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Abstract

Probabilistic and stochastic methods have been fruitfully applied to a wide
variety of problems in grammar induction, natural language processing,
and cognitive modeling. In this paper we explore the possibility of develop-
ing a class of combinatorial semantic representations for natural languages
that compute the semantic value of a (declarative) sentence as a probability
value which expresses the likelihood of competent speakers of the language
accepting the sentence as true in a given model, relative to a specification
of the world. Such an approach to semantic representation treats the per-
vasive gradience of semantic properties as intrinsic to speakers’ linguistic
knowledge, rather than the result of the interference of performance fac-
tors in processing and interpretation. In order for this research program to
succeed, it must solve three central problems. First, it needs to formulate
a type system that computes the probability value of a sentence from the
semantic values of its syntactic constituents. Second, it must incorporate a
viable probabilistic logic into the representation of semantic knowledge in
order to model meaning entailment. Finally, it must show how the specified
class of semantic representations can be efficiently learned. We construct
a probabilistic semantic fragment and consider how the approach that the
fragment instantiates addresses each of these three issues.
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1 Introduction

A formal semantic theory recursively defines the denotation of an expression in
terms of the denotations of its syntactic constituents. It computes the semantic
values of a sentence as a function of the values of its syntactic constituents.
Within such a theory the meaning of an expression is identified with a function
from indices (the expressions themselves, worlds, situations, times, etc.), to
denotations in a model. The meaning of a sentence is a function from indices
to truth-values.

Formal semantic theories model both lexical and phrasal meaning through
categorical rules and algebraic systems that cannot accommodate gradience ef-
fects. This approach is common to theories which sustain compositionality and
those with employ underspecified representations.1 It effectively invokes the
same strong version of the competence-performance distinction that categorical
models of syntax assume. This view of linguistic knowledge has dominated
linguistic theory for the past fifty years.

Gradient effects in representation are ubiquitous throughout linguistic and
other cognitive domains. Appeal to performance factors to explain gradience
has no explanatory content unless it is supported by a precise account of how
the interaction of competence and performance generates these effects in each
case. By contrast, gradience is intrinsic to the formal models that information
theoretic methods use to represent events and processes.

Bach (1986) identifies two theses on the character of natural language.

(a) Chomsky’s thesis: Natural languages can be described as formal systems.

(b) Montague’s thesis: Natural languages can be described as interpreted
formal systems.

Recent work in computational linguistics and cognitive modeling suggests
a third proposal.

(c) The Harris-Jelinek thesis: Natural languages can be described as in-
formation theoretic systems, using stochastic models that express the
distributional properties of their elements.

The Harris-Jelinek thesis implies the The Language Model Hypothesis (LMH)
for syntax, which holds that grammatical knowledge is represented as a stochas-

1See, inter alia, Reyle (1993), Bos (1995), Blackburn and Bos (2005), Copestake et al. (2006), Koller
et al. (2008), Fox and Lappin (2010) for discussions of underspecified semantics.
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tic language model.2 On the LMH, a speaker acquires a probability distribution
D : Σ∗ → [0, 1], over the strings s ∈ Σ∗, where Σ is a set of words (morphemes,
etc.) of the language, and

∑
pD(s) = 1. This distribution is generated by a prob-

abilistic automaton or a probabilistic grammar, which assigns a structure to a
string with a probability that is the product of the rules applied in the derivation
of that string. The probability of the string itself is the sum of the parses that
the grammar generates for it. This probability represents the likelihood of a
sentence’s occurrence in a corpus.3

Representing linguistic knowledge stochastically does not eliminate the
competence – performance distinction. It is still necessary to distinguish be-
tween a probabilistic grammar or automaton that generates a language model,
and the parsing algorithm that implements it. However, a probabilistic char-
acterization of linguistic knowledge does alter the nature of this distinction.
The gradience of linguistic judgements and the defeasibility of grammatical
constraints are now intrinsic to linguistic competence, rather than distorting
factors contributed by performance mechanisms.

Lexically mediated relations like synonymy, antinomy, polysemy, and hy-
ponymy are notoriously prone to clustering and overlap effects. They hold
for pairs of expressions over a continuum of degrees [0,1], rather than Boolean
values {1,0}. Moreover, the denotations of major semantic types, like the pred-
icates corresponding to CNs, AdjPs, and VPs, can rarely, if ever, be identified
as sets with determinate membership. The case for abandoning the categorical
view of competence and adopting a probabilistic model is at least as strong in

2See Clark and Lappin (2011) for a discussions of the merits and problems of the LMH. An
obvious difficulty with the LMH is that in the primary linguistic data for language acquisition
short, ill formed sentences consisting of high frequency lexical items may have higher probability
than longer, complex, well formed sentences containing low frequency words. A possible solution
to this problem is to model grammatical acceptability in stochastic terms by imposing a lower
bound on the probability of an acceptable string s that is dependent on properties of s, like its
length, and features of the distribution for Σ∗. So, for example, a three word string like You is here
is likely to have lower probability than the average probability of three word strings consisting
of the word class sequence 〈N,V,ADV〉. By contrast, the string Trading in complex instruments like
mortgage backed derivatives and credit default swaps remains opaque and inexplicably under-regulated,
which continues to be a major cause of instability in the financial markets can be expected to have at least
the average probability of strings of the same length and word class sequence. This approach to
modeling acceptability uses the idea that one’s expectation for the likelihood of occurrence of a
string in a corpus depends, in part, on its properties and those of the distribution for its string set.
It is derived from the stochastic model of indirect negative evidence that Clark and Lappin (2011)
propose.

3See Manning and Schütze (1999), Collins (2003), Jurafsky and Martin (2009), Chelba (2010),
Clark and Lappin (2010), Clark (2010) for discussions of statistical parsing and probabilistic gram-
mars.
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semantics as it is in syntax (as well as in other parts of the grammar)
A probabilistic semantics needs to express the probability of a different

property than occurrence in a corpus. Knowing the meaning of a declarative
sentence consists largely in being able to estimate the probability that compe-
tent speakers of the language would take it to be true across different states of
the world (different worlds). This view is a probabilistic extension of a classi-
cal truth-conditional view of meaning. It can be extended to non-declarative
sentences by formulating fulfillment conditions for them and identifying the
meaning of a sentence with the function that determines the probability that
speakers of the language construe it as fulfilled (a question answered, an im-
perative obeyed, a request satisfied, etc.) in any given state of affairs.4

As in the case of parsing, adopting a probabilistic view of semantic knowl-
edge does not entail the eradication of the distinction between competence and
performance. We still need to separate the semantic representation that gener-
ates a probability distribution for sentences in relation to states of affairs from
the application of this representation in interpreting sentences. But like prob-
abilistic grammars, these models incorporate gradience as an intrinsic feature
of the objects that they characterize.

In this paper we argue that by replacing truth-conditions with probability
conditions we can capture at least some of the pervasive gradience effects in
semantic judgements. This allows us to reduce a number of important varieties
of vagueness to the sort of uncertainty of belief (in this case, semantic belief)
that probabilistic theories are designed to model. We are also able to account for
several important kinds of semantic learning as a process of updating a learner’s
probability distributions over the worlds (which encode possible knowledge
states) in which he/she evaluates the predicates whose meanings he/she is
acquiring. This approach is consistent with the Harris-Jelinek thesis in that it
represents semantic knowledge as a probability distribution over worlds that is
generated by a probabilistic model for interpreting expressions of a language.

In Section 2 we present definitions of a model, a basic type theory, and a
recursive definition of an interpretation function for a fragment of a formal
representation language. In Section 3 we propose the outline of an account
of semantic learning in which learners acquire the interpretation of new pred-
icates, treated as probabilistic classifiers, in their language. We compare our
approach to distributional treatments of meaning, particularly vector space
models (VSMs), in Section 4. VSMs have emerged as highly efficient proce-

4Lappin (1982) offers an early proposal for characterizing truth conditions as an instance of
fulfillment conditions.
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dures for learning semantic relations among lexical items in corpora. Recent
work has focussed on extending these methods to sentences. We discuss the
complex connections among probability, gradience, and semantic vagueness in
Section 5. Finally, in Section 6 we draw conclusions from our proposals and
indicate directions for future work.

2 Probabilistic Models for a Semantic Fragment

Classical probabilistic logic Carnap (1950), Nilsson (1986), Fagin and Halpern
(1991), Paris (2010) models uncertainty in our knowledge of the facts about the
world. Probability distributions are specified over a set of possible states of the
world (possible worlds), and the probabilities for the elements of this set sum to
1. A proposition φ is assigned truth-values across worlds, and φ’s probability
is computed as

∑
w∈W p(w) for {w : ‖φ‖w = t}.

In characterizing meaning probabilistically, we can talk of uncertainty about
the truth-value of a sentence, given some probability distribution over possible
states of affairs. The probability of a sentence expresses the likelihood that
(semantically) competent speakers of the language assign to the truth of the
sentence, given the state of their knowledge about the world. We can then
represent the meaning of a sentence as a function that maps intensions to
functions from knowledge states to probabilities (probability conditions). The
semantic value of a sentence S is of type I → K → [0, 1], where I is the set of
intensions, K is the set of knowledge representations, and [0, 1] is the set of reals
p with 0 ≤ p ≤ 1.

Let a propositional language over a set of basic predications be given, as
follows.

t ::= x | a1 | a2 | · · · | am

Q ::= Q1 | Q2 | · · · | Qn

φ ::= Qt | ¬φ | φ ∧ φ | φ ∨ φ.

Here we assume a single variable x, a finite number of proper names a1, a2, . . . , am
and a finite number of basic unary predicates Q1,Q2, . . . ,Qn.

Any φ that contains occurrences of x is called a predication. Use φ(x) for
predications, and φ(a/x) for the result of replacing x by a everywhere in a
predication.

Call this language Lm
n . If we extend Lm

n with one name am+1, the new language
is called Lm+1

n . If we extend Lm
n with one new predicate Qn+1, the new language
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is called Lm
n+1

For convenience, we identify names and objects, so we assume a do-
main Dm = {a1, a2, . . . , am}. The type of a (restricted) world w is given by
w : {Q1, . . . ,Qn} → P(Dm). w(Qi) is the interpretation of Qi in w.

A probabilistic model M is a tuple 〈D,W,P〉with D a domain, W a set of worlds
for that domain (predicate interpretations in that domain), and P a probability
function over W, i.e., for all w ∈W, p(w) ∈ [0, 1], and

∑
w∈W p(w) = 1.

An interpretation of Lm
n in an Lm

n -model M = 〈D,W,P〉 is given in terms of
the standard notion w |= φ, as follows:

[[φ]]M :=
∑
{P(w) | w ∈W,w |= φ}

It is straightforward to verify that this yields [[¬φ]]M = 1−[[φ]]M. Also, ifφ |= ¬ψ,
i.e., if Wφ∩Wψ = ∅, then [[φ∨ψ]]M =

∑
w∈Wφ∨ψ

P(w) =
∑

w∈Wφ
P(w)+

∑
w∈Wψ

P(w) =

[[φ]]M + [[ψ]]M, as required by the axioms of Kolmogorov (1950)’s probability
calculus.

2.1 A Toy Fragment

Basic types are e (entities), s (worlds), t (truth values), d (domains) and [0, 1]
(the space of probabilities). Abbreviate d→ s→ t as i (intensions). Types for S,
N, VP, NP, DET are lifted to the level of intensions, by substituting i for t in all
types. This gives, e.g., DET = (e→ i)→ (e→ i)→ i.

The lifting rules for the interpretation functions are completely straightfor-
ward.

I(Some) = λpλqλdomλw.some(λx.p x dom w)(λy.q y dom w).

Here some is the familiar constant function for existential quantification, of
type (e→ t)→ (e→ t)→ t.

This type system gives sentences an interpretation of type i, i.e., d→ s→ t.
Such intensions can be mapped to probabilities by means of a function prob of
type i → m → [0, 1], where m is the type of models with their domains, i.e.,
objects of the shape 〈D,W,P〉.

The function prob on sentences f and models M = 〈D,W,P〉 is given by:

prob f 〈D,W,P〉 =
∑
{P(w) | w ∈W, f D w}
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This function assigns to every sentence of the fragment a probability, on the
basis of the prior probabilities encoded by 〈D,W,P〉.

2.2 Semantic Priors

The probabilities in a model M are the prior of a target semantic representation.
We can take this prior to encode the knowledge representation that competent
speakers converge upon as they acquire the meanings of the predicates of their
language. Learners start out with different priors (probability distributions over
models) than mature speakers, and update them through semantic learning.
The prior that a learner brings to the learning task constitutes his/her initial
assumptions about the state of the world, and, in a sense, it is the basis for
semantic learning

Kemp et al. (2007) propose a hierarchical Bayesian learning framework in
which observational classifiers and the learning priors that express expectations
concerning the distribution of observations categorized by these classifiers can
be acquired simultaneously from the same data. The priors are themselves
derived from more general higher-order priors.

3 Semantic Learning

Classical semantic theories characterize a class of representations for the set
of meanings of expressions in natural language. However, it is unclear how
these representations could be learned from the primary linguistic data (PLD)
of language acquisition. The problem of developing a plausible account of
efficient learnability of appropriate target representations is as important for
semantics as it is for other types of linguistic knowledge. Most work in formal
learning for natural languages has focussed on syntax (grammar induction),
morphology, and phonology.

3.1 Simple Cases of Learning

3.1.1 Example 1

Assume there are just two predicates Q1 and Q2, and two objects a, b. Complete
ignorance about how the predicates are applied is represented by a model with
16 worlds, because for each object x and each predicate Q there are two cases: Q
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applies to x or not. If the likelihood of each of the cases is completely unknown,
each of these worlds has probability 1

16 .

3.1.2 Example 2

Suppose again there are two objects a, b and two predicates Q1,Q2. Assume
that it is known that a has Q1, and the probability that b has Q1 is taken to
be 2

3 . Suppose it is known that no object has Q2. Then W = {w1,w2} with
w1(Q1) = {a, b}, w2(Q1) = {a}, w1(Q2) = ∅, w2(Q2) = ∅. P is given by P(w1) = 2

3 ,
P(w2) = 1

3 . In this example ¬Q1(b) is true in w2 and not in w1. Therefore
[[¬Q1(b)]] = 1

3 .

3.1.3 Learning New Definable Predicates

Learning a new semantic concept Qn+1 is learning how (or to what extent)
predicate Qn+1 applies to the objects one knows about. The simplest way
to model such a learning event is as a pair 〈Qn+1, φ(x)〉 where φ(x) is an Lm

n
predication. The effect of the learning event could then be modeled in a way
that is very similar to the manner in which factual change is modeled in an
epistemic update logic.

The result of updating a model M = 〈D,W,P〉 with concept learning event
〈Qn+1, φ(x)〉 is the model that is like M except for the fact that the interpretation
in each world of Qn+1 is given by

w(Qn+1) := {a | a ∈ Dm,w |= φ(a/x)}

Note that the probability function P of the model does not change in this
case.

Let’s return to example 1. This is the model where there are two objects and
two predicates, and nothing is known about the properties of the objects. Take
the learning event (Q3,Q1x∧¬Q2x). This defines Q3 as the difference of Q1 and
Q2. The resulting model will again have 16 worlds, and in each world wi,wi(Q3)
is given by wi(Q1)∩ (D−wi(Q2)). Again, the probabilities of the worlds remain
unchanged.

3.2 Adjusting the Meaning of a Predicate

To allow adjustment of the meaning of a classifier by means of a learning event,
we can use probabilistic updating (following ?). A classifier learning event now



Jan van Eijck and Shalom Lappin 9

is a tuple 〈Q, φ, ψ(x), q〉 where φ is a sentence, ψ(x) is a predication, and q is
a probability. φ expresses the observational circumstances of the revision. q
expresses the observational certainty of the new information.

The result of updating M = 〈D,W,P〉 with 〈Q, φ, ψ(x), q〉 is a new model
M = 〈D,W′,P′〉. W′ is given by changing the interpretation of Q in members w
of Wφ to {a | w |= ψ(a/x)}, while leaving the interpretation of Q in members of
W¬φ unchanged.

P′ is given by P′(w) =
P(w)×q

X for members of Wφ, and by P′(w) =
P(w)×(1−q)

X
for members of W¬φ. 1

X (the normalization factor) is given by

X =
∑

w∈Wφ
P(w) × q +

∑
w∈W¬φ P(w) × (1 − q).

3.2.1 Learning Classifiers by Example

Consider again the example with the two objects and the two properties, where
new information concerning the application of the predicates to objects in the
domain is acquired. A learning event for this could be 〈Q2,¬Q1b,Q1x∨Q2x, 2

3 〉.
Then the resulting model has again 2 worlds, but now the probability of w2 has

gone up from 1
3 to

2
3×

1
3

1
3×

2
3 + 2

3×
1
3

= 1
2 . The probability of w1 has gone down from 2

3

to
1
3×

2
3

4
9

= 1
2 .

You are given something of which you are told that it is called a “rose”,
and you observe that it is thorny, red and a flower. A learning example is an
encounter with a new object am+1. Suppose you learn that predicate Q applies
to am+1. The properties you observe of am+1 are given by θ(am+1), where θ(am+1)
is a conjunction of ±Qi(am+1) for all known predicates. The update event is
〈am+1,Q, θ(am+1)〉. You learn that am+1 is called a Q, and you observe that am+1
satisfies the properties θ(am+1).

Updating a model M = 〈D,W,P〉 for Lm
n with this event creates a new model

M′ = 〈D ∪ {am+1},W′,P〉 for Lm+1
n . The new model has domain {a1, . . . , am+1}.

W′ is given by assigning, in each w, to am+1 the properties specified by θ(am+1).
The interpretation of Q is given by setting w(Q) = {a | w |= θ(a/am+1)}. This
resets the interpretation Q on the basis of the new observation. The probability
distribution remains unchanged.

We can refine this account of learning to accommodate cases where an ob-
servation is less precise. Let the learning event be

〈am+1,Q, {(θ1(am+1), q1), . . . , (θk(am+1), qk)}〉
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Here qi gives the observational probability that the new object satisfies θi. The
probabilities should satisfy

∑k
i=1 qi = 1. The update can be defined so that the

probability of the new predicate applying to the old objects will be recomputed.

3.3 Semantic Knowledge and Knowledge of the World

Our specification of the class of probabilistic models and our treatment of
learning raise the question of how to distinguish between semantic knowledge
and knowledge of the world. It might seem that the distinction disappears
entirely in our framework, and we are simply modeling epistemic update. In
fact this is not the case. In a probabilistic account of epistemic update one
seeks to express the effect of new information about the actual world on a belief
agent’s probability distribution over possible worlds. In our system of semantic
representation we specify the meaning of a sentence as the likelihood that
competent speakers of the language will assess it as true, given the distribution
over worlds that sustains the interpretation of the expressions of their language.
We are, then, seeking to model the probability that speakers assign to sentences
across possible states of affairs, where these probability conditions are derived
from the prior that speakers specify for worlds as a condition for sharing the
meanings of their predicates. Semantic learning is a process of converging on
the target model that generates this distribution by forming hypotheses on the
intensions of predicates (the classifiers that they encode) on the basis of the
PLD.

The notion of a semantic prior in terms of which the probability value of
a sentence is computed allows us to identify semantic knowledge as distinct
from general epistemic commitment. It is, however, the case that the distinction
between semantic and extra-linguistic knowledge is not absolute. In learning
a predicate one is acquiring a classifier that sorts objects on the basis of their
properties. One could not apply such a classifier without recognizing these
properties and making predictions concerning the likelihood that unobserved
objects with similar properties satisfy (fail to satisfy) the classifier. It seems
reasonable to assume that learners starting out with a semantic prior that is
radically divergent from the target representation in most respects may find it
difficult or impossible to acquire this representation from the PLD. If this does,
in fact, turn out to be the case, then we can conclude that semantic learning
depends on a core of shared beliefs about the nature of the world.
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context 1 context 2 context 3 context 4
financial 0 6 4 8
market 1 0 15 9
share 5 0 0 4
economic 0 1 26 12
chip 7 8 0 0
distributed 11 15 0 0
sequential 10 31 0 1
algorithm 14 22 2 1

Figure 1: Word Type-Context Matrix

4 Distributional Treatments of Meaning

4.1 Lexical Vector Space Models

Vector Space Models (VSMs) Turney and Pantel (2010) offer a fine-grained dis-
tributional method for identifying a range of semantic relations among words
and phrases. They are constructed from matrices in which words are listed
vertically on the left, and the environments in which they appear are given
horizontally along the top. These environments specify the dimensions of the
model, corresponding to words, phrases, documents, units of discourse, or any
other objects for tracking the occurrence of words. They can also include data
structures encoding extra-linguistic elements, like visual scenes and events.

The integers in the cells of the matrix give the frequency of the word in an
environment. A vector for a word is the row of values across the dimension
columns of the matrix. Figure 1 gives a schematic example of such a word-
context matrix, with made up vector values. In this matrix the vectors for chip
and algorithm are [7 8 0 0] and [14 22 2 1], respectively.

A pair of vectors from a matrix can be projected as lines from a common
point on a plane. The smaller the angle between the lines, the greater the simi-
larity of the terms, as measured by their co-occurrence across the dimensions of
the matrix. Computing the cosine of this angle is a convenient way of measuring
the angles between vector pairs. If ~x = 〈x1, x2, ..., xn〉 and ~y = 〈y1, y2, ..., yn〉 are
two vectors, then
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cos(~x, ~y) =

∑n
i=1 xi·yi√∑n

i=1 x2
i ·
∑n

i=1 y2
i

The cosine of ~x and ~y is their internal product, formed by summing the products
of the corresponding elements of the two vectors, and normalizing the result
relative to the lengths of the vectors. In computing cos(~x, ~y) it may be desirable
to apply a smoothing function to the raw frequency counts in each vector to
compensate for sparse data, or to filter out the effects of high frequency terms.
A higher value for cos(~x, ~y) correlates with greater semantic relatedness of the
terms associated with the ~x and ~y vectors.

VSMs provide highly successful methods for identifying a variety of lexical
semantic relations, including synonymy, antinomy, polysemy, and hypernym
classes. They also perform very well in unsupervised sense disambiguation
tasks. VSMs offer a distributional view of lexical semantic learning. On this
approach speakers acquire lexical meaning by estimating the environments
(linguistic and non-linguistic) in which the words of their language appear.

4.2 Compositional VSMs

Lexical VSMs measure semantic distances and relations among words inde-
pendently of syntactic structure. They apply a ”bag of words” approach to
meaning. Recent work has sought both to integrate syntactic information into
the dimensions of the vector matrices Padó and Lapata (2007), and to extend
VSM semantic spaces to the compositional meanings of sentences. Mitchell and
Lapata (2008) compare additive and multiplicative models for computing the
vectors of complex syntactic constituents, and they demonstrate better results
(as measured by human annotator judgements) with the latter for sentential
semantic similarity tasks. These models use simple functions for combining
constituent vectors, and they do not represent the dependence of composite
vectors on syntactic structure.

Coecke et al. (2010), Grefenstette et al. (2011) propose a procedure for com-
puting vector values for sentences that specifies a correspondence between the
vectors and the syntactic structures of their constituents. This procedure relies
upon a category theoretic representation of the types of a pregroup grammar
(PGG) Lambek (2008a;b), which builds up complex syntactic categories through
direction-marked function application in a manner similar to a basic categorial
grammar. All sentences receive vectors in the same vector space, and so they
can be compared for semantic similarity using measures like cosine.
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A PGG compositional VSM (CVSM) determines the values of a complex
syntactic structure through a function that computes the tensor product of the
vectors of its constituents, while encoding the correspondence between their
grammatical types and their semantic vectors. For two (finite) vector spaces
A, B, their tensor product A ⊗ B is constructed from the Cartesian product of
the vectors in A and B. For any two vectors v ∈ A, w ∈ B, v ⊗ w is the vector
consisting of all possible products vi∈v × w j∈w. Smolensky (1990) uses tensor
products of vector spaces to construct representations of complex structures
(strings and trees) from the distributed variables and values of the units in a
connectionist network.

PGGs are modeled as compact closed categories. A sentence vector is com-
puted by a linear map f on the tensor product for the vectors of its main con-
stituents, where f stores the type categorial structure of the string determined
by its PGG representation. The vector for a sentence headed by a transitive
verb, for example, is computed according to the equation

−−−−−−−−−→
subj Vtr obj = f (

−−→
subj ⊗

−→
Vtr ⊗

−→
obj).

The vector of a transitive verb Vtr could be taken to be an element of the
tensor product of the vector spaces for the two noun bases corresponding to
its possible subject and object arguments

−→
Vtr ∈ N ⊗ N. Then the vector for

a sentence headed by a transitive verb could be computed as the point-wise
product of the verb’s vector, and the tensor product of its subject and its object

−−−−−−−−−→
subj Vtr obj =

−→
Vtr � (

−−→
subj ⊗

−→
obj).

PGG CVSMs offer a formally grounded and computationally efficient method
for obtaining vectors for complex expressions from their syntactic constituents.
They permit the same kind of measurement for relations of semantic similarity
among sentences that lexical VSMs give for word pairs. They can be trained
on a (PGG parsed) corpus, and their performance evaluated against human
annotators’ semantic judgements for phrases and sentences. Grefenstette and
Sadrzadeh (2011) report that their system outperforms Mitchell and Lapata
(2008)’s multiplicative CVSM in a small scale corpus experiment on predicting
semantic distance for pairs of simple transitive VP sentences.

The PGG CVSM raises at least two major difficulties First, while the vector
of a complex expression is the value of a linear map on the vectors of its parts,
it is not obvious what independent property this vector represents. Sentential
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vectors do not correspond to the distributional properties of these sentences,
as the data in the primary linguistic data (PLD) from which children learn
their language is too sparse to estimate distributional vectors for all but a few
sentences, across most dimensions.

Coecke et al. (2010) show that it is possible to encode a classical model
theoretic semantics in their system by using vectors to express sets, relations,
and truth-values. But this simply demonstrates the formal power of PGG
CVSMs as semantic coding devices. CVSMs are empirically interesting to
the extent that the sentential vectors that they assign are derived from lexical
vectors that represent the actual distributional properties of these expressions.

In classical formal semantic theories the functions that drive semantic com-
position are supplied by the type theory, where the type of each expression
specifies the formal character of its denotation in a model. The sequence of
functions that determines the semantic value of a sentence exhibits at each
point a value that directly corresponds to an independently motivated semantic
property of the expression to which it is assigned. Types of denotation pro-
vide non-arbitrary formal relations between types of expressions and classes
of entities specified relative to a model. The sentential vectors obtained from
distributional vectors of lexical items lack this sort of independent status. In
our fragment we have specified a conservative extension of a classical type
system for computing probabilistic values for sentences and predicates. An
important advantage of our approach is that we sustain the independently mo-
tivated denotations that a classical type system assigns to syntactically complex
expressions within a probabilistic framework designed to capture the gradience
and relative uncertainty of lexical semantic relations.

The second major problem is as follows. An important part of the interpre-
tation of a sentence involves knowing its truth (more generally, its satisfaction
or fulfillment) conditions. We have exchanged truth conditions for probability
conditions formulated in terms of the likelihood of a sentence being accepted
by competent speakers of the language as true, given certain states of affairs in
the world. It is not obvious how we can extract either classical truth conditions,
expressed in Boolean terms, or probability conditions, from sentential vector
values, when these are computed from vectors expressing the distributional
properties of their constituent lexical items. By contrast, our fragment offers a
recursive specification of the meaning of a sentence which yields its probability
conditions.
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5 Probability, Gradience, and Vagueness

5.1 Two Views of Semantic Vagueness

The fact that sentences receive probability conditions that express the likeli-
hood that competent speakers would accept them as true relative to states of
affairs permits us to model the uncertainty that characterizes some of these
speakers’ judgements concerning the semantic relations and predications that
hold for their language. This sort of uncertainty accounts for an important
element of gradience in semantic knowledge. It captures the defeasibility of
implications, and the graded nature of synonymy (co-intensionality) and mean-
ing intersection. However, it remains unclear whether all species of semantic
vagueness can be subsumed by the uncertainty that probabilistic judgements
express. Consider, in particular, the case of degree adjectives and adverbs. If a
door is slightly ajar, there is a sense in which it fully satisfies neither open nor
closed.5

Two views (inter alia) have been proposed for determining the relation be-
tween probability and semantic vagueness. On one of these, vagueness can
be characterized in terms of the truth of judgements that predicates apply to
objects, modifiers to states or events, etc. The epistemicist account of vague-
ness Williamson (1994) provides a prominent instance of this approach. It takes
vagueness to consist in the same sort of uncertainty that attaches to epistemic
claims about the world. This view is attractive to the extent that it can be used
to support the idea that one models the gradience of semantic properties as a
probability distribution over the applicability of expressions of different func-
tional types to their arguments. However, it has the unattractive consequence
that it assumes the existence of sharp boundaries on the extensions of predi-
cates, but takes these to be epistemically opaque (essentially unknowable) to
speakers of the language. Applying a predicate to an entity is, in many cases
then, analogous to making a bet on the existence of a state of affairs, where
one cannot identify the situation that decides the outcome of the wager. There
appears to be no independent motivation for such unknowable limits on the
extensions of terms. Therefore, it looks like an ad hoc device which the theory
requires in order to explain the fact that vagueness, unlike epistemic uncer-
tainty, cannot be eliminated by additional information about either language
or the world.

5We are grateful to Peter Sutton for helpful discussion of the issues that we deal with in this
section.
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? offers a refined alternative version of the view that vagueness is the ex-
pression of probability judgements. He avoids the epistemicist assumption of
unknowable determinate predicate extensions, by replacing these with a set
of possible languages all of whose expressions receive non-vague interpreta-
tions. Vagueness is the result of a probability distribution over these languages
(their predicates) in different worlds. Speakers assign probabilities to language-
world pairs, seeking to maximize the probability of pairs that converge on the
observed linguistic and non-linguistic facts. This analysis characterizes a vague
predicate as ambiguous among a large disjunction of semantically determinate
variants over which probability is distributed. In order to express the gradient
nature of vagueness it would seem to be necessary to proliferate a large (possi-
bly unbounded) number of determinate readings for vague predicates to range
over. This looks like an awkward result. Vagueness is naturally thought of an
alternative to ambiguity rather than a consequence of it.

? proposes the second view. She uses a Bayesian probability logic to model
semantic vagueness, but she argues that vagueness and epistemic uncertainty
are distinct. The problem with this approach is that it leaves the formal isomor-
phism between the two phenomena unexplained. If they really are different
in the way that she suggests, then why should a calculus for computing the
probability of statements under uncertainty provide a more accurate system
for representing the vagueness of predicates than fuzzy or supervaluational
logics, as she shows to be the case? The success of probabilistic models in ex-
pressing vagueness suggests that there is, in fact, a non-accidental connection
between reasoning under conditions of epistemic uncertainty and the vague-
ness of predication. However, it may not be as direct or straightforward as the
epistemicists hold it to be.

5.2 Semantic Vagueness as an Effect of Learning

It might be possible to develop a third view by mediating the relation between
probability and vagueness through learning. Speakers learn predicates by
generalizing from paradigm instances where their applications to an object are
valued as 0 or 1 in worlds of high probability. Extending the application of these
predicates to new objects with different property sets will produce an update in
the probability function of the model that estimates the likelihood of competent
speakers assenting to the predications as intermediary or low. In the absence of
additional disambiguating evidence, this probability distribution over worlds
for a range of predicate applications will survive learning to be incorporated
into the model of mature speakers. In this way uncertainty in learning becomes
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vagueness in the intensions of predicates in the target representation.
This approach treats epistemic uncertainty as a central element of semantic

learning. The concern to converge on the classifiers that competent speakers ap-
ply drives the learner to update his/her probability distributions for the applica-
tion of predicates (and other terms) in light of new linguistic and extra-linguistic
evidence. But once the target representation is (more or less) achieved, many
terms of the language remain under determined for objects in their domain.
Vagueness is, then, the residue of probabilistic learning. It cannot be resolved
by additional facts, linguistic or extra-linguistic, as it has been incorporated
into the adult language itself. Therefore, it has its origin in probabilistic judge-
ments on the truth of predication during the learning process, but it becomes
an independent feature of the semantics of the language.

We offer this suggestion as the sketch of an alternative account of vagueness
that seeks to account for it in probabilistic terms, but does not reduce it to
epistemic uncertainty in the competent speakers of the language. In order to be
viable it is necessary to work out a detailed formal theory of semantic learning
and the target language that it converges on. This is a research project that this
paper is intended to introduce, rather than complete.

6 Conclusions and Future Work

Compositional VSMs can represent gradience in semantic relations among
words, phrases, and sentences, and they offer a viable account of lexical se-
mantic learning. However, the vectors that CVSMs assign to complex syntactic
structures do not have clear interpretations, and they do not express sentential
meaning as probability conditions.

We propose a fragment of a probabilistic semantic theory that uses a con-
servative extension of classical type theory to compute the probability value of
a sentence on the basis of a model for the knowledge of a semantic learner. Our
approach offers a framework for developing a probabilistic account of seman-
tic learning that is consonant with current Bayesian approaches to classifier
acquisition.

We suggest a view of vagueness that treats it as originating in the probabilis-
tic judgements of semantic learning, but which develops into an independent
non-epistemic variety of uncertainty in the mature target representation lan-
guage.
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