objecten die de snelheid van het
licht (= 300.000.000 m/s) benaderen. De quantum
mechanica is een theorie die niet aan één natuurkun-
dige toe te dichten is en werd ontwikkeld gedurende
de eerste decennia van de vorige eeuw. Het beschrijft
de natuurkunde wanneer we kijken op een schaal ter
grootte van een atoom en kleiner.

In ons dagelijks leven halen we deze snelheden
niet en zijn we groter dan een atoom, maar dat wil
niet zeggen dat de relativiteitstheorie of de quantum
mechanica niet opgaat voor ons. Het is slechts zo dat
de klassieke mechanica goed genoeg is en makkelij-
ker om mee te werken (waarom moeilijk doen als het
makkelijk kan), maar voor een elektron gaat de klas-
sieke mechanica niet meer op en zullen we toch echt
de Dirac vergelijking moeten gebruiken.

digen zullen dan opstellingen willen be-
denken om te testen of die theorie wel
klopt, of kunnen de theorie gebruiken
bij het ontwerpen van apparaten met een
praktische toepassing voor de maatschap-
pij 3 . Deze wisselwerking is een enorme
drijvende kracht achter het vergaren van
kennis.

Men zou kunnen zeggen dat het ul-
tieme doel van de fysica is om één theo-
rie te construeren die alles wat we om ons
heen zien kan beschrijven. Helaas is dit
nog niet het geval. Bij het oprekken van
de grenzen van onze kennis, wordt er aan
allerlei verschillende kanten gewerkt. Dit
heeft als gevolg dat bepaalde hoeken van
de natuurkunde steeds verder van elkaar
verwijderd raken. Af en toe staat er een
briljante natuurkundige 4 op die twee
uitgewaaierde hoeken weer bijeen brengt,
maar een theorie van alles lijkt nog ver
weg. Niet iedereen houdt zich bezig met een theorie van alles, in mijn onderzoek was
dit helemaal niet het grote doel. Ik ben met name bezig geweest met het oprekken van
kennis in een specifieke hoek.

5 Supergeleiding is een fenomeen waarbij som-
mige materialen onder een bepaalde temperatuur (na-
bij het absolute nulpunt) in een fase komen waarbij
de elektrische weerstand door het materiaal gelijk aan
nul is. Het werd ontdekt in een experiment uitgevoerd
door de Nederlandse onderzoeker Heike Kamerlingh
Onnes in 1911, waar hij later de Nobelprijs voor ont-
ving. Er wordt vandaag de dag nog volop onderzoek
gedaan naar supergeleiders. Enerzijds omdat de the-
orie erachter nog steeds niet volledig begrepen is en
anderzijds omdat het vele toepassingen kent in de in-
dustrie.

Gecondenseerde materie Het gebied
waarbinnen mijn onderzoek heeft plaats-
gevonden is de gecondenseerde materie.
In tegenstelling tot hoge energie fysica
waar men zich met name richt op de
bouwstenen van het universum, de zo-
genaamde elementaire deeltjes, zoals het
elektron en bijvoorbeeld het Higgs deel-
tje, draait het bij gecondenseerde materie
om het samenspel van vele deeltjes met el-
kaar.

Een alledaags voorbeeld is water. Een
glas water en een blok ijs bestaan beide uit
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vele watermoleculen en toch gedragen deze systemen zich heel anders: in water kan je
zwemmen en op ijs kan je zitten. Zonder de precieze posities van alle deeltjes te hoeven
kennen (wat onmogelijk is met deze aantallen moleculen) en de krachten die ze op elkaar
uitoefenen, kunnen de eigenschappen van het gehele systeem toch worden beschreven.
Water is een voorbeeld van een vloeistof en ijs een voorbeeld van een vaste stof. Dit
noemen we verschillende fases waarin een materiaal (zoals water) zich kan bevinden. In
welke fase een materiaal zich bevindt is afhankelijk van bepaalde externe eigenschappen,
zoals de druk of temperatuur van het systeem. Als de temperatuur van een vloeistof
daalt is er een bepaalde temperatuur waarop het materiaal verandert van een vloeistof in
een vaste stof, dit wordt een faseovergang genoemd. Het voorbeeld van water wat ik
nu aanhaal is aan de ene kant intuı̈tief, aangezien we er in het dagelijks leven mee te
maken hebben, maar tegelijkertijd beperkend want er zijn vele andere materialen die veel
exotischere eigenschappen hebben, zoals bijvoorbeeld supergeleiding 5 .

6 Groepentheorie is een tak van wiskunde die de ei-
genschappen van groepen bestudeert en classificeert.
Een groep is een verzameling elementen samen met
een operatie die werkt op deze elementen, die aan een
aantal eisen moet voldoen. Dit klinkt heel erg abstract
(het is dan ook wiskunde!), maar ik zal een voorbeeld
geven dat hopelijk wat verheldering brengt. Een
voorbeeld van een groep is de verzameling gehele
getallen, die weergegeven wordt door het symbool
Z, waarbij de operatie gegeven wordt door optellen.
Z bestaat uit getallen zoals 3, 18, 49899,−1,−886,
maar dus niet uit cijfers met cijfers achter de komma.
Per definitie moet een groep aan de volgende eisen
voldoen (anders mogen we het geen groep noemen).

Geslotenheid: Als we twee willekeurige gehele
getallen nemen en ze optellen is het resultaat weer
een geheel getal.

Associativiteit: Als we drie gehele getallen bij el-
kaar optellen maakt het niet uit in welke volgorde we
dat doen, (3 + 11) + 22 = 3 + (11 + 22).

Identiteit: Er is één element in de groep die tri-
viaal werkt op alle andere elementen. Bij de gehele
getallen is dit het getal 0, aangezien −3 + 0 = −3.

Inversie: Voor ieder element is er een element, zo-
danig dat wanneer ze optellen de identiteit verkregen
wordt. In ons voorbeeld wordt de inverse van een
getal verkregen door een minteken ervoor te zetten,
−11 + 11 = 0.

Symmetrie Zoals gezegd bestaat een
materiaal uit heel veel deeltjes en is het
onmogelijk om een theorie op te schrij-
ven waarbij we alle afzonderlijke deeltjes
bijhouden en beschrijven wat voor kracht
ze precies op elkaar uitoefenen. Gelukkig
maakt de theoretische natuurkunde niet al-
leen gebruik van dit soort ‘microscopi-
sche’ beschrijvingen, maar ook van ab-
stractere wiskundige noties.

Wederom keren we terug bij het voor-
beeld van water. Zonder de precieze de-
tails van de fase waarin de watermolecu-
len zich bevinden te kennen, kunnen wij
hem classificeren aan de hand van zijn
symmetrieën. Laten we eerst het geval
bekijken waarbij de materie een vloeistof
vormt. Alle moleculen bewegen door el-
kaar, botsen en gaan weer hun eigen weg.
Er zit hier weinig structuur in. Bekijken
we de vloeistof op een bepaald punt in de
ruimte en vergelijken het met een positie
verderop dan zien we geen verschil. Dit
noemen we een symmetrie van het sys-
teem en om precies te zijn een translatie-

symmetrie. Hoe verhoudt dit zich dan tot ijs? De moleculen vormen een kristal en be-
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wegen niet meer door elkaar heen, ze zitten op een rooster. Als we nu een punt bekijken
bijvoorbeeld waar zich een watermolecuul bevindt, kunnen we niet zomaar een stukje
verderop kijken om hetzelfde aan te treffen, dit kan alleen nog maar in stapjes ter grootte
van de afstand tussen de moleculen. Er is meer structuur en daardoor minder symmetrie.
De continue translatie symmetrie is gebroken naar een discrete translatie symmetrie. Aan
het beschrijven van symmetrieën ligt een wiskundige theorie ten grondslag. Dat vakge-
bied heet groepentheorie 6 en het wordt in alle hoeken van de moderne natuurkunde
gebruikt.

7 Topologie is een tak uit de wiskunde, die de ei-
genschappen van een object onderzoekt die niet ver-
anderen (invariant zijn) onder vervormingen van het
object. Een regel bij dit soort vervormingen is dat er
niet geknipt of geplakt mag worden.

Een veelgebruikt voorbeeld is een koffiekop en
een donut. Dit zijn op het eerste oog twee verschil-
lende objecten, maar als we vervormingen toestaan
zoals hierboven beschreven, dan kunnen we een kof-
fiekop zo ‘kneden’ dat het gelijk wordt aan een do-
nut. We zeggen dat ze topologisch equivalent zijn.
De topologische invariant die hieraan toegekend kan
worden is het aantal gaten in het object. De koffiekop
en de donut hebben er beide één. Een bol heeft geen
gaten en is niet equivalent aan een donut. Topolo-
gie is een globale eigenschap van een object. Lokaal
kunnen we objecten vervormen zonder de topologie
te veranderen, want het aantal gaten blijft gelijk on-
geacht waar ze precies zitten.

Mocht zo’n soort equivalentie vreemd aanvoelen
bedenk dan dat twee vrouwen heel erg verschillend
zijn, maar dat we ze toch als vrouw kunnen classi-
ficeren aan de hand van hun geslachtschromosomen.
Zo een classificatie kan handig zijn om bepaalde ei-
genschappen uit af te kunnen leiden zolang we maar
beseffen waar de classificatie op gebaseerd is.

Topologische fase In dit proefschrift be-
kijk ik materialen die zich in een ander
soort fase bevinden dan een vloeistof of
kristal. Deze fases worden niet getypeerd
door een symmetrie zoals bijvoorbeeld
rotatie- of translatiesymmetrie. Het be-
treft een systeem dat zich in een topologi-
sche fase bevindt 7 . Tot de jaren 80 van
de vorige eeuw werd er gedacht dat alle
fases en dus ook de faseovergangen, be-
schreven konden worden aan de hand van
de symmetrieën die we eerder bespraken,
totdat er een belangrijke ontdekking ge-
daan werd wat tegenwoordig bekend staat
als het quantum Hall effect 8 .

Een materiaal dat zich in de quantum
Hall fase bevindt, wordt gekenmerkt door
de quantisatie van de Hall weerstand, dit
kan uitgedrukt worden als RH = p

q
h
e2 ,

waarbij p en q gehele getallen zijn die de
specifieke quantum Hall fase aangeven, h
de constante van Planck en e de lading van
een elektron. De getallen h en e zijn zo-
geheten natuurconstanten, wat wil zeggen
dat ze altijd dezelfde waarde hebben in tegenstelling tot bijvoorbeeld druk of temperatuur.

Als we naar de symmetrieën kijken van twee materialen die gekenmerkt worden door
verschillende waarden van de Hall weerstand, zich dus op andere plateaus bevinden, dan
zien we geen verschil. En toch hebben ze een andere weerstand, wat een fysische eigen-
schap is. Hieruit moet men concluderen dat de classificatie aan de hand van de symme-
trieën niet altijd voldoende is. De reden dat dit een topologische fase wordt genoemd is
dat de quantisatie van de weerstand zo precies is dat het niet uitmaakt of de vorm van
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het materiaal iets anders is, of dat er hier en daar wat oneffenheden in het materiaal zit-
ten. Zoals teruggelezen kan worden in 7 is de topologie van een object niet gevoelig
voor lokale veranderingen, maar is het een eigenschap van het globale systeem. Naast het
quantum Hall effect zijn er inmiddels vele andere topologische fases voorspeld en ont-
dekt, maar het quantum Hall effect staat nog steeds volop in de schijnwerpers en is één
van de onderwerpen die behandeld worden in dit proefschrift.

Quasideeltjes Eén van de redenen om topologische fases te onderzoeken is dat som-
mige van deze systemen deeltjes hebben met bijzondere eigenschappen. Neem bijvoor-
beeld het fractionele quantum Hall effect. Hierin kunnen deeltjes voorkomen met een
elektrische lading die kleiner is dan de lading van het elektron. Wat hier wonderlijk aan
is, is dat het systeem bestaat uit elektronen, wat elementaire deeltjes zijn, kleiner kan dus
niet. En toch worden er deeltjes waargenomen met een kleinere lading.

8 In 3 besprak ik het Hall effect, maar dit
fenomeen blijkt niet het complete verhaal te zijn.
In 1980 werd er een experiment gedaan aan een
systeem waarin de elektronen slechts in twee
dimensies kunnen bewegen. Dit kan bewerkstelligd
worden door twee slim gekozen materialen op elkaar
te plaatsen, zodanig dat de elektronen slechts in het
grensvlak tussen de materialen kunnen bewegen.
Wanneer het geheel afgekoeld wordt tot ongeveer
één graad boven het absolute nulpunt en er een heel
sterk magneetveld gebruikt wordt dat loodrecht staat
op het vlak waarin de elektronen bewegen, dan blijkt
de weerstand niet langer linear van het magneetveld
af te hangen. Er ontstaan plateaus in de grafiek, wat
wordt weergegeven in onderstaande figuur.
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De elektronen die een quantum Hall
systeem vormen gedragen zich als een
soort vloeistof. Plaatselijk kunnen er ver-
dikkingen en verdunningen ontstaan en
deze gedragen zich als deeltjes met frac-
tionele lading. Aangezien het niet de
deeltjes zijn waaruit het systeem is opge-
bouwd, worden ze ook wel quasideeltjes
genoemd.

Wellicht is het tijd voor een kort in-
termezzo om de lezer die het niet meer
ziet zitten moed in te praten. Het maakt
niet uit als u het niet helemaal snapt. Om
deze materie echt te doorgronden moet
men kennis hebben van allerlei (veelal
abstracte) theorieën, waar dan weer ja-
ren van wiskundetraining aan vooraf gaat.
Wat u op dit punt in de samenvatting moet
begrijpen is dat er materialen (heel veel
deeltjes bij elkaar) bestaan die onder hele
extreme omstandigheden in een fase te-
recht komen, waarbij er ongebruikelijke
fysische eigenschappen zich voordoen. In
het geval van een materiaal dat zich in de
quantum Hall fase bevindt is dat bijvoor-
beeld een gequantiseerde weerstand en in

sommige gevallen het ontstaan van quasideeltjes in het materiaal.
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9 Computeronderdelen worden almaar kleiner. Als
die lijn wordt doorgetrokken komen we vanzelf in een
regime waarbij de klassieke natuurwetten niet meer
opgaan en de onderdelen zich volgens de quantum
mechanica gaan gedragen 4 . Dit lijkt op het eerste
oog een probleem, maar in de jaren 80 van de vorige
eeuw werd door een aantal natuurkundigen beseft dat
het ook nieuwe mogelijkheden biedt. Een computer
die gebruikt maakt van de quantum mechanica wordt
een quantum computer genoemd en is in staat om (tot
nu toe alleen in theorie) specifieke vraagstukken veel
sneller op te lossen. Een voorbeeld hiervan is het fac-
toriseren van getallen in priemgetallen, wat nu nog
gebruikt wordt om op een veilige manier informatie
te verzenden. Met de komst van de quantum compu-
ter zou deze manier van coderen veel sneller gekraakt
kunnen worden.

Kort gezegd maakt een klassieke computer ge-
bruik van bits, de toestand waarin een bit zich kan be-
vinden wordt weergegeven door een 0 of een 1. Met
behulp van deze bits kan informatie worden opgesla-
gen en kunnen berekeningen worden gedaan. Een
quantum computer werkt met qubits en het funda-
mentele verschil is dat een qubit een 0 of een 1 kan
zijn, maar ook een 0 én een 1 tegelijkertijd. Dit feno-
meen noemen we een superpositie en is aan de orde
van de dag binnen de quantum mechanica. Pas als er
een meting gedaan wordt, is de qubit een 0 of een 1,
tot die tijd kunnen we alleen van kansen spreken of hij
het één of het ander is. Van dit fenomeen kan handig
gebruik gemaakt worden, aangezien berekeningen nu
parallel uitgevoerd kunnen worden.

Het nadeel van een quantum computer is dat hij
erg gevoelig is voor invloeden van de omgeving, wat
kan leiden tot fouten in de informatie die opgeslagen
is. Een oplossing voor dit probleem zou de topologi-
sche quantum computer zijn. De qubits van dit type
computer worden gevormd door de quasideeltjes die
leven in een topologische fase. Deze deeltjes hebben
als eigenschap dat ze niet gevoelig zijn voor invloe-
den van hun omgeving. Als hun positie iets verandert
of het materiaal vervormt, dan blijft de informatie be-
houden, aangezien de topologie van het geheel niet
gevoelig is voor dit soort lokale veranderingen 7 .

Op deze quasideeltjes wil ik nog even
doorgaan, omdat ze een grote rol spelen
in mijn onderzoek, maar ook omdat ze
een mooie toepassing hebben voor de in-
dustrie. De lading is niet het enige wat
deze quasideeltjes bijzonder maakt, een
andere eigenschap is dat ze een exotische
statistiek hebben. Deze eigenschap zal ik
nu toelichten. Stel we hebben twee iden-
tieke deeltjes, bijvoorbeeld twee elektro-
nen. Met identiek bedoelen we dat we
ze niet van elkaar kunnen onderscheiden.
Nu draaien we één van de elektronen om
de andere heen, wat schematisch weerge-
geven wordt in figuur 2.1 op pagina 30.
De vraag is: kunnen we het verschil me-
ten tussen een situatie waarbij de twee
elektronen niet van plek veranderd zijn
en waarbij ze wel de omcirkeling hebben
doorgemaakt? Bij identieke elektronen en
alle andere fundamentele deeltjes is dit
verschil niet te meten, maar bij de quasi-
deeltjes van het quantum Hall effect wel,
ze hebben een niet-triviale statistiek. Nu
zijn er bepaalde typen quasideeltjes voor-
speld vanuit de theoretische natuurkunde
(ze zijn nog niet met zekerheid waargeno-
men) die een bijzondere statistiek hebben
die bruikbaar is om te dienen als hardware
voor een topologische quantum computer
9 .

Mijn proefschrift In het laatste deel
van deze samenvatting wil ik kort toelich-
ten wat er in de verschillende hoofdstuk-
ken van mijn proefschrift aan bod komt.
Hoofdstuk 1 en 2 dienen als introductie en
behandelen de bestaande kennis op het ge-
bied van topologische fases en quantum Hall systemen. In hoofdstuk 1 wordt ook een
ander vakgebied behandeld, dat nog niet de revu gepasseerd is in deze samenvatting, na-
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melijk systemen van koude atomen. Dit is een redelijk nieuw vakgebied en kan onder
andere dienen als een simulator voor bijvoorbeeld quantum Hall materialen. Door een
slimme opstelling te kiezen van lasers, kan een wolk van koude atomen zich zo gedragen
dat het precies de eigenschappen van een quantum Hall systeem nadoet. Hoofdstuk 2 is
met name gericht op het bespreken van faseovergangen tussen verschillende topologische
fases. Er wordt uiteen gezet hoe zulke overgangen beschreven kunnen worden aan de
hand van de specifieke quasideeltjes die in de fase voorkomen.

In hoofdstuk 3 wordt een specifiek systeem besproken waarin een geladen deeltje
kan bewegen in drie dimensies, terwijl het een kracht voelt veroorzaakt door een opge-
legd magneetveld. Deze configuratie is voorgesteld als een kandidaat voor een nieuw
soort topologische fase [105]. Wij (Sander Bais, Kareljan Schoutens en ik) hebben de
symmetrieën van dit systeem achterhaald en gebruiken vervolgens groepentheorie om de
energieniveaus van het deeltje te vinden. Een soortgelijk vraagstuk wordt beschouwd in
hoofdstuk 4. Het verschil is dat het deeltje nu nog maar in twee dimensies mag bewegen.
Hierbij bekijken we (Benoit Estienne, Kareljan Schoutens en ik) het platte vlak, maar ook
een deeltje dat op het oppervlak van een bol beweegt.

Het onderwerp van hoofdstuk 5 en 6 is faseovergangen tussen verschillende topologi-
sche fases. De bestaande theorie breiden we (Sander Bais, Joost Slingerland en ik) uit en
we behandelen specifieke voorbeelden van dit soort processen. Verder bekijken we wat er
gebeurt als men twee systemen die zich in een verschillende topologische fase bevinden
naast elkaar plaatst. We leiden af wat er precies op de rand gebeurt en welke quasideeltjes
daar kunnen bestaan. Eén van de voorbeelden die bekeken worden is een fase waarbij de
quasideeltjes van het type zijn dat bruikbaar is voor een quantum computer.
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In the following pages I will give an overview of the field, which the work described in
this thesis is part of. Towards the end, I will discuss specific details of my research, but I
will mainly focus on the bigger picture here.

1 The fear of physics often stems from the under-
lying mathematics. Mathematics is like a language
and therefore it is not surprising that it is not so easy
to understand. Often you hear people claim that you
are simply either good or bad at it. However I think
that as with any language it takes a lot of practise to
become skilled at it.

Physics, on the other hand, can be understood on
a very different level. Compare it with the Uyghur
people in China. We do not have to be familiar with
Uyghur or Chinese to understand parts of the history
of these peoples and their conflict.

In my opinion physics can also be understood at
such a level. For example, there are different types
of particles in the universe, and various forces are
present. Some particles attract each other, others re-
pel. If many particles come together, they may form
specific materials and so on.

This summary is aimed at the reader
who has no background in physics, but
would like to know more about this topic.
To prevent this text from becoming too
long, which would do no justice to the
word ‘summary’, I will refer to frames in
the text with which I elaborate on certain
concepts. These can be skipped to obtain
a short version or can be examined by the
reader who wants to see specific exam-
ples.

It is far from trivial to explain a topic
in theoretical physics in such a way that
it is comprehensible for a reader without
any background in mathematics. I will do
my best to succeed in this task as much as
possible. At the same time a text without
a reader is pointless and in my opinion the reader has an important role in this process too.
Do not tell yourself in advance that you do not understand anything about the topic, but
try to think of what it is exactly that seems unclear. Sometimes one must pass over certain
uncertainties without worrying too much that the rest will be incomprehensible too 1 .

2 For example, when we consider classical me-
chanics, Newton’s second law F = ma tell us that if
a force F acts on an object with mass m it will have
an acceleration given by a. One could claim that a
physical phenomenon is now described by a mathe-
matical formula, but that is not the case yet. We want
to know how the object behaves no matter how far
we go back in the past or how far we look forward in
time. We know its acceleration, but what is its posi-
tion and velocity?

Theoretical physics Physics is the sci-
ence which studies how nature behaves.
Which types of particles exist and which
forces act? The most obvious way to test
something is by carrying out an experi-
ment, and this branch of physics is called
experimental physics. For example, we
can measure the time it takes for a ball
with a mass of 3 kg to roll down a cer-
tain incline. But what do these results tell
us? We can only draw conclusions for this
particular case. Should we be interested in the same experiment, but with a ball with a
mass of 3.1 kg, we would have to repeat it.
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3 I want to highlight two examples, one in which
the experimentalists led the way, and another in
which the theorists were first.

In 1879, Edwin Hall conducted an experiment in
which he discovered that a small voltage difference
arises in a conductive material when an electric cur-
rent flows in one direction, and a magnetic field is
applied perpendicularly to the current. The voltage
difference is observed in the direction which is per-
pendicular to both the current and the magnetic field.
Nowadays this phenomenon is called the Hall effect
and with our present knowledge the voltage differ-
ence can be explained as follows. Without a magnetic
field, the electrons that make up the current would
follow a straight path. When a magnetic field is ap-
plied the path gets curved by the Lorentz force and
charge starts to accumulate at the edge of the sample,
resulting in a voltage difference that is proportional to
the magnetic field and the current. The explanation is
fairly simple, but realize that Hall did this experiment
almost 20 years before the electron was discovered.

As an example of a prediction that came from the-
oretical physics I would like to discuss the Majorana
particle. In 1928 Paul Dirac formulated an equa-
tion which describes the electron within the theory
of quantum mechanics. One implication of his the-
ory was that antimatter should exist. Another was de-
rived in 1937 by Ettore Majorana. He realized that a
solution to the Dirac equation could be found which
corresponds to a particle that is its own antiparticle,
the so-called Majorana particle. Even though the the-
ory allows for such a particle to exist that does not
mean that it has been observed yet. Some physicists
believe that the neutrino could be a Majorana particle.
The neutrino is present in abundance in our universe,
but it is also very difficult to detect. Another candi-
date can be found in the same realm of my field of
research. Approximately 10 years ago it was realized
that Majorana particles can be ‘built’ when certain
materials are combined in a clever way. In 2012, a
group in Delft conducted an experiment along those
lines and they have strong evidence that they did in-
deed observe a Majorana particle, although I must say
it has not yet been indisputably proven.

This is where theoretical physics en-
ters the stage. By using mathematical
structures (the language of nature), one
tries to explain and predict the behavior
of particles and forces. Writing down a
theory is highly nontrivial. Simply using
your imagination is not good enough, be-
cause the theory must be self-consistent, it
should potentially fit within other existing
theories and be reconciled with what is ac-
tually observed. (In this respect, the com-
parison that some people make between
religion and science does not hold in my
opinion.) And even if a theory can be writ-
ten down that does not mean that it has
been solved 2 . Oftentimes the theory is
too complicated if we want to take all the
effects into account and a number of as-
sumptions have to be made. For instance,
that the presence of a butterfly in Brazil
has no effect on an experiment with a par-
ticle accelerator in Texas.

Once more I would like to emphasize
the power of the interaction between ex-
perimental and theoretical physics, as this
is the main reason why the field in which
my research took place is so appealing
to me. Sometimes an experimental dis-
covery occurs, which was unexpected and
cannot be explained from theory (there are
no formulas or models that describe this
phenomenon). The community of theoret-
ical physicists will try their very best to
adjust the theoretical framework or come
up with something new in order to explain
the observation. On the other hand, a new
theory may have implications which have

not yet been observed experimentally. Experimentalists will design setups and perform
measurements to test if the theory is indeed correct, or they may use the theory to de-
sign devices with practical applications for society 3 . This interaction is a major driving
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force behind the acquisition of knowledge.
One could claim that the ultimate goal of physics is to construct one theory which

accounts for everything we observe around us. Unfortunately this is not yet the case.

4 I mentioned the Dirac equation in 3 mainly
to introduce the Majorana particle, but the discovery
of Paul Dirac is a good example of a theory which
merges two previously different areas. He combined
the theory of relativity of Albert Einstein with quan-
tum mechanics in order to get a correct equation of
motion for the electron.

The theory of relativity is necessary to describe
objects that travel with a speed that approaches the
speed of light (= 300, 000, 000 m/s). Quantum me-
chanics is a theory which was developed during the
first decades of the last century by many different
physicists. It describes physics when we go to a scale
the size of an atom or even smaller.

In our daily lives we do not reach these speeds and
we are definitely bigger than an atom, but that does
not mean that the theory of relativity or quantum me-
chanics does not apply to us. It is just that classical
mechanics is good enough and far more easy to work
with, but for an electron classical mechanics breaks
down and we have to appeal to the Dirac equation.

When stretching the limits of our knowl-
edge, scientists work in many different ar-
eas. As a result the different corners of
physics drift away from each other. Oc-
casionally a brilliant physicist 4 enters
the stage and manages to connect two dif-
ferent theories, but it seems that a theory
of everything will not be developed in the
near future. Even so, not every physicist is
concerned with building a theory of every-
thing, and for me this was never the main
goal. I have been working in one specific
area and have been trying to add to the
knowledge of it.

Condensed matter The area in which
my research took place is called con-
densed matter theory. As opposed to high-
energy physics which focuses in particu-
lar on the building blocks of the universe
- the so-called elementary particles, such
as the electron and for example the Higgs particle - condensed matter theory studies the
interplay of particles when you bring many of them close together.

5 Superconductivity is a phenomenon in which
some materials below a certain temperature (close to
absolute zero) are in a phase in which the electric re-
sistance through the material becomes equal to zero.
It was discovered in 1911 in an experiment conducted
by the Dutch scientist Heike Kamerlingh Onnes, for
which he later received the Nobel Prize. Nowadays
superconductivity is still an active area of research.
Firstly, because the theory behind it is not entirely
understood and secondly, because it has many appli-
cations in industry.

A common example is water. A glass
of water and a block of ice both consist
of many water molecules and yet these
systems behave very differently: you can
swim in water and sit on ice. Without
having to know the exact position of all
the molecules (which is impossible with
these numbers of particles), and the forces
which they exert on each other, the prop-
erties of the entire system can still be de-
scribed. Water is an example of a liquid
and ice an example of a solid. This is what
we call different phases of matter. The phase a specific material is in depends on certain
external features, such as the pressure or temperature of the system. As the temperature
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of a liquid decreases, there is a certain temperature at which the material changes from
a liquid into a solid, which is referred to as a phase transition. I have used water as an
example because we encounter it in our everyday lives and therefore it is easier to grasp,
but at the same time it is limiting because there exist many other materials with far more
exotic properties, for instance superconductivity 5 .

6 Group theory is a branch of mathematics that
studies the properties of groups and classifies them.
A group is a set of elements together with an opera-
tion that acts on these elements, which have to obey
four conditions. This might sound very abstract (it
is mathematics after all!), but I will give one specific
example of a group, which hopefully makes it more
tangible. The set of all integers, which is represented
by the symbol Z, together with addition (the opera-
tion) is an example of a group. The set Z is composed
of numbers such as 3, 18, 49899,−1,−886, but ex-
cludes numbers with decimal places. By definition a
group must meet the following requirements (other-
wise it cannot be classified as a group).

Closure: If we take two arbitrary integers their
sum always results in another integer, i.e. another el-
ement of the group.

Associativity: When adding three integers the or-
der in which we do so does not matter, (3 + 11) +
22 = 3 + (11 + 22).

Identity element: There is one element in the
group which acts trivially on all the other elements.
In the case of the integers, the identity element is the
number 0, since for instance −3 + 0 = −3.

Inverse element: For each element in the group,
there is an element such that they add to the identity.
In our example, the inverse of a number is obtained
by acting with a minus sign, i.e. −11 + 11 = 0.

Symmetry As mentioned before a ma-
terial consists of a lot of particles and it
is impossible to write a theory that keeps
track of every separate particle and the
kind of forces they exert on each other.
Fortunately, theoretical physics does not
only solely make use of these kinds of
‘microscopic’ descriptions.

Once more we return to the example
of water. Without knowing the exact de-
tails of the phase the water molecules are
in, we can classify water by its symme-
tries. Let us first have a look at the case
where the material forms a liquid. All the
molecules move around, they collide and
each go their own way again. This is a
situation with very little structure. When
we consider the liquid at a certain point
in space and we compare that with a po-
sition farther along, we will not see any
difference. This is what we call a sym-
metry of the system and in this particular
case it is a translational symmetry. How
does this compare to ice? The molecules
form a crystal and no longer move around,

they are fixed to a grid. Now when we look at a certain point in space, for instance where
a water molecule is located, we will not find the same situation when we translate to
a different position in space. It is only a symmetry when translating by steps equal to
the distance between the water molecules. In the case of ice there is more structure and
therefore less symmetry. The continuous translation symmetry of the liquid is broken to
a discrete translation symmetry. There is a mathematical theory at the root of describing
symmetries. This field is called group theory 6 and is used in all corners of modern
physics.
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Topological phase In this thesis, I investigate materials that are in a different type of
phase than those described for water. It concerns phases that are not characterized by a
symmetry such as rotation or translation. This type of phase is referred to as a topological
phase 7 . Until the 1980’s it was believed that all phases and phase transitions could be
described by the underlying symmetries that were discussed before, until an important
discovery was made which is nowadays known as the quantum Hall effect 8 .

A material which is in a quantum Hall phase is characterized by the quantization of
the Hall resistance, which can be expressed asRH = p

q
h
e2 , where p and q are integers that

denote the specific quantum Hall phase, h is Planck’s constant and e denotes the charge
of an electron. The numbers h and e are so-called constants of nature, which means that
they always have the same value in contrast to, for instance, pressure or temperature.

7 Topology is a branch of mathematics which
investigates the properties of an object that do not
change (remain invariant) under smooth deformations
of the object. Not all deformations are permitted, for
instance one is not allowed to tear or glue.

A well-known example is a coffee cup and a
donut. At first glance these are two different objects,
but if we allow deformations such as described above,
we may bend and stretch a coffee cup in such a way
that it is transformed into a donut. Therefore these ob-
jects are topologically equivalent. The topological in-
variant that characterizes them is the number of holes
in the object. The coffee cup and donut both have
one hole, but a sphere for instance has no holes and is
not topologically equivalent to a donut. Topology is
a global property of an object. Locally we can distort
the object without changing its topology. The number
of holes remains the same regardless of where they
are exactly.

If this kind of equivalence seems unnatural, re-
member that two women are very different, but we
can still choose to classify them as women based on
their sex chromosomes. Such a classification can be
helpful to distill certain properties as long as we re-
member what the classification is based on.

When considering two materials that
are characterized by different values of the
Hall resistance (different values of p and
q), their symmetries are the same. And yet
they have a different resistance, which is
a physical property. From this, one must
conclude that the classification of phases
on the basis of its symmetries is not al-
ways sufficient. The reason that these
phases are called topological phases is be-
cause of the exact quantization of the re-
sistance. It does not matter whether the
shape of the material is different, or there
are impurities in the sample. As has been
explained in 7 , the topology of an ob-
ject is not sensitive to local changes, but
it is a feature of the global system. After
the discovery of the quantum Hall phases
many more topological phases have been
predicted in theory and observed in exper-
iments, nonetheless the quantum Hall ef-
fect is still an active area of research and
is one of the topics treated in this thesis.

Quasiparticles One of the reasons to study topological phases is that in some of these
systems particles emerge with special properties. Consider for example the fraction quan-
tum Hall effect. In this system particles can exist with a smaller charge than that of an
electron. The astounding thing about this is that this system is built up of electrons, which
are elemental particles, so smaller should not be possible. Yet particles with a smaller
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charge are being observed.
The electrons that form a quantum Hall system behave as if they were a sort of liquid.

Locally there can be changes in density, which behave as particles of fractional charge.
Considering that the system comprises electrons and not these particles, we speak of
quasiparticles.

8 In 3 the Hall effect was discussed, but this phe-
nomenon is not the whole story. In 1980, a similar ex-
periment was conducted, but now a system was cre-
ated in which the electrons could move in only two
dimensions. This was achieved by placing two suit-
able materials on top of each other, in such a way that
the electrons can only move along the interface be-
tween the two materials.

When the system was cooled down to approxi-
mately one degree above absolute zero and a very
strong magnetic field was applied in the direction
perpendicular to the plane in which the electrons
can move, it was found that the resistance no longer
depended linearly on the strength of the magnetic
field. Instead, plateaus arise in the graph, which is
depicted in the figure below.
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It might be time for a short intermezzo
to encourage the reader who has lost track.
It does not matter if you do not under-
stand every bit of the text so far. To be
able to thoroughly understand this, you
need knowledge of many abstract theories,
which is preceded by many years of prac-
tice in mathematics. What you need to un-
derstand at this point is that there exist ma-
terials (many particles together) that under
certain conditions end up in a phase where
unusual physical properties occur. In the
case of a material that is in a quantum
Hall phase, the resistance becomes quan-
tized and in some cases exotic quasiparti-
cles emerge in the material. I would like
to focus somewhat more on these quasi-
particles, because they play a big role in
my research, but also because they have
an exciting application for industry.

Their fractional charge is not the only
aspect that makes these quasiparticles spe-
cial; another property is that they have ex-
otic statistics. I will explain this property
in the following. Imagine that we have
two identical particles, for instance two

electrons. Identical means that they are indistinguishable from one another. Now we bring
one of the electrons around the other in a full circle, which is schematically depicted in
figure 2.1 on page 30. We can ask ourselves the question: can we somehow measure the
difference between the situation where the two electrons did not move and the situation
where one circulation has been made? With electrons and any other fundamental particle
this difference is not measurable, but with the quasiparticles of the quantum Hall phase
it is, this is what we call nontrivial statistics. Certain types of quasiparticles have been
predicted from theoretical physics (they have not yet been observed with complete cer-
tainty) that have special statistics which makes them useful as a kind of hardware for a
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topological quantum computer 9 .

9 Computer parts are getting smaller and smaller.
As this trend continues we will automatically reach a
regime where classic laws of physics no longer apply
and the computer parts start to behave according to
the laws of quantum mechanics 4 . At first glance
this seems to be a problem, but in the 1980’s a num-
ber of physicists realized that this also brings forth
great new possibilities. A computer that uses quan-
tum mechanics is called a quantum computer and is
(still only in theory) capable of solving specific prob-
lems much faster. An example is the factorization of
prime numbers, which is nowadays being used for the
encryption of information so that it can be sent safely.
Quantum computers would make this way of encryp-
tion useless because they can easily crack it.

In short, a classic computer uses bits where the
state a bit is in can be indicated by either 0 or 1. These
bits can be used to store and process information. A
quantum computer uses qubits and the fundamental
difference is that a qubit can be either 0 or 1, but
also 0 and 1 at the same time. This phenomenon is
called superposition and is very common in quantum
mechanics. Only when we measure which state the
qubit is in do we find 0 or 1, until that time we can
only talk about the probability of finding 0 or 1. This
phenomenon has practical uses: considering calcula-
tions can now be done parallel.

A disadvantage of the quantum computer is that
it is highly sensitive to its surroundings, which can
cause errors in storing information or computing. A
solution to this problem could be a topological quan-
tum computer. The qubits of this type of computer
are formed by the quasiparticles that exist in a certain
topological phase. These particles have the disposi-
tion of being insensitive to the influences of their sur-
roundings. If their position changes a bit or the shape
of the material that carries them changes, the infor-
mation is still stored, as the topology of the system is
insensitive to these kinds of local changes 7 .

My thesis In the last part of this sum-
mary I would like to summarize what is
discussed in the separate chapters of my
thesis. Chapters 1 and 2 serve as an in-
troduction and discuss the existing knowl-
edge concerning topological phases and
quantum Hall systems. In chapter 1 an-
other field is discussed as well, that has
not yet been mentioned in this summary,
namely cold atom systems. This is a fairly
new field and it can be used as a simulator
of, for example, quantum Hall materials.
By cleverly choosing an array of lasers, a
cloud of cold atoms can be made to behave
as if it is a quantum Hall system. Chapter
2 concentrates mainly on discussing phase
transitions between different topological
phases and how such transitions can be
described using the specific quasiparticles
that exist in that phase.

In chapter 3 a system is discussed that
has a charged particle moving in three
dimensions, while subject to a magnetic
field. This configuration is proposed as
a candidate for a new kind of topologi-
cal phase [105]. We (Sander Bais, Karel-
jan Schoutens and I) have determined the
symmetry of this system and have used
group theory to find the energy levels of
the particle. A similar issue is discussed in
chapter 4. The difference there is that the
particle can only move in two dimensions.
We (Benoit Estienne, Kareljan Schoutens
and I) consider a particle confined to the
plane, but also a particle moving on the surface of a sphere.

Chapters 5 and 6 discuss phase transitions between different topological phases. We
(Sander Bais, Joost Slingerland and I) expand the existing theory and discuss specific
examples of these kinds of processes. Furthermore we look at what happens when two
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systems that carry different topological phases are adjacent to each other. We derive what
occurs at the boundary between the two phases and which quasiparticles can exist there.
One of the examples is a phase with the sort of quasiparticles which are useful for a
topological quantum computer.
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