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Abstract

The talk considers two kinds of models for logics of knowledge and belief, neighbourhood
models and epistemic weight models, and traces connections.

We present a new Probability Comparison Calculus that is sound and complete for epis-
temic weight models. Epistemic weight models combine knowledge and probability by using
epistemic accessibility relations and weights to define subjective probabilities. This is a further
simplification of the calculus for probabilistic epistemic weight models that was presented in
AIML 2014 [ES14].

At the end of the talk we turn to generic update, and present some examples of how this is
handled in PRODEMO [Eij13], our prototype model checker for probabilistic epistemic logic.



Probability and degree of information
Dans les choses qui ne sont que vraisemblables, la différence
des données que chaque homme a sur elles, est une des causes
principales de la diversité des opinions que l’on voit régner
sur les mêmes objects. Laplace [Lap14]
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Dans les choses qui ne sont que vraisemblables, la différence
des données que chaque homme a sur elles, est une des causes
principales de la diversité des opinions que l’on voit régner
sur les mêmes objects. Laplace [Lap14]

Tr: When concerned with things that are only likely true, the
difference in how informed every man is about them is one
of the principal causes of the diversity of opinions about the
same objects.



State of the Art: Existing Combinations of DEL and Probability
Theory

• Kooi’s thesis [Koo03], Van Benthem [Ben03] , Van Benthem CS
[BGK09]

• Inspiration for this: work of Fagin and Halpern in the 1990s
[FHM90]

• Simplified version: [ES14]. Epistemic model checker for this:
[Eij13]. Further simplication presented here based on: [DR15].

• Belief as willingness to bet: [ER14]. Logic with explicit belief
comparison operator: [JG13], or [Nar07] for an overview of the
literature. Related: evidence models [BFDP14].

• Probabilistic Logic of Communication and Change: [Ach14].
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• Betting belief (or: Bayesian belief) in ϕ: P (ϕ) > P (¬ϕ). Van
Eijck & Renne [ER14].

• Threshold belief in ϕ: P (ϕ) > t, for some specific t with 1
2 ≤

t < 1. Also known as Lockean belief.

• Stable belief in ϕ: For all consistent ψ: P (ϕ|ψ) > P (¬ϕ|ψ)

(Leitgeb [Lei10]).

• Strong belief in ϕ. Defined for plausibility models, e.g., locally
connected well-preorders. An agent strongly believes in ϕ if ϕ is
true in all most plausible accessible worlds. This yields a KD45
notion of belief (reflexive, euclidean, and serial). Baltag & Smets
[BS06, BS08]

• Subjective certainty belief in ϕ: P (ϕ) = 1. Used in epistemic
game theory (Aumann [Aum99]).
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The Lottery Puzzle

If Alice believes of each of the tickets 000001 through 100000 that
they are not winning, then this situation is described by the following
formula:

100000∧
t=000001

Ba¬t.

If her beliefs are closed under conjunction, then this follows:

Ba

100000∧
t=000001

¬t.

But actually, she believes, of course, that one of the tickets is winning:

Ba

100000∨
t=000001

t.

This is a contradiction.
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Three Possible Reactions to the Lottery Puzzle

1. Deny that Alice believes that her ticket is not winning.

2. Block the inference from
∧100000
t=000001Ba¬t to Ba

∧100000
t=000001¬t.

3. . . . ?? . . . Deny that Alice believes that there is a winning ticket.



Pursuing the second strategy: How can we drop the closure of
belief under conjunction?

We need an operator Bi that does not satisfy (Dist).

Bi(ϕ→ ψ)→ Biϕ→ Biψ (Dist-B)

This means: Bi is not a normal modal operator.

What we need is neighbourhood semantics [Che80, Ch. 8]. See also
[Zve10], [HKP09], and [BFDP14].
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Epistemic Neighbourhood Models

An Epistemic Neighbourhood ModelM is a tuple

(W,R, V,N)

where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence
relation ∼i on W . We use [w]i for the ∼i class of w, i.e., for the
set {v ∈ W | w ∼i v}.

• V is a valuation function that assigns to every w ∈ W a subset of
Prop.

• N is a function that assigns to every agent i ∈ Ag and world
w ∈ W a collectionNi(w) of sets of worlds—each such set called
a neighbourhood of w—subject to a set of conditions.
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Conditions

(c) ∀X ∈ Ni(w) : X ⊆ [w]i. This ensures that agent i does not
believe any propositions X ⊆ W that she knows to be false.

(f) ∅ /∈ Ni(w). This ensures that no logical falsehood is believed.

(n) [w]i ∈ Ni(w). This ensures that what is known is also believed.

(a) ∀v ∈ [w]i : Ni(v) = Ni(w). This ensures that if X is believed,
then it is known that X is believed.

(m) ∀X ⊆ Y ⊆ [w]i : if X ∈ Ni(w), then Y ∈ Ni(w). This says
that belief is monotonic: if an agent believesX , then she believes
all propositions Y ⊇ X that follow from X .
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Extra conditions

(d) If X ∈ Ni(w) then [w]i − X /∈ Ni(w). This says that if i be-
lieves a proposition X then i does not believe the negation of that
proposition.

(sc) ∀X, Y ⊆ [w]a: if [w]a − X /∈ Na(w) and X ( Y , then Y ∈
Na(w). If the agent does not believe the complement [w]a − X ,
then she must believe any strictly weaker Y implied by X .



Language

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Biϕ.

Semantics:

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff for some X ∈ Ni(w), for all v ∈ X :M, v |= ϕ.
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Example

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

In all worlds, K(p ∨ q ∨ r) is true.

In all worlds B¬p, B¬q, B¬r are true.

In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.

The lottery puzzle is “solved” in neighbourhood models for belief by
non-closure of belief under conjunction.



AXIOMS

(Taut) All instances of propositional tautologies
(Dist-K) Ki(ϕ→ ψ)→ Kiϕ→ Kiψ

(T) Kiϕ→ ϕ

(PI-K) Kiϕ→ KiKiϕ

(NI-K) ¬Kiϕ→ Ki¬Kiϕ

(F) ¬Bi⊥.
(PI-KB) Biϕ→ KiBiϕ

(NI-KB) ¬Biϕ→ Ki¬Biϕ

(KB) Kiϕ→ Biϕ

(M) Ki(ϕ→ ψ)→ Biϕ→ Biψ

(D) Biϕ→ ¬Bi¬ϕ.
(SC) B̌aϕ ∧ Ǩa(¬ϕ ∧ ψ)→ Ba(ϕ ∨ ψ)

RULES
ϕ→ ψ ϕ

ψ
(MP)

ϕ

Kiϕ
(Nec-K)
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See [ER14] and [BvBvES14].

Alternative Semantics

An alternative semantics can be given with respect to Epistemic Weight
Models.

It turns out that the calculus is incomplete for this alternative seman-
tics.



Epistemic Weight Models

An epistemic weight model for agents I and basic propositions P is
a tupleM = (W,R, V, L) where

• W is a non-empty countable set of worlds,

• R assigns to every agent i ∈ I an equivalence relation ∼i on W ,

• V assigns to every w ∈ W a subset of P ,

• L assigns to every i ∈ I a function Li fromW to Q+ (the positive
rationals), subject to the boundedness condition (*) below.

∀i ∈ I ∀w ∈ W
∑
u∈[w]i

Li(w) <∞. (*)

where [w]i is the cell of w in the partition induced by ∼i.
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M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff∑
{Li(v) | v ∈ [w]i,M, v |= ϕ} >

∑
{Li(v) | v ∈ [w]i,M, v |= ¬ϕ}.



Interpretation of KB language in Epistemic Weight Models

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff∑
{Li(v) | v ∈ [w]i,M, v |= ϕ} >

∑
{Li(v) | v ∈ [w]i,M, v |= ¬ϕ}.

Agreement

Let M = (W,R, V,N) be a neighbourhood model and let L be a
weigth function for M. Then L agrees with M if it holds for all
agents i and all w ∈ W that

X ∈ Ni(w) iff Li(X) > Li([w]i −X).



Incompleteness of KB Calculus for Probability Models

There exists an epistemic neighbourhood modelM that has no agree-
ing weight function.

Adaptation of example from [WF79, pp. 344-345]

Let Prop := {a, b, c, d, e, f, g}. Assume a single agent 0. Define:

X := {efg, abg, adf, bde, ace, cdg, bcf}.

X ′ := {abcd, cdef, bceg, acfg, bdfg, abef, adeg}.
Notation: xyz for {x, y, z}.

Y := {Y | ∃X ∈ X : X ≤ Y ≤ W}.

Let M := (W,R, V,N) be defined by W := Prop, R0 = W ×W ,
V (w) = {w}, and for all w ∈ W , N0(w) = Y .

Check that X ′ ∩ Y = ∅. SoM is a neighbourhood model.
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Toward a contradiction, suppose there exists a weight function L that
agrees withM.

Since each letter p ∈ W occurs in exactly three of the seven members
of X , we have: ∑

X∈X

L0(X) =
∑
p∈W

3 · L0({p}).

Since each letter p ∈ W occurs in exactly four of the seven members
of X ′, we have: ∑

X∈X ′
L0(X) =

∑
p∈W

4 · L0({p}).

On the other hand, from the fact that L0(X) > Lo(W − X) for all
members X of X we get:∑

X∈X

L0(X) >
∑
X∈X

L0(W −X) =
∑
X∈X ′

L0(X).

Contradiction. So no such L0 exists.
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Scott Axioms, intuitively:

If agent a knows the number of true ϕi is less than or equal to the
number of true ψi, agent a believes ϕ1, and the remaining ϕi are each
consistent with her beliefs, then agent a believes one of the ψi.

It turns out this is expressible in the KB language.

Segerberg notation [Seg71]:

(ϕ1, . . . , ϕmIaψ1, . . . , ψm)

abbreviates a KB formula expressing that agent a knows that the num-
ber of true ϕi’s is less than or equal to the number of true ψi’s.

Put another way, (ϕiIaψi)mi=1 is true if and only if every one of a’s
epistemically accessible worlds satisfies at least as many ψi as ϕi.
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Scott Axioms

(Scott) [(ϕiIaψi)mi=1 ∧Baϕ1 ∧
∧m
i=2 B̌aϕi]→

∨m
i=1Baψi

Fact 1 Adding the Scott axioms to the KB calculus yields a system
that is sound and complete for epistemic weight models [ER14].

What does this mean? At least that qualitative and quantitative belief
are different.

Since any epistemic weight model determines a neighbourhood model,
one may interpret this as saying that there are subtleties about belief
that are not captured by probability.

What are natural examples of situations that are correctly described by
a neighbourhood model that cannot be extended to a weight model?

Maybe one has to think of propositions that have their weight deter-
mined by context?



Probabilistic Epistemic Logic Simplified:
[ES14], but with Alternative Syntax [DR15]

EPISTEMIC COMPARISON LOGIC: LANGUAGE

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Φ ≤i Φ

Φ ::= ϕ | ϕ⊕ Φ



Probabilistic Epistemic Logic Simplified:
[ES14], but with Alternative Syntax [DR15]

EPISTEMIC COMPARISON LOGIC: LANGUAGE

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Φ ≤i Φ

Φ ::= ϕ | ϕ⊕ Φ

Abbreviations:

As usual for ⊥,∨,→,↔.

Φ <i Ψ for Φ ≤i Ψ ∧ ¬Ψ ≤i Φ.

Φ =i Ψ for Φ ≤i Ψ ∧ Ψ ≤i Φ.

Biϕ for (¬ϕ) <i ϕ, B̌iϕ for (¬ϕ) ≤i ϕ. “Belief as willingness to bet”

Kiϕ for > ≤i ϕ, Ǩiϕ for ⊥ <i ϕ. “Knowledge as certainty”



Semantics for this language

LetM = (W,R, V, L), let w ∈ W .

[[ϕ]]M := {w ∈ W | M, w |= ϕ}
[[ϕ]]w,iM := [[ϕ]]M ∩ [w]i

Lw,iϕ :=
∑

u∈[[ϕ]]
w,i
M

Li(u)

M, w |= > always
M, w |= p iff p ∈ V (w)

M, w |= ¬ϕ iff notM, w |= ϕ

M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 andM, w |= ϕ2

M, w |= Φ ≤i Ψ iff
∑
ϕ∈Φ

Lw,iϕ ≤
∑
ψ∈Ψ

Lw,iψ



Weight + Access = Prob

Weight function and epistemic accessibility relation together deter-
mine probability:

Pw,iϕ :=
Lw,iϕ
Lw,i>

(
=

∑
u∈[[ϕ]]M∩[w]i

Li(u)∑
u∈[w]i

Li(u)

)

Slogan

“Probabilities are weights normalized for epistemic partition cells.”





Example: Willingness to Bet in Investment Banking

Two bankers i, j consider buying stocks in three firms a, b, c that are
involved in a takeover bid. There are three possible outcomes: a for
“a wins”, b for “ b wins”, and c for “c wins.” i takes the winning
chances to be 3 : 2 : 1, j takes them to be 1 : 2 : 1.

i: solid lines, j: dashed lines.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)



Belief as Willingness to Bet

We see that i is willing to bet 1 : 1 on a, while j is willing to bet 3 : 1

against a.

It follows that in this model i and j have an opportunity to gamble,
for, to put it in Bayesian jargon, they do not have a common prior.



Foreknowledge in Investment Banking

Suppose j has foreknowledge about what firm c will do.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)

The probabilities assigned by i remain as before. The probabilities
assigned by j have changed, as follows. In worlds a and b, j assigns
probability 1

3 to a and 2
3 to b. In world c, j is sure of c.



• We may suppose that this new model results from j being in-
formed about the truth value of c, while i is aware that j received
this information, but without i getting the information herself.
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although i cannot distinguish the three situations, she knows that
j can distinguish the c situation from the other two.



• We may suppose that this new model results from j being in-
formed about the truth value of c, while i is aware that j received
this information, but without i getting the information herself.

• So i is aware that j’s subjective probabilities have changed, and
it would be unwise for i to put her beliefs to the betting test. For
although i cannot distinguish the three situations, she knows that
j can distinguish the c situation from the other two.

• Willingness of j to bet against a at any odds can be interpreted
by i as an indication that c is true, thus forging an intimate link
between action and information update.



Multiple Versus Single Weight Models

A modelM = (W,R, V, L) is single weight if ∀i, j ∈ L∀w ∈ W :

Li(w) = Lj(w).

Theorem [ES14]: Every epistemic weight model has an equivalent
single weight model.

Theorem [ES14]: There are finite epistemic weight models that only
have infinite single weight counterparts.

To prove this we need an appropriate notion of bisimulation.
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If X ⊆ W then we use Li(X) for
∑

x∈X Li(x).

LetM = (W,R, V, L) andM′ = (W ′, R′, V ′, L′) be two epistemic
weight models, and let B be a relation on W × W ′. Then B is a
bisimulation if wBw′ implies:
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Bisimulation

If X ⊆ W then we use Li(X) for
∑

x∈X Li(x).

LetM = (W,R, V, L) andM′ = (W ′, R′, V ′, L′) be two epistemic
weight models, and let B be a relation on W × W ′. Then B is a
bisimulation if wBw′ implies:

Invar w and w′ satisfy the same atomic formulas.

Zig For every i, every set E ⊆ [w]i there exists a set E ′ ⊆ [w′]i such
that

• for all u′ ∈ E ′ there exists u ∈ E with uBu′,

• Li(E) ≤ L′i(E ′).

Zag Similarly in the other direction.
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This notion of bisimulation is well-behaved (compare Giovanni’s talk
yesterday):

• We can prove a Hennessy-Milner theorem

• Bisimulations are closed under composition and union.



Fair or Biased?

Two agents i (solid lines) and j (dashed lines) are uncertain about the
toss of a coin. i holds it for possible that the coin is fair f and that it
is biased f , with a bias 2

3 for heads h. j can distinguish f from f . The
two agents share the same weight (so this is a single weight model),
and the weight values are indicated as numbers in the picture.
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Fair or Biased?

Two agents i (solid lines) and j (dashed lines) are uncertain about the
toss of a coin. i holds it for possible that the coin is fair f and that it
is biased f , with a bias 2

3 for heads h. j can distinguish f from f . The
two agents share the same weight (so this is a single weight model),
and the weight values are indicated as numbers in the picture.

hf 2 hf 3

hf 2 hf 1

In world hf , i assigns probability 5
8 to h and probability 1

2 to f , and j
assigns probability 1

2 to h and probability 1 to f .



Normalized Version

Give each agent its own weight, and normalize the weight functions
using the epistemic accessibilities.

hf
i : 1

4, j : 1
2

hf
i : 1

4, j : 1
2

hf
i : 3

8, j : 3
4

hf
i : 1

8, j : 1
4





CALCULUS FOR EPISTEMIC COMPARISON LOGIC

Taut instances of propositional tautologies
ProbT (> ≤i ϕ)→ ϕ

ProbImpl > ≤i (ϕ→ ψ)→ (ϕ ≤i ψ)

PropPos (Φ ≤i Ψ)→ > ≤i (Φ ≤i Ψ)

PropNeg (Φ >i Ψ)→ > ≤i (Φ >i Ψ)

PropAdd (ϕ ∧ ψ)⊕ (ϕ ∧ ¬ψ) =i ϕ

Tran (Φ ≤i Ψ) ∧ (Ψ ≤i Ξ)→ (Φ ≤i Ξ)

Tot (Φ ≤i Ψ) ∨ (Ψ ≤i Φ)

ComL (Φ1 ⊕ Φ2 ≤i Ψ)↔ (Φ2 ⊕ Φ1 ≤i Ψ)

ComR (Φ ≤i Ψ1 ⊕ Ψ2)↔ (Φ ≤i Ψ2 ⊕ Ψ1)

Add (Φ1 ≤i Ψ1) ∧ (Φ2 ≤i Ψ2)→ (Φ1 ⊕ Φ2 ≤i Ψ1 ⊕ Ψ2)

Succ (Φ⊕> ≤i Ψ⊕>)→ (Φ ≤i Ψ)

MP From ` ϕ and ` ϕ→ ψ derive ` ψ
PR From ` ϕ→ ψ derive ` ϕ ≤i ψ



DERIVABILITY

Γ ` ϕ holds if either ϕ ∈ Γ, or ϕ is an axiom, or ϕ follows by means
of the rules of the calculus from axioms or members of Γ, while taking
care that application of PR only is allowed when the set of premisses
Γ is empty.



Completeness of SC Calculus

Theorem 2 Every consistent formula ϕ determines a canonical epis-
temic weight modelMϕ.

Let Φ be the set of all subformulas of ϕ, closed under single negations.
(Define subformulas of Ψ ≤i Ξ . . . )

Canonical modelMϕ = (W,V,R, L).

W is the set of all maximal consistent subsets of Φ.

Valuations: V (w) = Prop ∩ w.

Let sat(w) = {ψ ∈ Φ | w ` ψ}, that is, sat(w) is the set of Φ-formulas
that are provable from w.

Relations: wRiu iff sat(w) and sat(u) contain the same i-comparison
formulas. Clearly, all Ri are equivalence relations.



Definition of Weight Function

Consider an agent i and an equivalence class Ri(w) in the canonical
model Mϕ. All worlds u of Ri(w) contain the same i-comparison
formulas.

It is possible to transform these i-comparison formulas in a system of
linear inequalities that is consistent.

If u ∈ W , write ϕu for the conjunction of all formulas in u. We can
prove:

` ψ =i

⊕
{ϕu | u ∈ Ri(w) and ψ ∈ u}.



Definition of Weight Function (2)

Now let Ψ ≤i Ξ be any i-comparison formula of w. Then we can
replace any ⊕ term ψ occurring in either Ψ or Ξ by a list of terms⊕
{ϕu | u ∈ Ri(w) and ψ ∈ u} with the same i-weight. Let the

result of this be Ψ′ ≤i Ξ′. Regrouping the ⊕ terms in Ψ′ and Ξ′,
using the abbreviation nχ for χ⊕ · · · ⊕ χ︸ ︷︷ ︸

n times

, 0 for ⊥ ⊕ · · · ⊕ ⊥, m

for >⊕ · · · ⊕ >︸ ︷︷ ︸
m times

, and replacing ⊕ by + and ≤i by ≤ gives a linear

inequality

a1ϕu1 + · · · + anϕun + k ≤ b1ϕv1 + · · · + bmϕvm + l

where ai, bj, k, l are non-negative integers.

Thus we get a consistent system of linear inequalities made up of i-
inequalities in w. Let (x∗u)u∈Ri(w) be a solution, and define Li(u) =

x∗u.



From Epistemic Weight Models to Epistemic Neighbourhood Mod-
els

IfM = (W,R, V, L) is an epistemic weight model, thenM• is the tu-
ple (W,R, V,N) given by replacing the weight function by a function
N , where N is defined as follows, for i ∈ Ag, w ∈ W .

Ni(w) = {X ⊆ [w]i | Li(X) > Li([w]i −X)}.

FACT For any epistemic weight modelM it holds thatM• is a neigh-
bourhood model.



Translating Knowledge and Belief

If ϕ is a KB formula, then ϕ• is the formula of the language of epis-
temic probability logic given by the following instructions:

>• = >
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)• = ϕ•1 ∧ ϕ•2
(Kiϕ)• = > ≤i (ϕ•)

(Biϕ)• = ¬ϕ• <i ϕ
•.



Theorem 3 For all KB formulas ϕ, for all epistemic probability mod-
elsM, for all worlds w ofM:

M•, w |= ϕ iffM, w |= ϕ•.

Theorem 4 Let ` denote derivability in the neighbourhood calculus
for KB. Let `′ denote derivability in the epistemic comparison calcu-
lus. Then ` ϕ implies `′ ϕ•.



Updates: Public Announcement

Public Announcement: restriction to ϕ worlds. [!ϕ]ψ.

EXAMPLE: REASONING ABOUT DISEASE

You are from a population with a statistical chance of 1 in 100 of
having disease D.

The initial screening test for this has a false positive rate of 0.2 and a
false negative rate of 0.1.

You tested positive (T).

Should you believe you have disease D?
We can model this with public announcement update.



A Weight Model for the Disease Problem

Let’s use p for the outcome of the test and q for having the disease:

test = Pr p
disease = Pr q



dmodel :: EpistWM Int
dmodel = WMo
[0..3]
[a,b]
[(0,[p,q]),(1,[q]),(2,[p]), (3,[])]
[(a,[[0,1,2,3]]),(b,[[0,1,2,3]])]
[(a,[(0,0.9),(1,0.1),(2,0.2*99),(3,0.8*99)]),
(b,[(0,0.9),(1,0.1),(2,0.2),(3,0.8)])]
[0..3]



Probability of having the disease

According to a:

*DEMO> sprob dmodel 0 a disease
1 % 100

According to b:

*DEMO> sprob dmodel 0 b disease
1 % 2

*DEMO> isTrue dmodel 0 (bb b disease)
False

*DEMO> isTrue dmodel 0 (bd b disease)
True



Update with the test result

dmodel’ = upd_wpa dmodel test

DEMO> dmodel’
WMo [0,2] [a,b] [(0,[p,q]),(2,[p])]
[(a,[[0,2]]),(b,[[0,2]])]
[(a,[(0,9 % 10),(2,99 % 5)]),
(b,[(0,9 % 10),(2,1 % 5)])] [0,2]

*DEMO> sprob dmodel’ 0 a disease
1 % 23

*DEMO> sprob dmodel’ 0 b disease
9 % 11

*DEMO> isTrue dmodel’ 0 (bb b disease)
True



Compare with Applying Bayes’ Rule



Compare with Applying Bayes’ Rule

P (D|T ) =
P (T |D)P (D)

P (T )
=

P (T |D)P (D)

P (T |D)P (D) + P (T |¬D)P (¬D)

Filling in P (T |D) = 0.9, P (D) = 0.01, P (¬D) = 0.99, P (T |¬D) =

0.2 gives P (D|T ) = 1
23.



Generic Update

In [BGK09], update models for probabilistic epistemic logic are built
from sets of formulas that are mutually exclusive. We will stay a bit
closer to the original update model from [BMS98, BM04].

A probabilistic update model is like a probabilistic epistemic model,
but with the valuation function replaced by a function that assigns
preconditions and actions (substitutions) to events.

Update models for S5 are like epistemic S5 models, but with their
valuations replaced by precondition/action functions. A PA function
assigns a Precondition formula and an Action (i.e., a substitution) to
each state.



Update Model

An update model for probabilistic epistemic logic is a tuple

(W,P,R, L)

where

• W is a non-empty set of events

• P is a function W × L → L × S that assigns a pair (ϕ, S) con-
sisting of a L formula ϕ (the precondition) and a substitution S
(the action) to each world w.

• R is a function that maps each agent a to an equivalence Ra on
W .

• L is a function from agents to L-functions.



Update is a product operation, as in [BMS98, BM04].

The new i-weight for (w, e) is computed as the product the weights
of w and of e.



A Puzzle of Lewis Carroll

An urn contains a single marble, either white or black. Mr A puts
another marble in the urn, a white one. The urn now contains two
marbles. Next, Mrs B draws one of the two marbles from the urn. It
turns out to be white. What is the probability that the other marble is
also white [Gar81]?

Call the first white marble p and the second one q. Mrs B does not
know whether she is drawing from ¬p + q or from p + q.



Initial Situation: Blissful Ignorance

Let’s start with a model of complete ignorance about p, for two agents
a, b:

m1 :: Pem Prp
m1 = initPM [a,b] [P 0]

This gives:

*PRODEMO> m1
MO [a,b] [0,1] [(0,[p]),(1,[])]
[(a,[[0,1]]),(b,[[0,1]])] [0,1]
[(a,[(0,1 % 2),(1,1 % 2)]),(b,[(0,1 % 2),(1,1 % 2)])]



Private Communication

An update model for telling a the value of p, while b does not learn
this fact.

um1 :: FUM Prp
um1 = \ ags -> UM

ags
[0,1]
[(0,(p,[])),(1,(Ng p,[]))]
((a,[[0],[1]]) :

[ (x,[[0,1]]) | x <- ags \\ [a] ])
[0,1]
[(x,[(0,1/2),(1,1/2)]) | x <- ags ]



The result of updating with this

m2 :: Pem Prp
m2 = upd [P 0] m1 um1

This gives:

*PRODEMO> m2
MO [a,b] [0,1] [(0,[p]),(1,[])]
[(a,[[0],[1]]),(b,[[0,1]])] [0,1]
[(a,[(0,1 % 2),(1,1 % 2)]),
(b,[(0,1 % 2),(1,1 % 2)])]



Putting a second white marble in the urn

This can be implemented as a public change that makes q true:

m3 :: Pem Prp
m3 = upd_pc [P 0,Q 0] m2 [(Q 0,Top)]

The result:

*PRODEMO> m3
MO [a,b] [0,1] [(0,[p,q]),(1,[q])]
[(a,[[0],[1]]),(b,[[0,1]])] [0,1]
[(a,[(0,1 % 2),(1,1 % 2)]),
(b,[(0,1 % 2),(1,1 % 2)])]



Removing a white marble

An update model for removing either p or q from the urn. Nobody
knows which of these two takes place. Note that removing p from the
urn has as precondition that p is true, and similarly for q.

um2 :: FUM Prp
um2 = \ ags -> UM

ags
[0,1]
[(0,(p,[(P 0,Ng Top)])),
(1,(q,[(Q 0,Ng Top)]))]

[ (x,[[0,1]]) | x <- ags ]
[0,1]
[(x, [(0,1/2),(1,1/2)]) | x <- ags ]



The result of updating with this

m4 :: Pem Prp
m4 = upd [P 0,Q 0] m3 um2

Here is what this model looks like:

*PRODEMO> m4
MO [a,b] [0,1,2] [(0,[q]),(1,[p]),(2,[])]
[(a,[[0,1],[2]]),(b,[[0,1,2]])] [0,1,2]
[(a,[(0,1 % 3),(1,1 % 3),(2,1 % 3)]),
(b,[(0,1 % 3),(1,1 % 3),(2,1 % 3)])]



Probability that the other marble is also white?

In our setting: what is the probability of p ∨ q?
Well, it is different for a and b. Here is the whole story:

*PRODEMO> prob m4 a 0 p_or_q
1 % 1

*PRODEMO> prob m4 a 1 p_or_q
1 % 1

*PRODEMO> prob m4 a 2 p_or_q
0 % 1

*PRODEMO> prob m4 b 0 p_or_q
2 % 3

*PRODEMO> prob m4 b 1 p_or_q
2 % 3

*PRODEMO> prob m4 b 2 p_or_q
2 % 3



Risk Versus Uncertainty



Knight’s Distinction [Kni21]

Risk Choices involving known probabilities.

Uncertainty Choices involving unknown probabilities.





Keynes About the Distinction Between Risk and Uncertainty

Take a cue from how people actually deal with uncertainty. E.g. from
the insurance trade:

In fact underwriters themselves distinguish between risks which
are properly insurable, either because their probability can be
estimated within comparatively numerical limits or because
it is possible to make a “book” which covers all possibilities,
and other risks which cannot be dealt with in this way and
which cannot form the basis of a regular business of insur-
ance, — although an occasional gamble may be indulged in.
[Key21, p. 21]



Or look at the practice of lawyers:

A distinction, interesting for our present purpose, between
probabilities, which can be estimated within somewhat nar-
row limits, and those which cannot, has arisen in a series of
judicial decisions respecting damages. [Key21, p. 21]

Follows a case where a breeder of racehorses tries to recover damages
for breach of a contract . . .



Models with Imprecise Weights
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Models with Imprecise Weights

• There are propositions that agents are not willing to bet on, be-
cause they do not trust their own estimations of the probability.

• Traditional way to tackle this: distinguish between lower and up-
per probabilities. If these are wide apart, the agent is not willing
to bet at all [Sha76, Hal03].

• Think of it as buying and selling. The lower probability is like
the price for which I can sell, the higher probability is like the
price for which I can buy.

• Replace weights by weights with margin. Instead of a single
value, we assign a pair of values (x, y), and we say that the lower
value is x, and the higher value x + y. Thus, y gives the spread.
Old style weights are a special case, with (x, y) such that y = 0.



Interpretation of Comparison Formulas in Imprecise Weight Mod-
els

• M, w |= Φ ≤i Ψ: The sum of the higher i-weights of Φ is less
than or equal to the sum of the lower i-weights of Ψ.

• M, w |= Φ <i Ψ: The sum of the higher i-weights of Φ is strictly
less than the sum of the lower i-weights of Ψ.

• Note that Φ ≤i Ψ and Φ <i Ψ are no longer interdefinable.



Imprecise Probabilities and Neighbourhood Models
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Imprecise Probabilities and Neighbourhood Models

• The lower probability of ϕ in state w is calculated as the ratio
between A equal to the sum of the lower weight values for the
states v ∈ [w]i with M, v |= ϕ, and B equal to A plus the sum of
the lower and margin weight values for the points v ∈ [w]i with
M, v |= ¬ϕ.

• This gives that the lower value for ϕ always equals 1 minus the
higher value of ¬ϕ. Hence a bet of ϕ is safe iff the lower value
of ϕ is greater than one half (or, equivalently, the higher value of
¬ϕ is smaller than one half).

• This perspective is connected to what is sometimes called impre-
cise probability theory (See Walley [Wal91]).
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Further Work: Imprecise Epistemic Comparison Logic

• The distinction between lower and higher probabilities makes the
probabilistic belief logic weaker.

• Does this mean that now we can get a precise match between
imprecise weight models and epistemic doxastic neighbourhood
models?

• Give an axiomatisation of imprecise epistemic probability logic.

• What is the appropriate notion of generic imprecise update?
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