
To Do Something Else

Fengkui Ju

School of Philosophy, Beijing Normal University, Beijing, China
fengkui.ju@bnu.edu.cn

Jan van Eijck

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Institute for Logic, Language & Computation, University of Amsterdam

jve@cwi.nl

Abstract

This paper presents two deontic logics following an old idea: normative notions can
be defined in terms of the consequences of performing actions. The two deontic
logics are based on two special propositional dynamic logics; they interpret actions
as sets of state sequences and have a process modality. The difference between the
two deontic logics is that they contain different formalizations of refraining to do an
action. Both of the two deontic logics have a propositional constant for marking the
bad states. The normative notions are expressed by use of the process modality and
this propositional constant.

Keywords: deontic logic, dynamic logic, process modality, negative action

1 Background

There is an old idea in the field of deontic logic: an action is prohibited if doing
it would cause a bad thing; it is permitted if performing the action is possible
without causing a bad thing; it is obligated if refraining to do it would cause a
bad thing. This idea is intuitive in some sense; the point of it is that the three
fundamental normative notions, prohibition, permission and obligation, can be
defined in terms of the consequences of doing actions. According to [4], this
idea can be traced back to Leibniz.

[1] and [9] independently develop this idea along similar lines. The resulting
deontic logic has a modal operator ◻, the classical alethic modality whose dual
is ◇. It also has a propositional constant V which intuitively means that what
morality prescribes has been violated. The three normative notions are defined
as follows: ◻(φ → V) says that the proposition φ is prohibited, ◇(φ ∧ ¬V)
says that φ is permitted and ◻(¬φ → V) says that φ is obligated. This logic
applies deontic operators to propositions and does not really analyze actions.
As mentioned in the literature, e.g., [10], this approach leads to quite a few
problems.



2 To Do Something Else

Starting from the same idea, [11] proposes a different approach with empha-
sis on the analysis of actions in terms of their postconditions. In his dynamic
logic [α]φ expresses that no matter how the action α is performed, φ will be the
case afterwards. The dual of [α]φ is ⟨α⟩φ, which expresses that there is a way
to perform α s.t. φ will be the case after α is done. The logic presented by [11]
has a propositional constant V saying, again, that this is a undesirable state.
By use of [α]φ and V, the three normative notions can be expressed: [α]V,
meaning that α is prohibited, ⟨α⟩¬V indicating that α is permitted and [α]V
denoting that α is obligated. By α, [11] intends to express this: to perform
α is to refrain from doing α. This work applies deontic operators to actions
and many problems with previous deontic logics are avoided this way. [11] is a
seminal paper that has given rise to a class of dynamic deontic logics following
this approach.

There are two problems with [11]. The first one concerns the three norma-
tive notions. Whether an action α is prohibited/permitted/obligated or not is
completely determined by whether the output of performing α is undesirable
or not, and has nothing to do with what happens during the performance of α.
As pointed out by [14], this is problematic, because it entails that while killing
the president is prohibited, killing him and then surrendering to the police may
not be, that while smoking in this room is not permitted, smoking in this room
and then leaving it may be permitted, that while rescuing the injured and then
calling an ambulance is obligated, rescuing the injured may not be. None of
this sounds reasonable.

The second problem with [11] lies in how it technically deals with α. It
presents a complicated semantics for actions. In short, it firstly assigns each
action a so called s-trace-set; then it links each s-trace-set to a binary relation.
In this way each action is interpreted as a binary relation. Essentially, this is
like the standard semantics for actions from propositional dynamic logic (PDL).
Under the semantics defined by [11], although α is not the complement of α,
still the behaviour of α is not quite in line with the intuition of refraining from
α. Firstly, the intersection of the interpretations of α and α is not always
empty, which would mean that in some states there may be ways to refrain
from α while at the same time doing α. Secondly, the intersection of the
interpretations of α and α;β is not always empty, which would mean that in
some cases, performing α;β is a way to refrain from doing α. This runs counter
to our intuition about refraining from doing an action.

Indeed, [11] shows clear awareness of the requirement that α and α should
be disjoint and that α and α;β should be disjoint as well. The correspondence
between actions and s-trace-sets was designed to achieve this, but the assign-
ment of binary relations to s-trace-sets results in some crucial information loss.

Dynamic logics in the style of PDL interpret actions as binary relations
and can not deal with the progressive behaviour of actions. To solve this
problem, so-called process logics take the intermediate states of doing actions
into consideration and view actions as sets of sequences of states. Based on
a process logic from [12], [14] proposes a deontic logic which aims to handle



Ju and van Eijck 3

free choice permission and lack-of-prohibition permission in one setting. The
sentence “you can use my pen or pencil” involves the former permission and
“you can use his pen or pencil” involves the latter permission. The first sentence
gives the addressee the permission to use the pen, but the second one does not.
To see that the latter is the case, imagine a situation where the speaker of the
second sentence is just reporting something by this sentence, and he/she knows
that the owner of the pen and pencil allows the addressee to use the pen or
pencil but does not know exactly which. Unlike [11], [14] does not introduce
undesirable states, but uses undesirable transitions instead. The resulting logic
allows description of the states during execution of actions and it avoids the
first problem with [11]. However, the focus is on permission only, and there is
no attempt to deal with refraining to do an action or with obligation.

Realizing that the formalization of refraining to do an action in [11] is prob-
lematic, [2] and [13] present alternative proposals, both based on a relational
semantics for actions. The motivation of [2] is that the formalization in [11]
can not be easily generalized to encompass iteration and converse of actions.
[2] views α as a constrained complement of α: α is not the complement of α
w.r.t. the universal relation, but the complement of α w.r.t. the set consisting
of all the transitions resulting from performing actions constructed without use
of . Under this treatment, the intersection of the interpretations of α and α is
always empty; however, the problem with the intersection of the interpretations
of α and α;β remains: this intersection might not be empty. [13] thinks that
the sentence “you are permitted either to eat the dessert or not” has different
meaning from “you are permitted either to kiss me or not”, as the latter im-
plies that the addressee may kiss the speaker but the former does not. The two
sentences turn out equivalent. To remedy this, [13] interprets α in a so called
stratified way. Firstly, for any atomic action a with the interpretation Ra, it
defines Ra, the interpretation of a, in the following way: a transition (w,u) is
in Ra if and only if (w,u) is not in Ra but (w,x) is in Ra for some x; then by
four inductive rules taken from [16], it defines the interpretation of α for any
compound action α. However, this approach suffers from the same problem as
[11]: neither the intersection of α and α nor the intersection of α and α;β is
always empty.

It is our aim in this paper to propose two deontic logics that follow the
general approach of [11] but resolve the problems mentioned above.

2 Two Challenges

Two challenges are crucial in dynamic deontic logics: how to formalize refrain-
ing to do an action and how to handle the normative notions. We here state our
ideas for these two issues, as a prelude to the two deontic logics to be presented
below.

To refrain to do an action is to do something else. We think that to do
something else meets the principle of symmetry: if doing α is doing something
else than β, then doing β is also doing something else than α. We also think
it is reasonable to impose the principle of perfect tense: deeds that are done



4 To Do Something Else

remain done forever. In other words, for any action, if the agent has done it,
then he/she will always have done it. Under the two principles, we do not have
many choices in analyzing to do something else.

Let’s look at an example. Let a and b be two different actions. Fix a start
point. When would we say that the agent has done something else than a; b?
Clearly, if the agent has done a, he/she has done something else than b. By the
principle of the perfect tense, if he/she has done a; b, he/she has done something
else than b. By the symmetry principle of to do something else, if he/she has
done b, he/she has done something else than a; b. We can not say that if the
agent has done a, he/she has done something else than a; b. Why? Because
if an agent has done a; b she has done a, by the principle of perfect tense. So
if she has done a then it cannot be the case that she has done something else
than a; b. We must therefore conclude that doing b is doing something else than
doing a; b, but doing a is not doing something else than doing a; b.

About the issue of normative notions, we propose a sharpened version of the
old idea mentioned in the previous section. There are a class of states, a group
of people and an agent who might not belong to this group. The agent doing
an action at a state might change this state to a different one. Some states are
bad and others are fine for this group. An action of the agent is prohibited at
a state relative to this group if the state will be bad at some point during any
performance of this action. An action is permitted at a state if the state will
always be fine during some performance of this action. An action is obligated
at a state if the state will be bad at some point during any performance of
anything else.

Next, how to formalize these ideas? In process logics such as those of [12]
and [3], atomic actions are interpreted as sets of state sequences which might
not be binary relations. [7] presents a simple process logic where atomic actions
are viewed as binary relations and the action constructors of composition, union
and iteration are treated in the usual way. We will follow this to formalize the
notion of to do something else. Actually we will work this out in two different
ways. As a follow-up to [7], [6] proposes two process modalities to describe what
happens during execution of actions. One of them is called the ∀∃ process
modality. Below, we will use this modality plus a propositional constant to
express the three normative notions.

3 A Deontic Logic Based on Process Theory

Let Π0 be a finite set of atomic actions and Φ0 a countable set of atomic
propositions. Let a range over Π0 and p over Φ0. The sets ΠPDL of actions
and ΦPDDL of propositions are defined as follows:

α ∶∶= a ∣ 0 ∣ (α;α) ∣ (α ∪ α) ∣ α∗
φ ∶∶= p ∣ ⊺ ∣ b ∣ ¬φ ∣ (φ ∧ φ) ∣ ∥α∥φ

Here in “ΦPDDL”, “P” is for “process” and “DDL” for “dynamic deontic logic”.
0 is the impossible action. b means that this is a bad state. f, this is a fine
state, is defined as ¬b. ∥α∥φ indicates that for any way to perform α, φ will



Ju and van Eijck 5

be the case at some point in the process. The dual ⟪α⟫φ of ∥α∥φ is defined as
¬∥α∥¬φ, which says that there is a way to perform α s.t. φ will be the case at
all the points in the process. Fα, α is prohibited, is defined as ∥α∥b; it means
that no matter how to perform α, the state will be bad at some point in the
process. Pα, α is permitted, is defined as ⟪α⟫f; it means that there is a way
to perform α s.t. the state will always be fine in the process. Other standard
syntactic abbreviations apply here.

In next section, for any action α in ΠPDL, we will specify a β in ΠPDL and
claim that to do something else but α is to do β. The special action 0 will be
needed there. After that we will specify the formula saying that it is obligated
to perform α.

M = (W,{Ra ∣a ∈ Π0},B, V ) is a model if

1. W is a nonempty set of states
2. for any a ∈ Π0, Ra ⊆W ×W , and for any a, b ∈ Π0, Ra ∩Rb = ∅
3. B ⊆W
4. V is a function from Φ0 to 2W

Atomic relations are pairwise disjoint. This constraint guarantees that syn-
tactically different atomic actions are genuinely different. B is a set of bad
states. B, the complement of B, is the set of fine states. Note that there is no
constraint on B; it could be the whole universe and could also be the empty
set. A model is just a so called interpreted labeled transition system with the
constraint that the relations are pairwise disjoint, plus a set of bad states.

Fix a model M = (W,{Ra ∣a ∈ Π0},B, V ). Define R = ⋃{Ra ∣a ∈ Π0}. A
sequence w0 . . .wn of states is called a trace if w0R . . .Rwn. Specially, for
any w ∈ W , w is a trace. A trace represents a transition sequence made by
doing a series of basic actions. A special trace w means doing nothing. Let
T be the set of traces. Define a partial binary function ext on T as follows:
ext(u0 . . . un, v0 . . . vm) equals u0 . . . unv1 . . . vm if un = v0, otherwise it is unde-
fined. Let S and T be two sets of traces. Define a function ⊗, called fusion,
like this: S ⊗ T = {ext(κ,λ) ∣κ ∈ S & λ ∈ T, and ext(κ,λ) is defined }. Each
action α is interpreted as a set Sα of traces in the following way:

1. Sa = Ra
2. Sβ;γ = Sβ ⊗ Sγ
3. Sβ∪γ = Sβ ∪ Sγ
4. Sα∗ =W ∪ Sα ∪ Sα;α ∪ . . .

This semantics for actions is called trace semantics. This semantics has the
following feature: for any basic actions a1, . . . , an, all the traces in Sa1;...;an
contain n + 1 states, provided it is given that Sa1;...;an is not empty.

M,w ⊩ φ, φ being true at w in M, is defined as follows:

1. M,w ⊩ p ⇔ w ∈ V (p)
2. M,w ⊩ ⊺ always holds
3. M,w ⊩ b ⇔ w ∈ B
4. M,w ⊩ ¬φ ⇔ not M,w ⊩ φ



6 To Do Something Else

5. M,w ⊩ (φ ∧ ψ) ⇔ M,w ⊩ φ and M,w ⊩ ψ
6. M,w ⊩ ∥α∥φ⇔ for any trace w0 . . .wn, if w0 = w and w0 . . .wn ∈ Sα, then

M,wi ⊩ φ for some i s.t. 1 ≤ i ≤ n
Recall the definitions of Fα and Pα above. It can be verified that

7. M,w ⊩ f ⇔ w ∈ B
8. M,w ⊩ ⟪α⟫φ ⇔ there is a trace w0 . . .wn s.t. w0 = w, w0 . . .wn ∈ Sα and

M,wi ⊩ φ for any i s.t. 1 ≤ i ≤ n
9. M,w ⊩ Fα ⇔ for any trace w0 . . .wn, if w0 = w and w0 . . .wn ∈ Sα, then

M,wi ⊩ b for some i s.t. 1 ≤ i ≤ n
10. M,w ⊩ Pα ⇔ there is a trace w0 . . .wn s.t. w0 = w, w0 . . .wn ∈ Sα and

M,wi ⊩ f for any i s.t. 1 ≤ i ≤ n
Note that the semantics views the ending point of doing α as a point during
the process of doing α but does not view the starting point as a point of the
process.

The notions of validity and satisfiability are defined as usual. This logic
is called PDDL. Illustrations of this logic will be given in section 5 after we
make it clear which formula expresses the obligation to do α.

4 To Do Something Else

In this section, we provide a formalization for the notion of to do something
else following the idea stated in section 2.

A finite sequence of atomic actions is called a computation sequence, ab-
breviated as seq. The empty seq is denoted by ε and the set of seqs denoted
by CS. Each seq corresponds to a composition of atomic actions and seqs are
understood by their corresponding actions. For any sets ∆ and Θ of seqs, let
∆; Θ = {γδ ∣γ ∈ ∆ & δ ∈ Θ}. CS(α), the set of the seqs of α, is defined as
follows:

1. CS(a) = {a}
2. CS(0) = ∅
3. CS(α;β) = CS(α);CS(β)
4. CS(α ∪ β) = CS(α) ∪CS(β)
5. CS(α∗) = {ε} ∪CS(α) ∪CS(α;α) ∪ . . .

Each seq of α represents a way to perform α. α is an empty action if CS(α) = ∅.
In the sequel, for any seq σ and set ∆ of seqs, we use σ∆ to denote the set
{στ ∣ τ ∈ ∆}. For any model, define Sε, the interpretation of ε in this model, as
the whole universe. It can be shown that Sα = ⋃{Sσ ∣σ ∈ CS(α)}.

In the semantics defined in last section, atomic actions are interpreted as
pairwise disjoint binary relations and compound actions are interpreted as sets
of traces. As a result, the following proposition holds (assume again that we
have fixed a model M, with traces computed in that model):

Proposition 4.1 For any α and β, if CS(α) ∩CS(β) = ∅, then Sα ∩ Sβ = ∅.

Proof. Assume Sα ∩ Sβ ≠ ∅. Let w0 . . .wn be a trace in Sα ∩ Sβ . Then there



Ju and van Eijck 7

is a seq a1 . . . an in CS(α) and a seq b1 . . . bn in CS(β) s.t. w0 . . .wn is in
Sa1;...;an and Sb1;...;bn . Then for any i s.t. 1 ≤ i ≤ n, wi−1wi is in Sai and Sbi .
As atomic actions are pairwise disjoint, ai = bi for any i s.t. 1 ≤ i ≤ n. Then
a1 . . . an = b1 . . . bn. This means CS(α) ∩CS(β) ≠ ∅. ◻
This is a crucial fact for this work.

Let ⊑ denote the relation of initial segment for sequences and ⊒ the converse
of ⊑, called extension.

Definition 4.2 [Mutual extension, x-difference] Let σ and τ be two seqs. Then
σ ≈ τ if if σ ⊑ τ or τ ⊑ σ. Call this the relation of mutual extension. Say that
σ is x-different from τ if σ /≈ τ .

For example, ac is x-different from ab, but a is not x-different from ab, as
a ⊑ ab. cab is also x-different from ab, as ab /⊑ cab and cab /⊑ ab, although ab is
a segment of cab. Here are some basic facts about the relation of x-difference.
As ε is an initial segment of any seq, no seq is x-different from ε. x-difference is
closed under extension: if σ /≈ τ and τ ⊑ τ ′, then σ /≈ τ ′. The relation of mutual
extension is closed under initial segment: if σ ≈ τ and τ ′ ⊑ τ , then σ ≈ τ ′. If σ
is x-different from τ , then there is no way to extend σ s.t. the extension of σ
is identical to τ , and there is also no way to extend τ s.t. the extension of τ is
identical to σ. The notion of x-difference is intuitively understood as follows.
Assume that σ is x-different from τ . Then there is no moment during the
performance of σ at which the agent has done τ , and there is also no moment
after the performance of σ at which the agent has done τ , no matter what
he/she does afterwards.

For any actions α and β, α is x-different from β, α /≈ β, if for any seqs
σ ∈ CS(α) and τ ∈ CS(β), σ /≈ τ . The relation of x-difference for actions
formalizes the word “else” in the imperatives such as “don’t watch cartoons
anymore and do something else”. β is something else but α if β is x-different
from α. Note that given an action α, there might be many actions each of
which is something else. For example, both b and c are something else for
a. This means that the relation of x-different itself is not enough to handle
the notion of to do something else, as the latter also involves a quantifier over
actions. Luckily, for any α, among the actions which are something else, there
is a greatest one in the sense that it is the union of all of them. This lets us
deal with the notion of to do something else without introducing any quantifier
over actions.

Definition 4.3 [The function of opposite] Let ∆ be a set of seqs. ∆̃, the
opposite of ∆, is defined as the set {τ ∣ τ /≈ σ for any σ ∈ ∆}.

∆̃ is always closed under extension; this is an important feature of the function
of opposite. Opposite is different from complement: ∆̃ is always a subset of ∆,
but not vice versa. Here is a counter-example: let ∆ = {ab}; then a ∈ ∆ but
a ∉ ∆̃. Opposite has certain connection with complement. Define ∆T as the set
of the seqs which are x-equal to some seq in ∆. ∆T is called the tree generated
from ∆. It can be seen that ∆̃ = ∆T . About ∆T , there is a different way to



8 To Do Something Else

look at it. Let ∆′ be the smallest set which contains ∆ and is closed under
extension, and ∆′′ the smallest set containing ∆′ which is closed under initial
segments. It can be verified that ∆′′ = ∆T . This result will be used later. Note
that ∆T might not be closed under extension.

The following proposition specifies some important properties of the func-
tion of opposite:

Proposition 4.4

1. ∆ ∩ ∆̃ = ∅
2. ∆̃ ∩ (∆; Θ) = ∅
3. ∆̃ ∪Θ = ∆̃ ∩ Θ̃
4. ∆ ⊆ ̃̃∆
5. ∆̃; Θ ⊑ ∆̃ ∪ (∆; Θ̃) if Θ ≠ ∅
6. ∆̃ ⊆ ∆̃; Θ

Proof.
1. This is easy to show.
2. By the sixth item of this proposition, ∆̃ ⊆ ∆̃; Θ. As ∆̃; Θ ⊆ ∆; Θ,

∆̃ ⊆ ∆; Θ. Then ∆̃ ∩ (∆; Θ) = ∅.
3. σ ∈ ∆̃ ∪Θ ⇔ σ /≈ τ for any τ ∈ ∆ ∪Θ ⇔ σ /≈ τ for any τ ∈ ∆ and σ /≈ τ

for any τ ∈ Θ ⇔ σ ∈ ∆̃ and σ ∈ Θ̃.

4. Let σ ∈ ∆. Assume σ ∉ ̃̃∆. Then there is a τ ∈ ∆̃ s.t. σ ≈ τ . This is
impossible.

5. Let σ ∈ ∆̃; Θ. Then σ /≈ τ for any τ ∈ ∆; Θ. Assume σ ∉ ∆̃. We want
to show σ ∈ (∆; Θ̃). Then there is a κ ∈ ∆ s.t. σ ⊑ κ or κ ⊑ σ. Assume σ ⊑ κ.
Let x ∈ Θ, as Θ ≠ ∅. Then κx ∈ ∆; Θ. As σ ⊑ κ, σ ⊑ κx. Then σ ≈ κx. This
is impossible, as σ ∈ ∆̃; Θ. Then κ ⊑ σ. Let σ = κλ. We want to show λ ∈ Θ̃.
Assume not. Then there is a τ ∈ Θ s.t. λ ≈ τ . Then κλ ≈ κτ . Then κτ ∈ ∆; Θ.
Then κλ ∉ ∆̃; Θ. This is impossible. Then λ ∈ Θ̃. Then κλ ∈ (∆; Θ̃), that is,
σ ∈ (∆; Θ̃).

6. Let σ ∈ ∆̃. Then σ /≈ τ for any τ ∈ ∆. Let τ ′ ∈ ∆; Θ. Then there is a
τ ∈ ∆ s.t. τ ⊑ τ ′. As /≈ is closed under extension, σ /≈ τ ′. Then σ ∈ ∆̃; Θ. ◻

The converse of the fourth item does not hold generally. As for any ∆, ̃̃∆ is
closed under extension, we can get that for any ∆, if ∆ is not closed under

extension, then ̃̃∆ /⊆ ∆. Here is an example: let Π0 = {a, b} and ∆ = {aa, ab};

then ∆̃ = bΠ∗
0 and ̃̃∆ = aΠ∗

0; then aaa ∈ ̃̃∆ but aaa ∉ ∆. The converse of the fifth
item does not hold either and the reason is that (∆; Θ̃) ⊆ ∆̃; Θ might not hold.
What follows is a counter-example: let Π0 = {a, b}, ∆ = {aa, a} and Θ = {ab};
then Θ̃ = bΠ∗

0 ∪aaΠ∗
0; then aab ∈ ∆; Θ̃; as aab ∈ ∆; Θ, aab ∉ ∆̃; Θ. The fifth item

has a condition, that is, Θ ≠ ∅. This item does not hold without the condition.
For a counter-example, let Π0 = {a, b} and ∆ = {ab}. Then ∆̃; Θ = CS, as
∆; Θ = ∅. We see that a ∉ ∆̃ and a ∉ ∆; Θ̃.

Proposition 4.5 For any α ∈ ΠPDL, there is a β ∈ ΠPDL s.t. CS(β) = C̃S(α).

Proof. As shown in the literature of automata theory, a set ∆ of seqs is a so



Ju and van Eijck 9

called regular language if and only if there is a α ∈ ΠPDL s.t. CS(α) = ∆ 1 .

Therefore, it suffices to show that C̃S(α) is a regular language. As mentioned

in section 4, C̃S(α) = CS(α)T where CS(α)T is the tree generated from

CS(α). Then it suffices to show that CS(α)T is a regular language. Let Θ be
the smallest set which contains CS(α) and is closed under extension. It can
be seen that CS(α; (a1 ∪ ⋅ ⋅ ⋅ ∪ an)∗) = Θ where Π0 = {a1, . . . , an}. Then Θ is
a regular language. Let Θ′ be the smallest set containing Θ which is closed
under initial segments. By [5], the closure of a regular language under initial
segments is also a regular language. Then Θ′ is a regular language. As stated
in section 4, this Θ′ equals to CS(α)T . Then CS(α)T is a regular language.
By [5], the complement of a regular language is also a regular language. Then

CS(α)T is a regular language. ◻
This β is called the opposite of α, denoted by α̃. Here is an example: let
Π0 = {a, b, c}; then ã = (b∪ c); (a∪ b∪ c)∗. It can be easily shown that CS(α̃) =
⋃{CS(γ) ∣γ /≈ α}. Hence, α̃ is the union of all the actions which are something
else but α. To refrain to do α is to do something else; to do anything else is to
do α̃.

As mentioned in the introduction, it is reasonable to require that anything
else but α has empty intersections with α and with α;β. The following propo-
sition states that this is indeed the case:

Proposition 4.6 Sα̃ ∩ Sα = ∅ and Sα̃ ∩ Sα;β = ∅.

This result can be proved by use of proposition 4.1 and 4.4.
In standard relational semantics, an action α is interpreted as a binary

relation Rα. Then neither Rα̃ ∩Rα = ∅ nor Rα̃ ∩Rα;β = ∅ is generally the case
even if atomic actions are pairwise disjoint. Here is a counter-example for both.
Let a, b and c be three atomic actions. Let Ra = {(w1,w2)}, Rb = {(w2,w3)}
and Rc = {(w1,w3)}. We see that the three atomic actions are pairwise disjoint.
As c is x-different from a; b and ã; b is the union of all the actions x-different
from a; b, we know Rc ⊆ Rã;b. As Rc ∩Ra;b = {(w1,w3)}, Rã;b ∩Ra;b ≠ ∅. c is

x-different from a, then Rc ⊆ Rã. Rc ∩Ra;b = {(w1,w3)}, then Rã ∩Ra;b ≠ ∅.
In usual process logics, atomic actions are viewed as sets of state sequences
which might not be binary relations. Then Sα̃ ∩ Sα = ∅ and Sα̃ ∩ Sα;β = ∅
do not generally hold, given that atomic actions are pairwise disjoint. What
follows is a counter-example for both. Let Sa = {w1w2}, Sb = {w2w3} and
Sc = {w1w2w3}. a, b and c are pairwise disjoint. c is x-different from a; b, then
Sc ⊆ Sã;b. Sc ∩ Sa;b = {w1w2w3}, then Sã;b ∩ Sa;b ≠ ∅. c is x-different from a,

then Sc ⊆ Sã. Sc ∩ Sa;b = {w1w2w3}, then Sã ∩ Sa;b ≠ ∅.
By proposition 4.4 we can get that Sα ⊆ S̃̃α and Sα̃;β ⊆ Sα̃ ∪ Sα;β̃ . It can

be verified that neither of the converses of the two results holds. Considering
that opposite is some type of negation, one might wonder about this. However,
when restricted to the class of normatively concise actions, the two converses

1 Regular languages are defined in terms of finite deterministic automata. For details of
this, we refer to [5].



10 To Do Something Else

hold. What is a normatively concise action? Here we just show its idea by an
example and does not give its formal definition. Assume that there are only
two atomic actions: a and b. Look at the two sentences: “the agent ought to do
a;a or a; b” and “the agent ought to do a”. The two sentences have the same
meaning but the first one is not given concisely. In this sense, we say that the
action (a;a)∪(a; b) is not normatively concise but a is. We leave exploring this
issue further as our future work.

5 Validity

By means of to do anything else, we now can express obligations. Oα, α is
obligated, is defined as ∥α̃∥b; it means that no matter what alternative β to α
is done, and now matter how β is performed, at some point in the process a
bad state will be encountered. The truth condition of Oα is as follows:

11. M,w ⊩ Oα ⇔ for any trace w0 . . .wn, if w0 = w and w0 . . .wn ∈ Sα̃, then
wi ⊩ b for some i s.t. 1 ≤ i ≤ n

By now all the three normative notions are defined and we can illustrate the
logic PDDL a bit.

PDDL has the following two features: its semantics does not take the start-
ing point of doing an action as a point of the process of doing this action;
whether an action is allowed is totally determined by what happens during
the process of doing this action. The two features together imply whether an
action is allowed at a state has nothing to do with this state. One may wonder
what if the starting point of doing an action counts in the process of doing this
action. Suppose so. Then φ→ ∥α∥φ would be valid for any α and φ. Then both
b→ Fα and b→ Oα would be valid. This means that in bad states, everything
is forbidden and everything is obligated. This is of course undesirable. Our
present definition at least has the advantage that it is possible to escape from
a bad state with a good action.

There is some bonus which we can get from the two features mentioned
above. For ease of stating our core points for refraining to do something, we
in this work does not introduce the action constructor test. A test φ? in trace
semantics is a set of states in which φ is true. As the starting point of doing an
action does not count in the process of doing this action, the action of testing
does not have a process. Then trivially, ∥φ?∥ψ is not satisfiable and ⟪φ?⟫ψ is
valid. As a result, F (φ?) is not satisfiable and P (φ?) is valid. This means that
there is no restriction on testing and testing is always free. Considering that
testing is just some mental action and does not directly change the world, we
think that this is desirable.

The following valid formulas express some connections between the deontic
operators:

1. Pα↔ ¬Fα
2. Oα↔ Fα̃
3. Pα → ⟪α⟫⊺



Ju and van Eijck 11

The first formula says that an action is permitted if and only if it is not forbid-
den. In addition, we can verify that P (a∪b)→ (Pa∧Pb) is not a valid formula.
Putting the two facts together we can get that the operator P introduced in this
work is not for the so called free choice permission but for lack-of-prohibition
permission. The second formula tells that an action is obligated if and only if
not doing it is forbidden. If an action is permitted, then it is doable; this is
what the last formula says. Kant’s Law, whatever should be done can possibly
be done, expressed as Oα → ⟪α⟫⊺, does not generally hold in PDDL. To see
this, imagine a model with a dead state, that is, one from which no transition
starts. Then for any atomic action a, a is obligated trivially but not doable at
this dead state.

What follows are some valid formulas which essentially involve action con-
structors:

1. Oα → O(α ∪ β)
2. Fα → F (α;β)
3. P (α;β)→ Pα
4. O(α;β)→ Oα

The first formula shows that Ross’s Paradox is not avoided: the agent has the
duty to post the letter; therefore, he/she has the duty to post it or burn it. As
argued in [8], we do not think that this is a problem. By the second formula,
if killing is prohibited, then killing and then surrendering is also prohibited.
But note this does not mean that if killing is prohibited, then surrendering is
prohibited after killing. Indeed, it can be verified that Fk∧ ⟨k⟩Ps is satisfiable
where k and s represent the actions of killing and surrendering respectively.
By the third formula, if smoking and then leaving is permitted, then smoking
is permitted. From the fourth formula we can get that the duty of rescuing
the injured is implied by the duty of rescuing the injured and then calling
an ambulance. These examples show that our logic does not suffer from the
problem with [11] that was mentioned in the introduction.

Let’s say that a state of a model is an awkward state if doing any atomic
action at it will end in a bad state. Then at such states, for any atomic action
a, a is not allowed. Then at them, nothing is allowed except those actions such
as α∗ and φ? which contain one-element traces. As a result, neither Oα → Pα
nor Pα ∨ Pα̃ is valid.

6 A Variation

We put some constraints on the logic PDDL: in syntax, there are finitely many
atomic actions and a special action 0; in semantics, atomic actions are pairwise
disjoint. These constraints give PDDL the power to express to do something
else. This is an implicit way to deal with to do something else. There is a
different way to handle it, that is, explicitly introducing an action constructor
for it.

Let Π0 be a countable set of atomic actions and Φ0 a countable set of atomic
propositions. Let a range over Π0 and p over Φ0. The sets ΠOPDL of actions



12 To Do Something Else

and ΦPoDDL of propositions are defined as follows:

α ∶∶= a ∣ (α;α) ∣ (α ∪ α) ∣ α∗ ∣ α̃
φ ∶∶= p ∣ ⊺ ∣ b ∣ ¬φ ∣ (φ ∧ φ) ∣ ∥α∥φ

Here in “ΠOPDL” and “ΦPoDDL”, “O” is for “opposite”. The action α̃ is called
the opposite of α; to do α̃ is to do something else but α. The intuitive reading of
this language is as the language ΦPDDL specified in section 3. Fα and Pα are
defined as before and Oα is directly defined as ∥α̃∥b. Compared with ΦPDDL,
ΦPoDDL has infinitely many atomic actions and does not have the empty action
0.

M = (W,{Ra ∣a ∈ Π0},B, V ) is a model where

1. W is a nonempty set of states
2. for any a ∈ Π0, Ra ⊆W ×W
3. B ⊆W
4. V is a function from Φ0 to 2W

Models are understood as before. Here we do not require that atomic actions
are pairwise disjoint.

Fix a model M = (W,{Ra ∣a ∈ Π0},B, V ). Recall that a sequence w0 . . .wn
of states is called a trace if w0R . . .Rwn where R = ⋃{Ra ∣a ∈ Π0}. Let T
denote the set of traces as before. In section 4, we define a relation x-different
on CS which is the set of computation sequences. Here we define it on T in
a similar way: for any traces σ and τ , σ is x-different from τ , σ /≈ τ , if σ /⊑ τ
and τ /⊑ σ. By use of the relation x-different, we in section 4 define a function
opposite on the power set of CS. We here define it on the power set of T
similarly: for any set ∆ of traces, let ∆̃, called the opposite of ∆, be the set
{τ ∈ T ∣ τ /≈ σ for any σ ∈ ∆}. This opposite function also has the properties
specified in proposition 4.4.

Each α ∈ ΠOPDL is interpreted as a set Sα of traces in the following way:

1. Sa = Ra
2. Sβ;γ = Sβ ⊗ Sγ
3. Sβ∪γ = Sβ ∪ Sγ
4. Sα∗ =W ∪ Sα ∪ Sα;α ∪ . . .
5. Sα̃ = S̃α

Here the operation ⊗ is defined as in section 3. We make a few points in this
place. In section 4, we assign each α in ΠPDL an action α̃ in ΠPDL. The
assignment makes use of the relation x-different and the function opposite; the
action α̃ follows our idea for to do something else stated in section 2. In this
section, α̃ is directly given in syntax; however, Sα̃, the interpretation of α̃, uses
the relation of x-different and the function of opposite. Here α̃ also follows our
idea for to do something else. T is the set of state sequences which can be
made by performing basic actions. It can be seen that for any α, Sα̃ ⊆ T . This
means that the action constructor ̃ does not essentially introduce new actions
in this sense: whichever state can be reached by performing an action with ̃



Ju and van Eijck 13

can be reached by performing an action without .̃
M,w ⊩ φ, φ being true at w in M, is defined as in section 3. The notion of

validity is defined as usual. This logic is called PoDDL. A check of the formulas
from section 5 shows that the new approach does not make a difference for
the validity/invalidity of these formulas.

7 Connections and Future Work

If we accept a state based approach of good and evil, it would be interesting
to find out how the two ways of formalizing the notion of refraining to do
something are related. Do they have the same expressive power or not? Next,
it would be interesting to give complete axiomatisations.

The state based approach to the distinction between good and evil has some
inherent limitations that carry over to our proposals above. As mentioned in
section 5, almost nothing is allowed in the states we called awkward states.
In reality, we never stop acting. Even if we are doing nothing, we are still doing
something. There may be cases where, in order to act, we have to violate some
prohibition. So what is prudent action in such situations? How should agents
act in awkward states? Intuitively, they should transit to those states which are
relatively better than others. Instead of a black and white division of evil and
good states, we need some shades of grey, or even better a relational approach
where some states are better than others. This is future work.

Since morality has to do with our interaction with others, another important
step to take is from single agent to multiple agent deontic logic. Even more
realistic seems an approach where obligations are relational, and where an
obligation of some agent A to do something or to refrain from doing something
is always an obligation to some other agent B. A proposal for a formalization
of this idea in terms of propositional dynamic logic is given in [15]. One of
the attractions of this is that it allows us to model conflicts of duty, such as
the conflicts between professional obligations and family obligations that we all
know so well.

Acknowledgment

Fengkui Ju was supported by the National Social Science Foundation of China
(No. 12CZX053) and the Fundamental Research Funds for the Central Uni-
versities (No. SKZZY201304). We would like to thank the audience of the
Workshop in Memory of Kang Hongkui and the anonymous referees for their
useful comments and suggestions.

References

[1] Anderson, A. R., Some nasty problems in the formal logic of ethics, Noûs 1 (1967),
pp. 345–360.

[2] Broersen, J., Action negation and alternative reductions for dynamic deontic logics,
Journal of Applied Logic 2 (2004), pp. 153–168.

[3] Harel, D., D. Kozen and R. Parikh, Process logic: Expressiveness, decidability,
completeness, Journal of computer and system sciences 25 (1982), pp. 144–170.



14 To Do Something Else

[4] Hilpinen, R., Deontic logic, in: L. Goble, editor, The Blackwell Guide to Philosophical
Logic, Blackwell Publishing, 2001 pp. 159–182.

[5] Hopcroft, J., R. Motwani and J. Ullman, “Introduction to Automata Theory, Languages,
and Computation,” Pearson, 2006.

[6] Ju, F. and J. Cai, Two process modalities in trace semantics (2015), manuscript.
[7] Ju, F., N. Cui and S. Li, Trace semantics for IPDL, in: W. van der Hoek, W. H. Holliday

and W. Wang, editors, Logic, Rationality, and Interaction, Lecture Notes in Computer
Science 9394, Springer Berlin Heidelberg, 2015 pp. 169–181.

[8] Ju, F. and L. Liang, A dynamic deontic logic based on histories, in: D. Grossi, O. Roy
and H. Huang, editors, Logic, Rationality, and Interaction, Lecture Notes in Computer
Science 8196, Springer Berlin Heidelberg, 2013 pp. 176–189.

[9] Kanger, S., New foundations for ethical theory, in: R. Hilpinen, editor, Deontic Logic:
Introductory and Systematic Readings, Springer Netherlands, 1971 pp. 36–58.

[10] McNamara, P., Deontic logic, in: E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy, 2014, winter 2014 edition .

[11] Meyer, J.-J. C., A different approach to deontic logic: deontic logic viewed as a variant
of dynamic logic, Notre Dame Journal of Formal Logic 29 (1988), pp. 109–136.

[12] Pratt, V., Process logic, in: Proceedings of the 6th ACM Symposium on Principles of
Programming Languages (1979), pp. 93–100.

[13] Sun, X. and H. Dong, Deontic logic based on a decidable PDL with action negation
(2015), manuscript.

[14] van der Meyden, R., The dynamic logic of permission, Journal of Logic and Computation
6 (1996), pp. 465–479.

[15] van Eijck, J. and F. Ju, Modelling legal relations (2016), under submission.
[16] Wansing, H., On the negation of action types: constructive concurrent PDL, in:

P. Hájek, L. Valdes-Villanueva and D. Westerstahl, editors, Proceedings of the Twelfth
International Congress of Logic, Methodology and Philosophy of Science (2005), pp.
207–225.


	Background
	Two Challenges
	A Deontic Logic Based on Process Theory
	To Do Something Else
	Validity
	A Variation
	Connections and Future Work
	References

