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Abstract

A gossip protocol is a procedure for spreading secrets among a group of agents, using a con-
nection graph. In this talk the problem of designing and analyzing gossip protocols is given a
dynamic twist by assuming that when a call is established not only secrets are exchanged but
also contact lists, i.e., links in the gossip graph. Thus, each call in the gossip graph changes both
the graph and the distribution of secrets. In the talk, we give a full characterization for the class
of dynamic gossip graphs where the Learn New Secrets protocol (make a call to an agent if you
know the number but not the secret of that agent) is successful.
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An Abstract Perspective on Gossip Spreading

Key notions: gossip graph, gossip secret, gossip call, gossip protocol.

A gossip protocol is a protocol for spreading secrets among a group
of agents, using a connection graph.

• What do we assume about the graph?

• What do we assume about the secrets?

• What do we assume about the protocol? In particular: is there a
central authority, or is the protocol distributed?
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• Gossip in various classes of graphs, central authority: 1980s [HHL88]

• Connection to study of epidemics: early 21st century [EGKM04]

• Distributed gossip protocols: recent interest (2014, 2015): [AvDGvdH14,
AGvdH15]. Also see: [WSvE10].

• Distributed gossip protocols: dynamic turn (this talk) [DvEP+15a,
DvEP+15b]
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Gossip in totally connected graphs, central authority

Assumptions: graph totally connected, during a call all secrets are
exchanged.

Key question: find a minimal sequence of calls to achieve a state
where all agents know all secrets. What are the lengths of these min-
imal sequences?

Fact: In a totally connected graph with n > 3 agents, 2n− 4 calls are
sufficient.
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Gossip in Totally Connected Graphs: Example

Consider the totally connected graph with four agents, each with a
unique secret.

a b

c d

Consider calling sequence ab; cd; ac; bd. Four agents, four calls, and
all secrets are shared.

Now suppose e is also present. Consider ae, next ab; cd; ac; bd, finally
ae. Two extra calls are enough to accommodate one extra agent.



For n agents, 2n− 4 calls are enough

Let n > 3.

Basis: n = 4. We have seen that 4 = 8− 4 calls are enough.

Induction step: Assume for n agents 2n − 4 calls are enough. Next,
add one extra agent x. Start with call from x to a, end with call from
a to x, and all secrets are shared. This shows that (2n − 4) + 2 =

2(n + 1)− 4 calls are enough. 2
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For n agents, 2n− 4 calls are enough

Let n > 3.

Basis: n = 4. We have seen that 4 = 8− 4 calls are enough.

Induction step: Assume for n agents 2n − 4 calls are enough. Next,
add one extra agent x. Start with call from x to a, end with call from
a to x, and all secrets are shared. This shows that (2n − 4) + 2 =

2(n + 1)− 4 calls are enough. 2

It is a bit trickier to show that 2n−4 calls are needed: see the original
[Tij71], or [Hur00] and the references given there.

Note: in graphs that are weakly but not totally connected, the mini-
mum number of calls to distribute all gossip may be larger than 2n−4
[HHL88].
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Distributed Protocols

In distributed computing we look for procedures that do not need out-
side regulation.

Possible distributed protocol for gossip spreading:

Search For Secrets
While not every agent knows all secrets, randomly select a
pair xy and let x call y.
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Distributed Protocols, Dynamic Turn

• We drop the assumption that the graph of connections is complete
from the start.

• When a call is established not only secrets are exchanged but also
contact lists (or: information about the graph).

• Calls in the gossip graph are constrained by the current distribu-
tion of numbers, and each call changes both the graph and the
distribution of secrets.

• The network is given in distributed fashion: (x, y) ∈ N iff y is in
the contact list of x (think of contact lists in smartphones). These
contact lists are exchanged (merged) when a call is made.
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Representing Gossip Graphs

• Represent a gossip graph G as a triple (A,N, S).

• A is the (finite) set of vertices or agents.

• N ⊆ A2 and S ⊆ A2 are relations on A.

• Nxy expresses that x has a link to y (or: x does know the phone
number of y).

• Sxy expresses that x does know the secret of y.

• Alternatively, we can think of N and S as functions in A→ PA,
so that Nx is the set of agents whose numbers are known by x,
and Sx is the set of agents whose secrets are known by x.
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Calls and Their Effects

Represent a call from x to y as a tuple xy.

The call xy is possible in G = (A,N, S) if Nxy.

A call xy merges the secret lists and the contact lists of x and y. Let
Gxy be the result of this merge in G.

If G = (A,N, S) and x, y ∈ A, then Gxy = (A,N ′, S ′) where

• N ′ is N ∪ {(x, y), (y, x)} ◦N ,

• S ′ is S ∪ {(x, y), (y, x)} ◦ S.
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Calling Sequence A calling sequence σ is a finite list of calls.

Result after σ Let Gσ = (A,Nσ, Sσ) be the graph that results after
calling sequence σ.

Possible calling sequence Define by recursion:

• ε is possible on any G,

• σ;xy is possible onG iff σ is possible onG, andNσxy holds.

Accessible secrets G = (A,N, S) has accessible secrets if
IA ⊆ S ⊆ N , where IA = {(a, a) | a ∈ A}.
Thus, G has accessible secrets iff every agent knows her own
secret and moreover, if agent x knows the secret of y, x also
knows the number of y.
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Example Revisited: Calls in Different Order

a : {a} b : {b}

c : {c} ⇒ bc⇒

a : {a} b : {b, c}

c : {b, c}

⇒ ab⇒

a : {a, b, c} b : {a, b, c}

c : {b, c}

⇒ ac⇒

a : {a, b, c} b : {a, b, c}

c : {a, b, c}
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Old Questions, New Answers

In some cases, the dynamics can speed up the calling.

Consider a circle with five agents

a −→ b −→ c −→ d −→ e −→ a

This needs 2n−3 = 7 calls before everyone knows all secrets [HHL88].
A sequence that works is ab; cd; ea; de; ea; ab; bc (check at your lea-
sure).

In our dynamic approach 6 calls are sufficient: ab; cd; ea; de; ac; bc.

Note: the fifth call ac in this sequence only works because a has
learned the contact information about c from b.

This shows that old questions about minimum lengths of calling se-
quences can receive new answers in this dynamic setting.
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Gossip and Weakly Connected Components

Proposition 1 Let G = (A,N, S), and let σ be a possible calling
sequence for G. Then Nσ ⊆ (N ∪N−1)∗.

Intuitively, this says that gossip can only spread within the weakly
connected components of G.

A gossip graphG = (A,N, S) is weakly connected if for all x, y ∈ A
there is an N ∪N−1-path from x to y.

Theorem 2 If σ is a possible calling sequence for G = (A,N, S),
then G is weakly connected iff Gσ is weakly connected.

Intuition: by proposition 1, gossip cannot create weak connectedness.
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Gossip Graph Completion

A gossip graph G = (A,N, S) is complete if it holds for all x ∈ A

that Sx = A. That is, a gossip graph is complete if all agents know all
secrets.

Key question 1: find distributed protocols that always create com-
plete graphs.

Precondition: the graph has to be weakly connected to start with, by
Theorem 2.

Key question 2: given some distributed protocol P , what is the class
of graphs that can be completed by P ?



Search for Secrets as a Distributed Protocol

Search For Secrets
While not every agent knows all secrets, randomly select a
pair xy such that Nxy and let x call y.

This will complete any weakly connected graph, but it is not efficient.



Learn New Secrets

The following protocol is studied in [AvDGvdH14, AGvdH15] in the
context of totally connected graphs.

Learn New Secret Protocol (LNS)
While not every agent is an expert, let an agent x that is not
an expert randomly choose an agent y from the list of agents
for which Nxy but not Sxy, and perform the call xy.
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• ε is LNS-permitted on any G,

• σ;xy is LNS-permitted on G iff σ is LNS-permitted on G and xy
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LNS-permitted calling sequences:

• ε is LNS-permitted on any G,

• σ;xy is LNS-permitted on G iff σ is LNS-permitted on G and xy
is LNS-permitted on Gσ.

A calling sequence σ is LNS-stuck on G if σ is LNS-permitted on G,
Gσ is not complete, and no call is LNS-permitted on Gσ.
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Example of LNS-stuck Sequence

a : {a} b : {b}

c : {c} ⇒ bc⇒

a : {a} b : {b, c}

c : {b, c}

⇒ ab⇒

a : {a, b, c} b : {a, b, c}

c : {b, c}

⇒??⇒ STUCK

Still, the sequence ab; bc; ca is LNS permitted.



Example Graph that Cannot be Completed by LNS

a

b c d

ex



Example Graph that Cannot be Completed by LNS

a

b c d

ex

Whoever starts the calling sequence, it can not be LNS completed.

The reason is that x, the spider in the web, never learns enough about
the network structure to be able to make a useful call (x only learns
contact info of agents whose secret x also learns.

The LNS-permitted sequences are all the permutations of ax; bx; cx; dx; ex,
and they all get stuck.



Graphs Where LNS is Successful

The LNS protocol is successful on G if either G is complete, or there
is an LNS-permitted call xy, and after any LNS-permitted call xy the
LNS protocol is successful on Gxy.

It follows that LNS is successful on G iff every sequence of LNS-
permitted calls σ results in a graph Gσ that is complete, or is such that
there is an LNS-permitted call, and after any LNS-permitted call xy,
LNS is successful on Gσ;xy.

LNS gossip graph algorithm
Search for an LNS-stuck calling sequence in depth-first fash-
ion, and declare success if no such calling sequence can be
found [EG15a].
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LNS-maximal Sequences

A calling sequence σ for G is LNS-maximal if σ is LNS-permitted
for G, and no calls are LNS-permitted in Gσ.

Proposition 3 If σ is an LNS-maximal calling sequence for G, and G
has accessible secrets, then Sσ = Nσ.

Proposition 4 If σ is an LNS-maximal calling sequence for G, and G
satisfies IA = S ⊆ N , then Sσ ◦N ∗ = Sσ.
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Terminal Points, Skin, Sun Graphs

A terminal point in G = (A,N, S) is a point x for which Nx ⊆
{x}. That is, a terminal point is an agent that knows at most her own
number.

The skin of a graph G = (A,N, S) is the set {x ∈ A | Nx ⊆ {x}}
(the set of terminal points).

Let s(G) be the result of skinning graph G, i.e. removing all terminal
points from G. That is, s(G) = (B,N ′, S ′) where

B = {x ∈ A | Nx − {x} 6= ∅}, N ′ = N ∩B2, S ′ = S ∩B2.

Note that skinning a graph is not a closure operation: there are graphs
with s(s(G)) 6= s(G).

Call a graph G = (A,N, S) a sun if S = IA ⊆ N , N is weakly
connected on G, and N is strongly connected on s(G).
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Theorem 5 The LNS protocol is successful for any sun G.
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called a strongly connected component ofG. Use [x]∼ for the strongly
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Strongly Connected Components of a Graph

Let ∼ be the relation on G = (A,N, S) given by x ∼ y iff there is
an N -path from x to y and there is an N -path from y to x. Then ∼
is an equivalence relation, and a cell in the partition induced by ∼ is
called a strongly connected component ofG. Use [x]∼ for the strongly
connected component of G that contains x.

Notice that a gossip graph G is strongly connected iff ∼ is universal
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such that

1. N̂xy,

2. for all u ∈ A with N̂xu and N ∗uy it holds that [u]∼ = [y]∼,
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Theorem 7 For any gossip graph G = (A,N, S) with S = IA ⊆ N

and the property that s(G) is connected but not strongly connected
there is an LNS-permitted calling sequence σ such thatGσ is not com-
plete, but no calls are LNS-permitted in Gσ.

Theorem 8 For any connected graph G = (A,N, S) with IA = S ⊆
N the following holds: s(G) is strongly connected iff the LNS protocol
is successful for G.



LNS-impossible Graphs

Question Characterize the graphs where no CNS sequence is suc-
cessful.

Answer See [DvEP+15a].

Note: the conditions for this are quite strong. Spider in the web above
is an example.



Other Protocols: HYN

Help Your Neighbour (HYN) [Her15]
Everyone who ever contacted you becomes your neighbour.
Every time you learn new secrets, you incur an obligation to
inform them . . .

Theorem 9 HYN completes any weakly connected graph. [Her15]
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Further Questions

• Give a survey of results about minimal calling sequences for dy-
namic networks with various properties, in the spirit of [HHL88].

• [DvEP+15a] investigates a number of different distributed proto-
cols. Give a systematic classification.

• In order to implement knowledge bases gossip protocols (“tell
the secret of x to y if you hold it for possible that y does not yet
know”) one needs a notion of knowledge [Eij15, Efe15].

• Further features from actual life could be imported. An impor-
tant one that comes to mind is caller blocking. Which blocking
patterns on which graphs can be overcome by which protocols?

• In [EG15b] we try to harness PDL as a logic for dynamic gossip.
Details will be given by Malvin in the next talk.
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