
Logic and Action

Jan van Eijck
CWI & ILLC, Amsterdam

BNU, November 5, 2015

Abstract

An action is something that takes place in the world, and that makes a difference to what the
world looks like. Thus, actions are maps from states of the world to new states of the world.
Actions can be of various kinds. The action of spilling coffee changes the state of your trousers.
The action of telling a lie to your friend changes your friends state of mind (and maybe the state
of your soul). The action of multiplying two numbers changes the state of certain registers in
your computer. Despite the differences between these various kinds of actions, we will see that
they can all be covered under the same logical umbrella.



The talks starts with an overview of what is in Chapter 6 of the Logic in Action course
book. If there is time, we will also look at various ways of turning Propositional Dynamic Logic
or PDL into a tool for modelling strategic reasoning and for reasoning about the outcomes of
actions under uncertainty.



Overview

• Modelling Actions

• Reasoning About Programs

• Reasoning About Actions

• Strategic Games: the Prisoner’s Dilemma

• Group Strategies in Games

• Key Notions: Best Response, Nash Equilibrium

• Voting as a Multi-Agent Game

• Extending PDL . . .



Action in ‘Logic in Action’

http://www.logicinaction.org/docs/ch6.pdf

http://www.logicinaction.org/docs/ch6.pdf


The Pebble Puzzle

An urn cointains 70 pebbles; 35 of them are white and 35 are black.
There is a pile of black pebbles available outside the urn.

Pebble Algorithm

• While there are still enough pebbles in the urn:

– pick two pebbles;
if they have the same colour, put back a black pebble
otherwise, put back the white pebble.

In every step of the algorithm one pebble gets removed. After 69
steps, there is one pebble left. What is its colour?



module Pebbles where

data Color = W | B deriving (Eq,Show)

drawPebble :: [Color] -> [Color]
drawPebble [] = []
drawPebble [x] = [x]
drawPebble (W:W:xs) = drawPebble (B:xs)
drawPebble (B:B:xs) = drawPebble (B:xs)
drawPebble (W:B:xs) = drawPebble (W:xs)
drawPebble (B:W:xs) = drawPebble (W:xs)

numberW :: [Color] -> Int
numberW = length . (filter (\x -> x == W))

parityW :: [Color] -> Int
parityW xs = mod (numberW xs) 2

prop_invariant = \xs ->
parityW xs == parityW (drawPebble xs)



Sir Tony Hoare



Formal Specification With Hoare Triples

In general a triple

initial state – statement – final state
{P} S {Q}

has the following operational meaning:

If execution of S in a state that satisfies P terminates, then
the termination state is guaranteed to satisfy Q.

Such triples {P}S {Q} are called Hoare triples after Tony Hoare.

The predicate for the initial state is called the precondition, and the
predicate for the final state is called the postcondition.



assignment {ϕv
a} v := a {ϕ}

skip {ϕ} SKIP {ϕ}

sequence
{ϕ} C1 {ψ} {ψ} C2 {χ}

{ϕ} C1;C2 {χ}

conditional choice
{ϕ ∧B} C1 {ψ} {ϕ ∧ ¬B} C2 {ψ}

{ϕ} if B then C1 else C2 {ψ}

guarded iteration
{ϕ ∧B} C {ϕ}

{ϕ} while B do C {ϕ ∧ ¬B}

precondition strengthening
N |= ϕ′ → ϕ {ϕ} C {ψ}

{ϕ′} C {ψ}

postcondition weakening
{ϕ} C {ψ} N |= ψ → ψ′

{ϕ} C {ψ′}



Vaughan Pratt



Hoare Logic as a Fragment of Dynamic Logic

Hoare logic is a fragment of a more general system of (propositional)
dynamic logic.

The language of propositional dynamic logic was defined by Pratt
in [6, 7] as a generic language for reasoning about computation. Ax-
iomatisations were given independently by Segerberg [8], Fisher/Ladner
[3], and Parikh [5]. These axiomatisations make the connection be-
tween propositional dynamic logic and modal logic very clear.



PDL Language

Let p range over the set of basic propositions P , and let a range over
a set of basic actions A. Then the formulae ϕ and programs α of
propositional dynamic logic are given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ
α ::= a |?ϕ | α1;α2 | α1 ∪ α2 | α∗

Abbreviation:
[α]ϕ abbreviates¬〈α〉¬ϕ.



Expressing Hoare Triples in PDL

Floyd-Hoare correctness assertions are expressible in PDL, as fol-
lows. If ϕ, ψ are PDL formulae and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ→ [α]ψ is true in
that state in that model.



PDL Axiomatisation

Aioms are all propositional tautologies, plus the following axioms
(we give box ([α])versions here, but every axiom has an equivalent
diamond (〈α〉) version):

(K) ` [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

(test) ` [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) ` [α1;α2]ϕ↔ [α1][α2]ϕ

(choice) ` [α1 ∪ α2]ϕ↔ [α1]ϕ ∧ [α2]ϕ

(mix) ` [α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ

(induction) ` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗]ϕ

and the following rules of inference:

(modus ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2.

(modal generalisation) From ` ϕ, infer ` [α]ϕ.



Deriving Hoare Rules in PDL

The Floyd-Hoare inference rules can now be derived in PDL. As an
example we derive the rule for guarded iteration:

{ϕ ∧ ψ} α {ψ}
{ψ}WHILE ϕ DO α {¬ϕ ∧ ψ}

Let the premise {ϕ ∧ ψ} α {ψ} be given, i.e. assume (1).

` (ϕ ∧ ψ)→ [α]ψ. (1)

We wish to derive the conclusion

` {ψ}WHILE ϕ DO α {¬ϕ ∧ ψ},

i.e. we wish to derive (2).

` ψ → [(?ϕ;α)∗; ?¬ϕ](¬ϕ ∧ ψ). (2)



From (1) by means of propositional reasoning:

` ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

` ψ → [?ϕ;α]ψ.

Applying the loop invariance rule gives:

` ψ → [(?ϕ;α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ → (¬ϕ ∧ ψ), we get
from this by propositional reasoning:

` ψ → [(?ϕ;α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (2).





Strategic Games: The Prisoner’s Dilemma

cooperate defect
cooperate c, c c, d

defect d, c d, d

With output function o : {c, d}2 → {x, y, z, u}2:

cooperate defect
cooperate x, x y, z

defect z, y u, u

Fixing the preferences of the players: z > x > u > y.

With numerical utilities:

cooperate defect
cooperate 2, 2 0, 3

defect 3, 0 1, 1



Group Strategies in PD Game are the Strategy Profiles

cc cd

dc dd

cc cdcd

cc

dc dd

dd

dc

dccc ddcd



Key Notions: Best Response

Let (s′i, s−i) be the strategy profile that is like s for all players except
i, but has si replaced by s′i. A strategy si is a best response in s if

∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

Example in PD game. Let s = (d, c). The first player defects, the
second player cooperates.

Is d a best response for player 1 in (d, c)?

Yes, because (d, c) gives payoff 3 for player 1, while the alternative
(c, c) only gives payoff 2. So player 1 cannot do better than play d.



John Nash





Key Notions: Pure Nash Equilibrium

A strategy profile s is a (pure) Nash equilibrium if each si is a best
response in s:

∀i ∈ N ∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

A game G is Nash if G has a (pure) Nash equilibrium.

(d, d) is a Nash equilibrium for the PD game, so the PD game is Nash.



Charles Dodgson, also known as Lewis Carroll



Voting as a Multi-Agent Game

Voting can be seen as a form of multi-agent decision making, with the
voters as agents [2].

Voting is the process of selecting an item or a set of items from a finite
set A of alternatives, on the basis of the stated preferences of a set of
voters.

We assume that the preferences of a voter are represented by a ballot:
a linear ordering of A. Let ord(A) be the set of all ballots on A.

If there are three alternatives a, b, c, and a voter prefers a over b and b
over c, then her ballot is abc.



Example

• Assume there are three voters {1, 2, 3}.

• Assume there are three alternatives {a, b, c}.

• Then profiles are vectors of ballots.

• Example profile where the first voter has ballot abc, the second
voter has ballot abc, the third voter has ballot bca, and so on:

(abc, abc, bca).

Absolute majority selects a as winner, for a has two votes, b has
one.



Group Actions in Voting Games

Voters: 1, 2, 3. Alternatives: a, b, c. Voting rule: absolute majority.

1 is the row player, 2 the column player, and 3 the table player

a:

a b c
a a a a
b a b a, b, c
c a a, b, c c

b:

a b c
a a b a, b, c
b b b b
c a, b, c b c

c:

a b c
a a a, b, c c
b a, b, c b c
c c c c



Payoffs

• Assume ballot abc.

• Then a > b > c, and plausibly a > {a, b, c} > c.

• Assume {a, b, c} and b give the same payoff.

• Fix the payoff function for voters i of type abc as

ui(a) = 2, ui(b) = ui({a, b, c}) = 1, ui(c) = 0.

• If we do similarly for the other voter types, then this fixes the
strategic game for voting according to the majority rule over the
set of alternatives {a, b, c}.



Suppose 1 has ballot abc, 2 has bca, and has 3 cab

This fixes the strategic game:

a:

a b c
a (2, 0, 1) (2, 0, 1) (2, 0, 1)

b (2, 0, 1) (1, 2, 0) (1, 1, 1)

c (2, 0, 1) (1, 1, 1) (0, 1, 2)

b:

a b c
a (2, 0, 1) (1, 2, 0) (1, 1, 1)

b (1, 2, 0) (1, 2, 0) (1, 2, 0)

c (1, 1, 1) (1, 2, 0) (0, 1, 2)

c:

a b c
a (2, 0, 1) (1, 1, 1) (0, 1, 2)

b (1, 1, 1) (1, 2, 0) (0, 1, 2)

c (0, 1, 2) (0, 1, 2) (0, 1, 2)



Nash Equilibrium

If they all cast their vote according to their true ballot, then 1 votes a,
2 votes b and 3 votes c.

Then the outcome is a tie, {a, b, c}, with payoff (1, 1, 1).

This is a Nash equilibrium: the vote cast by each player is a best
response in the strategy profile.



Changing the Game

Now let’s change the voting rule slightly, by switching to majority
voting with tie breaking, where abc as the tie breaking order.

This changes the majority rule into a resolute voting rule.

It also changes the strategic game . . .



New Strategic Game

a:

a b c
a (2, 0, 1) (2, 0, 1) (2, 0, 1)

b (2, 0, 1) (1, 2, 0) (2, 0, 1)

c (2, 0, 1) (2, 0, 1) (0, 1, 2)

b:

a b c
a (2, 0, 1) (1, 2, 0) (2, 0, 1)

b (1, 2, 0) (1, 2, 0) (1, 2, 0)

c (2, 0, 1) (1, 2, 0) (0, 1, 2)

c:

a b c
a (2, 0, 1) (2, 0, 1) (0, 1, 2)

b (2, 0, 1) (1, 2, 0) (0, 1, 2)

c (0, 1, 2) (0, 1, 2) (0, 1, 2)



Coalition Formation

• If the players all vote according to their true preference, the out-
come is a because of the tie breaking, with payoff given by (2, 0, 1).

• But this is no longer a Nash equilibrium, for player 2 can improve
his payoff from 0 to 1 by casting vote c, which causes the outcome
to change into c, with payoff (0, 1, 2).

• The strategy triple (a, c, c) is a Nash equilibrium.

• The voting rule seems to favour voter 1 with ballot abc, because
the tie breaking rule uses this order for tie breaking.

• Still, the voter with this ballot ends up losing the game, because
the other two players have an incentive to form a coalition against
player 1.



Further Possibilities

• PDL can be extended to a language for multi-agent strategic rea-
soning [1].

• PDL can also be extended to a language that combines action and
knowledge.

• Analysis of knowledge-based obligation [4].

• PDL and Deontic Logic: distinguish between good and bad states.
Actions are good if they do not change the state from good to bad
. . .



Analysis of Rational Action: Friends Elsewhere
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