
Gossip in Dynamic Networks

Hans van Ditmarsch, Jan van Eijck, Pere Pardo,
Rahim Ramezanian, François Schwarzentruber

Appeared in:

Liber Amicorum Alberti
A Tribute to Albert Visser

edited by Jan van Eijck, Rosalie Iemhoff and Joost J. Joosten
College Publications, London, 2016

pp 91–98

Abstract

A gossip protocol is a procedure for spreading secrets among a group of
agents, using a connection graph. In this paper the problem of designing
and analyzing gossip protocols is given a dynamic twist by assuming that
when a call is established not only secrets are exchanged but also contact
list, i.e., links in the gossip graph. Thus, each call in the gossip graph
changes both the graph and the distribution of secrets. This paper gives
a full characterization for the class of dynamic gossip graphs where the
Learn New Secrets protocol (make a call to an agent if you know the
number but not the secret of that agent) is successful.1

For Albert Visser

1 How to Spread Secrets

This contribution is offered to Albert Visser in the knowledge that the topic will
delight him.2 Gossip is idle talk about other people, and it typically involves

1This research was initiated when Jan van Eijck visited the other authors at LORIA in
Nancy, in April 2015.

2Jan has many fond memories of interactions with Albert in the past: a joint talk on
Montague grammar for the Vereniging voor Logica, the writing of Inzien en Bewijzen, running
the Parallels Project together, and so on. Hans kindly remembers Albert from his early days
in Utrecht as a mathematics and philosophy student, and from many other occasions such as
the Alice in Wonderland workshop at the Internationale School voor Wijsbegeerte. Rahim’s
PhD-supervisor Mohammad Ardeshir recalls a memorable visit of Albert to Iran and their
shared interests in intuitionistic logics.

1



details not confirmed as true. Not something that Albert engages in, but still
connected to his interests in various ways. The formal study of how gossip
spreads investigates the mechanisms behind the diffusion of information, and
information and its growth are at the core of logic, from intuitionism to dynamic
semantics for natural language.

Gossip protocols are procedures for spreading secrets among a group of agents,
using a connection graph. It is assumed that everyone has a unique secret. The
assumption that each agent starts out with a secret only known to that agent
will enable us to trace each piece of information back to its unique source.

In the original set-up a totally connected graph was assumed. One of the key
questions was to find a minimal sequence of calls to achieve a state where all
agents knew all secrets. The assumption was that during a call, all secrets were
exchanged. As it turns out, in a totally connected graph with n > 3 agents,
2n − 4 calls are sufficient for this. Consider the totally connected graph with
four agents.

a b

c d

A possible calling sequence for ensuring that all secrets get shared by everyone
is ab; cd; ac; bd. If e is also present, precede this sequence with ae, and close off
with ae. Thus, in a network with four agents, all secrets can be shared in 6
calls. In general, two extra calls are sufficient for each additional agent, and we
have that the number of calls for n+ 1 agents equals 2n− 4 + 2 = 2(n+ 1)− 4.
It follows that 2n − 4 calls are always enough. It is a bit trickier to show that
2n − 4 calls are needed: see the original [Tij71], or [Hur00] and the references
given there.

In the case above the gossip procedure is regulated by an outside authority,
but in distributed computing we look for procedures that do not need outside
regulation. A possible distributed protocol for gossip spreading could be:

Search For Secrets

While not every agent knows all secrets, let an agent x who does not
know all secrets randomly select an agent y, and let x call y.

The Search for Secrets protocol has the advantage of simplicity, but note that
it does not exclude redundant calls. Here is a distributed protocol (proposed in
[AvDGvdH14]) that tries to avoid such redundancy.

Learn New Secrets

2



While not every agent knows all secrets, let an agent x who does
not know all secrets randomly select an agent y such that x does not
know y’s secret, and let x call y.

Note that the selection of the x that makes the call still involves a minimal role
for the environment: selecting the caller. We will assume that this selection is
random.

There is a vast literature on gossiping and broadcasting in networks [HHL88],
and there are connections with the study of the behaviour of epidemics [EGKM04].
Distributed gossip protocols are studied in [AvDGvdH14, AGvdH15]. In essence,
these protocols investigate how information spreads through a network.

In this paper we give the problem of designing and analyzing (distributed) gossip
protocols a dynamic twist by assuming that when a call is established not only
secrets are exchanged but also contact lists. Thus, we drop the assumption that
the graph of connections is complete from the start. Calls in the gossip graph
are constrained by the current distribution of numbers, and each call changes
both the graph and the distribution of secrets.

2 Gossip Graphs

Consider a finite set A of agents, each with access to a set of other agents, and
each carrying a unique secret. Then the access tables of the agents determine a
graph.

Represent a graphG with secrets (henceforth: gossip graph) as a triple (A,N, S).
A is the (finite) set of vertices or agents, N ⊆ A2 and S ⊆ A2 are relations on A,
with Nxy expressing that x has a link to y (or: x does know the contact details
of y), and Sxy expressing that x does know the secret of y. Alternatively, we
can think of N and S as functions in A → PA, so that Nx is the set of agents
whose numbers are known by x, and Sx is the set of agents whose secrets are
known by x.

In gossip graph G = (A,N, S), an agent x ∈ A is an expert if Sx = A, and if
B ⊆ A, an agent x ∈ A is a B-expert if Sx ⊇ B.

Represent a call from x to y as a tuple xy. The call xy is possible in G =
(A,N, S) if Nxy. A call xy merges the secret lists and the contact lists of x
and y. Let Gxy be the result of this merge in G. That is, if G = (A,N, S) and
x, y ∈ A, then Gxy = (A,N ′, S′) where N ′z = Nz for all z ∈ A with z 6= x, z 6= y
and N ′x = N ′y = Nx ∪ Ny, S′z = Sz for all z ∈ A with z 6= x, z 6= y, and
S′x = S′y = Sx ∪ Sy. Alternatively, N ′ can be given as N ∪ ({(x, y), (y, x)} ◦N),
and S′ as S ∪ ({(x, y), (y, x)} ◦ S).

A calling sequence σ is a finite list of calls. We define the set S of calling

3



sequences for agent set A recursively as follows (assume x, y range over A):

σ ::= ε | σ;xy

where ε is the empty sequence.

If σ, τ ∈ S we use σ; τ for the concatenation of σ and τ . Let Gσ = (A,Nσ, Sσ)
be the graph that results after calling sequence σ. This is recursively defined as
Gε = G, Gσ;xy = (Gσ)xy. We define possible calling sequences, as follows: ε is
possible on any G, and σ;xy is possible on G iff σ is possible on G, and Nσxy
holds.

We say that G = (A,N, S) has accessible secrets if IA ⊆ S ⊆ N , where IA =
{(a, a) | a ∈ A}. Thus, G has accessible secrets iff every agent knows her own
secret and moreover, if agent x knows the secret of y, x also knows the number
of y. Note if G = (A,N, S) has accessible secrets, then IA ⊆ N . This may look
strange, as no agent is ever going to call itself, but one can also think if this as
expressing the requirement that agents know their own number.

Proposition 1. Let G = (A,N, S), and let σ be a possible calling sequence for
G. If G has accessible secrets then Gσ has accessible secrets.

Proof. Induction on σ, using the fact that it follows from Sσx ⊆ Nσ
x and Sσy ⊆ Nσ

y

that Sσx ∪ Sσy ⊆ Nσ
x ∪Nσ

y , and therefore Sσ;xyx = Sσ;xyy ⊆ Nσ;xy
x = Nσ;xy

y .

Proposition 2. Let G = (A,N, S), and let σ be a possible calling sequence for
G. Then Nσ ⊆ (N ∪N−1)∗.

Proof. Induction on σ. The base case is clear. For the inductive case, assume
Nσ ⊆ (N ∪ N−1)∗. Assume σ;xy is a possible call for G. Then (x, y) ∈ Nσ.
Notice that Nσ;xy = Nσ ∪ {(x, y), (y, x)} ◦ Nσ. We are done if we can show
that {(x, y), (y, x)} ◦ Nσ ⊆ (N ∪ N−1)∗. From (x, y) ∈ Nσ, by ih, (x, y) ∈
(N∪N−1)∗. Since (N∪N−1)∗ is symmetric, also (y, x) ∈ (N∪N−1)∗. Therefore
{(x, y), (y, x)} ⊆ (N∪N−1)∗. By induction hypothesis and relational reasoning,
it follows from this that {(x, y), (y, x)} ◦ Nσ ⊆ (N ∪ N−1)∗ ◦ (N ∪ N−1)∗ =
(N ∪N−1)∗.

A gossip graph G = (A,N, S) is weakly connected if for all x, y ∈ A there is an
N ∪N−1-path from x to y.

Theorem 3. If σ is a possible calling sequence for G = (A,N, S), then G is
weakly connected iff Gσ is weakly connected.

Proof. Left to right is immediate. Right to left from Proposition 2.

Theorem 4. If G = (A,N, S) satisfies IA = S ⊆ N and σ is a possible calling
sequence for G, then Sσ ◦N ⊆ Nσ.

4



Proof. Induction on σ. For the base case we have to show that S ◦N ⊆ N . We
have S ◦N = IA ◦N = N ⊆ N .

For the induction step, let σ be a possible calling sequence, and assume Sσ◦N ⊆
Nσ. Let xy be a possible call in Gσ.

Let (a, b) ∈ Sσ;xy ◦ N . If (a, b) ∈ Sσ ◦ N , then by the induction hypothesis,
(a, b) ∈ Nσ, and hence by Nσ ⊆ Nσ;xy we get that (a, b) ∈ Nσ;xy, and done.

If (a, b) ∈ Sσ;xy ◦N and (a, b) /∈ Sσ ◦N , then we may assume (wlog) that a = x
and that there is some z with Sσ;xyxz, and Nzb.

From Sσ;xyxz it follows that either Sσxz or Sσyz (either x or y knew the secret
of z before the call xy).

In the former case, we have (x, b) ∈ Sσ ◦ N , and therefore by the induction
hypothesis, (x, b) ∈ Nσ. In the latter case, we have (y, b) ∈ Sσ ◦ N , and
therefore by the induction hypothesis, (y, b) ∈ Nσ.

From (x, b) ∈ Nσ or (y, b) ∈ Nσ it follows by the definition of Nσ;xy that
(x, b) ∈ Nσ;xy, and done.

A gossip graph G = (A,N, S) is complete if it holds for all x ∈ A that Sx = A.
That is, a gossip graph is complete if all agents know all secrets.

A terminal point in G = (A,N, S) is a point x for which Nx ⊆ {x}. That is,
a terminal point is an agent that knows at most her own number. The skin
of a graph G = (A,N, S) is the set {x ∈ A | Nx ⊆ {x}} (the set of terminal
points). Let s(G) be the result of skinning graph G, i.e. removing all terminal
points from G. That is, s(G) = (B,N ′, S′) where B = {x ∈ A | Nx − {x} 6= ∅},
N ′ = N∩B2, S′ = S∩B2. Note that skinning a graph is not a closure operation:
there are graphs with s(s(G)) 6= s(G).

N is strongly connected on G = (A,N, S) if for any x, y ∈ A there is an N -path
from x to y. Call G = (A,N, S) strongly connected if N is strongly connected
on G.

The Search For Secrets protocol now takes the following shape. Note that
the only change is the requirement that the caller has to know the number of
the agent that gets called.

Search For Secrets

While not every agent knows all secrets, randomly select a pair xy
such that Nxy and let x call y.

In some cases, the dynamics can speed up the calling. A circle with five agents
a −→ b −→ c −→ d −→ e −→ a needs 2n − 3 = 7 calls before everyone
knows all secrets [HHL88], but in our dynamic approach 6 calls are sufficient:
ab; cd; ea; de; ac; bc. This shows that old questions about minimum lengths of
calling sequences can receive new answers in this dynamic setting.

5



3 Learn New Secrets

The following protocol is studied in [AvDGvdH14, AGvdH15] in the context of
totally connected graphs.

Learn New Secret Protocol

While not every agent is an expert, let an agent x that is not an
expert randomly choose an agent y from the list of agents for which
Nxy but not Sxy, and perform the call xy.

This is like Learn New Secrets from the introductory section, but with the
extra requirement that the caller has to know the number of the agent that gets
called.

We define LNS-permitted calling sequences, as follows: ε is LNS-permitted on
any G, and σ;xy is LNS-permitted on G iff σ is LNS-permitted on G and xy
is LNS-permitted on Gσ. A calling sequence σ is LNS-stuck on G if σ is LNS-
permitted on G, Gσ is not complete, and no call is LNS-permitted on Gσ.

Consider the spider-in-the-web example again. Trying out all the possible calling
sequences reveal that they all get stuck, because of the fact that in no call xy the
caller learns a useful new number. That is, all calls xy are such that if x learns
the number of z, then x also learns the secret of z. In the example picture, the
LNS permitted sequences are all the permutations of ad; bd; cd, and they all get
stuck. So it makes sense to ask ourselves which graphs can be completed by
some particular protocol.

It is straightforward to define and implement search algorithms for LNS-permitted
calling sequences and LNS-stuck calling sequences [EG15].

The LNS protocol is successful on G if either G is complete, or there is an
LNS-permitted call xy, and after any LNS-permitted call xy the LNS protocol
is successful on Gxy. It follows that LNS is successful on G iff every sequence
of LNS-permitted calls σ results in a graph Gσ that is complete, or is such that
there is an LNS-permitted call, and after any LNS-permitted call xy, LNS is
successful on Gσ;xy.

It follows from this definition that the LNS protocol is not successful on G iff
there is a calling sequence σ that is LNS-stuck onG. This gives a straightforward
algorithm for recognizing the gossip graphs where LNS is successful:

LNS gossip graph algorithm

Search for an LNS-stuck calling sequence in depth-first fashion, and
declare success if no such calling sequence can be found [EG15].

A calling sequence σ for G is LNS-maximal if σ is LNS-permitted for G, and
no calls are LNS-permitted in Gσ. A calling sequence σ for G = (A,N, S) is
LNS-maximal within B ⊆ A if all calls in σ are within B, σ is LNS-permitted
for G, and no calls within B are LNS-permitted in Gσ.

6



Proposition 5. If σ is an LNS-maximal calling sequence for G, and G has
accessible secrets, then Sσ = Nσ.

Proof. Let G be a gossip graph with accessible secrets, and let there be x, y
with Nσxy and not Sσxy. Then the call xy is LNS-permitted in Gσ, and con-
tradiction with the LNS-maximality of σ. This shows Nσ ⊆ Sσ. The property
Sσ ⊆ Nσ follows from the fact that G has accessible secrets, and Proposition 1.
Together, this gives Sσ = Nσ.

Proposition 6. If σ is an LNS-maximal calling sequence for G, and G satisfies
IA = S ⊆ N , then Sσ ◦N∗ = Sσ.

Proof. Sσ ⊆ Sσ ◦N∗ by definition of N∗.

Sσ ◦N∗ ⊆ Sσ: let (x, y) ∈ Sσ ◦N∗. Then for some k ∈ N, (x, y) ∈ Sσ ◦Nk. We
get from Theorem 4 plus Proposition 5 that Sσ ◦N ⊆ Sσ. Applying this fact k
times yields (x, y) ∈ Sσ.

Corollary 7. If B is a strongly connected component of G = (A,N, S) then
any LNS-maximal calling sequence σ within B makes all elements of B become
experts for B.

Proof. If B is strongly connected, then B ⊆ N∗. If σ is LNS-maximal, then this
and Proposition 6 implies that Sσ ◦B ⊆ Sσ, which means that each member of
B has learnt the secret of all members of B.

••

•

•

•

• •

••

• •

• •

•

••

• •

•

Call a graph G = (A,N, S) a sun if S = IA ⊆ N , N is weakly connected on G,
and N is strongly connected on s(G). The picture above gives three examples.
We will show that G is a sun if and only if LNS is successful on G.

Theorem 8. The LNS protocol is successful for any sun G.

Proof. Let G = (A,N, S) be a sun. Let σ be any LNS-maximal calling sequence
for G. Let x, y ∈ A. We have to show that Sσxy.

If x is in the strongly connected core of G, then N∗xy. Because Sxx, also Sσxx,
and therefore (x, y) ∈ Sσ ◦N∗. By Proposition 6 it follows that Sσxy.

7



If x is a terminal node, then by maximality of σ, there is some u with (u, x) ∈ σ.
This means Nσuz for some z with Nzx, for u must have learnt x’s number from
some such z. Thus, after the call ux, x has the number of some z with Nzx,
that is, Nσxz. By LNS-maximality of σ it follows that Sσxz. Since z is in the
strongly connected core of G, it follows that (x, y) ∈ Sσ ◦N∗. By Theorem 6,
Sσxy, and we are done.

Let ∼ be the relation on G = (A,N, S) given by x ∼ y iff there is an N -path
from x to y and there is an N -path from y to x. Then ∼ is an equivalence
relation, and a cell in the partition induced by ∼ is called a strongly connected
component of G. Use [x]∼ for the strongly connected component of G that
contains x. A strongly connected component B is initial in G if for all x ∈ A,
b ∈ B: if Nxb then x ∈ B. Notice that a gossip graph G is strongly connected
iff ∼ is universal on G.

Theorem 9. Let G be a connected graph with IA = S ⊆ N . If G is not a sun
graph then the LNS protocol is not successful on G.

Proof. Let G = (A,N, S) be gossip graph that is weakly connected but not a
sun graph. Let H be an initial strongly connected component of G, and let B
be its carrier set.

There are x, y, z ∈ A with x ∈ B, y /∈ B, z /∈ B, Nxy, and either Nyz or Nzy.
For if not, then G is a sun. Notice that B = [x]∼.

Since B is an initial strongly connected component, for all u ∈ A−B and v ∈ B
we have ¬Nuv. In particular, ¬Nzx.

Let σ′ be an LNS-maximal calling sequence for A−B in G. Then not Nσ′
zx, for

otherwise ∃v ∈ A− B ∃w ∈ B with Nvw, and contradiction with the initiality
of B. Let σ′′ be an LNS-maximal calling sequence for B in Gσ

′
. Then not

Nσ′;σ′′
zx, for calls in σ′′ do not involve z. Let By be a calling sequence where

each member of B calls y. Then not Nσ′;σ′′;Byzx. Let σ′′′ be an LNS-maximal
calling sequence for A− {z} in Gσ

′;σ′′;By. Then not Nσ′;σ′′;By;σ′′′
zx.

Observe that σ′;σ′′;By;σ′′′ is an LNS maximal sequence of calls in G. For
suppose z could still make a call in Gσ

′;σ′′;By;σ′′′
. Then the call cannot be

within A − B, for otherwise contradiction with the fact that σ′ is maximal for
A − B in G. The call cannot be to an agent in B, for all calls made from
or to z are in σ′, and z cannot have learnt a number in B from these. Thus,
σ′;σ′′;By;σ′′′ is LNS maximal. But Gσ

′;σ′′;By;σ′′′
is not complete, since not

Nσ′;σ′′;By;σ′′′
zx.

Theorem 10. For any connected graph G = (A,N, S) with IA = S ⊆ N the
following holds: s(G) is strongly connected iff the LNS protocol is successful for
G.

Proof. Immediate from Theorems 8 and 9.

8



4 Further Questions

There are two ways in which the LNS protocol can be unsuccessful. On some
graphs G you can find successful LNS-permitted maximal call sequences if you
are lucky, but you might get stuck if you change the order of the calls. For
example, in the graph a −→ b −→ c the calling sequences ab; ac; bc and ab; bc; ca
are successful, but the calling sequence bc; ab gets stuck. On the other hand, in
the graph a −→ b ←− c, any calling sequence gets stuck: we have ab; cb and
stuck, and cb; ab and stuck, and there are no success sequences. It would be of
interest to characterize the graphs where the LNS protocol always gets stuck.
This question is addressed in [DvEPetal16].

Also, it would be nice to characterize expected length of the calling sequences
in this dynamic setting, for given protocols. For each protocol it makes sense
to ask if it still holds that 2n − 4 calls are enough. The new dynamic setting
allows us to get new answers to old questions. What is the minimum, average,
maximum number of calling sequences in a gossip graph with n nodes, give
property X of the edge connection, and given that distributed protocol P was
used?

Acknowledgement

We thank an anonymous referee for remarks and questions that have helped
us improve the paper. We also acknowledge support from ERC project EPS
313360 and from CWI, Amsterdam.

References

[AGvdH15] Krzyzstof R. Apt, Davide Grossi, and Wiebe van der Hoek.
Epistemic protocols for distributed gossiping. In Proceedings
of TARK 2015, 2015.

[AvDGvdH14] M. Attamah, H. van Ditmarsch, D. Grossi, and W. van der Hoek.
Knowledge and gossip. In Proc. of 21st ECAI, pages 21–26. IOS
Press, 2014.

[DvEPetal16] Hans Ditmarsch, Jan van Eijck, Pere Pardo, Rahim Rameza-
nian, and François Schwarzentruber. Dynamic gossip. Technical
report, arxiv, 2016. http://arxiv.org/abs/1511.00867.

[EG15] Jan van Eijck and Malvin Gattinger. Gossip. Technical report,
CWI, Amsterdam, available from www.cwi.nl/~jve/papers/

15/pdfs/Gossip.pdf, 2015.

9



[EGKM04] Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec,
and Laurent Massoulié. Epidemic information dissemination in
distributed systems. IEEE Computer, 37(5):60–67, 2004.

[HHL88] Sandra Mitchell Hedetniemi, Stephen T. Hedetniemi, and
Arthur L. Liestman. A survey of gossiping and broadcasting
in communication networks. Networks, 18(4):319–349, 1988.

[Hur00] C. A. J. Hurkens. Spreading gossip efficiently. NAW, 5(1):208–
210, 2000.

[Tij71] R. Tijdeman. On a telephone problem. Nieuw Archief voor
Wiskunde, 3(19):188–192, 1971.

10


