
Understanding Information Update in Questionnaires

Jan van Eijck, Tijs van der Storm
CWI, Amsterdam

Abstract

Questionnaires are an important medium for collecting information in diverse
areas in society (scienctific surveys, tax filing, auditing guidance etc.). We
are interested in a domain-specific language (DSL) to automatically generate
questionnaire software from declarative specifications. This note describes
an important aspect of the semantics of such a DSL: what goes on when
a users fill out a form? The formalism is based on the epistemic notion
of information update and has a wide range of applications. It provides
a formal interpretation for query forms, and for the process of answering
such forms. The attractiveness of the approach is in the fact that asking
questions, providing partial answers to questions, and providing full answers
to questions, are all modelled by the same mechanism of constraining a range
of possibilities.
Keywords: Domain-specific languages, questionnaires, semantics, epistemic
logic.
2000 MSC: 03B42, 03B70, 03C13.

Although Paul Klint was trained as a mathematician, he dislikes
formalization for its own sake. Paul is attracted to the practical
side of computer science and software engineering, and his impa-
tience with theory is understandable. All too often, in his view,
theorizing is used as an excuse for inaction. Still, sometimes, a
modest amount of formalization leads to better implementations,
and this is when theory starts to be interesting for Paul.

URL: jve@cwi.nl (Jan van Eijck), storm@cwi.nl (Tijs van der Storm)

Preprint submitted to Science of Computer Programming August 13, 2013

1. Introduction

Questionnaires play a crucial role in society. Examples of domains where
questionnaires are used include: scientific surveys [1], tax forms [8], check-
lists [5], emergency report forms [14] and auditing guidance material [3].
While questionnaires are traditionally – and sometimes still – presented on
paper, the use of software-based questionnaires is wide-spread. The user
answers questions presented as interactive forms, which may conditionally
unfold to show more questions.

We’re interested in automating the construction of questionnaire software
through the use of a domain-specific language (DSL) [13]. Based on high-
level, declarative descriptions of a questionnaire, much of the graphical user-
interface (GUI) and back-end data handling can be automatically generated.
As a result, questionnaires are easier to understand, change and validate.

The idea of using a DSL for creating questionnaires has received some
attention in software engineering research (e.g., [1]). Most prominently how-
ever, is the Blaise language [2] which was designed by statisticians in the
Netherlands during the 80s. Blaise can be used to define screens with typed
widgets, enablement conditions, screen transitions (possibily conditionally)
and the data model the form corresponds to. This language continues to be
in use to this day.

Although Blaise is widely used, we’re aiming for a language that has wider
applicability, outside the domain of statistical surveys. Moreover, many types
of questionnaires (e.g., tax forms, check-lists, emergency registration forms
etc.) are subject to strict rules and regulations. It is therefore important that
we can reason about the questionnaires themselves and about the way they
are filled out. In this paper we formalize one aspect of a possible language
for questionnaires, namely a precise semantics for modeling the process of
filling out a questionnaire. This semantics is based on information update as
known in epistemic logic.

Out starting point is the following question: What is the simplest possible
way to look at what goes on when people provide information in some con-
strained format? It turns out that both posing a question in a fixed format
and answering such a question can be viewed as forms of information updat-
ing, in a general sense of constraining a function. We propose a formalism
that, because of its generality, has a wide range of applications.

The basic intuition is that information growth corresponds to elimination
of possibilities, as in epistemic logic [7, 4]. Instead of possible worlds, we will

2

use a more abstract space P of possibilities.

2. The Lattice of Constraint Functions

Let A be some finite alphabet. The set of all names constructed from A is
A∗. Let P be some finite set. Think of this as a space of possibilities that
can be constrained if information about what is possible gets added.

A constraint function is a function in A∗ → P(P). A constraint function
assigns to each name in A∗ a subset of the space of possibilities.

Intuitively, there are two dimensions of information growth about con-
straint functions: 1) Domain extension: the space of name fields gets ex-
tended; 2) Value constraint: values get more constrained. If one assumes
that all name fields initially have unconstrained values, one can get by with
just value constraint.

Moreover, the class of constraint functions, for given A and P , can be
seen to be a lattice, with top > and bottom ⊥ given by:

• > := λx 7→ P ,

• ⊥ := λx 7→ ∅.

> is the function that assigns to any name the full space of possibilities, and
⊥ is the (overconstrained) function that assigns to any name the impossible
set ∅. The lattice operations are given by:

• f t f ′ := λx 7→ f(x) ∪ f ′(x),

• f u f ′ := λx 7→ f(x) ∩ f ′(x).

The lattice ordering v is given by: f v f ′ iff ∀x ∈ A∗ : f(x) ⊆ f ′(x).

3. Constraint Syntax

Assume a total ordering < on the space of possibilities P . Use p ≤ q for p < q
or p = q. Let minValue be the minimum of P and maxValue its maximum.
We will assume that members of P name themselves. Basic constraints and
propositional logic of constraints (assume p, q range over P , x ranges over
A∗) is defined in the following grammar:

φ ::= p < q | p ≤ q | p ∈ x | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (φ↔ φ).

3

Constraint properties:

C ::= λp 7→ φ

Name replacement φp
q

Let skip be the action that changes nothing.
The language of update actions is then defined as follows (assume x ranges

over A∗):

π ::= skip | x := C | if φ then π else π | π; π | while φ do π
C ::= λp 7→ φ

The skip action changes nothing. The assignment statement updates the
space of possibilities with a constraint property C so that after the update,
φ is true for all possibilities related to x.

4. Constraint Semantics

Every constraint is interpreted as a boolean on constraint functions, as fol-
lows.

[[p < q]]f ⇐⇒ p < q

[[p ≤ q]]f ⇐⇒ p ≤ q

[[p ∈ x]]f ⇐⇒ p ∈ f(x)
[[¬φ]]f ⇐⇒ not [[φ]]f

[[φ1 ∧ φ2]]f ⇐⇒ [[φ1]]f and [[φ2]]f
[[φ1 ∨ φ2]]f ⇐⇒ [[φ1]]f or [[φ2]]f

[[φ1 → φ2]]f ⇐⇒ either not [[φ1]]f , or [[φ2]]f
[[φ1 ↔ φ2]]f ⇐⇒ [[φ1]]f iff [[φ2]]f .

The key definition is the third one, which states that p is a possible value of
x under the constraint function f if f would map x to a set which includes
p.

Constraint properties are interpreted as subsets of P , as follows (where
φp

q is name substitution of p by q):

[[λp 7→ φ]]f := {q ∈ P | [[φp
q]]f}.

4

Every update action is interpreted as a relation on constraint functions,
as follows:

f [[skip]]f ′ ⇐⇒ f = f ′

f [[x := C]]f ′ ⇐⇒ ∀y ∈ A∗ : if x = y then f ′(y) = f(y) ∩ [[C]]f
otherwise f ′(y) = f(y)

f [[if φ then π1 else π2]]f ′ ⇐⇒ if [[φ]]f then f [[π1]]f ′ else f [[π2]]f ′

f [[π1; π2]]f ′ ⇐⇒ ∃f ′′ : f [[π1]]f ′′ and f ′′ [[π2]]f ′

f [[while φ do π]]f ′ ⇐⇒ either [[¬φ]]f and f = f ′,

or ∃f ′′ : f [[π]]f ′′ and f ′′ [[while φ do π]]f ′ .

The information provided by an update action is defined as the constraint
function that results if the action is performed on the state of no information:

info(π) = f where >[[π]]f .

5. Examples

To do examples, we assume that there are canonical mappings from datatypes
to the space P . E.g., Booleans are encoded as EB = {ptrue, pfalse} ⊂ P ,
characters are encoded as EC = {pa, . . . , pz} ⊂ P , character strings (up to
some fixed size) are directly encoded as members of a subset Q of P , and so
on.

Thus, we can think of a question or query as an action on constraint
functions. The query action does two things: 1) It fixes a name in A∗ for
the value of the relevant constraint; 2) it fixes an encoding for the possible
answers, as a subset of P .

Simple examples can now be formulated as follows:

• “What is your name?” Fixes a name x ∈ A∗ and fixes the possible
values of the answer as a subset Q of P . Corresponding update: x := Q.

• “What is your age?” Fixes a name x ∈ A∗ and fixes the possible values
of the answer as a subset {p0, . . . , p120} of P . Corresponding update:
x := {p0, . . . , p120}.

• “Are you male or female?” Fixes a name x ∈ A∗ and fixes the possible
values of the answer as a subset {pm, pf} of P . Corresponding update:
x := {pm, pf}.

5

type Name = String
type CF a = Name → [a]

fullRange :: (Enum a, Bounded a) ⇒ [a]
fullRange = [minBound..maxBound]

top :: (Enum a, Bounded a) ⇒ CF a
top = λ _ → fullRange

bottom :: CF a
bottom = λ _ → []

join :: (Eq a, Enum a, Bounded a) ⇒ CF a → CF a → CF a
join f g x = union (f x) (g x)

meet :: (Eq a, Enum a, Bounded a) ⇒ CF a → CF a → CF a
meet f g x = intersect (f x) (g x)

Figure 1: Constraint functions

Answering such questions are updates too:

• “My name is Jan”, in a context where the name query is interpreted
as x := Q, is interpreted as x := {pjan}, with pjan ∈ Q.

• “I am male”, in a context where the gender query is interpreted as
x := {pm, pf}, is interpreted as x := {pm}.

All of these updates are of the form x := C, which is the basic update
action on constraint functions. The update “x is a gender field” followed by
“x is male” is a sequence of two basic update actions on constraint functions:
x := {pm, pf};x := {pm}.

6. Prototype implementation

We have implemented a prototype of the semantics in lazy, purely functional
programming language Haskell [6]1. The basic type CF which maps a name

1The sources can be found here: homepages.cwi.nl/˜jve/software/constraints/
CFS.hs.

6

homepages.cwi.nl/~jve/software/constraints/CFS.hs
homepages.cwi.nl/~jve/software/constraints/CFS.hs

to a range of values, and the lattice operations are shown in Listing 1.
Actions are functions from constraint functions to constraint functions.

The definition of the basic actions skip, update, replace, sequencing, con-
ditional and while loop are shown in Listing 2. Finally, the info function,
when applied to an action A , gives the constraint function that results from
applying A to the state of no information (represented by >).

Encoding one enumerated datatype as another one:
encode :: (Enum a,Enum b) ⇒ a → b
encode = toEnum ◦ fromEnum

Update with the information that some name x is to be interpreted as a
Boolean:
isBool :: (Eq a, Enum a) ⇒ Name → Action a
isBool x = update x (map encode (fullRange :: [Bool]))

Similar functions can be defined for restricting a field to be of type Char,
ASCII, Age, Gender, etc., as long as the basic data type is bounded and can
be encoded as Enum. All such “typing” actions follow the pattern of the
isBool definition above.

In the same way, partial answers can be modeled as further restrictions
of the information space:
partialAnswer :: (Eq a, Enum a,Enum b) ⇒ Name → [b] → Action a
partialAnswer x y = update x (map encode y)

Finally, a fully answered question is modeled by updating a name to a
single value:
fullAnswer :: (Eq a, Enum a,Enum b) ⇒ Name → b → Action a
fullAnswer x y = replace x [encode y]

Example form instruction:
instruction :: (Eq a, Enum a, Bounded a) ⇒ Action a
instruction =

isAscii "given name" ##
isAscii "surname" ##
isGender "gender" ##
isBool "maried" ##
isAge "age"

The form itself can be viewed as the result of updating the state of no infor-
mation with the instruction:

7

type Action a = CF a → CF a

skip :: Action a
skip = id

update :: Eq a ⇒ Name → [a] → Action a
update x c f y | x == y = [p | p ← f y, elem p c]

| otherwise = f y

replace :: Name → [a] → Action a
replace x c f y | x == y = c

| otherwise = f y

if_then_else :: (CF a → Bool) → Action a → Action a → Action a
if_then_else condition action1 action2 = λ f →

if condition f then (action1 f) else (action2 f)

infixl 2 ##
(##) :: Action a → Action a → Action a
a1 ## a2 = a2 ◦ a1

while :: (CF a → Bool) → Action a → Action a
while condition action =
λf → if condition f

then (action ## (while condition action)) f
else f

info :: (Enum a, Bounded a) ⇒ Action a → CF a
info action = action top

Figure 2: Actions

8

form :: (Eq a, Enum a, Bounded a) ⇒ CF a
form = info instruction

Partially answering the form:
answer :: (Eq a, Enum a, Bounded a) ⇒ Action a
answer = fullAnswer "given name" (Ascii "Jan") ##

fullAnswer "surname" (Ascii "van Eijck") ##
fullAnswer "gender" Male ##
partialAnswer "age" [40..70]

Finally, here is an example of a conditional statement: initialize the field
for “married” on condition that the field for “age” only contains values that
lie above 15:
marriedQ :: (Eq a, Enum a, Bounded a) ⇒ Action a
marriedQ = if_then_else

(λf → all (> 15) (map encode (f "age")))
(isBool "married")
skip

7. Outlook

This paper makes a small step towards a semantics for questionnaires. It
allows us to understand the process of information update when presenting,
exploring and answering a questionnaire. Although the current prototype in
Haskell provides a nice playground to explore the semantics, it is not suited
for direct use in an (embedded) DSL for questionnaires.

Questionnaires based on interactive forms require out-of-order processing
of questions. This is handled in the implementation by interpreting forms
as constraint functions, where the name fields can be accessed in any or-
der. Still, there is an issue with the purely functional style of the prototype.
In interactive questionnaires the user’s actions trigger events which result
in updates of the questionnaire state. In a purely functional language this
can’t be directlly expressed. The prototype runs in “batch mode”, whereas
in an interactive setting, the updates should be incremental. A promising ap-
proach would be to combine the model of this paper with functional reactive
programming (FRP); see, e.g., [11] for recent advances in this area.

Another opportunity for future work is how to connect this model to
state-of-the-art language workbenches, such as Rascal [12, 9, 10]. This would
provide full support for defining the (concrete) syntax, compiler and editing

9

support for the language. Initial experiments in formalizing the static aspects
of questionnaires are promising2.

8. Conclusion

Questionnaires are important in society. The use of software for question-
naires is wide spread, however, they are often still programmed by hand.
DSLs could significanly improve the quality and effectiveness with which
questionnaires are constructed. In this paper we have discussed one aspect
of a possible DSL for questionnaires: how can we understand the informa-
tion flow of questionnaires? It turns out that a model based on epistemic
logic can be used to formalize both the definition, presentation and filling
out of a questionnaire in one uniform formalism. We have implemented a
prototype of the semantics in Haskell. Future work, however, will focus on
how this model can be leveraged in the realization of a complete DSL for
questionnaires.

References

[1] Wyatt Allen and Martin Erwig. Surveyor: a DSEL for representing and
analyzing strongly typed surveys. In Haskell’12, pages 81–90. ACM,
2012.

[2] Blaise homepage. Online. http://www.blaise.com/.

[3] P. I. Elsas, Reind P. van de Riet, and J. J. van Leeuwen. Knowledge-
based audit support. In DEXA, pages 512–518, 1992.

[4] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

[5] Atul Gawande. The Checklist Manifesto: How to Get Things Right.
Metropolitan Books, 2009.

[6] The Haskell Team. The Haskell homepage. http://www.haskell.org.

2For an example questionnaire language (QL), implemented in Rascal, see https:
//github.com/cwi-swat/demoqles.

10

http://www.blaise.com/
http://www.haskell.org
https://github.com/cwi-swat/demoqles
https://github.com/cwi-swat/demoqles

[7] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the
Two Notions. Cornell University Press, Ithaca N.Y., 1962.

[8] IRS. Forms and publications. Online. http://apps.irs.gov/app/
picklist/list/formsPublications.html (accessed August 2013).

[9] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY meta-
programming with Rascal. In GTTSE III, volume 6491 of LNCS, pages
222–289. Springer, 2011.

[10] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. RASCAL: A
domain specific language for source code analysis and manipulation. In
SCAM, pages 168–177. IEEE, 2009.

[11] Atze van der Ploeg. Monadic functional reactive programming. In
Haskell’13, 2013. To appear.

[12] Tijs van der Storm. The Rascal language workbench. Technical Report
SEN-1111, CWI, 2011.

[13] A. van Deursen, P. Klint, and J. Visser. Domain-specific Languages,
volume 28, pages 53–68. Marcel Dekker, Inc. New York, 2002.

[14] Centraal Bureau voor de Statistiek (CBS). Brandweerstatistiek
2011: Appendix C, D, E, 2012. http://www.cbs.nl/nl-NL/menu/
themas/veiligheid-recht/publicaties/publicaties/archief/
2012/2012-w35-pub.htm (in Dutch).

11

http://apps.irs.gov/app/picklist/list/formsPublications.html
http://apps.irs.gov/app/picklist/list/formsPublications.html
http://www.cbs.nl/nl-NL/menu/themas/veiligheid-recht/publicaties/publicaties/archief/2012/2012-w35-pub.htm
http://www.cbs.nl/nl-NL/menu/themas/veiligheid-recht/publicaties/publicaties/archief/2012/2012-w35-pub.htm
http://www.cbs.nl/nl-NL/menu/themas/veiligheid-recht/publicaties/publicaties/archief/2012/2012-w35-pub.htm

	Introduction
	The Lattice of Constraint Functions
	Constraint Syntax
	Constraint Semantics
	Examples
	Prototype implementation
	Outlook
	Conclusion

