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Abstract

For reasoning about uncertain situations, we have probability theory, and we have logics
of knowledge and belief. How does elementary probability theory relate to epistemic
logic and the logic of belief? The paper focuses on the notion of betting belief, and
interprets a language for knowledge and belief in two kinds of models: epistemic neigh-
bourhood models and epistemic probability models. It is shown that the first class of
models is more general in the sense that every probability model gives rise to a neigh-
bourhood model, but not vice versa. The basic calculus of knowledge and betting belief
is incomplete for probability models. These formal results were obtained in Van Eijck
and Renne [9].

Keywords: Belief, betting, chance, foundations of subjective probability, Bayesian
conditioning, neighbourhood models.

1 Introduction
Elementary probability theory, in the subjective or Bayesian style, is fascinating
for cognitive scientists, for there is a marked contrast between fast error-prone
assessment of chance and the slow but more accurate calculation of subjec-
tive probabilities using conditioning. Interest is added by the fact that belief
about chance is an important basis of rational decision making and intelligent
interaction. I know from our collaboration in the Games, Actions, and Social
Software Project at NIAS that resulted in [11] and [12], that this is the stuff
that Rineke loves.

Probability theorists like to view the difference between logic and proba-
bility as a difference in subject matter. Logic is the topic of reasoning about
certainty, while probability theory teaches us how to reason about uncertainty.
Guess which discipline has the most relevance to everyday life? Still, the prob-
ability theorists are right: epistemic or Bayesian probability can be viewed as
an extension of propositional logic with hypotheses, i.e., basic propositions
whose truth or falsity is uncertain. But logic has something to say, too, about
reasoning under uncertainty: we have epistemic logic, doxastic logic, default
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logic, logic of conditionals, and so on. So it is natural to ask how the per-
spectives of logic and probability theory on knowledge and belief are related.
Frank Ramsey [27] considered the theory of probability as a branch of logic
where arguments can be inconclusive. I wholeheartedly agree. In this paper I
will argue that there is room for logics with a more general interpretation than
probability measures. As an example of those, I explore neighbourhood mod-
els for a language of knowledge and belief as willingness to bet, and compare
them with probabilistic models for the same language. The paper is light on
formal definitions and proofs. For these, the reader is referred to Van Eijck and
Renne [9].

The paper starts with some remarks, in Section 2, on the foundations of
probability theory, as a comment on the views of Christiaan Huygens on proba-
bility. This is connected to the foundations of subjective probability on rational
betting behaviour proposed by Ramsey, de Finetti and Savage, and, in Section
3, to the key role of probability in decision theory, which we owe to Von Neu-
mann and Morgenstern. Section 4 introduces the notion of betting belief and
compares this to some other notions of belief. In Section 5 I show that betting
belief allows for a crisp analysis of the lottery puzzle, at the price of sacrificing
closure of belief under conjunction. Section 6 presents a complete calculus for
epistemic models with belief neighbourhoods, and Section 7 proves an incom-
pleteness result for the calculus of betting belief with respect to probabilistic
models. This shows that the logic of betting belief describes a more general
kind of situation than is covered by probability models. Section 8 concludes.

2 Christiaan Huygens on the foundations of probability
Probability theory was invented by Pierre de Fermat and Blaise Pascal around
1650. The Dutch mathematician, astronomer, physicist and inventor Christi-
aan Huygens (1629–1695) picked up the new ideas during a visit to Paris in
1655. A digest of these was published, in Dutch, as an appendix to a textbook
by a former mathematics teacher of Huygens, Frans van Schooten. This was
the first treatise on probability that ever appeared, in Latin in 1657, and in
Dutch in 1660. Its importance is in the game-theoretic foundation that Huy-
gens proposes for probability, to support the technical results of Fermat and
Pascal.

Huygens starts his essay on how to calculate what non-finished hazard
games are worth and how to calculate winning chances in such games as fol-
lows:

“Ick neeme tot beyder fondament, dat in het speelen de kansse, die yemant
ergens toe heeft, even soo veel weerdt is als het geen, het welck hebbende hy
weder tot deselfde kansse kan geraecken met rechtmatigh spel, dat is, daer
in niemandt verlies geboden werdt. By exempel. So yemandt sonder mijn
weeten in d’eene handt 3 schellingen verbergt, en in d’ander 7 schellingen,
ende my te kiesen geeft welck van beyde ick begeere te hebben, ick segge
dit my even soo veel weerdt te zijn, als of ick 5 schellingen seecker hadde.
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Om dat, als ik 5 schellingen hebbe, ick wederom daer toe kan geraecken,
dat ick gelijcke kans sal hebben, om 3 of 7 schellingen te krijgen, en dat met
rechtmatigh spel: gelijck hier naer sal betoont werden.” [18]

Translation:

“I take as the foundation of both [calculating what non-finished games are
worth, and calculating winning chances] that in playing the chance that
someone has in some matter, is worth just as much as the amount that, if
he possesses it, will give him the same chances in a fair game, that is a game
where no loss is offered to anyone. For instance. Suppose someone without
my knowing hides in one hand 3 shillings, and in the other 7 shillings, and he
offers me the choice between the two hands. Then I would say that this offer
is worth the same as having 5 shillings for sure. Because, if I have 5 shillings,
I can wager them in such manner that I have equal chances of getting 3 or 7
shillings, and that in a fair game, as will be explained hereafter.”

Huygens explains this transformation to a symmetric game by applying it to his
example:

“Indien ick gelijcke kans heb om 3 te hebben of 7, soo is door dit Voorstel
mijn kansse 5 weerdt; ende het is seecker dat ick 5 hebbende weder tot de
selfde kansse kan geraecken. Want speelende om de selve tegen een ander
die daer 5 tegen set, met beding dat de geene die wint den anderen 3 sal
geven; soo is dit rechtmaetig spel, ende het blijckt dat ick gelijcke kans hebbe
om 3 te hebben, te weeten, als ick verlies, of 7 indien ick win; want alsdan
treck ick 10, daer van ick hem 3 geef.”

Translation:

“If I have equal chances to have 3 or 7, then by my Proposal this chance is
worth 5; and it is sure that if I have 5, I will get to the same chance. Because
putting 5 at stake against someone who stakes 5 against it, with condition
that the one who wins will give the other 3, one has a fair game, and it
becomes clear that I have equal chance of getting 3, namely, if I lose, or 7 if
I win; because if I win I draw 10, of which I give 3 to him.”

Thus, Huygens starts out from the expectation of a single individual in a lottery-
like situation. He gives a reconstruction of this in terms of an n-person game,
where n is the number of proposed chances, with equal stakes, and symmetric
roles. Huygens argues that the value of the stakes equals the expectation. If
a stake of value x buys me a ticket for a symmetric game with equal stakes
that has the same outcomes as the lottery-like situation that we started out
with, then it must be that the game and the lottery are worth the same. The
Dutch mathematician Hans Freudenthal, in his review of Huygens’ theory of
probability, remarks that “Equal Chance” is validly defined as free choice for
the player in a symmetric situation [15].

This is remarkably close to the famous Dutch book argument as a founda-
tion of probability, proposed much later by Ramsey [27], de Finetti [14], and
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Savage [29]. A Dutch book is a collection of bets (so it is not a book, and why
it is called Dutch is unclear) that together represent either a sure win or a sure
loss for the person who makes the bets, no matter how the situation turns out.

Take the case of equal chances of getting a and b again. Suppose this is
offered to you as a symmetric game, at a price x that is different from a+b

2 . Let
G be the game where you get a if you win and b if you lose. Let G′ be the game
where you get b if you win and a if you lose. Then the only difference between
G and G′ is that the roles of the two players are reversed. So we may assume
that you can enter into both games for the same price x. Now if x < a+b

2 , what
you should do is invest x in G and x in G′, and play the games simultaneously.
This costs you 2x, and it yields a + b, so this is a Dutch book in your favour.
If x > a+b

2 , and you are willing to enter G and G′ for the price x, then your
investment of 2x will get you only a + b, so you are losing no matter what.
There is a Dutch book against you.

Let us be a bit more precise about how Huygens would turn an individ-
ual choice situation with m possibilities s1, . . . , sm, with revenues given by
L1, . . . , Lm, into a stake distribution game G for m players. The stake x would
be the same for every player. The game would match the players with the pos-
sibilities. The utility function would be given by: if player i draws sj then i

gets Lj . Obviously, the expectation for each player in this game is
∑m

i=1 Li

m , so
that should be the value of an individual stake. Also, the game is obviously
symmetric, for all players have equal chances of getting each of the “prizes”
L1, . . . , Lm.

Now replace the revenues by probabilities. Instead of L1, . . . , Lm we have
p1, . . . , pm with

∑m
i=1 pi = 1. Nothing changes. The expectation in the game is

1
m , so this should be the value of an individual stake. Anyone who can get a
stake in the game for less that 1

m can set up a Dutch book, and anyone who is
willing to enter the game for more than 1

m faces a Dutch book against him.

3 Belief and decision making
The following is a model for decision making under uncertainty that is widely
used. An agent faces a choice between a finite number of possible courses of
action, say a1, . . . , an. The agent is uncertain about the state of the world.
Say she considers states s1, . . . , sm possible. Now suppose there is a table of
consequences c, with c(si, aj) giving the consequences of performing action
aj in state si. How can the agent choose between the available actions in a
rational way?

In the first place we should model the preferences of the agent. Let us
suppose there is a preference ordering R on the consequences, with cRc′ ex-
pressing that either the agent is indifferent between c and c′, or the agent
strictly prefers c to c′. Assume R is transitive and reflexive. Then define cPc′ as
cRc′ ∧ ¬c′Rc, so that cPc′ expresses that the agent strictly prefers c to c′. The
relation P is transitive and irreflexive.

A utility function u : C → R is said to represent R if u satisfies u(c) ≥ u(c′)
iff cRc′.
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Von Neumann and Morgenstern [25] showed how to turn this into a tool
for decision making if one adds a probability measure P on the state set. So
assume P (si) ≥ 0 and

∑m
i=1 P (si) = 1. Then a utility function u on the conse-

quences induces a utility function U on the actions, by means of

U(aj) =

m∑
i=1

P (si)u(si, aj).

Now it is clear how a rational agent who disposes of (i) a utility function u
representing her preferences and (ii) a probability measure on what she thinks
is possible decides on what to do. Such an agent will perform the action aj
that maximizes U(aj).

This is the reason why expositions of probability theory often make strong
claims about the applicability of their subject. Blitzstein and Hwang [7] list
a number of possible applications of probability, and they close off with the
application to Life in general:

“Life is uncertain, and probability is the logic of uncertainty. While it isn’t
practical to carry out a formal probability calculation for every decision made
in life, thinking hard about probability can help us avert some common fal-
lacies, shed light on coincidences, and make better predictions.”

This cheerful attitude to decision making engenders a particularly straightfor-
ward view of belief. I believe in ϕ if the odds in favour of ϕ are larger than
1 : 1. Odds in favour of ϕ are calculated by means of P (ϕ)

P (¬ϕ) . So I believe in ϕ if
the subjective probability I assign to the truth of ϕ is larger than the subjective
probability I assign to the truth of ¬ϕ. This is in fact the straightforward view
that you should only believe propositions which have a probability greater than
one half. Call this notion of belief betting belief.

4 Betting belief

The notion of betting belief has a number of remarkable properties. It is not
closed under conjunction: it does not follow from the facts that P (ϕ) > P (¬ϕ)
and P (ψ) > P (¬ψ) that P (ϕ ∧ ψ) > P (¬ϕ ∨ ¬ψ). For suppose p, q, r are three
propositions that are mutually exclusive and have the same probability. Then
P (p ∨ q) > P (¬p ∧ ¬q) and P (q ∨ r) > P (¬q ∧ ¬r). From the fact that p, q, r
are mutually exclusive it follows that (p∨ q)∧ (q ∨ r) is equivalent to q. On the
other hand, P ((p ∨ q) ∧ (q ∨ r)) = P (q) < P (¬q). The following model gives
a picture of this situation. The propositions p, q, r are mutually exclusive and
have the same probability 1

3 . It is left to the reader to check in the picture that
P (p ∨ q) = 2

3 , P (¬p ∧ ¬q) = 1
3 , P (q ∨ r) = 2

3 , P (¬q ∧ ¬r) = 1
3 .
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w : pqr

v : pqr

u : pqr

P (w) = P (v) = P (u) = 1
3

This model represents probability by means of a weight function that gives each
world the same weight. Note that the model also picture knowledge, which is
represented by the epistemic accessibility relation.

The solid lines represent the epistemic accessibility relation of a single
agent; they indicate that every world is accessible from any world. We will
assume throughout this paper that knowledge accessibility is an equivalence;
in other words, we are interpreting the knowledge operator K as an S5 opera-
tor. In the situation pictured above, the agent knows for instance that at least
one of p, q, r is true. This is expressed by K(p ∨ q ∨ r). The agent also knows
that the propositions p, q, r are mutually exclusive. And so on.

Betting belief in ϕ and betting belief in ϕ→ ψ does not entail betting belief
in ψ. This is illustrated by the following model.

w : pq

v : pq

u : pq

P (w) = P (v) = P (u) = 1
3

Again, probability is represented by means of a weight function that gives each
world the same weight. The probability of p (true in w and u) is 2

3 , the proba-
bility of p → q (true in v and u) is 2

3 , but the probability of q (true in u) is 1
3 .

Thus, betting belief in p and p→ q is justified, but betting belief in q is not.
On the other hand, betting belief in p∧q implies betting belief in p and in q,

for if the probability of p ∧ q is greater than one half, then the same must hold
for the probabilities of p and of q.

It is well known that people untrained in probability theory have difficulty
with the notion of betting belief. Recall examples like the following. You are
from a population with a statistical chance of 1 in 100 of having disease D. The
initial screening test for this has a false positive rate of 0.2 and a false negative
rate of 0.1. You tested positive; call this test result T . Should you believe you
have the disease, with ‘believe’ in the sense of betting belief?

You reason: “If I test positive then, given that the test is quite reliable, the
probability that I have D is quite high.” So you tend to believe that you have
D. But now you recall a lesson from your probability class: “True positives are
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often dwarfed by false positives.” You pick up pen and paper and calculate:

P (D|T ) = P (T |D)P (D)

P (T )
=

P (T |D)P (D)

P (T |D)P (D) + P (T |¬D)P (¬D)
.

The first step uses Bayes’ rule, and the second step calculates P (T ) by means
of the rule of total probability. Filling in P (T |D) = 0.9, P (D) = 0.01, P (¬D) =
0.99, P (T |¬D) = 0.2, you arrive at the conclusion that P (D|T ) = 1

23 .
As a result of your calculation, you don’t believe anymore you have D but

you agree to further testing. This step from an initial guess that the probability
of D is high to a careful calculation revealing that the probability of D is low
should perhaps be viewed as a switch from thinking fast to thinking slow, in
the sense of Kahneman [21].

In any case, the example shows that qualitative belief judgements can be ut-
terly misleading. Such examples made probability theorists like Richard Jeffrey
urge us to give up qualitative belief altogether in favour of quantitative belief
based on probability calculations [19,20]. In the rest of the paper I will show
that there is room for qualitative belief linked to probability but not derived
from it, after all.

The notion of betting belief introduced above can also be dubbed Bayesian
belief. It is natural to interpret the uncertainties that we face in everyday life
as subjective probabilities, and recalculations of betting belief based on new
information can be viewed as model restrictions. The announcement ϕ in a
modelM leads to a new modelM|ϕ consisting of all worlds in the old model
that satisfy ϕ.

Consider the disease example again. Here is an epistemic probability model
for it. The worlds are all connected, so this is a so-called S5 model. A weight
function L gives the information about the probabilities for the four possible
combinations of d, d with t, t.

w : dt u : dt

v : dt s : dt

L(w) = 0.009, L(v) = 0.001, L(u) = 0.198, L(s) = 0.792

The weights (or probabilities, for the weight function is normalized) were com-
puted by taking the prior probabilities for d, and multiplying with the appropri-
ate error rates for the test. E.g., L(u) is the product of 99

100 (the prior probability
of not having the disease) and 1

5 (the false positive rate).
An update with the information t changes this model into the following

restricted model, where the worlds where t is false have dropped out. This is
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the public announcement update from Jan Plaza [26].

w : dt u : dt

L(w) = 0.009, L(u) = 0.198

Re-normalization of the weight function gives L(w) = 1
23 , L(u) =

22
23 . So after

the information that the test was positive has been taken into account, the
probability of d has changed from 1

100 to 1
23 . The announcement update result

agrees with the application of Bayes’ rule. Bayesian conditionalisation (see
[32]) and announcement update for epistemic probability models coincide.
For further discussion and some qualification of this claim see [5].

Now let us coarsen the model, and replace the weight function by a neigh-
bourhood function that tells us which propositions are believed in the betting
sense. Starting out from epistemic models (Kripke models with equivalence
relations of epistemic accessibility), we add a neighbourhood function for each
epistemic agent. I will assume that within each i-cell, the neighbourhoods that
get assigned to different worlds are the same; this encodes the fact that if an
agent believes ϕ then she knows that she believes ϕ.

Truth definition for belief in ϕ, in terms of neighbourhoods, is:

M,w |= Bϕ iff for some X ∈ N(w) for all x ∈ X :M,x |= ϕ.

Here N is a function that assigns to each world w a set of neighbourhoods for
w, where each neighbourhood X is a set of worlds. See [9] for a detailed com-
parison of neighbourhood models and epistemic probability models. Epistemic
probability models are epistemic models with a weight function that assigns
positive values to all worlds, and that satisfies the condition that the sum of
the weights over each epistemic partition cell is bounded (but this condition is
only relevant if the number of worlds in some partition cells is infinite).

Here is a neighbourhood version of the above epistemic weight model, with
the neighbourhoods defined from the probabilities by means of: X ∈ N(w) iff
X ⊆ [w] and P (X) > P ([w]−X), where [w] is the epistemic equivalence class
of w.

w : dt u : dt

v : dt s : dt
N(w) = N(v) = N(u) = N(s) =
{{s}, {s, u}, {s, v}, {s, w},
{s, u, v}, {s, v, w}, {s, w, u}, {s, u, v, w}}.
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To understand the neighbourhood function, observe first of all that since the
epistemic accessibility relation is universal, the neighbourhoods are the same
for every world. Next, note that that X is a neighbourhood iff s ∈ X. This is
because the probability of world s in the original probability model is higher
than the probability of W − {s}. It is convenient to use ↑ X for {Y ⊆ U |
X ⊆ Y } (the set of all supersets of X in domain U), where the domain U is
understood from context. Then the neighbourhoods in the model are given by
N(w) = N(v) = N(u) = N(s) =↑ {s}.

Now we can see that the neighbourhood function does not give enough
information to calculate a new neighbourhood after information update. After
information update with t, betting belief should favour world u over world w.
But no reasonable update rule on neighbourhoods will give this result, for in
the original model, the neighbourhood function is symmetric between w and
u: we have for all neighbourhoods X that w ∈ X iff u ∈ X.

This indicates that instead of a neighbourhood function we need something
more expressive. One option here would be to introduce plausibility relations
[2,3], and no doubt there are other options. The option we will explore here is
modification of the neighbourhood function.

A conditioned neighbourhood functional is a functional N : W → P(W ) →
PP(W ) that assigns to every w a function Nw : P(W ) → PP(W ), where for
each X ⊆W , Nw(X) is a set of neighbourhoods of w conditioned by X.

A neighbourhood functional for the disease model would assign to every
world w and every X ⊆W a set of neighbourhoods given by

Nw(X) = {Y ⊆ X | P (Y ) > P (X − Y )}.

For the disease model, we get the following neighbourhood functional (values
indicated for all sets with size > 1):

{s, u, v, w} 7→ ↑ {s}
{s, u, v} 7→ ↑ {s}
{s, u, w} 7→ ↑ {s}
{s, v, w} 7→ ↑ {s}
{u, v, w} 7→ ↑ {u}
{s, u} 7→ ↑ {s}
{s, v} 7→ ↑ {s}
{s, w} 7→ ↑ {s}
{u, v} 7→ ↑ {u}
{u,w} 7→ ↑ {u}
{v, w} 7→ ↑ {w}

Truth definition for belief in ϕ, in terms of neighbourhood functionals is (as-
sume [w] gives the partition block of w for the epistemic relation):

M,w |= Bϕ iff for some X ∈ Nw([w]) for all x ∈ X :M,x |= ϕ.

A reasonable update rule for neighbourhood functionals could now be: restrict
the functional to the new universe U .
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Using this, we see that after update of the neighbourhood functional of the
neighbourhood model with t, the agent still believes that ¬d, as she should.

One of the properties of betting belief is strong commitment. To see what
that means, let us first look at the dual B̂ of B. B̂ϕ is true iff ¬B¬ϕ is true iff
it is not the case that the probability of ¬ϕ is higher than 1

2 . This is the case iff
the probability of ¬ϕ ≤ 1

2 , iff the probability of ϕ is ≥ 1
2 .

Now suppose B̂ϕ is true. Then P (ϕ) ≥ 1
2 . Suppose K̂(¬ϕ ∧ ψ) is also true.

Then an accessible world where ϕ is false and ψ true exists. Let us look at the
probability of ϕ ∨ ψ. It must be strictly larger than 1

2 , for the world where ϕ
is false and ψ true has positive weight. I have just shown the soundness of the
following axiom of strong commitment (SC):

B̂ϕ ∧ K̂(¬ϕ ∧ ψ)→ B(ϕ ∨ ψ). (SC)

Another axiom that we get immediately from the meaning of B̂ϕ is (D) for
determinacy:

Bϕ→ B̂ϕ. (D)

What (D) says is that it follows from that fact that I am willing to bet on ϕ that
I am not willing to bet on ¬ϕ.

If we replace the notion of betting belief by that of threshold belief, by
interpreting belief in ϕ as P (ϕ) > t, for some specific t with 1

2 ≤ t < 1 (this is
also known as Lockean belief), then B̂ϕ gets a different meaning. Under this
notion of belief, B̂ϕ is true iff it is not the case that B¬ϕ is true, iff it is not the
case that P (¬ϕ) > t, iff P (¬ϕ) ≤ t, iff P (ϕ) ≥ 1− t. Since 1

2 ≤ t, this certainly
holds. It follows that (D) also is sound for Lockean belief.

For threshold belief with t > 1
2 , (SC) fails, however. This is illustrated by

the following counterexample.

w : pq

v : pq

u : pq

P (w) = 1− t, P (v) = t− 1
2 , P (u) =

1
2

Let t > 1
2 . Then P (p) = P (w) = 1 − t, so, as we have seen, B̂p is true. Also,

K̂(¬p ∧ q) is true, for there is an accessible world, v, where ¬p ∧ q is true.
The formula p ∨ q is true in worlds w and v, so P (p ∨ q) = P (w) + P (v) =
1− t+ t+ 1

2 = 1
2 < t, so B(p ∨ q) is false in the model.

Still another way to interpret (qualitative) belief is as follows: Sϕ is true iff
it holds for all consistent ψ that P (ϕ|ψ) > P (¬ϕ|ψ) (compare Leitgeb [24]).
This uses Sϕ for stable belief in ϕ. Stable belief can also be defined in terms
of updates: Sϕ is true in w iff it holds for all ψ that are true in w that [!ψ]Bϕ,
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where [!ψ]Bϕ expresses that Bϕ is true after updating the model with ψ, and
where Bϕ is interpreted as betting belief.

Since neighbourhood models are not expressive enough to model betting
belief update, neighbourhood models cannot provide a reasonable truth defi-
nition for Sϕ. But if we switch to conditioned neighbourhood models, we have
a means to interpret stable belief, as follows.

M,w |= Sϕ iff for all X ⊆ [w], X 6= ∅
it holds for all x ∈ X that M | X,x |= Bϕ.

Here M | X is model M restricted to X, with the neighbourhood functional
restricted accordingly, so Bϕ is interpreted with respect to the updated neigh-
bourhood functional. The clause for Sϕ expresses that (stable) belief in ϕ is
belief that continues to hold, no matter how we restrict the model.

In fact, Leitgeb’s notion is a special case of this, for Leitgeb’s theory is
phrased in terms of standard Kripke models instead of neighbourhood mod-
els, and standard Kripke models can be viewed as constrained neighbourhood
models.

Strong belief in ϕ, yet another notion of qualitive belief, is a bit harder
to link to probability. It is defined for plausibility models, e.g., locally con-
nected preorders. A preorder is a reflexive and transitive relation. A relation
R is weakly connected (terminology of Robert Goldblatt [16]) if the following
holds:

∀x, y, z((xRy ∧ xRz)→ (yRz ∨ y = z ∨ zRy)).

A relation R is locally connected if both R and Rˆ (the converse of R) are
weakly connected. A most plausible possible world is a world that is maximal in
the R ordering. An agent strongly believes in ϕ if ϕ is true in all most plausible
accessible worlds. This yields a KD45 notion of belief (reflexive, euclidean, and
serial). See Baltag & Smets [2,3].

Finally, it is possible to interpret qualitative belief as subjective certainty. An
agent i believes in ϕ without any doubt if Pi(ϕ) = 1. This is used in epistemic
game theory (Aumann [1]), and can easily be expressed in epistemic models,
for this notion coincides with knowledge. If one drops the requirement that
weight functions assign strictly positive values to all worlds then certainty and
knowledge no longer coincide.

5 The lottery puzzle
One of attractions of betting belief lies in the light it sheds on the lottery puzzle.
If Alice believes of each of the tickets 000001 through 111111 that they are not
winning, then this situation is described by the following formula:

111111∧
t=000001

Ba¬t.



12 Varieties of Belief and Probability

If her beliefs are closed under conjunction, then this follows:

Ba

111111∧
t=000001

¬t.

But actually, she believes, of course, that one of the tickets is winning:

Ba

111111∨
t=000001

t.

This is a contradiction. Since the lottery puzzle involves three statements, there
are three possible strategies to deal with it.

(i) Deny that Alice believes that her ticket is not winning.

(ii) Block the inference from
∧111111

t=000001Ba¬t to Ba

∧111111
t=000001 ¬t.

(iii) Deny that Alice believes that there is a winning ticket.

A notion of belief for which it holds that Alice does not believe there is a win-
ning ticket will hardly convince anyone, so let us forget about that way out.
This leaves us with two options.

The advantage of (i) is that there is no need to sacrifice closure of belief
under conjunction. A disadvantage is that one has to opt for a severe restriction
of what counts as belief.

An advantage of (ii): no need to artificially restrict what counts as belief.
And true, one has to sacrifice closure of belief under conjunction, but this is
maybe not so bad after all. As I will see below, lots of nice logical properties
remain.

Proponents of (i) are many philosophers, and they are easy to recognize:
they call the lottery puzzle the lottery paradox. But maybe this is a bit harsh
on the philosophers; after all, some have taken the trouble to develop notions
of stable belief where some version of (i) can be saved. Proponents of (ii)
are subjective Probabilists like Jeffrey [20], and decision theorists like Kyburg
[23]. As we will see in the next section, one can side with them without giving
up reasonable notions of qualitative belief.

6 Neighbourhood models and completeness
To drop the closure of belief under conjunction, we need an operator Ba that
does not satisfy (Dist).

Ba(ϕ→ ψ)→ Baϕ→ Baψ (Dist-B)

This means: Ba is not a normal modal operator. See also [34]. Interpreting
modal operators as accessibility relations between worlds brings the distribu-
tion axiom or K axiom in its wake. In order to drop it we have to switch to
(epistemic) neighbourhood models. Here is a formal definition.
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An Epistemic Doxastic Neighbourhood ModelM for set of agents Ag and
set of propositions Prop is a tuple

(W,R, V,N)

where
• W is a non-empty set of worlds.
• R is a function that assigns to every agent a ∈ Ag an equivalence relation ∼a

on W . We use [w]a for the ∼a class of w, i.e., for the set {v ∈W | w ∼a v}.
• V is a valuation function that assigns to every w ∈W a subset of Prop.
• N is a function that assigns to every agent a ∈ Ag and world w ∈ W a

collection Na(w) of sets of worlds—each such set called a neighbourhood of
w—subject to a set of conditions.

The core conditions are as follows:

(c) ∀X ∈ Na(w) : X ⊆ [w]a. This ensures that agent a does not believe any
propositions X ⊆W that she knows to be false.

(f) ∅ /∈ Na(w). This ensures that no logical falsehood is believed.

(n) [w]a ∈ Na(w). This ensures that what is known is also believed.

(a) ∀v ∈ [w]a : NA(v) = NA(w). This ensures that if X is believed, then it is
known that X is believed.

By dropping some of these conditions one can further weaken (or: generalize,
depending on perspective) the notion of belief. But the constraints that the
conditions impose on belief are quite weak, so we will not do so here.

There are three further conditions that may be imposed to further
strengthen the notion of belief.

(m) ∀X ⊆ Y ⊆ [w]A : if X ∈ NA(w), then Y ∈ NA(w). This says that be-
lief is monotonic: if an agent believes X, then she believes all propositions
Y ⊇ X that follow from X. This may seem entirely reasonable, but in pro-
posals where neighbourhoods are used to model conflicting and inconclusive
evidence [6] it is dropped.

(d) If X ∈ Na(w) then [w]a −X /∈ Na(w). This corresponds to the axiom (D)
that we discussed above. This condition says that if a believes a proposition
X then a does not believe the negation of that proposition. As we have seen,
this holds for betting belief and threshold belief, for a threshold above 1

2 . For
thresholds below 1

2 , it fails, however.

(sc) ∀X,Y ⊆ [w]a: if [w]a −X /∈ Na(w) and X ( Y , then Y ∈ Na(w). If the
agent does not believe the complement [w]a −X, then she must believe any
strictly weaker Y implied by X. We saw above that this distinguishes betting
belief from threshold beliefs for thresholds above 1

2 .

Epistemic doxastic neighbourhood models can interpret the language of epis-
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temic doxastic logic (henceforth, KB language):

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | Baϕ.

The interpretation of Kaϕ uses the R relations; the interpretation of Baϕ uses
the neighbourhoods. Here is the neighbourhood version of the first example
above:

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

In all worlds, K(p ∨ q ∨ r) is true. In all worlds B¬p, B¬q, B¬r are true. In
all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false. So the lottery puzzle
is solved in neighbourhood models for belief by non-closure of belief under
conjunction.

Here is a calculus for betting belief that relates belief to a standard S5 notion
of knowledge.

AXIOMS

(Taut) All instances of propositional tautologies

(Dist-K) Ka(ϕ→ ψ)→ Kaϕ→ Kaψ

(T) Kaϕ→ ϕ

(PI-K) Kaϕ→ KaKaϕ

(NI-K) ¬Kaϕ→ Ka¬Kaϕ

(F) ¬Ba⊥.

(PI-KB) Baϕ→ KaBaϕ

(NI-KB) ¬Baϕ→ Ka¬Baϕ

(KB) Kaϕ→ Baϕ

(M) Ka(ϕ→ ψ)→ Baϕ→ Baψ

(D) Baϕ→ ¬Ba¬ϕ.

(SC) B̂aϕ ∧ K̂a(¬ϕ ∧ ψ)→ Ba(ϕ ∨ ψ)
RULES

ϕ→ ψ ϕ
ψ

(MP)
ϕ

Kaϕ
(Nec-K)

This calculus for betting belief is discussed in [9] and [4]. The fact that closes
off this section is proved in [9].
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Fact 6.1 The calculus of betting belief is complete for epistemic doxastic neigh-
bourhood models.

7 Incompleteness for epistemic probability models
The step from neighbourhoods to probabilities is very small, but we will see in
this section that the logic of neighbourhoods and the logic of probabilities are
different.

Epistemic probability models are the result of replacing the neighbour-
hood function of an epistemic doxastic neighbourhood model by a weight func-
tion L. A weight function L assigns to every agent a a function La : W → Q+

(the positive rationals), subject to the constraint that the sum of the La values
over each epistemic partition cell of a is bounded. If X ⊆ W then let La(X)
be shorthand for

∑
x∈X La(x). Boundedness can then be expressed as follows:

for each i and w: La([w]a) <∞.
To illustrate, here is an example from investment banking. Two bankers i, j

consider buying stocks in three firms a, b, c that are involved in a takeover bid.
There are three possible outcomes: a for “a wins”, b for “ b wins”, and c for “c
wins.” i takes the winning chances to be 3 : 2 : 1, j takes them to be 1 : 2 : 1.
In the following picture, the knowledge of i is represented by solid lines, that
of j by dashed lines.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)

In all worlds, i assigns probability 1
2 to a, 1

3 to b and 1
6 to c, while j assigns

probability 1
4 to a and to c, and probability 1

2 to b.
We see that i is willing to bet 1 : 1 on a, while j is willing to bet 3 : 1 against

a. It follows that in this model i and j have an opportunity to gamble, for, to
put it in Bayesian jargon, they do not have a common prior.

Now consider the possibility that agent j has learnt something. Suppose
that, as a result of this information, agent j (dashed lines) now considers c
impossible.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)

So we suppose that j has foreknowledge about what firm c will do.
The probabilities assigned by i remain as before. The probabilities assigned

by j have changed, as follows. In worlds a and b, j assigns probability 1
3 to a
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and 2
3 to b. In world c, j is sure of c.

We may suppose that this new model results from j being informed about
the truth value of c, while i is aware that j received this information, but
without i getting the information herself. So i is aware that j’s subjective
probabilities have changed, and it would be unwise for i to put her beliefs to
the betting test. For although i cannot distinguish the three situations, she
knows that j can distinguish the c situation from the other two. Willingness of
j to bet against a at any odds can be interpreted by i as an indication that c is
true, thus forging an intimate link between action and information update. I
leave further analysis for another occasion.

Here is an example where two agents i (solid lines) and j (dashed lines)
are uncertain about the toss of a coin. i holds it possible that the coin is fair
f and that it is biased f , with a bias 2

3 for heads h. j can distinguish f from
f . The two agents share the same weight (so this is a single weight model, see
[10]), and the weight values are indicated as numbers in the picture.

hf 2 hf 3

hf 2 hf 1

In world hf , i assigns probability 5
8 to h and probability 1

2 to f , and j assigns
probability 1

2 to h and probability 1 to f .
It is possible to normalize this model, but as a result of this each agent will

have to get its own weight, for the weight functions are normalized within the
epistemic accessibility cells.

hf : (i, 14 , (j,
1
2 ) hf : (i, 38 ), (j,

3
4 )

hf : (i, 14 ), (j,
1
2 ) hf : (i, 18 ), (j,

1
4 )

The rules for interpretation of the KB language in epistemic probability
models are obvious:

M, w |= Kaϕ iff for all v ∈ [w]a :M, v |= ϕ.

M, w |= Baϕ iff∑
{La(v) | v ∈ [w]a,M, v |= ϕ} >

∑
{La(v) | v ∈ [w]a,M, v |= ¬ϕ}.

There is also an obvious way to reduce an epistemic probability model to a
neighbourhood model, while preserving betting belief. Let M = (W,R, V,N)
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be a neighbourhood model and let L be a weigth function for M. Then L
agrees withM if it holds for all agents a and all w ∈W that

X ∈ Na(w) iff La(X) > La([w]a −X).

The following theorem may come as a surprise, for it shows that, in a sense, the
class of epistemic doxastic neighbourhood models is more general than that of
probabilistic models. In other words: the principles of betting belief given in
the calculus above do not force a probabilistic interpretation of the B operator.

Theorem 7.1 There exists an epistemic doxastic neighbourhood model M that
has no agreeing weight function.

Proof. The proof of this uses an adaptation of an example from [33, pp. 344-
345]. Let Prop := {a, b, c, d, e, f, g}. Assume a single agent 0. Define:

X := {efg, abg, adf, bde, ace, cdg, bcf}.

X ′ := {abcd, cdef, bceg, acfg, bdfg, abef, adeg}.

Notation: xyz for {x, y, z}.

Y := {Y | ∃X ∈ X : X ≤ Y ≤W}.

Let M := (W,R, V,N) be defined by W := Prop, R0 = W × W , V (w) =
{w}, and for all w ∈ W , N0(w) = Y. Check that X ′ ∩ Y = ∅. So M is a
neighbourhood model.

Toward a contradiction, suppose there exists a weight function L that
agrees with M. Since each letter p ∈ W occurs in exactly three of the seven
members of X , we have:∑

X∈X
L0(X) =

∑
p∈W

3 · L0({p}).

Since each letter p ∈W occurs in exactly four of the seven members of X ′, we
have: ∑

X∈X ′

L0(X) =
∑
p∈W

4 · L0({p}).

On the other hand, from the fact that L0(X) > Lo(W −X) for all members X
of X we get: ∑

X∈X
L0(X) >

∑
X∈X

L0(W −X) =
∑

X∈X ′

L0(X).

Contradiction. So no such L0 exists. 2

I conjecture that this is the smallest counterexample, that is, I guess that all
neighbourhood models up to size 6 have an agreeing weight function, but this
needs to be checked.
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Fact 7.2 The calculus of epistemic-doxastic neighbourhood logic is sound for the
class of epistemic probability models. Probabilistic beliefs are neighbourhoods.

Theorem 7.1 shows that the KB calculus is incomplete for the class of epistemic
probability models. In order to get a calculus that fits this class, we have to add
an infinite series of axioms. The idea behind these axioms is from Scott [30].
What the axioms say, intuitively: If agent a knows the number of true ϕi is less
than or equal to the number of true ψi, and if a believes ϕ1, and the remaining
ϕi are each consistent with her beliefs, then agent a believes one of the ψi.

It turns out that this is expressible in the KB language; see Segerberg [31].
Let (ϕ1, . . . , ϕmIaψ1, . . . , ψm) abbreviate the KB formula expressing that agent
a knows that the number of true ϕi is less than or equal to the number of
true ψi. Put another way, (ϕiIaψi)

m
i=1 is true if and only if every one of a’s

epistemically accessible worlds satisfies at least as many ψi as ϕi. Using this,
we can express the Scott axioms:

(Scott) [(ϕiIaψi)
m
i=1 ∧Baϕ1 ∧

∧m
i=2 B̂aϕi]→

∨m
i=1Baψi

Theorem 7.3 Adding the Scott axioms to the KB calculus yields a system that is
sound and complete for epistemic probability models.

For the proof of this I refer to [9]. To say a bit more about the connection
between qualitative belief and quantitative belief we need a more expressive
language for interpretation in epistemic probability models.

Let i range over Ag, p over Prop, and q over Q. Then the language of
epistemic probability logic is given by:

ϕ ::=> | p | ¬ϕ | (ϕ ∧ ϕ) | ta ≥ 0 | ta = 0

ta ::= q | q · Paϕ | ta + ta where all indices a are the same.

This is expressive enough to compare subjective probabilities of the same agent.
In particular, we can say things like Pa(ϕ) > Pa(ψ). Truth for this language in
epistemic probability models is defined as follows. LetM = (W,R, V, L) be an
epistemic weight model and let w ∈W .

M, w |= > always

M, w |= p iff p ∈ V (w)

M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ

M, w |= ϕ1 ∧ ϕ2 iffM, w |= ϕ1 andM, w |= ϕ2

M, w |= ta ≥ 0 iff [[ta]]Mw ≥ 0

M, w |= ta = 0 iff [[ta]]Mw = 0.

[[q]]Mw := q

[[q · Paϕ]]
M
w := q × PMa,w(ϕ)

[[ta + t′a]]
M
w := [[ta]]

M
w + [[t′a]]

M
w

PMa,w(ϕ) =
La({u ∈ [w]a | M, u |= ϕ})

La([w]a)
.
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Fact 7.4 A sound and complete calculus for the language of epistemic probability
logic, interpreted in epistemic probability models, is given in [10].

See also [13] and [22], where calculi for different epistemic probability model
classes are given.

Notice that every epistemic probability model has an associated neighbour-
hood model. For if M = (W,R, V, L) is an epistemic probability model, then
let M• be the tuple (W,R, V,N) given by replacing the weight function by a
function N , where N is defined as follows, for a ∈ Ag, w ∈W .

Na(w) = {X ⊆ [w]a | La(X) > La([w]a −X)}.

Fact 7.5 For any epistemic weight modelM it holds thatM• is a neighbourhood
model.

Now let us translate knowledge and belief into probability statements, by in-
terpreting knowledge as certainty and belief as betting belief.

If ϕ is a KB formula, then ϕ• is the formula of the language of epistemic
probability logic given by the following instructions:

>• =>
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)
• = ϕ•1 ∧ ϕ•2

(Kaϕ)
• = Pa(ϕ

•) = 1

(Baϕ)
• = Pa(ϕ

•) > Pa(¬ϕ•).
Theorem 7.6 For all KB formulas ϕ, for all epistemic probability modelsM, for
all worlds w ofM:

M•, w |= ϕ iffM, w |= ϕ•.

Proof. Induction on formula structure. 2

Theorem 7.7 Let ` denote derivability in the neighbourhood calculus for KB. Let
`′ denote derivability in the calculus of EPL. Then ` ϕ implies `′ ϕ•.
Proof. Induction on proof structure. 2

8 Some Loose Ends
Are there applications where neighbourhoods without agreeing weight func-
tions are natural? Is there a natural interpretation for the incompleteness ex-
ample for {a, b, c, d, e, f, g}? Is the counterexample against completeness of the
KB calculus for probability models the smallest counterexample?

Representation of probabibility information by means of weight functions
was designed with implementation of model checking in mind. Just extend
epistemic model checkers for S5 logics with a weight table for each agent.
Implementations of model checkers for these logics can be found in [8] and in
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[28]. The implementations can deal with Monty Hall style puzzles, urn puzzles,
Bayesian updating by drawing from urns or tossing (possibly biased) coins, and
‘paradoxes’ such as the puzzle of the three prisoners (see, e.g., [20]). Efficiency
was not a goal, but these implementations can be made quite efficient with a
little effort.

Further analysis of the connection between neighbourhood logics and prob-
abilistic logics [9] is in order. This is also connected to work of Wes Holliday
and Thomas Icard [17]. Holliday and Icard investigate a language with a prim-
itive operation ϕ %a ψ, for “according to a, ϕ is at least as probable as ψ.”
This is a revival of Segerberg’s modal logic for comparative probability [31].
Interestingly, the qualitative probability Kripke models defined by Segerberg
(and adopted by Holliday and Icard) seem better suited for defining well-
behaved model restriction operations than the neighbourhood models used in
the present paper. But note that the models with conditional neighbourhood
functionals remedy this. Therefore, an obvious next step in the investigation
of the logic of knowledge and qualitative belief is the study of the class of epis-
temic doxastic models with conditional neighbourhood functionals, together
with operations of knowledge and belief update.
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