
Making Things Happen

Jan van Eijck (jve@cwi.nl)
CWI, Amsterdam, ILLC, Amsterdam, Uil-OTS, Utrecht

Abstract. We explore some logics of change, focusing on commands to change
the world in such a way that certain elementary propositions become true or false.
This investigation starts out from the following two simplifying assumptions: (1) the
world is a collection of facts (Wittgenstein), and (2), the world can be changed by
changing elementary facts (Marx). These assumptions allow us to study the logic of
imperatives in the simplest possible setting.

Keywords: semantics of natural language, modal logic, dynamic logic, knowledge
representation languages.

1991 CR Subject Classification: F.3.1, F.3.2, I.2.4, I.2.7.

1. The Logic of Action Without Repercussion

In natural language, the distinction between imperative mode and
declarative mode is made by assuming that declarative sentences de-
scribe a state of the world, while imperative sentences convey an inten-
tion of the speaker that the addressee takes responsibility for changing
the world in some particular way. We will study some simple logical
languages where commands to change the world are interpreted literally
as transitions that make things happen by effecting the desired change.

If one assumes that the world is just a collection of unconnected
facts, and that elementary changes to the world can be made inde-
pendently of each other then a logic of change can look very simple.
Changing a world w by making p true (false) results in a world v which
is just like w except for the fact that p is true (false) in it. Notation for
this: w = v(p|1) or w = v(p|0).

Looking at the commands to make p true or false as modalities,
the following is an appropriate language for the logic of independent
change:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [π]ϕ.

π ::= p := 1 | p := 0 | π;π | π ∪ π | ϕ?.

We employ the usual abbreviations for >, ⊥, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ
and 〈π〉ϕ.

If one assumes that every valuation is reachable, then there is only
one model M , namely M = {0, 1}P (the set of all valuations for P),

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

mthSL.tex; 11/10/2006; 10:53; p.1

2

and we can suppress the parameter M from the semantic clauses in the
definition of w |= ϕ:

1. Clauses for atoms and Booleans: as usual.

2. w |= [π]ϕ iff for all v with w, v |= π it is the case that v |= ϕ.

3. w, v |= p := 1 iff v = w(p|1).

4. w, v |= p := 0 iff v = w(p|0).

5. w, v |= π1;π2 iff there is an x with w, x |= π1 and x, v |= π2.

6. w, v |= π1 ∪ π2 iff either w, v |= π1 or w, v |= π2.

7. w, v |= ϕ? iff v = w and w |= ϕ.

The notion |= ϕ is defined as: for every valuation v, v |= ϕ. Γ |= ϕ
means: for every valuation v with v |= γ for all γ ∈ Γ, it holds that
v |= ϕ.

We show that the notion |= ϕ for this language is very simple indeed.
Note first that the requirement of bisimulation equivalence for the logic
of action without repercussion boils down to ‘having the same valua-
tion’, and the zig-zag requirement trivializes. It follows from this that
the global notion of validity for the logic of propositional action without
repercussion is not very exciting. Formulas of this logic have precisely
the same descriptive power as formulas of propositional logic, so the
valid formulas of the logic of propositional action without repercussion
are precisely the formulas equivalent to propositional tautologies.

Still, it is illuminating to take a further look at this logic. In the
following, we use B as a meta-variable for 1, 0, so we can say that both
p := 1 and p := 0 are of the form p := B. Also, we need the following
notion of substitution:

DEFINITION 1. (Substitution). [ψ/p]ϕ is given by:

[ψ/p]q :=
{
ψ if p = q.
q otherwise

[ψ/p](¬ϕ) := ¬[ψ/p]ϕ

[ψ/p](ϕ1 ∧ ϕ2) := [ψ/p]ϕ1 ∧ [ψ/p]ϕ2

[ψ/p]([q := B]ϕ) :=
{

[q := B][ψ/p]ϕ if p 6= q.
[q := B]ϕ otherwise

[ψ/p]([π1;π2]ϕ) := [ψ/p]([π1][π2])ϕ

[ψ/p]([π1 ∪ π2]ϕ) := [ψ/p]([π1]ϕ) ∨ [ψ/p]([π2]ϕ)

[ψ/p]([ϕ1?]ϕ2) := [([ψ/p]ϕ1)?][ψ/p]ϕ2.

mthSL.tex; 11/10/2006; 10:53; p.2

3

A translation procedure for this language into propositional logic can
now be given, as follows:

p� := p

(¬ϕ)� := ¬ϕ�

(ϕ1 ∧ ϕ2)� := ϕ�1 ∧ ϕ
�
2

([p := 1]ϕ)� := [>/p]ϕ�

([p := 0]ϕ)� := [⊥/p]ϕ�

([ϕ?]ψ)� := ϕ� → ψ�

([π1;π2]ϕ)� := ([π1][π2]ϕ)�

([π1 ∪ π2]ϕ)� := [π1]ϕ� ∧ [π2]ϕ�

It is easy to check that this translation is correct, in the sense that
v |= ϕ iff v |= ϕ�.

2. Application: Database Updating

Spruit, Wieringa and Meyer (1995) investigate the logic of passive and
active insertions into a propositional database. Their database actions
turn out to be expressible in our action logic.

− passive insertion of p: corresponds to p := 1,

− passive deletion of p: corresponds to p := 0,

− active insertion of p with re-computation ϕ: corresponds to p :=
1; (p ∧ ϕ)•,

− active deletion of p with re-computation ϕ: corresponds to p :=
0; (¬p ∧ ϕ)•.

Notation for passive insertion of p: Ip, for passive deletion of p: Dp.
Notation for active insertion of p with re-computation ϕ: Iϕ

p , for active
deletion of p with re-computation ϕ:Dϕ

p . Intuitively, (p∧ϕ)• denotes the
command that makes (p∧ϕ) true ‘in a minimal way’, i.e., by making the
smallest possible number of atomic changes. The translation instruction
• for transforming re-computation formulas into appropriate commands
will be given below.

In (Spruit, Wieringa and Meyer, 1995) the re-computations ϕ are
propositional formulas in Horn clause form. In fact, there is no harm
in allowing re-computations to be an arbitrary propositional formulas,
subject to the following conditions:

mthSL.tex; 11/10/2006; 10:53; p.3

4

− a re-computation ϕ is not a contradiction,

− if ϕ is a re-computation after insertion of p, then the clausal form
of ϕ, ∧

(r1 ∧ · · · ∧ rn → s1 ∨ · · · ∨ sm)

has to satisfy: if p = ri then m > 0,

− if ϕ is a re-computation after deletion of p, then the clausal form
of ϕ, ∧

(r1 ∧ · · · ∧ rn → s1 ∨ · · · ∨ sm)

has to satisfy: if p = sj then n > 0.

The intuitive idea is to use ϕ to do a minimal re-computation, i.e.,
to make the database comply with ϕ by changing a minimal number
of facts.

Examples: Ip→q
p corresponds to p := 1; q := 1. Dq→p

p corresponds to
p := 0; q := 0.

Here is how to get these correspondences in a systematic way. Sup-
pose we start with Iϕ

p . Because of the conditions on ϕ in the Iϕ
p case,

ϕ∧p is never a contradiction. Transform ϕ∧p into a command (ϕ∧p)◦
as follows. First put ϕ∧p in dual clause form. Replace disjunction signs
between dual clauses by occurrences of ∪, and replace each dual clause
r1 ∧ · · · ∧ rn ∧ ¬s1 ∧ · · · ¬sm by ⊥? if ri = sj for some i, j, and by
r1 := 1; · · · ; rn := 1; s1 := 0; · · · ; sm := 0 otherwise.

It is clear that the procedure (ϕ ∧ p)◦ makes ϕ ∧ p true. Next, from
(ϕ∧p)◦ we have to get at a procedure (ϕ∧p)• that makes ϕ∧p true in
a minimal way. More generally, suppose we add a command operator
µ to the language, with semantics given by v, w |= µπ iff v, w |= π and
there is no u with v, u |= π and u differs from v in less atomic facts
than w does.

Note that µ minimization is different from minimization in prefer-
ential reasoning, where µ is a program in its own right that picks out
the set of all most preferred elements from an index set of possible
worlds. This notion is then further analyzed in terms of a modality [<],
with [<]ϕ interpreted as ‘ϕ is true in all more < preferred worlds. In
the current setting, such an approach does not work, for the most <
preferred world without further ado is always the current world itself.

As an example, here is a definition of µπ for the case where π equals
p := 1 ∪ q := 1. Abbreviate ϕ?;π1 ∪ (¬ϕ)?;π2 as

IF ϕ THEN π1 ELSE π2.

Then we have:

µ(p := 1 ∪ q := 1) = IF ¬p ∧ ¬q THEN p := 1 ∪ q := 1 ELSE >?

mthSL.tex; 11/10/2006; 10:53; p.4

5

If either p or q is already the case, nothing happens, so it is impossible
to end up in a situation where both p and q are the case unless p ∧ q
already holds in the initial state.

The example illustrates that in case of a choice involving a (finite)
set of proposition letters S we can always enumerate the possible val-
ues of S and determine what should be done in each individual case
to minimize the number of changes. More specifically, note that each
command can be written in the form⋃

t1; · · · ; tn; a1; · · · am,

where

− all the ti are tests on different literals,

− all the aj are atomic actions on different proposition letters,

− if q occurs in both t1; · · · ; tn and a1; · · · ; am then either in the form
· · · q? · · · q := 0 · · · or in the form · · · ¬q? · · · q := 1 · · ·.

Write a command π in expanded form as
⋃

i T1;Ai. List all descriptions
for the possible valuations to the proposition letters in π as ϕ1, . . . , ϕk.
Now µ(π) has the form:

IF ϕ1 THEN B1

ELSE IF · · ·
...
ELSE IF ϕk THEN Bk

ELSE >?.

Here each Bj is the union of all shortest lists Ai such that Ti;Ai is in
the expansion of π, and ϕj |= 〈Ti〉> (test Ti succeeds on the valuation
given by ϕj). This shows that µ is a definable operator.

Here is an example application of this procedure, for the case of
µ((p := 1; q := 1) ∪ (r := 1; s := 1)).

µ((p := 1; q := 1) ∪ (r := 1; s := 1)) =

IF ¬p ∧ ¬q ∧ ¬r ∧ ¬s THEN (p := 1; q := 1) ∪ (r := 1; s := 1))
ELSE IF p ∧ ¬q ∧ r ∧ ¬s THEN q := 1 ∪ s := 1
ELSE IF p ∧ ¬q ∧ ¬r ∧ s THEN q := 1 ∪ r := 1
ELSE IF ¬p ∧ q ∧ r ∧ ¬s THEN p := 1 ∪ s := 1
ELSE IF p ∧ ¬q ∧ ¬r ∧ s THEN p := 1 ∪ r := 1
ELSE IF p ∧ ¬q ∧ ¬r ∧ ¬s THEN q := 1
ELSE IF ¬p ∧ q ∧ ¬r ∧ ¬s THEN p := 1
ELSE IF ¬p ∧ ¬q ∧ r ∧ ¬s THEN s := 1
ELSE IF ¬p ∧ ¬q ∧ ¬r ∧ s THEN r := 1
ELSE >?

mthSL.tex; 11/10/2006; 10:53; p.5

6

Returning to the database operations that motivated the analysis, we
define Iϕ

p as p := 1;µ(ϕ ∧ p)◦, and and Dϕ
p as p := 0;µ(ϕ ∧ ¬p)◦.

3. Imperatives on Their Own

So far, we have talked about the command language in close connection
with the associated propositional assertion language. But it is also
possible to study the commands on their own. The following language
gives the set of commands that we have discussed.

π ::= p? | ¬p? | p := 1 | p := 0 | π;π | π ∪ π.

The intended semantics is implicit in the semantic clauses given above.
We write [[π]] for {(x, y) | x, y |= π}. A reasonable consequence relation
for this language is π1 |= π2 iff rng ([[π1]]) ⊆ dom([[π2]]). A command
π1 has another command π2 as a consequence if performing π1 sets
up the conditions under which π2 can be performed. Special case: |=
π iff dom([[π]]) = {0, 1}P . A command π is valid if it can always be
performed.

Note that our dynamic command consequence notion behaves quite
differently from static consequence notions. Command repetition is not
harmless: p?; p := 0 6|= p?; p := 0, and monotonicity does not hold
without further ado, for we have p? |= p? but p?; p := 0 6|= p?

To investigate this language, define functions ϕ[+p] and ϕ[−p] for
positive and negative substitutions of proposition letters in proposi-
tional formulas, as follows.

p[+p] := p p[−p] := ¬p
q[+p] := q q[−p] := q
(¬ϕ)[+p] := ¬(ϕ[−p]) (¬ϕ)[−p] := ¬(ϕ[+p])
(ϕ ∧ ψ)[+p] := (ϕ[+p] ∧ ψ[+p]) (ϕ ∧ ψ)[−p] := (ϕ[−p] ∧ ψ[−p])

Next, define a ‘next state’ function NS(ϕ, π) which computes the
next state condition of every command π, given a formula of proposi-
tional logic ϕ specifying the initial state (the definition is in the spirit
of Van Benthem (1993)):

NS(ϕ, p?) := ϕ ∧ p
NS(ϕ,¬p?) := ϕ ∧ ¬p
NS(ϕ, p := 1) := ϕ[+p]
NS(ϕ, p := 0) := ϕ[−p]
NS(ϕ, π1;π2) := NS(NS(ϕ, π1), π2)
NS(ϕ, π1 ∪ π2) := NS(ϕ, π1) ∨NS(ϕ, π2).

mthSL.tex; 11/10/2006; 10:53; p.6

7

It is easy to see that w |= ϕ and w, v |= π iff v |= NS(ϕ, π). It
follows that π1 |= π2 iff rng ([[π1]]) ⊆ dom([[π2]]) iff NS(NS(>, π1), π2)
is satisfiable, and |= π iff NS(>, π) is satisfiable. Thus a translation
argument via NS demonstrates that, once again, we are just doing
propositional logic.

Still, it is illuminating to give a direct axiomatization, without re-
sorting to an assertion language. We employ sequent format, with
sequents of the form X =⇒ π, where X is a finite list of procedures
from the language.

Structural rules are left monotonicity and compositional cut (well
known from the structural analysis of dynamic inference modes in Van
Benthem (1996)), plus restricted forms of contraction, weakening and
permutation. Since ; is clearly associative, we do not bother to write
brackets in π1;π2;π3, and we dispense with a rule that spells out the
equivalence between (π1;π2);π3 and π1; (π2;π3). We use A? to refer to
a test of the form p? or ¬p?.

Axioms:

p := 1 =⇒ p? p := 0 =⇒ ¬p? A? =⇒ A?

Left monotonicity:

X =⇒ π
Y X =⇒ π

Cut with Composition-introduction:

X =⇒ π1 π1 =⇒ π2

X =⇒ π1;π2

Test introduction:

X =⇒ A? X =⇒ π
X =⇒ A?;π

∪ introduction:

X =⇒ πi

X =⇒ π1 ∪ π2
i = 1, 2

∪ elimination:

X,π1 =⇒ π X, π2 =⇒ π

X, π1 ∪ π2 =⇒ π

Test and assignment contraction rules:

Xp := 1Y =⇒ π Xp := 0Y =⇒ π

XY =⇒ π

mthSL.tex; 11/10/2006; 10:53; p.7

8

XA?A?Y =⇒ π
XA?Y =⇒ π

Xp := B1; p := B2Y =⇒ π

Xp := B2Y =⇒ π

Xp?, p := 1Y =⇒ π

Xp?Y =⇒ π

X¬p?, p := 0Y =⇒ π

X¬p?Y =⇒ π

Xp := 1, p?Y =⇒ π

Xp := 1Y =⇒ π

Xp := 0,¬p?Y =⇒ π

Xp := 0Y =⇒ π

Swap rules:

Xp := B1, q := B2Y =⇒ π

Xq := B2, p := B1Y =⇒ π
p 6= q

XA?, B?Y =⇒ π

XB?, A?Y =⇒ π

Xp := B,±q?Y =⇒ π

X ± q?, p := BY =⇒ π
p 6= q

X ± p?, q := BY =⇒ π

Xq := B,±p?Y =⇒ π
p 6= q

Here are some example derivations:

=⇒ p := 1 p := 1 =⇒ p?
=⇒ p := 1; p?

p := 1 =⇒ p?
p := 1 =⇒ p? ∪ ¬p?

p := 0 =⇒ ¬p?
p := 0 =⇒ p? ∪ ¬p?

=⇒ p? ∪ ¬p?

p? =⇒ p?
q?, p? =⇒ p?

q? =⇒ q?
q?, p? =⇒ q?
p?, q? =⇒ q?

q?, p? =⇒ p?; q?

It is easy to check that the axioms and rules are sound. To see that the
axiomatization is also complete, note that the axioms and rules encode
the principles underlying the analysis of the previous section.

The notion π1 |= π2 that we have analyzed is called ‘update-to-
domain’ consequence in (Van Benthem, 1996). One might ask whether
there are other reasonable notions of ‘command consequence’? Here
are some candidates:

− π1 |=2 π2 iff [[π1;π2]] 6= ∅ (command π1 logically implies com-
mand π2 if at least one outcome of π1 sets up the conditions for
performing π2).

− π1 |=3 π2 iff [[π1]] = [[π1;π2]]. (command π1 logically implies com-
mand π2 if performing π1 makes execution of π2 superfluous).

mthSL.tex; 11/10/2006; 10:53; p.8

9

These possibilities are additions to the list of dynamic consequence
notions that is discussed in (Van Benthem, 1996).

4. Action Without Repercussion over Subset Models

A subset model M is a non-empty subset of {0, 1}P . Interpret the
update commands as follows in M :

[[p := 1]]M := {〈v, w〉 | v, w ∈M,w = v(p|1)}
[[p := 0]]M := {〈v, w〉 | v, w ∈M,w = v(p|0)}

We now have a genuine modal logic. Its axiomatization (in standard
Hilbert format, this time) involves the following notion.

DEFINITION 2. (p occurs freely in ϕ).
p occurs freely in p,
p occurs freely in ¬ϕ iff p occurs freely in ϕ,
p occurs freely in ϕ1 ∧ ϕ2 iff p occurs freely in ϕ1 or p occurs freely in
ϕ2,
p occurs freely in [Q := B]ϕ iff p 6= q and p occurs freely in ϕ,
p occurs freely in [π1;π2]ϕ iff p occurs freely in [π1][π2]ϕ,
p occurs freely in [π1 ∪ π2]ϕ iff p occurs freely in [π1]ϕ or p occurs
freely in [π2]ϕ,
p occurs freely in [ϕ1?]ϕ2 iff p occurs freely in ϕ1 or p occurs freely in
ϕ2.

The axiom schemas that are needed are:

− all substitution instances of propositional tautologies,

− the K schema for the atomic assignment modalities:

[p := B](ϕ→ ψ) → ([p := B]ϕ→ [p := B]ψ).

− axioms that express the effect of p := B on the value of p:

[p := 1]p [p := 0]¬p.

− the schema of independent change for atomic assignment modali-
ties:

ϕ→ [p := B]ϕ

provided p does not occur freely in ϕ.

mthSL.tex; 11/10/2006; 10:53; p.9

10

− substitution schemas for atomic assignment modalities:

[p := 1]ϕ→ [p := 1]⊥ ∨ [>/p]ϕ

[p := 0]ϕ→ [p := 0]⊥ ∨ [⊥/p]ϕ

− determinism axiom:

〈p := B〉ϕ→ [p := B]ϕ.

− axioms for command decomposition:

[ϕ?]ψ ↔ (ϕ→ ψ).

[π1;π2]ϕ↔ [π1][π2]ϕ.

[π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ.

− Modus Ponens:

ϕ ϕ→ ψ

ψ

− Necessitation for atomic assignment commands:

ϕ

[p := B]ϕ

Theorems are all formulas that can be derived from the axioms by a
finite number of applications of the rules.

Note that ⊥ → [p := B]⊥ is a substitution instance of the schema
of independent change. Therefore we have that 〈p := B〉> is a theorem
of the calculus. This allows us to strengthen the determinism schema
as follows:

〈p := B〉ϕ↔ [p := B]ϕ.

Note also that if p does not occur freely in ϕ, then [>/p]ϕ = [⊥/p]ϕ =
ϕ, so we can strengthen the schema of independent change to an equiv-
alence, as follows:

ϕ↔ [p := B]ϕ

provided p does not occur freely in ϕ.
Similarly, p does not occur freely in [>/p]ϕ or [⊥/p]ϕ, so we get

from the schema of independent change that [>/p]ϕ→ [p := 1]ϕ, and
[⊥/p]ϕ → [p := 0]ϕ. Also, since ⊥ → ϕ is a propositional tautology,
we get by necessitation [p := 1](⊥ → ϕ), and from this by applying
the K-schema [p := 1]⊥ → [p := 1]ϕ. In a similar way, we arrive at

mthSL.tex; 11/10/2006; 10:53; p.10

11

[p := 0]⊥ → [p := 0]ϕ. In this way, we can strengthen the substitution
schemas for atomic assignment modalities, as follows:

[p := 1]ϕ↔ [p := 1]⊥ ∨ [>/p]ϕ

[p := 0]ϕ↔ [p := 0]⊥ ∨ [⊥/p]ϕ
This gives us a set of equivalences, but note that due to the non-
reducibility of [p := 1]⊥, our earlier translation procedure for reducing
the logic to a purely propositional format breaks down. We now have a
genuine dynamic logic, which can be analyzed by standard modal tech-
niques. This logic is complete, for all its axioms have Sahlqvist form, so
it has the finite model property, by the canonical model construction
plus filtration, hence it is decidable.

Again, one might wish to analyze reasoning over subset models di-
rectly in the command language. It is clear that the axioms =⇒ p := B
will have to go, as they are no longer sound under the new interpreta-
tion. I conjecture that the resulting system is complete for imperative
reasoning over subset models.

5. Application: Database Updating Under Constraints

We can apply this to database updating under constraints, by letting
a subset model M be given via a constraint C (a contingent formula of
propositional logic). C gives the model M via

M := {w ∈ {0, 1}P | w |= C}.

The analysis remains much as before, only the definition of µ has to
take C into account. Also, the canonical forms of commands become
slightly more involved.

6. Further Questions about Action Without Repercussion

Define the command p := ¬p as p?; p := 0∪¬p?; p := 1. The difference
between a command like p := 1 and a command like p := ¬p is that the
latter can be undone (by performing it again), because it remembers its
previous state, so to speak. p := ¬p is reversed, simply by performing it
again. This continues to hold in the logic of action without repercussion
over subset models, for we have:

|= p ∧ 〈p := 0〉> → 〈p := 0; p := 1〉>

|= ¬p ∧ 〈p := 1〉> → 〈p := 1; p := 0〉>

mthSL.tex; 11/10/2006; 10:53; p.11

12

Note, however, that the reversibility operator ˇ cannot be defined in
this language, for the simple reason that a command like p := 1 does
not remember its previous state.

Reversibility cannot even be defined for the subset of those com-
mands built from p := ¬p by means of ; ,∪. After performing p :=
¬p ∪ q := ¬q we do not know which of the two we should undo.

We can undo commands in a weaker sense, as follows. Define the
weak reversal ˇ of any command π by means of:

(p := 1)̌ := >? ∪ p := 0
(p := 0)̌ := >? ∪ p := 1
(π1;π2)̌ := π2 ;̌π1ˇ
(π1 ∪ π2)̌ := π1ˇ∪ π2ˇ
(ϕ?)̌ := >?

Then we can show that [[π;π]̌] 6= ∅. In other words, in this simple
constellation an action that is regretted can always be repaired (inde-
terministically), quite unlike the situation in the real world of spilt milk
and broken china.

Another reflection of the simplicity of the set-up is the fact that the
order in which basic actions are performed does not matter. We have:
〈p := B1; q := B2〉ϕ ↔ 〈q := B2; p := B1〉ϕ, provided that p and
q are different. For complex actions, this does not hold, of course. E.g.,
using the abbreviations mentioned above, p := q; q := p will have a
different effect from q := p; p := q.

Next, one might ask whether adding Kleene ∗ increases the expres-
sive power of this language. To see that the answer to this question
is ‘no’, observe that an arbitrary command π∗ only affects a finite
number of atomic propositions. This entails that π∗ can always be
given in canonical if-then-else form, i.e., can be rephrased without use
of ∗. Finding an efficient method for translating π∗ commands into ∗-
free form is another matter. A further question one might also ask is
whether there is an efficient method for translating µπ commands into
µ-free form.

Note that the schema 〈π1〉ϕ ↔ 〈π2〉ϕ is valid iff [[π1]] = [[π2]]. One
might consider adding a construction to the language to express this
directly (i.e., in a single formula). This leads to a next question: Does
adding formulas of the form π1 ≡ π2, with semantic clause w |= π1 ≡ π2

iff for all v: w, v |= π1 iff w, v |= π2, increase the expressive power
of the language? Again, the answer is ‘no’, and the reason has again
to do with the fact that a program π only affects the value of the
finitely many proposition letters occurring in it, leaving everything else
unchanged. Equivalence of programs π1 and π2 depends only on the
values of the proposition letters which occur in either of them. Let

mthSL.tex; 11/10/2006; 10:53; p.12

13

this set be {p1, . . . , pn}. Then π1 ≡ π2 is equivalent to the following
conjunction:

〈π1〉(p1 ∧ p2 ∧ · · · ∧ pn) ↔ 〈π2〉(p1 ∧ p2 ∧ · · · ∧ pn) ∧
〈π1〉(¬p1 ∧ p2 ∧ · · · ∧ pn) ↔ 〈π2〉(¬p1 ∧ p2 ∧ · · · ∧ pn) ∧
... ∧
〈π1〉(¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn) ↔ 〈π2〉(¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn).

Finally we can ask questions about sensible extensions of the frame-
work. For example, which extension of the framework would be needed
to make sense of a command negation operation, for expressing that
certain things should not be done?

To see that this is an interesting question, note that prima facie
it seems that the concept of giving an order to not do certain things
presupposes some kind of inherent change in the world. ‘Do not step
on my foot’ typically is shouted at someone who is about to engage
in an action that the speaker intends to avoid. Of course, the meaning
is not: ‘you can do anything, provided it is not stepping on my foot’,
but rather something like: ‘You should minimally modify the course
of your impending action, in order to ensure that my foot does not
suffer from it.’ Thus, a reasonable treatment of negated action seems to
presuppose the concepts of inherent changes in a situation and minimal
modifications of inherent change in a situation.

To wind up the discussion of this simple system, let us note that
as a treatment of the declarative versus imperative distinction, the
logic presented leaves quite a few things to be desired. The three main
shortcomings are the following:

− The internal structure of the facts that constitute the world is
disregarded.

− The distinction between giving an order (issuing a request) and
obeying that order (complying with the request) is disregarded.

− The coherence of the facts that constitute the world, and the
circumstance that actions do have repercussions is disregarded.

The first shortcoming is inherent to a propositional treatment, and
can be overcome by switching to level where the predicate argument
structure of the atoms gets analyzed. The second shortcoming can be
overcome in a setting where we distinguish between actual change in the
world and intended changes of the world, where the addressee is made
responsible for the change. See the work of Noel Belnap c.s. (1992) for
this refinement, which is beyond the scope of the present paper. The
third shortcoming is addressed in the next section.

mthSL.tex; 11/10/2006; 10:53; p.13

14

7. The Logic of Action With Repercussion

What does it mean that a basic action p := B has a repercussion or
side effect? Simply, that I cannot perform that action without affecting
the value of other propositions besides p. In general, there are two main
causes for this:

1. the inherent causal coherence of the world,

2. my lack of skill.

To distinguish between (1) and (2), some further refinements are nec-
essary that we will not yet make (but see Section 9 below).

To model the concept of ‘coherence of the world/lack of skill of
the agent’, assume models of the form M = 〈W,R⊕p, R	p, . . .〉, where
W ⊆ {0, 1}P , every accessibility relation R is a subset of W 2, and the
accessibility relations satisfying the following:

− if wR⊕pv then v(p) = 1,

− if wR	pv then v(p) = 0.

Note that these are still rather special Kripke models, because of the
circumstance that different worlds cannot have the same valuation. Call
such models ‘Kripke valuation models’.

If we drop the constraint W ⊆ {0, 1}P on W , and instead introduce
a valuation V , and replace the constraint on accessibility by:

− if wR⊕pv then Vv(p) = 1,

− if wR	pv then Vv(p) = 0.

we get ‘Kripke assignment models’.
Note that from a point of view of modal logic the constraints on

R⊕p, R	p put conditions on the class of valuations that fit a frame for
this logic. Technically, this constitutes a move towards a semantics in
terms of generalized modal frames rather than modal frames.

The language for this is the same as before, with one small addition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [π]ϕ.

π ::= p := 1 | p := 0 | π;π | π ∪ π | ϕ? | µπ.

The interpretation of formulas and procedures remains the same as
before, except for the facts that now we use the accessibility relations
to model the change transitions and a notion of ‘dissimilarity’ between

mthSL.tex; 11/10/2006; 10:53; p.14

15

worlds to model the effect of the minimality operator µ. We use the
following dissimilarity measure between worlds:

Dissim(w, v) = |{p ∈ P | w(p) 6= v(p)}|.

Note that we have: Dissim(w,w) = 0 (a world has no dissimilar-
ities with itself), Dissim(w, v) = Dissim(v, w), and Dissim(w, v) ≤
Dissim(w, u) + Dissim(u, v).

The semantic clauses that differ from those in the previous system
are:

− M,w, v |= p := 1 iff wR⊕pv.

− M,w, v |= p := 0 iff wR	pv.

− M,w, v |= µπ iff M,w, v |= π and there is no t with M,w, t |= π
and Dissim(w, t) < Dissim(w, v).

The intuition behind the semantic clauses for changing facts is that
changing a fact might be impossible in a situation (the case where in the
world under consideration there is no accessible world for that change),
or it might bring about changes in other facts too (the case where an
accessible world does not only differ from the current world in the fact
that was to be changed but in other facts as well). The minimality
operator plays an essential role in this set-up, for the command to
make fact p true is most often supposed to be interpreted as ‘Make p
true while leaving the rest of the world undisturbed, as far as possible’.
In our system, this is rendered as µp := 1.

The idea of repercussions of actions is brought out very clearly
in terms of the µ operator. In a situation w where p is not true we
cannot do p without repercussion on other things in case for all v with
M,w, v |= ¬p?;µp := 1 it holds that Dissim(w, v) > 1.

Note that in the present system, unlike the system of the previ-
ous section, it does not in general hold that M |= 〈p := 1〉> →
〈p := 1; p := 0〉>, for p := 1 might be an action which, when done
in world w, cannot always be undone. This is the case if there is a v
with wR⊕pv, but for no such v: vR	pw. In other words, it may be that
there are things that cannot be undone. It follows immediately that
a converse operation is not definable in this system (not even a weak
one).

In a sense, the present system also provides a minimalist account of
causation. If the action p := 1 always has as a result that we end up
in a world where q holds, then, in a minimalist sense, p causes q. Of
course, there is much more to be said about causation in connection
with the logic of action (see, e.g., Shoham (1988)).

Some obvious axioms for this system are:

mthSL.tex; 11/10/2006; 10:53; p.15

16

1. All instantiations of axiom schemas of propositional logic.

2. [π](ϕ→ ψ) → ([π]ϕ→ [π]ψ)

3. [p := 1]p ,
[p := 0]¬p.

4. [π1;π2]ϕ↔ [π1][π2]ϕ.

5. [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ.

6. [ϕ?]ψ ↔ (ϕ→ ψ).

7. [π]ϕ→ [µπ]ϕ.

8. 〈µπ〉ϕ→ [µπ]ϕ,
provided ϕ is purely propositional.

9. [µ(π1;π2)]ϕ↔ [µπ1;µπ2]ϕ.

10. [µ(π1 ∪ π2)]ϕ↔ [µπ1 ∪ µπ2]ϕ.

11. [µϕ?]ψ ↔ [ϕ?]ψ.

Rules: modus ponens and necessitation for any π.
Note that the axiom scheme of independent change for atomic as-

signment variables has gone. The axioms and rules given above are
obviously sound for the intended interpretation. I leave the question
open whether additional axiom schemas are needed to get a complete
calculus. I conjecture that this logic is decidable.

The constraints ‘if wR⊕pv then v(p) = 1’ and ‘if wR	pv then v(p) =
0’ can be seen as constraints on the way the accessibility relations
are connected. It follows from them, for instance, that rng (R⊕p) ∩
rng (R	p) = ∅, for every p ∈ P .

8. Conditions on Accessibility

We should now ask ourselves what are plausible further constraints on
the accessibility relations and the way they are connected?

Here is an example of such a constraint: for every p ∈ P , R⊕p∩{w ∈
W | w(p) = 1} and R	p ∩ {w ∈W | w(p) = o} are reflexive.

The following axiom schemata impose this constraint:

− (ϕ ∧ p) → 〈p := 1〉ϕ

− (ϕ ∧ ¬p) → 〈p := 0〉ϕ.

mthSL.tex; 11/10/2006; 10:53; p.16

17

Another example of a constraint: R⊕p ◦R⊕q ⊆ R⊕q, expressing that
if you can reach a situation where q is true by first doing p := 1 and
then doing q := 1, then the same effect can also be had immediately
by doing q := 1.

Further questions about the plausibility of this and similar con-
straints might be asked. For instance, is it reasonable to impose the
constraint that the R�p be transitive?

We have seen above that in action logic without repercussion basic
flip actions (actions of the form p := ¬p) are reversible: just perform
them again. If actions can have repercussions, then this no longer holds:
there is no guarantee that for all v we have M,v, v, |= p := ¬p; p := ¬p.
This shows that we are moving closer to the real world of spilt milk and
broken china. Full reversibility would destroy all side effects, of course,
but one might want to consider the weaker constraint that the basic
flip relation be symmetric. This is expressed by:

ϕ→ [p := ¬p]〈p := ¬p〉ϕ.

This expresses that it is always possible that things get completely
restored, although there is no guarantee that they will.

A very strong constraint is that the order in which basic actions
are performed should not matter. It may still be plausible for specific
action pairs p := B1; q := B2, though. This constraint is expressed by:

〈p := B1〉〈q := B2〉ϕ↔ 〈q := B2〉〈p := B1〉.

It is clear that here is a lot of work to be done: explore the list of
plausible constraints, and see if they can be axiomatized.

For the logic of action with repercussion, it is clear that adding
Kleene ∗ increases the expressive power of the language. For instance
〈(p := 1; q := 1)∗〉ϕ expresses that there is a world v with w(R⊕p ◦
R⊕q)∗v with v |= ϕ (where w is the current world). This is not express-
ible without ∗.

Again, questions galore: Give an axiomatization of the minimal
system with Kleene star added to the language. Is the minimal logic
of change with repercussion and Kleene star decidable? Does adding
formulas of the form π ≡ π, with semantic clause w |= π1 ≡ π2 iff
for all v: w, v |= π1 iff w, v |= π2, increase the expressive power of the
language?

mthSL.tex; 11/10/2006; 10:53; p.17

18

9. Conclusion

By way of conclusion, I briefly comment on some possible application
directions for the framework that I have presented above. In the first
place, let us take a quick look at what it means that an agent is able to
perform a basic action p := B in a state w? In a single-agent framework
simply this: ∃v : wRBpv. In a multi-agent framework we need basic
actions of the form doip := B, indicating that the action is performed
by agent i, and an ability function

ABILITY : agents × propositions × {0, 1} ×W → {0, 1}

satisfying

if ABILITY(i, p, B,w) = 1 then {v | wRBpv} 6= ∅.

This expresses that i can only do things (in a given situation) that can
be done at all in that situation. An application for ability models would
be multi-agent database management with updating permits.

Next, what does it mean to be able to perform a basic action with
skill? In our framework: to be able to perform it without unnecessary
side effects. This concept is modeled in a skill model, which is a natural
generalization of an ability model. In a skill model, differences in skill
between agents are accounted for by means of a function

SKILL : agents × propositions × {0, 1} ×W → PW,

satisfying:

if SKILL(i, p, B,w) 6= ∅ then SKILL(i, p, B,w) ⊇ {v | wRBpv}.

This expresses that if person i is able to perform p := B in situation w
at all, then i will perform the action with at least as many (possible)
side effects as is inherent in the nature of things. We can say now
that person i has maximum skill at action p := B in situation w if
SKILL(i, p, B,w) = {v ∈ W | wRBpv}. In a multi-agent setting, every
basic action comes with a specification of the agent performing it, so
basic actions have the form doip := B, with interpretation: M,w, v |=
doip := B iff v ∈ SKILL(i, p, B,w).

It is clear, then, that various concepts from action logics in Artificial
Intelligence already show up in the present very simple setting:

observation of ϕ by agent i: doiϕ?.

ability of i to do A: {〈w, v〉 |M,w, v |= doiA} 6= ∅.

ability of i to do A at w: {v |M,w, v |= doiA} 6= ∅.

mthSL.tex; 11/10/2006; 10:53; p.18

19

ability of i to achieve ϕ by doing A: {v |M,w, v |= doiA} |= ϕ.

ability versus skill: {v | M,w, v |= doiA} 6= ∅ versus {v | M,w, v |=
doiA} = {v |M,w, v |= A}.

Next, one can turn to the logic of action in a dynamic world. Enrich
models with a function

PROCESS : W × T → PW

encoding the ways in which the world may run if I do not act (T is the
set of time points). Add a new operator 2ϕ, to be interpreted as ‘ϕ
is inevitable if I do not act’. In this setting it is possible to study Von
Wright’s (1983) distinctions:

make p: ¬p ∧3¬p ∧ 〈A〉> ∧ [A]p.

keep p: p ∧3¬p ∧ 〈A〉> ∧ [A]p.

end p: p ∧3p ∧ 〈A〉> ∧ [A]¬p.

prevent p: ¬p ∧3p ∧ 〈A〉> ∧ [A]¬p.

A step in a quite different direction would be to look at the internal
structure of facts, by developing predicate logical versions of all these
logics. But it seems to me that quite a lot of interesting work remains
to be done at the propositional level.

Acknowledgements

Thanks are due to Johan van Benthem, Stijn van Dongen, Maarten
de Rijke and an anonymous referee for helpful comments on a previ-
ous version of the paper, and to the editors of this volume for their
persistence in letting it see the light of day.

References

N. Belnap and M. Perloff. The way of the agent. Studia Logica, 51:463–484, 1992.
J. van Benthem. Logic and the flow of information. In Proceedings 9th International

Congress of Logic, Methodology and Philosophy of Science. Uppsala 1991, pages
693–724. Elsevier, Amsterdam, 1993.

J. van Benthem. Exploring Logical Dynamics. CSLI & Folli, 1996.
Y. Shoham. Reasoning about Change. MIT Press, Cambridge, Mass, 1988.

mthSL.tex; 11/10/2006; 10:53; p.19

20

P. Spruit, R. Wieringa, and J.-J. Meyer. Axiomatization, declarative semantics and
operational semantics of passive and active updates in logic databases. Journal
of Logic and Computation, pages 27–70, 1995.

G.H. von Wright. Practical Reason. Blackwell, Oxford, 1983.

Address for Offprints: Jan van Eijck
CWI
PO Box 94079
1090 GB Amsterdam

mthSL.tex; 11/10/2006; 10:53; p.20

