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ABSTRACT
Propositional Dynamic Logic or PDL was invented as a logic
for reasoning about regular programming constructs. We
propose a new perspective on PDL as a multi-agent strategic
logic (MASL). This logic for strategic reasoning has group
strategies as first class citizens, and brings game logic closer
to standard modal logic. We demonstrate that MASL can
express key notions of game theory, social choice theory and
voting theory in a natural way, we give a sound and complete
proof system for MASL, and we show that MASL encodes
coalition logic. Next, we extend the language to epistemic
multi-agent strategic logic (EMASL), we give examples of
what it can express, we propose to use it for posing new
questions in epistemic social choice theory, and we give a cal-
culus for reasoning about a natural class of epistemic game
models. We end by listing avenues for future research and by
tracing connections to a number of other logics for reasoning
about strategies.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal Logic; F.4.1 [Mathe-
matical Logic]: Proof Theory; I.2.3 [Artificial Intelli-
gence]: Deduction and Theorem Proving

Keywords
Strategies, Strategic Games, Coalition Logic, Modal Logic,
Dynamic Logic, Voting Theory

1. INTRODUCTION
In this paper we propose a simple and natural multi-agent

strategy logic, with explicit representations for individual
and group strategies. The logic can be viewed as an ex-
tension of the well-known propositional logic of programs
PDL. We show that the logic can express key notions of
game theory and voting theory, such as Nash equilibrium,
and the properties of voting rules that are used to prove the
Gibbard-Satterthwaite theorem.

Unlike most other game logics, our logic uses explicit rep-
resentations of group strategies in N -player games, with
N ≥ 2, and treats coalitions as a derived notion.
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The logic we propose follows a suggestion made in Van
Benthem [4] (in [11]) to apply the general perspective of ac-
tion logic to reasoning about strategies in games, and links
up to propositional dynamic logic (PDL), viewed as a gen-
eral logic of action [29, 19]. Van Benthem takes individual
strategies as basic actions and proposes to view group strate-
gies as intersections of individual strategies (compare also
[1] for this perspective). We will turn this around: we take
the full group strategies (or: full strategy profiles) as basic,
and construct individual strategies from these by means of
strategy union.

A fragment of the logic we analyze in this paper was pro-
posed in [10] as a logic for strategic reasoning in voting (the
system in [10] does not have current strategies).

The plan of the paper is as follows. In Section 2 we re-
view key concepts from strategic game theory, and hint at
how these will show up in our logic. Section 3 does the
same for voting theory. Section 4 gives a motivating ex-
ample about coalition formation and strategic reasoning in
voting. Section 5 presents the language of MASL, and gives
the semantics. Next we show, in Section 6, that the key
concepts of strategic game theory and voting theory are
expressible in MASL. Section 7 extends the proof system
for PDL to a sound and complete proof system for MASL.
Section 8 gives an embedding of coalition logic into MASL.
Section 9 extends MASL to an epistemic logic for reason-
ing about knowledge in games, Section 10 gives examples of
what EMASL can express, and Section 11 sketches a calcu-
lus for EMASL. Section 12 concludes.

Key contributions of the paper are a demonstration of how
PDL can be turned into a game logic for strategic games, and
how this game logic can be extended to an epistemic game
logic with PDL style modalities for game strategies and for
epistemic operators. This makes all the logical and model
checking tools for PDL available for analyzing properties of
strategic games and epistemic strategic games.

2. GAME TERMINOLOGY
A strategic game form is a pair

(n, {Si}i∈{1,...,n})

where {1, . . . , n} with n > 1 is the set of players, and each
Si is a non-empty set of strategies (the available actions for
player i). Below we will impose the restriction that the game
forms are finite: each Si is a finite non-empty set.

We useN for the set {1, . . . , n}, and S for S1×· · ·×Sn, and
we call a member of S a strategy profile. Thus, a strategy



profile s is an n-tuple of strategies, one for each player. If s
is a strategy profile, we use si or s[i] for its i-th component.
Strategy profiles are in one-to-one correspondence to game
outcomes, and in fact we can view s ∈ S also as a game
outcome [22].

Consider the prisoner’s dilemma game PD for two players
as an example. Both players have two strategies: c for co-
operate, d for defect. The possible game outcomes are the
four strategy profiles (c, c), (c, d), (d, c), (d, d).

c d
c c, c c, d
d d, c d, d

It is useful to be able to classify game outcomes. A P -
outcome function for game form (N,S) is a function o :
S → P .

For the example of the PD game, o could be a function
with range {x, y, z, u}2, as follows:

c d
c x, x y, z
d z, y u, u

If C ⊆ N , we let SC =
Q

i∈C Si be the set of group
strategies for C. If s ∈ SC and t ∈ SN−C we use (s, t) for
the strategy profile that results from combining s and t, i.e.,
for the strategy profile u given by

u[i] = s[i] if i ∈ C, u[i] = t[i] otherwise.

The group strategies for the PD game coincide with the
strategy profiles.

An abstract game G is a tuple

(N,S, {≥i}i∈N ),

where (N,S) is a game structure, and each ≥i is a prefer-
ence relation on S1 × · · · × Sn. These preference relations
are assumed to be transitive, reflexive, and complete, where
completeness means that for all different s, t ∈ S, one of
s ≥i t, t ≥i s holds.

In the PD game example, with the output function as
above, the preferences could be fixed by adding the infor-
mation that z > x > u > y.

The preference relations may also be encoded as numerical
utilities. A payoff function or utility function for a player i
is a function ui from strategy profiles to real numbers. A
payoff function ui represents the preference ordering ≥i of
player i if s ≥i t iff ui(s) ≥ ui(t), for all strategy profiles
s, t.

A strategic game G is a tuple

(N, {Si}i∈N , {ui}i∈N )

where N = {1, . . . , n} and ui : S1 × · · · × Sn → R is the
function that gives the payoff for player i. Aim of players
in the game is to maximize their individual payoffs. We will
use u for the utility function, viewed as a payoff vector.

As an example, the PD game with payoffs as in the fol-
lowing picture, is a representation of the abstract version
above.

c d
c 2, 2 0, 3
d 3, 0 1, 1

It should be noted that payoff functions are a special case
of output functions. In the example of PD with payoffs,
we can view the payoff function as an output function with
range {0, 1, 2, 3}2.

Below, we will assume that output functions are of type
o : S → P , and we will introduce proposition letters to
range over P . This allows us to view the game forms as
modal frames, and the games including the output functions
as models, with the output function fixing the valuation by
means of “the valuation makes p true in a state s iff s ∈
o−1(p).”

A special case of this is the case where the P are payoff
vectors. Valuations that are payoff vectors allow us to ex-
press preferences of the players for an outcome as boolean
formulas (see below).

Let (s′i, s−i) be the strategy profile that is like s for all
players except i, but has si replaced by s′i. A strategy si is
a best response in s if

∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

A strategy profile s is a (pure) Nash equilibrium if each
si is a best response in s:

∀i ∈ N ∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

A game G is Nash if G has a (pure) Nash equilibrium.
These key notions of game theory will reappear below

when we discuss the expressiveness of MASL.

3. VOTING AS A MULTI-AGENT GAME
Voting can be seen as a form of multi-agent decision mak-

ing, with the voters as agents [14]. Voting is the process
of selecting an item or a set of items from a finite set A of
alternatives, on the basis of the stated preferences of a set
of voters. See [7] for a detailed account.

We assume that the preferences of a voter are represented
by a ballot, where a ballot is a linear ordering of A. Let
ord(A) be the set of all ballots on A.

If there are three alternatives a, b, c, and a voter prefers a
over b and b over c, then her ballot is abc.

Assume the set of voters is N = {1, . . . , n}. If we use b,b′

to range over ballots, then a profile P is a vector (b1, . . . ,bn)
of ballots, one for each voter. If P is a profile, we use Pi for
the ballot of voter i in P.

The following represents the profile P where the first voter
has ballot abc, the second voter has ballot abc, the third
voter has ballot bca, and so on:

(abc, abc, bca, abc, cab, acb).

A voting rule V for set of alternatives A is a function from
A-profiles to P+(A) (the set of non-empty subsets of A). If
V (P) = B, then the members of B are called the winners of
P under V . A voting rule is resolute if V (P) is a singleton
for any profile P.

Absolute majority is the voting rule that selects an alter-
native with more than 50 % of the votes as winner, and re-
turns the whole set of alternatives otherwise. This is not the
same as plurality, which selects an alternative that has the
maximum number of votes as winner, regardless of whether
more than half of the voters voted like this or not.

Strategizing is replacing a ballot b by a different one, b′,
in the hope or expectation to get a better outcome, where
better is“closer to b” in some sense. There are many ways to



interpret ‘better’, and the particular choice does not matter.
The way we will adopt (suggested in [32]) is to stipulate that
X is better than Y if X weakly dominates Y , that is, if every
x ∈ X is at least as good as every y ∈ Y and some x ∈ X is
better than some y ∈ Y .

Formally: If X,Y ⊆ A X 6= ∅, Y 6= ∅, and b ∈ ord(A),
then X >b Y if ∀x ∈ X∀y ∈ Y : x = y or x is above y in b,
and ∃x ∈ X∃y ∈ Y : x is above y in b.

Let P ∼i P′ express that profiles P and P′ differ only in
the ballot of voter i.

A voting rule is strategy-proof if P ∼i P′ implies V (P) ≥b
V (P′), where b = Pi (so ≥b expresses ‘betterness’ accord-
ing to the i-ballot in P).

To analyze voting as a game, think of casting an individual
vote as a strategy. If we assume that the voting rule is fixed,
this fixes the game outcome for each profile. The definition
of ‘betterness’ determines the pay-off.

Player strategies are the votes the players can cast, so
the set of individual strategies is the set A, for each player.
Strategy profiles are the vectors of votes that are cast. Out-
comes are determined by the voting rule; if the voting rule
is resolute, outcomes are in A, otherwise in P+(A). Pref-
erences are determined by the voter types, plus some stipu-
lation about how voters value sets of outcomes, given their
type, in the case of non-resolute voting rules.

4. GROUP ACTION IN VOTING GAMES
To illustrate strategic reasoning and coalition formation

in voting, we give an extended example. Suppose there are
three voters 1, 2, 3 and three alternatives a, b, c. Suppose the
voting rule is plurality. Then each player or voter has the
choice between actions a, b, and c.

Suppose 1 is the row player, 2 the column player, and 3
the table player. Then the voting outcomes are given by:

a:

a b c
a a a a
b a b a, b, c
c a a, b, c c

b:

a b c
a a b a, b, c
b b b b
c a, b, c b c

c:

a b c
a a a, b, c c
b a, b, c b c
c c c c

To determine the payoff function, we need information
about the types of the voters. Suppose voter 1 has type
(true ballot) abc. Then the betterness relation for 1 for the
possible outcomes of the vote is given by:

a > b > c and a > {a, b, c} > c.

Observe that neither {a, b, c} > b nor b > {a, b, c}. So let’s
assume these give the same payoff, and fix the payoff func-
tion for voters of type abc as

f(a) = 2, f(b) = f({a, b, c}) = 1, f(c) = 0.

If we do similarly for the other voter types, then this fixes
the strategic game for voting according to the plurality rule
over the set of alternatives {a, b, c}.

So suppose 1 has ballot abc, 2 has ballot bca, and 3 has
ballot cab. This gives the following strategic game form:

a:

a b c
a (2, 0, 1) (2, 0, 1) (2, 0, 1)

b (2, 0, 1) (1, 2, 0) (1, 1, 1)

c (2, 0, 1) (1, 1, 1) (0, 1, 2)

b:

a b c
a (2, 0, 1) (1, 2, 0) (1, 1, 1)

b (1, 2, 0) (1, 2, 0) (1, 2, 0)

c (1, 1, 1) (1, 2, 0) (0, 1, 2)

c:

a b c
a (2, 0, 1) (1, 1, 1) (0, 1, 2)

b (1, 1, 1) (1, 2, 0) (0, 1, 2)

c (0, 1, 2) (0, 1, 2) (0, 1, 2)

If the voters all cast their vote according to their true
ballot, then 1 votes a, 2 votes b and 3 votes c, and the
outcome is a tie, {a, b, c}, with payoff (1, 1, 1). This is a
Nash equilibrium: the vote cast by each player is a best
response in the strategy profile.

Now let’s change the voting rule slightly, by switching
to plurality voting with tie breaking, where abc as the tie
breaking order. This changes the plurality rule into a reso-
lute voting rule. The new strategic game becomes:

a:

a b c
a (2, 0, 1) (2, 0, 1) (2, 0, 1)

b (2, 0, 1) (1, 2, 0) (2, 0, 1)

c (2, 0, 1) (2, 0, 1) (0, 1, 2)

b:

a b c
a (2, 0, 1) (1, 2, 0) (2, 0, 1)

b (1, 2, 0) (1, 2, 0) (1, 2, 0)

c (2, 0, 1) (1, 2, 0) (0, 1, 2)

c:

a b c
a (2, 0, 1) (2, 0, 1) (0, 1, 2)

b (2, 0, 1) (1, 2, 0) (0, 1, 2)

c (0, 1, 2) (0, 1, 2) (0, 1, 2)

If the players all vote according to their true preference,
the outcome is a because of the tie breaking, with payoff
given by (2, 0, 1). But this is no longer a Nash equilibrium,
for player 2 can improve his payoff from 0 to 1 by casting vote
c, which causes the outcome to change into c, with payoff
(0, 1, 2). The strategy triple (a, c, c) is a Nash equilibrium.

So we are in a situation where the voting rule seems to
favour voter 1 with ballot abc, because the tie breaking rule
uses this order for tie breaking, and still the voter with this
ballot ends up losing the game, because the other two players
have an incentive to form a coalition against player 1.

5. A LANGUAGE FOR MASL
We will now turn to the description of strategic games

like the PD game and the voting game in terms of actions
in the spirit of PDL. We will take as our basic actions the
full strategy profiles.

The reader is urged to think of a state in a game as a
strategy vector where each player has determined her strat-
egy. Strategy expressions in the MASL language are inter-
preted as relations on the space of all game states. Individual
strategies emerge as unions of group strategies. An example



cc cd

dc dd

c,?? c,??

c,??

c,?? c,?? c,??c,??

Figure 1: Cooperation Strategy for Player 1 in PD
Game

is the strategy for the first player in the PD game to coop-
erate. This individual strategy is represented as (c, ??), and
interpreted as in Figure 1.

Strategy terms of MASL are:

ti ::= a | ?? | !!

Here i ranges over the set of players N ; and a ranges over
the set of all strategies Si for player i. A random term “??”
denotes an individual strategy for an adversary player, and
“!!” denotes the current strategy of a player. Random terms
serve to model what adversaries do, and current terms serve
to model what happens when players stick to a previous
choice.

As will become clear below, terms of the form ?? are used
for succinctness; they could be dispensed with in favour of
explicit enumerations of individual strategies.

From strategy terms we construct MASL strategy vectors,
as follows:

c ::= (t1 . . . , tn)

The MASL strategy vectors occur as atoms and as modali-
ties in MASL formulas. Allowing strategy terms as atomic
formulas allows for succinct classification of game situations.

We assume that p ranges over a set of game outcome val-
ues, that is: we assume an outcome function o : S → P .
The language is built in the usual PDL manner by mutual
recursion of action expressions and formulas:

φ ::= > | c | p | ¬φ | φ1 ∧ φ2 | [γ]φ

γ ::= c | ?φ | γ1; γ2 | γ1 ∪ γ2 | γ∗

We will employ the usual abbreviations for ⊥, φ1 ∨ φ2,
φ1 → φ2, φ1 ↔ φ2 and 〈γ〉φ.

Let s ∈ S. Then s is a strategy profile, with individual
strategies for player i taken from Si. We refer to the i-
component of s as s[i]. Thus, if s = (a, b, b), then s[1] = a.

Let i ∈ N . Then [[·]]Si,s,i is a function that maps each ti
to a subset of Si, and [[·]]S,s is a function that maps each
strategy vector to a set of strategy profiles ⊆ S, as follows:

[[a]]Si,s,i = {a}
[[??]]Si,s,i = Si

[[!!]]Si,s,i = {s[i]}

[[(t1 . . . , tn)]]S,s = [[t1]]S1,s,1 × · · · × [[tn]]Sn,s,n

For example, let the set of individual strategies for each
player be A = {a, b, c}, and let n = 3 (as in the voting exam-
ple in Section 4). Then a strategic change by the first player
to b, while both other players stick to their vote is expressed
as (b, !!, !!). In a game state (a, b, b) this is interpreted as
{((a, b, b), (b, b, b))}.

A strategic change by the first player to b, given that the
second player sticks to her vote, while the third player may
or may not change, is expressed by (b, !!, ??). In the context of
a strategy profile s = (a, b, c), this is interpreted as follows:

[[(b, !!, ??)]]A,s = {b} × {b} × {a, b, c}.

(??, c, c) represents the group strategy where players 2 and 3
both play c. This is a strategy for the coalition of 2 and 3
against 1.

The formula that expresses that the coalition of 2 and 3
can force outcome c by both voting c is (abbreviating the
singleton outcome {c} as c):

[(??, c, c)]c.

The strategy (??, ??, c) is different from (!!, !!, c), for the lat-
ter expresses the individual strategy for player 3 of playing
c, in a context where the two other players do not change
their strategy.

The relational interpretation for coalition strategies fol-
lows the recipe proposed in [4], but with a twist. We inter-
pret a strategy for an individual player as a relation on a set
of game states, by taking the union of all full strategy rela-
tions that agree with the individual strategy. So the strate-
gies for the individual players are choices that emerge from
taking unions of vectors that determine the game outcome
completely. If we assume that the players move together,
without information about moves of the other players, then
the individual strategies are choices, but an individual choice
does not determine an outcome. Only the joint set of all
choices does determine an outcome.

So if we represent a strategy for player i as a relation, then
we have to take into account that the individual choice of i
does need information about how the others move to deter-
mine the outcome. The relation for the individual choice a
of player i is given by

[[(??, · · · , ??, a, ??, · · · , ??)]]S,s

= S1 × · · · × Si−1 × {a} × Si+1 × · · · × Sn.

This relation is computed from all choices that the other
players could make (all strategies for the other players).

Compare this with

[[(!!, · · · , !!, a, !!, · · · , !!)]]S,s =

{s[1]} × · · · {s[i− 1]} × {a} × {s[i+ 1]} × · · · {s[n]}.
This is the action where player i switches to a, while all
other players stick to their strategies.

The picture in Figure 2 gives the interpretation of the
(c, !!) strategy vector in the PD game.

This generalizes to coalitions, as follows. A strategy for a
coalition is a choice for each of the coalition members, and
the corresponding relation is the union of all full strategy
relations that agree with the coalition strategy. Compare the
definition of the [[·]]S,s function for strategy vectors above.

This gives an obvious recipe for turning strategic game
forms with outcome functions into Kripke models. Let (N,S)
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dc dd

c,!! c,!!

c,!! c,!!

Figure 2: Interpretation of (c, !!) in PD Game

be a strategic game form and let o : S → P be an outcome
function, and let s ∈ S be a strategy profile.

Then the truth definition for MASL, with respect to M =
(N,S, o) and s is given by:

M, s |= > always

M, s |= c iff s ∈ [[c]]S,s

M, s |= p iff s ∈ o−1(p)

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= [γ]φ iff for all t with (s, t) ∈ [[γ]]M :

M, t |= φ

[[c]]M = {(s, t) | t ∈ [[c]]S,s}
[[?φ]]M = {(s, s) |M, s |= φ}

[[γ1; γ2]]M = [[γ1]]M ◦ [[γ2]]M

[[γ1 ∪ γ2]]M = [[γ1]]M ∪ [[γ2]]M

[[γ∗]]M = ([[γ]]M )∗,

where ◦ is used for relation composition, and ∗ for reflexive
transitive closure.

Note that it is assumed that the signature of the lan-
guage matches that of the model: for interpretation in M =
(N,S, o) with o : S → P , we assume that strategy vectors of
the language have length n, that the terms ti of the language
get interpreted as subsets of Si, and that the proposition-
ional atoms range over P .

6. EXPRESSIVENESS OF MASL
We give examples to demonstrate that MASL expresses

key concepts of game theory, voting theory, social choice
theory and iterated game playing, in a natural way.

Abbreviations.
Let (ia, !!) abbreviate the strategy vector

(!!, · · · , !!, a, !!, · · · , !!),

with a in i-th position, and !! everywhere else.
Using this, let [(i, !!)]φ abbreviate

V
a∈Si

[(ia, !!)]φ. Then

[(i, !!)]φ expresses that all strategies to which player i can
switch from the current strategy profile result in a strategy

profile where φ holds (provided that the other players keep
their strategies fixed).

Let (ia, ??) abbreviate the strategy vector

(??, · · · , ??, a, ??, · · · , ??),

with a in i-th position, and ?? everywhere else.
Using this, let [(i, ??)]φ abbreviate

V
a∈Si

[(ia, ??)]φ. Then

[(i, ??)]φ expresses that all strategies for i guarantee φ, no
matter what the other players do.

Let (??) abbreviate (??, · · · , ??) (the strategy vector that
everywhere has ??). Then 〈(??)〉φ expresses that in some
game state φ holds.

Representing Payoffs.
To represent payoffs, we will assume that basic proposi-

tions are payoff vectors u, and that the payoff values are in
a finite set U (the set of all utilities that can be assigned in
the game). Next, define ui ≥ v as

W
w∈U,w≥v u[i] = w and

ui > v as
W

w∈U,w>v u[i] = w. Then ui ≥ v expresses that
player i gets at least v, and ui > v expresses that player i
gets more than v (compare [34] for a similar approach).

Weak Dominance.
Using the above abbreviations, we can express what it

means for an i-strategy a to be weakly dominant. Intuitively,
it means that a is as least as good for i against any moves
the other players can make as any alternative b for a. In our
logic: ^

v∈U

^
b∈A−{a}

[(ib, ??)](ui ≥ v → 〈(ia, !!)〉ui ≥ v).

Nash Equilibrium.
The following formula expresses that the current strategy

profile is a Nash equilibrium:^
i∈N

_
v∈U

(ui ≥ v ∧ [(i, !!)]¬ui > v).

The following formula expresses that the game is Nash:

〈(??)〉
^
i∈N

_
v∈U

(ui ≥ v ∧ [(i, !!)]¬ui > v).

Plurality Voting.
For the application of MASL to voting, assume the output

function produces an ordered pair consisting of the outcome
of the voting rule for a profile, plus the utility vector for the
players for that profile.

Let A be the set of alternatives. Let Pa be the set of all
full strategy vectors where a gets more votes than any other
alternative. Then ^

x∈A

^
c∈Px

[c]x

expresses that the game is a voting game with plurality rule.
This is easily extended to a formula that expresses the rule
of plurality voting with tie breaking.

Resoluteness.
Assume that the proposition a expresses that a is among

the winners given the current profile. A voting rule is res-
olute if there is always exactly one winner. Viewing voting



according to a voting rule as a game, the following formula
expresses that the game is resolute:

[(??)]
_

a∈A

(a ∧
^

b∈A−{a}

¬b).

Strategy-Proofness.
A voting rule is strategy proof if it holds for any profile

S and for any player (voter) i that changing his vote (ac-
tion) does not give an outcome that is better (according to
the preferences of i in S) that the outcome in S. This is
expressed by the following formula:

[(??)]
^
i∈N

_
v∈U

(ui ≥ v ∧ ¬〈(i, !!)〉ui > v).

Non-Imposedness.
A voting rule is (weakly) non-imposed if at least three

outcomes are possible. Viewing voting as a game, we can
use the following formula to express this:_

a∈A

_
b∈A−{a}

_
c∈A−{a,b}

(〈(??)〉a ∧ 〈(??)〉b ∧ 〈(??)〉c).

Dictatorship.
In a multi-agent game setting, a dictator is a player who

can always get what he wants, where getting what you want
is getting a payoff that is at least as good as anything any
other player can achieve. Here is the formula for that, using
the abbreviation (i, ??):_

v∈U

^
j∈N−{i}

[(??)](¬uj > v ∧ 〈(i, !!)〉ui ≥ v).

Gibbard-Satterthwaite.
The classic Gibbard-Satterthwaite theorem [15, 30] states

that all reasonable voting rules allow strategizing, or put
otherwise, that no reasonable voting rule is strategy-proof.

Resoluteness, strategy-proofness, non-imposedness and dic-
tatorship are the four properties in terms of which the Gibbard-
Satterthwaite theorem is formulated, and in fact, the theo-
rem can be stated and proved in our logic. What the theo-
rem says semantically is:

Res,SP,NI |= Dict.

It follows from the completeness of the logic (Section 7 be-
low) that for every choice of MASL language (where the
choice of language fixes the number of players/voters N and
the set of alternatives A, with |A| > 3), the following can be
proved:

Res,SP,NI ` Dict.

Meta-Strategies: Tit-for-Tat.
Tit-for-tat as a meta-strategy for the PD game [3] is the

instruction to copy one’s opponents last choice, thereby giv-
ing immediate, and rancour-free, reward and punishment.
Figure 3 gives a picture of the tit-for-tat meta-strategy for
player 2, with the states indicating the outcomes of the last
play of the game.

cc cd

dc dd

??, c

??, d

??, c

??, c

??, d

??, d

Figure 3: Tit-for-tat Meta-Strategy for Player 2 in
PD Game

This works because we may think of the current state of
the game as the result of the last play of PD, remembered in
the state. Testing the state yields the clue for whether the
reward action (??, c) or the punishment action (??, d) has to
be executed. Thus, the following MASL action expression
describes this meta-strategy for player 2.

(?(c, ??); (??, c) ∪ ?(d, ??); (??, d))∗

What this says is: if the last action by the opponent was a
c, then reward, otherwise (the last action by the opponent
was a d) punish. To turn this into a meta-strategy for player
1, just swap all pairs:

(?(??, c); (c, ??) ∪ ?(??, d); (d, ??))∗

Note that tit-for-tat for the PD game boils down to the same
thing as the copycat meta-strategy, where a player always
copies the last move of the opponent. So the player 1 copycat
and player 2 copycat meta-strategies for the PD game are
also given by the above strategy expressions.

7. A COMPLETE CALCULUS FOR MASL
To axiomatize this logic, we can use the well-known proof

system for PDL [31, 23], with appropriate axioms for the
strategy vectors added.

Call a strategy vector c = (t1 . . . , tn) determined if for no
i ∈ N it is the case that ti = ??.

Vector axioms are:

1. Effectivity:

[c]c.

2. Seriality:

〈c〉>.

3. Functionality:

〈c〉φ→ [c]φ

for all determined strategy vectors c.

4. Adversary power:



Let c have ?? in position i, and let ci
a be the result of

replacing ?? in position i in c by a. Then:

[c]φ↔
^

a∈Si

[ci
a]φ.

Note that this uses the assumption that the set Si of
available actions for player i s finite.

5. Determinate current choice:

Let c have !! in position i, and let ci
a be the result of

replacing !! at position i in c by a. Then:

(ia, !!)→ (c↔ ci
a).

The effectivity axiom says that execution of a strategy vector
always makes the vector true.

The seriality axiom says that every strategy vector can be
executed.

The functionality axiom says that determined strategy
vectors are functional. This expresses that the outcome is
determined if every player makes a determinate choice. This
axiom does not hold for vectors that are not determined.
The vector (c, ??) has |S2| possible outcomes.

The adversary power axiom spells out what an adversary
player can do. This defines the meaning of ?? terms.

The determinate current choice axiom fixes the meaning
of !! terms.

These axioms are sound for the intended interpretation.
Completeness can be shown by the usual canonical model
construction for PDL (see [19, 6]):

Theorem 1. The calculus for MASL is complete.

MASL has the same complexity for model checking and
satisfiability as PDL: Model checking for PDL and MASL
is PTIME-complete [20]. Sat solving for PDL and MASL is
EXPTIME-complete [6]. Model checking for formulas that
use only the modal fragment of MASL (modalities without
Kleene star) can be done more efficiently, e.g., by using the
algorithm of [13] that runs in time O(|M | × |φ|).

The important thing to note is that the standard model
checking tools for modal logic and PDL can now be used for
strategic games, using the MASL extension of PDL.

8. CONNECTION TO COALITION LOGIC
Our approach links directly to coalition logic [27] (see also

[4] for this connection). Coalition logic has the following
syntax:

φ ::= > | p | ¬φ | φ ∧ φ | [C]φ

where p ranges over basic propositions, and C ⊆ N , with
N the set of agents. Intended meaning of [C]φ is that the
coalition C is able to force the game outcome to be in φ.

Again, let (N,S) be a strategic game form, let o : S →
P be an outcome function, and let s ∈ S be a strategy
profile. Assume models M of the form (N,S, o). Coalition
logic, the way it is presented in [27], is a bit mysterious
about how valuations enter into game forms, but we can fix
this by using the output functions in the same manner as
in the semantics of MASL. Formulas of coalition logic are
interpreted in strategy profiles s of M , as follows.

Recall that SC is the set of group strategy functions for C,
and that if s ∈ SC and t ∈ SN−C , then (s, t) is the strategy

profile where members of C choose according to s and all
others choose according to t.

M, s |= p iff s ∈ o−1(p).

M, s |= ¬φ iff M, s 6|= φ.

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2.

M, s |= [C]φ iff ∃t ∈ SC∀u ∈ SN−C

M, (t, u) |= φ.

Let Ċ be the set of all strategies for coalition C against
all other players.

If we assume that for each player i the set Si of possible
strategies for i is finite, then Ċ is finite as well, and Ċ is
defined by

{(t1, . . . , tn) | ti ∈ Si if i ∈ C, ti = ?? otherwise }.

This means we can construct the formula_
c∈Ċ

[c]φ.

The translation instruction Tr for turning coalition logic into
MASL becomes:

Tr(p) := p

Tr(¬φ) := ¬Tr(φ)

Tr(φ1 ∧ φ2) := Tr(φ1) ∧ Tr(φ2)

Tr([C]φ) :=
_
c∈Ċ

[c]Tr(φ).

Induction on formula structure now proves:

Theorem 2. M, s |=CL φ iff M, s |=MASL Tr(φ).

This assumes that the set of strategies for each agent is
finite, as this is a basic assumption of MASL. This finite-
ness restriction aside, the main difference between coalition
logic and MASL is that MASL is explicit about coalition
strategies where coalition logic is not. Many key concepts
of strategic game theory and voting theory that MASL can
express are beyond the reach of coalition logic.

9. EPISTEMIC MASL
MASL uses PDL as an action logic for game actions. It

is well-known that PDL also can be given an epistemic in-
terpretation [5]. The language of Epistemic Multi Agent
Strategy Logic (EMASL) combines the strategy interpreta-
tion of PDL with the epistemic interpretation of PDL. For
that, a new set of PDL actions is thrown in, but this time
with an epistemic/doxastic interpretation. Here is the ex-
tended language:

φ ::= > | c | p | ¬φ | φ1 ∧ φ2 | [γ]φ | [α]φ

γ ::= c | ?φ | γ1; γ2 | γ1 ∪ γ2 | γ∗

α ::= i | ǐ |?φ | α1;α2 | α1 ∪ α2 | α∗

i ranges over the set N of agents. ǐ denotes the converse of
the i relation.

The interpretations of the i operators (the atoms of α
actions) can be arbitrary. Define i as (i∪ ǐ )∗, and you have a
reflexive, symmetric and transitive knowledge operator (see
[12]).



Note that tests appear both in the action expressions and
in the epistemic expressions. Thus, actions can be condi-
tioned by knowledge, and knowledge can refer to action.
This allows the representation of strategies like “If I know
that playing a results in φ, then play a, else play b” (ac-
tion conditioned by knowledge), and the representation of
epistemic relations expressing what will become known as a
result of a certain strategy (knowledge referring to action).

To interpret this language, we define intensional game
forms from (extensional) game forms. An intensional game
form is a tuple

(N,W,R1, . . . , Rn)

where

• W is a set of pairs (G, s) where G = (N,S) is a game
form with s ∈ S,

• each Ri is a binary relation on W .

These intensional game forms can be viewed as Kripke
frames. As before, they can be turned into models by using
an output function o : S → P to define the valuation. For
that, extend o to W by means of the stipulation saying that
the output of a game-profile pair is determined by its profile
component:

o(G′, s′) = o(s′).

Since s′ ∈ S′ ⊆ S for each S′, this is well-defined.
Let M be an intensional game form (N,W,R1, . . . , Rn)

based on G = (N,S) and let o : W → P be an output
function that is extended from an output function o : S → P
for G. Let w ∈W .

Then the truth definition of EMASL formulas in M,w is
given by (only clauses that differ from the MASL version
shown):

M,w |= c iff w = ((N,S), s) and s ∈ [[c]]S,s

M,w |= [α]φ iff for all w′ with (w,w′) ∈ [[α]]M :

M,w′ |= φ

[[c]]M = {(w,w′) | w = ((N,S), s), w′ = ((N,S), t)

with t ∈ [[c]]S,s}
[[i]]M = Ri

[[ǐ ]]M = (Ri)̌

One way to base an intensional game form on a game form
G = (N,S) is by putting W = {(G, s) | s ∈ S} and

Ri = {((G, s), (G, s′)) | s[i] = s′[i]}

for all i ∈ N . Call this the epistemic lift of G, and denote it
with G#.

Then in G# the accessibility relations express that every
player can distinguish between her own actions, but not be-
tween those of other players.

For the PD game, this gives a model where every player
knows her move, and the two possible strategies for her op-
ponent. Furthermore, it is common knowledge that there
is no coordination between the actions of the two players:
the relation (R1 ∪R2)∗, denoted by the EMASL expression
(1 ∪ 2)∗, is the whole set of strategy profiles.

cc cd

dc dd

cc cdcd

cc

dc dd

dd

dc

dccc ddcd

1

1

2 2

Figure 4: Epistemic PD Game Form

This is pictured in Figure 4, with dashed lines for the
accessibilities of player 1, dotted lines for those of player 2,
and reflexive epistemic arrows omitted.

In epistemic lifts of game forms it is common knowledge
among all players what is the nature of the game; more in
particular it is common knowledge what are the available
strategic options for all players.

This assumption that the nature of the game is common
knowledge is dropped for intensional game forms that are
built by means of strategy restrictions from an (extensional)
game form.

Let G′ v G if G = (N, {Si | i ∈ N}), G′ = (N, {S′i |
i ∈ N}), and for all i ∈ N : S′i ⊆ Si. Call G′ a strategy
restriction of G.

cc cd

dc dd

cc cd

Figure 5: Restriction in PD Game.

An intensional game form built from strategy restriction
from PD is given in Figure 5. This pictures a situation where
the first player is committed to c, but the other player does
not know this. The oval indicates the actual game; this is
confused by player 2 with the full PD game (dotted lines for
the accessibility relation of player 2).



10. EXPRESSIVENESS OF EMASL
EMASL extends MASL, so every concept from game the-

ory, voting theory and social choice theory that is express-
ible in MASL is expressible in EMASL. Many concepts from
social choice theory have epistemic versions. Here is one ex-
ample.

Knowing Dictatorship.
A dictator in a multi agent game was defined as a player

who is always able to get the best deal. A knowing dictator
is a player who not only has this ability, but also knows that
he has it:

[i]
_

v∈U

^
j∈N−{i}

[(??)](¬uj > v ∧ 〈(i, !!)〉ui ≥ v).

As an example, consider player 2 in the game pictured in
Figure 5, with an output function giving appropriate utilities
for the PD game. Player 2 is a dictator for this game, for he
can force the outcome cd, with best payoff for 2. But player
2 is not aware of this fact: for all he knows, he could end up
in state dd, with worse payoff for him than cd.

Gibbard-Satterthwaite, Epistemically.
Resoluteness, strategy-proofness, non-imposedness, dic-

tatorship and knowing dictatorship are all expressible in
EMASL. Here is a new type of question. Consider the class
of epistemic lifts G# of strategic game forms G based on
resolute, strategy-proof and non-imposed voting rules. Then
the MASL proof of the GS theorem lifts to EMASL, so every
such game has a dictator. But does every such game also
have a knowing dictator? What are the minimum epistemic
conditions to make the epistemic GS theorem go through
in intensional games? It also make sense to formulate an
epistemic version of strategy-proofness, stating that players
do not know that they can improve their payoff by voting
strategically. This is a weakening of strategy-proofness, and
we can investigate under which epistemic conditions it is
enough to derive GS, or to derive epistemic GS.

11. A CALCULUS FOR EMASL
There are various classes of intensional game models that

one might want to axiomatize. As an example, we consider
the class of epistemic lift models (G#, o), where G = (N,S)
is a finite strategic game form and o : S → P is an output
function for G.

Notice that the axioms of MASL are sound for this class,
so that we can extend the calculus for MASL, to get a cal-
culus for reasoning about epistemic lift models, as follows.

• Propositional axioms, modus ponens, necessitation for
γ and α.

• PDL axioms for γ modalities.

• PDL axioms for α modalities.

• The five MASL vector axioms.

• φ→ [i]〈ǐ 〉φ.

• φ→ [ǐ ]〈i〉φ.

• [(ia, !!)][i](ia, !!).

•
V

j∈N−{i}[(ja, !!)]¬[i](ja, !!).

The two axioms for ǐ are the standard modal axioms for
converse. The first axiom for [i] expresses that player i can
distinguish between his own actions, and the second axiom
for [i] expresses that i cannot distinguish between the actions
of other players. This gives a sound and complete system
for reasoning about epistemic lift models.

12. RELATED AND FURTHER WORK
The present approach is closest to [4], to which it is in-

debted. Instead of constructing group strategies from indi-
vidual strategies by relation intersection, we take complete
group strategies as basic in the semantics, and construct
strategies for subgroups and individuals by relation union.

Strategic reasoning is related to multimodal logic Kn with
intersection in [1], where group strategies are constructed
from individual strategies by means of relation intersection.
Strategies are not explicit, and many key notions from game
theory are not expressible.

The present approach is close to [18, 21] where PDL is
taken as a starting point to formulate expressive STIT logics
for analzying agency in games. In [33] a special purpose logic
for reasoning about social choice functions is proposed, with
an analysis to the concept of strategy-proofness, in terms of
a modality for expressing that certain players stick to their
current choice.

Coalition logic is a close kin of Alternating-time Temporal
Logic [2, 16]. This has various extensions, of which CATL
[34] deals explicitly with strategic reasoning. An important
difference with the present approach is that ATL and CATL
focus on extensive rather than strategic games.

Strategic reasoning is also the topic of game logics such as
[24, 25, 28]. These logics focus on the theory of two-player
games, and also use the regular operations for strategy con-
struction. The imporant difference is that in game logic the
regular operations are applied to single player strategies. We
hope to study the connection with game logic and with game
algebra [17, 35] more precisely in future work.

Our work provides a framework for extending the explo-
ration of knowledge-theoretic properties of strategic voting
in [8]. In [26] the notion of knowledge manipulation in games
is discussed, which is in the compass of EMASL, as is the
analysis of the role of knowledge and ignorance in voting
manipulation in [9].

There are two important limitations of MASL and EMASL,
in the versions presented here: the restriction to finite ranges
of individual actions, and the restriction to strategic games.

The first restriction could be lifted by extending the lan-
guage with quantification over i-strategies. To lift the second
restriction, one could introduce a register for keeping track
of the players that have made their move. This would get us
closer to ATL, for such a register can be viewed as a clock.
It remains to be seen whether this extension could still be
handled naturally by a PDL-based approach.

In [5], epistemic PDL is used as a base system to which
operators for communication and change are added. In fu-
ture work, we hope to extend the framework of EMASL in
a similar way with communication and changes operators.
Communications change the epistemics of the game by in-
forming players about strategies of other players. Change
operations change the game by changing outcomes or util-
ities. The switch from plurality voting to plurality voting
with tie breaking could be modelled as such a change.
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