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Abstract. The effects of public announcements, private communications, deceptive 8

messages to groups, and so on, can all be captured by a general mechanism of 9

updating multi-agent models with update action models, now in widespread use. 10

There is a natural extension of the definition of a bisimulation to action models. 11

Surely enough, updating with bisimilar action models gives the same result (modulo 12

bisimulation). But the converse turns out to be false: update models may have 13

the same update effects without being bisimilar. We propose action emulation as a 14

notion of equivalence more appropriate for action models, and generalizing standard 15

bisimulation. It is proved that action emulation provides a full characterization of 16

update effect. We first concentrate on the general case, and next focus on the im- 17

portant case of action models with propositional preconditions. Our notion of action 18

emulation yields a simplification procedure for action models, and it gives designers 19

of multi-agent systems a useful tool for comparing different ways of representing a 20

particular communicative action. 21

1. Introduction 22

Knowledge, knowledge about knowledge, lack of knowledge about knowl- 23

edge, all play a key role in the interaction of agents. In systems that 24

handle communication where not all information is shared equally, the 25

effects on knowledge can easily become quite complicated: witness the 26

effects of sending emails with bcc lists, coupled with the unreliability of 27

the server, or resending an acknowledgment of receipt. To reason about 28

such systems one needs powerful logics that can express and compare 29

the effects of various communicative actions. 30

In epistemic logic [11] knowledge is represented with multi-agent 31

Kripke models (or possible world models) that contain for each agent 32

an accessibility relation pointing at the situations that the agent con- 33

siders possible. To talk about what is the case in such models, a logical 34

language is used that allows one to express things like ‘agent a considers 35

φ possible’ (this would express that φ is consistent with what a knows or 36

believes), or ‘in all states that are linked to the current state via a and 37
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2

b accessibilities, φ is the case’ (this would express common knowledge 1

of a and b that φ). 2

While standard epistemic logics do not directly represent acts of 3

communication, Dynamic Epistemic Logic (DEL) does. It introduces 4

the representation of actions together with a method of updating a 5

situation with these actions. It also introduces action modalities for 6

describing effects of action update. For an overview of developments in 7

these areas, consult Gerbrandy [13], van Ditmarsch [8], van Benthem 8

[4, 5], Baltag, Moss and coworkers [3, 1, 2], and the textbook treatment 9

in [10]. In the paper we will work with the logic of communication and 10

change (LCC) of van Benthem, van Eijck and Kooi [6], which is one 11

of the most expressive versions of DEL. LCC consists of propositional 12

dynamic logic [19, 14] with added action modalities. 13

The basic insight of DEL is from [3]: a wide variety of information 14

updates can be treated using a formal product construction with an 15

action model, which is nothing but a multi-agent Kripke model with 16

the valuations replaced by precondition formulas. The reason for this to 17

work is that actions with epistemic effects are quite similar to situations 18

with epistemic aspects. The uncertainty of agents about which action 19

takes place is a lot like the uncertainty of agents about what is the case. 20

If you receive a message φ and I am left in the dark, then this is 21

modeled as an action that allows you to distinguish the φ situations 22

from the rest, while I am not allowed to make that distinction. If the 23

two of us get the φ message, and some outsider does not, then it makes 24

a real difference whether the two of us know of each other that we get 25

the same information, and this again is encoded in the action model. 26

Since action model updating is an attractive mechanism for mod- 27

eling communicative action, it is important for multi-agent system 28

design to have means of comparing different ways of representing a 29

particular communicative action. In this paper, we study equivalence of 30

action models: two action models are equivalent if they always produce 31

non-distinguishable results. Our contribution is a concept called action 32

emulation, and a proof that this precisely characterizes this equivalence. 33

The structure of the paper is as follows. In Section 2, we review 34

the version of Dynamic Epistemic Logic we work with, motivate our 35

choice, and define our basic notions. Section 3 gives a definition of 36

equivalence or ‘same update effect’ for action models that we want 37

to capture, compares this notion to that of bisimulation for action 38

models, and gives examples to show that these notions do not quite 39

match. Then, after some preliminaries in Section 4, we propose a gen- 40

eral structural notion of action emulation in Section 5, and show that 41

action equivalence implies existence of an action emulation, and vice 42

versa. The proposed notion is rather involved, but in Section 6 we show 43
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that it can be simplified for the case of action models with proposi- 1

tional preconditions. The section ends with examples of action models 2

where the simplified characterization fails. Section 7 gives discussion 3

and questions for further research. 4

2. Dynamic Epistemic Logic 5

In this section we formally introduce epistemic models (or multi-agent 6

Kripke models), followed by definitions of action models and a suitable 7

epistemic language. Next, we define the process of updating with an 8

action model and the notion of truth in a model. 9

Epistemic models capture a static description of what agents know 10

about the world and about each other, action models capture the 11

instructions for modifying these static systems. In all definitions we 12

assume that a finite set of agents Ag and a set of propositional variables 13

Prop are given. 14

DEFINITION 1. (Epistemic Model). An epistemic model is a triple 15

M = (W,V,→) where W is a non-empty set of worlds, V : W → 16

P(Prop) assigns a valuation to each world w ∈ W , and →: Ag → 17

P(W 2) assigns an accessibility relation
i→ to each agent i ∈ Ag. 18

A pointed epistemic model is a pair (M,u) where M is an epistemic 19

model and u is an element of WM . The intended interpretation of the 20

distinguished point u is that u represents the actual world. 21

0 : h 1 : h

abc abc

abc

Figure 1. Epistemic model representing the result of a hidden coin toss, where the
coin shows heads, but none of the agents sees this.

If M is an epistemic model, we use WM to refer to its set of worlds, 22

VM to refer to its valuation function, and →M to refer to its accessi- 23

bility function. Figure 1 gives an example of an epistemic model that 24

describes the result of a hidden coin toss, with three onlookers, Alice, 25

Bob and Carol. The model has an actual situation, marked in grey. 26

Presence of proposition letter h in a world indicates that the valuation 27

makes h true in that world, presence of h in a world indicates that the 28
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valuation makes h false in that world, so the picture reveals that the 1

coin has landed heads up in the actual world 0, tails up in world 1. The 2

epistemic accessibility relations are indicated by arrows, with labels 3

indicating the agents. None of the agents can tell these two worlds 4

apart. Singling out 0 as distinguished point tells us that the actual 5

world is world 0. 6

0 : h

1 : habc abc

abc

bc abc

2 : h
bc

Figure 2. Epistemic model representing that the result of a hidden coin toss is heads,
agent a knows this, while agents b and c do not but hold it for possible that a knows
it.

Figure 2 gives a situation like that of Figure 1, but where agent a 7

knows that the coin has landed heads up, while the other agents don’t 8

know it but hold it for possible that a knows (and also hold it for 9

possible that a does not know). 10

A message to a that the coin has landed heads up, while the others 11

hold it for possible that a receives that message, can be viewed as an 12

action where a can make a distinction that b and c cannot make. It 13

changes the model from Figure 1 into that of Figure 2. 14

0 : h 1 : >

abc abc

bc

Figure 3. Action model for an observation by a that the the coin landed heads up.

Baltag, Moss and Solecki [3] proposed to model update actions on 15

epistemic models as taking a product with action models, where action 16

models are like epistemic models, but with valuations replaced by pre- 17

condition formulas. In the example of Figure 3, the actual action (in 18

grey) is that formula h is checked. The agents b and c cannot distinguish 19

this action from an action where nothing is checked. The result of 20
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updating with this action model should be a situation where a may 1

have learnt h, and where b and c know this. In other words, updating 2

the epistemic model in Figure 1 with the action model in Figure 3 3

should yield something ‘essentially equivalent’ to the epistemic model 4

in Figure 2, with the notion of ‘essentially equivalent’ being the notion 5

of bisimulation defined later in the paper. 6

DEFINITION 2. (Action Model). An action model for a language L is 7

a triple A = (W, pre,→) where W is a non-empty set of action states, 8

pre : W → L assigns a consistent precondition formula pres (in L) to 9

each action state s ∈W , and →: Ag→ P(W 2) assigns an accessibility 10

relation
i→ to each agent i ∈ Ag. 11

A pointed action model for a language L is a pair (A, s) where A is 12

an action model for L and s is a member of WA, indicating that s is 13

the action that actually takes place. 14

Consistency will be defined below (Definition 5). Similarly to the 15

case of epistemic models, we use WA for the set of action states of 16

action model A, preA for its precondition function, and →A for its 17

accessibility function. 18

The epistemic language L1 that we are going to use for the pre- 19

conditions is epistemic PDL with action modalities. It is defined as 20

follows. 21

DEFINITION 3. (Epistemic Languages L0 and L1). Let p range over 22

the set of basic propositions Prop and i over the set of agents Ag. The 23

formulas of L1 are given by: 24

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [α]φ | [A, s]φ

α ::= i | ?φ | α1 ∪ α2 | α1;α2| α∗

where A is an action model for L1, and s ∈ WA. Let L0 be the result 25

of removing all formulas which have a sub-formula of the form [A, s]φ 26

from the language. 27

Note that in the definition of the grammar L1, a sub-recursion occurs 28

for (A, s) since the preconditions in (A, s) themselves are in L1. We 29

employ the usual abbreviations. In particular, ⊥ is shorthand for ¬>, 30

φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2), φ1 → φ2 for ¬(φ1 ∧ ¬φ2), 〈α〉φ for ¬[α]¬φ, 31

〈A, s〉φ for ¬[A, s]¬φ. Also, we will use
∨
{φ1, . . . , φn} for φ1 ∨ · · · ∨ φn 32

and
∧
{φ1, . . . , φn} for φ1 ∧ · · · ∧ φn. 33

Below we will establish results for preconditions in L0 only. This will 34

establish results for the L1 as well: Switching to the richer language is 35

without loss of generality, for it is proved in [6] that LCC (our language 36

L1) has the same expressive power as epistemic PDL (our language L0): 37
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THEOREM 1. The language of LCC (epistemic PDL with added ac- 1

tion modalities) has the same expressive power as epistemic PDL itself: 2

each formula φ of LCC has an equivalent formula φ◦ in epistemic PDL. 3

We note that the translation of φ to φ◦ uses a technique of PDL 4

program transformation, which involves an exponential blow-up [15]. 5

Remark. While throughout the paper we restrict the preconditions 6

to be in language L0, it should be noted that the definition of action 7

emulation and the proofs of the theorems in the paper can be adapted 8

to other epistemic languages. 9

If one adds action models to an epistemic or doxastic language L, 10

this means that the language is extended with action modalities. Call 11

this extended language L+. The action models for L can be of two 12

kinds, depending on whether the preconditions are taken from L or 13

from L+. In the first case, the preconditions themselves cannot contain 14

action modalities, in the second case they can. 15

Our methods deal with action models of both kinds. For action 16

models of the second kind, the trick is to use epistemic PDL as an 17

auxiliary language. Epistemic PDL has enough expressive power to 18

encode the effects of any action model modality. By adopting PDL as 19

auxiliary language, we can deal with action models with preconditions 20

that may themselves contain action modalities. Theorem 1 ensures not 21

only that any LCC precondition has a PDL counterpart, but also that 22

any precondition in a sublanguage of epistemic PDL enriched with 23

action model modalities has a PDL counterpart. 24

So suppose we want to handle action models of the second kind 25

for a language that is not expressive enough to encode its own action 26

modalities, say a language CK with operators for knowledge and com- 27

mon knowledge. Then we use PDL as an auxiliary language to translate 28

CK+ into PDL, and use the canonical model construction for PDL to 29

define an appropriate notion of action emulation for CK+ models. It 30

follows that we can deal with action models for any reasonable epistemic 31

base language. 32

What is crucial for the definition and the proofs is the existence for 33

any finite and consistent set of formulas in the language of a finite 34

canonical model (built of atoms, as in Definition 12) that satisfies 35

the Truth Lemma.1 In fact, Definition 15 (Action Emulation) can be 36

simplified in cases where the preconditions are in sublanguages of L0 37

that give rise to canonical models with a simpler structure. An example 38

of this will be presented in Section 6. 39

In Section 5 we will give a definition of pointed action emulation that 40

relates the distinguished points of two action models to each other. 41

1 We thank one of our anonymous Referees for pointing this out.
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The update operation ⊗ and the truth definition for L1 are defined 1

by mutual recursion, as follows. (See [3] for the original version.) 2

DEFINITION 4. (Update, Truth). Given a pointed epistemic model
(M,u) and a pointed action model (A, s), and provided M |=u pres,
we define

M ⊗A

as
(W ′, V ′,→′),

where

W ′ = {(w, s) ∈WM ×WA |M |=w pres},
V ′((w, s)) = VM (w),

(w, s)
i→
′
(w′, s′) iff w

i→M w′, and s
i→A s

′,

and where the truth definition is given by:

M |=w > always
M |=w p iff p ∈ VM (w)
M |=w ¬φ iff not M |=w φ
M |=w φ1 ∧ φ2 iff M |=w φ1 and M |=w φ2

M |=w [α]φ iff for all w′ with w
α→ w′ M |=w′ φ

M |=w [A, s]φ iff M |=w pres implies M ⊗A |=(w,s) φ

with
α→ given by

i→ =
i→M

?φ→ = {(x, x) |M |=x φ}
α1∪α2→ =

α1→ ∪ α2→
α1;α2→ =

α1→ ◦ α2→ (relational composition of
α1→ and

α2→)
α∗→ = (

α→)∗ (reflexive transitive closure of
α→).

The new distinguished point of M ⊗A is (u, s). 3

Note that the updating operation may not succeed. This happens 4

if M 6|=u pres. But if the updating operation succeeds, the result is a 5

well-defined epistemic model. 6

As an illustration, Figure 4 gives the result of updating the epistemic 7

model from Figure 1 with the action model from Figure 3, with the 8

worlds in the update result pictured as pairs. 9

We still owe you definitions of consistency, logical equivalence and 10

logical entailment. 11
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(0,0):h

(0,1):habc abc

abc

bc abc

(1,1):h

bc

Figure 4. Result of updating model from Figure 1 with action model from Figure 3.

DEFINITION 5. (Consistency, Logical Equivalence, Logical Entailment). 1

Let φ and ψ be two formulas in a language L. 2

− φ is consistent if there is an epistemic model M and a world w 3

such that M |=w φ; 4

− φ and ψ are logically equivalent (notation: φ ≡ ψ), if for arbi- 5

trary epistemic models M and worlds w, M |=w φ↔ ψ. 6

− φ logically entails ψ (notation: φ |= ψ) if it holds for an arbitrary 7

epistemic model M and world w that M |=w φ implies M |=w ψ. 8

(This is called ‘local consequence’ in modal logic.) 9

Note that our notion of consistency is semantic (it is not defined 10

as non-existence of a derivation of φ → ⊥ in a proof system, but as 11

existence of a model for φ). Also, note that the language L1 has the 12

finite model property, hence it is decidable whether φ-models exists, 13

for any φ ∈ L1. 14

3. Bisimulation and Action Equivalence 15

The standard notion of structural equivalence for epistemic models is 16

bisimulation. 17

DEFINITION 6. (Bisimulation). Let M,N be epistemic models. 18

A non-empty relation C ⊆ WM × WN is a bisimulation if whenever 19

wCv the following hold: 20

Invariance VM (w) = VN (v); 21
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Zig for all i ∈ Ag, all worlds w′ ∈ WM with w
i→w′ there is a state 1

v′ ∈WN with v
i→v′ and w′Cv′; 2

Zag for all i ∈ Ag, all worlds v′ ∈ WN with v
i→v′ there is a state 3

w′ ∈WM with w
i→w′ and w′Cv′. 4

We write M ↔− N to indicate that there is a bisimulation that 5

connects every world in WM to some world in WN , and vice versa. 6

A pointed bisimulation between pointed epistemic models (M,x) and 7

(N, y) is a bisimulation C between M and N that connects x and y. Ex- 8

istence of a pointed bisimulation between (M,x) and (N, y) is indicated 9

by (M,x)↔−(N, y). 10

Bisimilarity implies indistinguishability for L1: if (M,x)↔−(N, y) and 11

φ is a formula of L1 then M |=x φ iff N |=y φ. This follows directly 12

from the fact that bisimilarity implies indistinguishability for L0, plus 13

the reducibility result of [6] (Theorem 1 above). 14

While the invariance requirement in the definition of bisimulation 15

can be applied only to epistemic models, a natural analogue for action 16

models suggests itself: simply replace ‘having the same valuation’ by 17

‘having equivalent preconditions’. Since the only difference between 18

epistemic models and action models is in the switch from valuations 19

to preconditions, this seems an obvious choice. A demand of syntactic 20

equality of presuppositions would be too strong, but logical equivalence 21

seems just right. This gives: 22

DEFINITION 7. (Bisimulation for Action Models). Let A,B be ac- 23

tion models. A non-empty relation C ⊆ WA ×WB is a bisimulation if 24

whenever sCt the following hold: 25

Invariance pres ≡ pret; 26

Zig for all i ∈ Ag and all states s′ ∈ WA with s
i→s′ there is a state 27

t′ ∈WB with t
i→t′ and s′Ct′; 28

Zag for all i ∈ Ag and all states t′ ∈ WB with t
i→t′ there is a state 29

s′ ∈WA with s
i→s′ and s′Ct′. 30

We use notation A ↔− B and (A, s) ↔− (B, t) analogous to the usage 31

in Definition 6. 32

Thinking of the action models as ‘update programs’, the basic se- 33

mantic notion of equivalence between such programs is that of hav- 34

ing the same update effect: two pointed action models are equivalent 35
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if applied to the same epistemic model, they yield bisimilar results. 1

Formally: 2

DEFINITION 8. (Action Equivalence). Two action models A and B
are equivalent, notation A ≡ B, if it holds for all epistemic models M
that

M ⊗A ↔− M ⊗B.

Two pointed action models (A, s) and (B, t) are equivalent (notation 3

(A, s) ≡ (B, t)) if pres and pret are logically equivalent, and moreover 4

it holds for all pointed models (M,w) with M |=w pres that (M ⊗ 5

A, (w, s)) ↔− (M ⊗B, (w, t)). 6

We would like to capture this notion of equivalence by means of a 7

more direct relation on the structures of action models. Here is a first 8

observation. 9

OBSERVATION 1. The equivalence of two action models does not 10

imply their bisimilarity. 11

0 : h 1 : >

abc abc

bc

2 : h

3 : h

4 : ¬h

abc abc

abc

bc abc

bc

Figure 5. A pair of equivalent, but non-bisimilar action models.

Figure 5 provides an example of two action models for which there 12

is no pointed bisimulation. The distinguished points of the two action 13

models have the same precondition, but the step 0
a→1 in the left action 14

model cannot be matched by a step from distinguished point 2 in the 15

right action model, for that model has no states with precondition >. 16

Still, the update effects of the two action models are the same. Both 17

represent an action where a finds out that the result of a coin toss is 18

h, while b and c are uncertain about whether a has learned h or has 19

found out nothing at all. 20

The example shows that action model bisimulation is not quite what 21

we need. What we are looking for is some suitable generalization, and 22

in Section 5 we propose action emulation as such a generalization. This 23
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notion has a certain family resemblance to bisimulation, but it turns 1

out that this family likeness is partly hidden from sight by the fact 2

that precondition formulas assigned to states in the action models may 3

contain modalities. 4

For the special case of propositional action models (action models 5

with formulas of propositional logic as preconditions) the resemblance 6

to bisimulation is much closer. We will treat this special case in Section 7

6. 8

4. Filtration and Canonical Models 9

Our goal in Section 5 will be to propose a general notion of action 10

emulation and prove that it exactly captures action equivalence for 11

action models with arbitrary preconditions in L0. For this goal we 12

need a technique (called filtration) for constructing models from sets of 13

formulas. The filtration technique in modal logic is used to construct 14

a finite model for a consistent modal formula φ (see [7]). For ordinary 15

modal logic the construction is based on the set of all sub-formulas of 16

φ, but in PDL we have to be careful in the handling of formulas with 17

complex modalities α, so we need so-called Fischer-Ladner closures [12]. 18

For completeness of the presentation, in this section we provide a con- 19

struction of finite canonical models for PDL. The additional condition 20

we impose on those models is that the states have different valuations 21

- see Definition 13. 22

DEFINITION 9. Let Σ be a set of L0 formulas. Then FL(Σ), the 23

Fischer-Ladner closure of Σ, is the smallest set of formulas X that 24

has Σ ⊆ X, that is closed under taking sub-formulas, and that satisfies 25

the following constraints: 26

− if [α ∪ α′]φ ∈ X then [α]φ ∈ X and [α′]φ ∈ X, 27

− if [α;α′]φ ∈ X then [α][α′]φ ∈ X, 28

− if [α∗]φ ∈ X then [α][α∗]φ ∈ X. 29

Note that the definition handles the actual formulas of the language,
not their abbreviations. E.g., consider Σ = {[(a ∪ b)∗]h}. Then,

FL(Σ) = {[(a ∪ b)∗]h, [(a ∪ b)][(a ∪ b)∗]h, [a][(a ∪ b)∗]h, [b][(a ∪ b)∗]h, h}.

DEFINITION 10. (Closure under single negation). For any formula φ, 30

define ∼φ, the single negation of φ, as follows: if φ has the form ¬ψ 31

then ∼φ = ψ, otherwise ∼φ = ¬φ. Then ∼φ forms the negation of φ, 32

while cancelling double negations. A set of formulas X is closed under 33

single negations if φ ∈ X implies ∼φ ∈ X. 34
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DEFINITION 11. (Closure of Σ). For any formula set Σ, the closure 1

of Σ, notation ∼FL(Σ) is the smallest set X which contains FL(Σ) and 2

is closed under single negations. 3

As an example, observe that the closure of {[(a ∪ b)∗]h} consists of 4

the union of FL({[(a ∪ b)∗]h}) and the set of all negations of formulas 5

in FL({[(a∪b)∗]h}). In building epistemic models from sets of formulas 6

Σ we can take worlds to be maximal consistent sets of formulas taken 7

from ∼FL(Σ). 8

DEFINITION 12. Let Σ be a set of formulas. A set of formulas Γ is 9

an atom over Σ if Γ is a maximal consistent subset of ∼FL(Σ). Let 10

At(Σ) be the set of all atoms over Σ. 11

It is easy to show for every consistent formula φ ∈ ∼FL(Σ) there 12

is a Γ ∈ At(Σ) with φ ∈ Γ (see [7]). For any finite formula set Γ, let 13

Γ̂ =
∧

Γ. 14

DEFINITION 13. Let Σ be a finite set of formulas and QΣ be the 15

set of all propositional letters occurring in Σ. Let Γ1, . . . ,Γn be an 16

enumeration of At(Σ) and let X = {x1, . . . , xn} be a set of proposition 17

letters that do not occur in Σ. The canonical model MΣ over Σ (and 18

X) is given by: 19

WΣ = At(Σ);
VΣ(Γi) = (Γ ∩QΣ) ∪ {xi};
→Σ (i) = {(Γ,Γ′) | Γ̂ ∧ 〈i〉Γ̂′ is consistent }.

Note that the valuation VΣ gives every Γ a unique set of propositions. 20

This is important as we will use it in the proof of Proposition 2 in the 21

next section. 22

See [7] for a proof that the canonical model ‘works’, in the sense 23

that we can prove the following: 24

LEMMA 1. (Truth Lemma). For all atoms Γ ∈ At(Σ) and all φ ∈ 25

∼FL(Σ) it is the case that MΣ |=Γ φ iff φ ∈ Γ. 26

Worlds in arbitrary Kripke models correspond to worlds in canonical 27

models via the following definition: 28

DEFINITION 14. Let M be an arbitrary Kripke model. Let Σ be a set 29

of formulas. Let v be a member of WM . We define a map from v to a 30

maximal consistent set of formulas of the closure of Σ, as follows: 31

v∗ = {φ ∈ ∼FL(Σ) |M |=v φ}.
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This definition will be used in Theorem 2 in the next Section. 1

5. Action Emulation: The General Case 2

In this Section we give a definition of Action Emulation for the case 3

of action models with preconditions taken from the language L0. This 4

immediately generalizes to action models with preconditions taken from 5

the language L1, i.e., to action models with preconditions that them- 6

selves may contain action model modalities. The reason is that, as 7

already mentioned, action model modalities present in L1 formulas can 8

be ‘compiled out’, using the techniques of [6]. 9

The crucial feature in our definition of action emulation is an index- 10

ing method by means of atoms in finite canonical models. The definition 11

of action emulation will work for action models with preconditions 12

taken from any modal language L that allows for the construction of 13

finite canonical models for which a truth lemma can be proved. 14

Our inspiration for the definition of action emulation comes from 15

the following theorem. Intuitively, it says that any two action models 16

A and B are equivalent if and only if the results of updating a special 17

canonical model are bisimilar. 18

THEOREM 2. Given action models A and B for language L0, let 19

Σ be the set of preconditions occurring in A or B, and let MΣ be a 20

canonical model over Σ. Then the following holds: 21

A ≡ B iff MΣ ⊗A ↔− MΣ ⊗B.

Let s ∈WA, t ∈WB. Then: 22

(A, s) ≡ (B, t) iff for all Γ ∈ At(Σ) with pres ∈ Γ or pret ∈ Γ :
23

(MΣ ⊗A, (Γ, s)) ↔− (MΣ ⊗B, (Γ, t)).

Proof. From left to right: by definition of ‘≡’. 24

For the right to left direction, assume MΣ ⊗ A ↔− MΣ ⊗ B. Let
C be a relation witnessing this bisimulation. Let M be an arbitrary
Kripke model. Then each v ∈WM has a corresponding atom v∗ in MΣ

(Definition 14). Define a relation C ′ on WM⊗A ×WM⊗B by means of:

(u, x)C ′(v, y) :≡ u = v and (u∗, x)C(u∗, y).

We show that C ′ is a bisimulation. Suppose (u, x)C ′(v, y). Then: 25

Invariance (u, x) and (v, y) have the same valuation since u = v. 26
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Zig Let (u, x)
i→(u′, x′). It follows that u

i→u′, x i→x′, and M |=u′ prex′ . 1

So prex′ ∈ u′
∗. 2

To show (u∗, x)
i→(u′∗, x′), we only have to show u∗

i→u′∗. But this 3

is immediate from the fact that M |=u û∗ ∧ 〈i〉û′∗. 4

Now use the zig property of C (and the construction of u′∗) to con- 5

clude that there is a y′ with (u∗, y)
i→(u′∗, y′) and (u′∗, x′)C(u′∗, y′). 6

Then y
i→y′, which together with u

i→u′ gives (u, y)
i→(u′, y′) and 7

(u′, x′)C ′(u′, y′). This proves the zig property of C ′. 8

Zag Same reasoning vice versa. 9

Let (u, x) in WM⊗A be arbitrary. Then M |=u prex, and therefore prex ∈ 10

u∗. By the properties of C, there is a y ∈ WA with (u∗, x)C(u∗, y). 11

It follows that (u, x)C ′(u, y). So for every (u, x) in WM⊗A there is 12

a y with (u, x)C ′(u, y). Similarly in the other direction. This proves 13

M ⊗A ↔− M ⊗B. 14

For the second part, left to right: by definition of ‘≡’. For the right 15

to left direction, define the bisimulation C ′ as before. Suppose that 16

M |=w pres. It follows that (w∗, s)C(w∗, t), and so (w, s)C ′(w, t). The 17

case M |=w pret is analogous. 2 18

This theorem hints at what a general definition of action emula- 19

tion ‘�’ might look like. Our next goal is to define A � B that will 20

characterize action equivalence. 21

Our solution is to parametrize the relation A � B using maximal 22

consistent sets from the domain of MΣ. 23

DEFINITION 15. (Action Emulation). Given action models A and 24

B, let Σ be the set of preconditions occurring in A,B, and G(x) = {Γ | 25

Γ ∈ At(Σ), prex ∈ Γ} for any x ∈ WA ∪WB. Action emulation E is 26

a set of indexed relations {EΓ}Γ∈At(Σ), such that whenever sEΓt the 27

following hold: 28

Invariance pres ∈ Γ and pret ∈ Γ. 29

Zig If s
i→ s′ and Γ′ ∈ G(s′) such that Γ

i→ Γ
′
, then there is a t′ ∈WB 30

with t
i→ t′ and s′EΓ′ t

′. In a picture: 31
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s

s′

i

EΓ
t

t′

i

EΓ′
1

Zag If t
i→ t′ and Γ′ ∈ G(t′) such that Γ

i→ Γ
′
, then there is a s′ ∈WA 2

with s
i→ s′ and s′EΓ′ t

′. 3

In a picture: 4

s

s′

i

EΓ
t

t′

i

EΓ′
5

We use A � B to indicate the existence of a class of action emu- 6

lation relations EΓ ⊆ WA ×WB such that for each x ∈ WA and each 7

Γ ∈ At(Σ) with prex ∈ Γ there is a y ∈WB with xEΓy, and vice versa. 8

We use (A, s) � (B, t) to indicate that pres and pret are logically 9

equivalent, and that there is a class of emulation relations EΓ ⊆WA × 10

WB such that sEΓt holds for every Γ with pres ∈ Γ. 11

Now we present our main results. The following proposition shows 12

that emulating action models are equivalent: 13

PROPOSITION 1. For any action models A and B: 14

A� B implies A ≡ B.

Let s ∈WA and t ∈WB. Then: 15

(A, s) � (B, t) implies (A, s) ≡ (B, t).

Proof. Let {EΓ}Γ∈At(Σ) be an action emulation witnessing A � B.
Let M be an arbitrary model. Define a relation C on WM⊗A ×WM⊗B
by means of:

(w, s)C(v, t) :≡ w = v and sEw∗t.

We show that C is a bisimulation. Suppose (w, s)C(v, t). 16
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Invariance (w, s) and (v, t) have the same valuation since w = v. 1

Zig Let (w, s)
i→(w′, s′). It follows that w

i→w′, s i→s′, and M |=w′ pres′ . 2

So pres′ ∈ w′∗. Now w∗
i→w′∗ follows immediately from M |=w 3

ŵ∗ ∧ 〈i〉ŵ′∗. 4

According to sEw∗t, there must be a t′ such that t
i→t′ and s′Ew′∗t

′. 5

Thus, w′∗ ∈ G(s′), and M |=w′ pret′ . 6

Therefore we have (w′, s′)C ′(w′, t′), as desired. 7

Zag Same reasoning vice versa. 8

We show that for each (w, s) ∈ WM⊗A there is a (w, t) ∈ WM⊗A with 9

(w, s)C(w, t), and vice versa. Let (w, s) ∈ WM⊗A. Then w∗ ∈ At(Σ), 10

and pres ∈ w∗. So by A � B there is a t with sEw∗t. This gives 11

(w, s)C(w, t), as desired. Similarly in the other direction. 12

For the second part, let (M,w) be any pointed model. From the 13

assumption (A, s) � (B, t) we get that there is a relation Ew∗ in the 14

set of emulation relations for which sEw∗t. Therefore the relation C, 15

defined as before, will connect (w, s) and (w, t). 2 16

Proposition 1 shows that action emulation is a sufficient condition 17

for action equivalence. The following proposition shows that it is also 18

a necessary one. 19

PROPOSITION 2. For any action models A and B:

A ≡ B implies A� B.

If s ∈WA and t ∈WB then: 20

(A, s) ≡ (B, t) implies (A, s) � (B, t).

Proof. Assume A ≡ B. Let Σ be the set of preconditions occurring
in A or B, and MΣ be a canonical model over Σ. It follows from A ≡ B
that

MΣ ⊗A ↔− MΣ ⊗B.
Let C witness this bisimulation. Define a set of binary relations 21

{EΓ}Γ∈At(Σ)

by means of
sEΓt :≡ (Γ, s)C(Γ, t).

We show that {EΓ}Γ∈At(Σ) is an action emulation. Suppose sEΓt. 22
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Invariance It follows from (Γ, s)C(Γ, t) that MΣ |=Γ pres and MΣ |=Γ 1

pret. According to Truth Lemma 1, we have pres ∈ Γ and pret ∈ Γ. 2

Zig Suppose s
i→ s′ and Γ

′ ∈ G(s′) such that Γ
i→ Γ

′
. It follows that 3

pres′ ∈ Γ
′
. Again by Truth Lemma 1, we have MΣ |=Γ′ pres′ , so 4

(Γ′, s′) ∈WMΣ⊗A. Therefore, we have (Γ, s)
i→ (Γ

′
, s′). By the Zig 5

property of C, there must be (Γ′′, t′) such that (Γ, t)
i→(Γ′′, t′) and 6

(Γ′, s′)C(Γ′′, t′). Since in our construction of MΣ, the valuation of 7

each world is different, it follows that Γ′ = Γ′′. Therefore t
i→ t′ 8

and s′EΓ′ t
′. 9

Zag Same reasoning vice versa. 10

It is easy to see that for each s ∈ WA and each Γ ∈ At(Σ) with 11

pres ∈ Γ there is a t ∈WB with sEΓt, and vice versa. 12

For the second part of the Theorem, assume (A, s) ≡ (B, t). Define 13

the set of action emulation relations {EΓ}Γ∈At(Σ) as before. From The- 14

orem 2 it follows that for all Γ ∈ At(Σ) with pres ∈ Γ it holds that 15

sEΓt. This proves (A, s) � (B, t). 2 16

Combining Proposition 1 and Proposition 2, we have: 17

THEOREM 3. For any action models A and B:

A ≡ B iff A� B.

If s ∈WA, t ∈WB: 18

(A, s) ≡ (B, t) iff (A, s) � (B, t).

The following is a direct corollary of Theorem 2. 19

PROPOSITION 3. Equivalence of action models is decidable. 20

Proof. Given action models A andB, let Σ be the set of preconditions 21

occurring in A or B, and MΣ be a canonical model over Σ. Checking 22

whether MΣ⊗A ↔− MΣ⊗B is decidable. This gives us a decision method 23

for action equivalence. 2 24

Finally, we note that the union of action emulations is itself an action 25

emulation: 26

PROPOSITION 4. Given action models A and B that emulate, if E1 27

and E2 are action emulations that witness A� B, then E1∪E2 is also 28

an action emulation. 29
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The proof of Proposition 4 follows directly from Definition 15. 1

6. Action Emulation: The Propositional Case 2

We will now concentrate on a simpler structural relation that coincides 3

with action equivalence for the case of propositional action models. 4

DEFINITION 16. An action model is propositional if every precon- 5

dition formula that occurs in it is a formula of classical propositional 6

logic. 7

Most of our everyday communications are like this. We exchange 8

factual information, deciding whether to send cc’s or not, we decide to 9

keep some facts to ourselves, or only tell them to a few close friends. The 10

epistemic pattern of how the information is conveyed may be incredibly 11

complex, as when we decide to send private letters of invitation to a 12

large group of acquaintances, but with a cc to our spouse. 13

To formulate a structural relation that matches action equivalence 14

for these cases, we introduce some notation designed to highlight the 15

connection with bisimulation. 16

DEFINITION 17. If A and B are action models, and E ⊆WA×WB

is a binary relation, then
−→
E ⊆WA × P(WB) is given by

x
−→
EY iff ∀y ∈ Y (xEy)

and
←−
E ⊆ P(WA)×WB is given by

X
←−
Ey iff ∀x ∈ X(xEy).

If
i→ ⊆ X ×Y is a binary relation, then

ı→ ⊆ X ×P(Y ) is the relation 17

given by x
ı→Y if Y ⊆ {y | x i→y}. 18

Here is a simplified definition of action emulation for the proposi- 19

tional case. 20

DEFINITION 18. (Propositional Action Emulation). 21

Given action models A and B, a relation E ⊆WA ×WB is a proposi- 22

tional action emulation if whenever sEt the following hold: 23

Invariance pres ∧ pret is consistent; 24
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Zig If s
i→s′ then there is a non-empty set T ′ ⊆ WB with t

ı→T ′ such 1

that s′
−→
ET ′ and pres′ |=

∨
{prex | x ∈ T ′}. 2

In a picture: 3

s

s′

i

E
t

T ′

ı

−→
E

4

Zag If t
i→t′ then there is a non-empty set S′ ⊆ WA with s

ı→S′ such 5

that S′
←−
Et′ and pret′ |=

∨
{prex | x ∈ S′}. 6

In a picture: 7

s

S′

ı

E
t

t′

i

←−
E

8

We use A �p B to indicate the existence of a propositional action 9

emulation relation E such that for each x ∈ WA there is a Y ⊆ WB 10

with x
−→
EY , and prex |=

∨
{prey | y ∈ Y }, and vice versa. 11

Given pointed action models (A, s) and (B, t), a relation E ⊆WA× 12

WB is a pointed propositional action emulation if E is a propositional 13

action emulation between A and B that connects s and t, and moreover 14

pres and pret are logically equivalent. Notation for this: (A, s) �p (B, t). 15

Note that the above applies to action models of all kinds. In par- 16

ticular, we do not require in Definition 18 that action models have 17

propositional preconditions. The following proposition shows that a 18

propositional action emulation always induces an action emulation. 19

PROPOSITION 5. For any action models A and B:

A�p B implies A� B.
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If s ∈WA and t ∈WB then: 1

(A, s) �p (B, t) implies (A, s) � (B, t).

Proof. Assume A�p B. Let Σ be the set of preconditions occurring 2

in A,B, and let 3

G(x) = {Γ ∈ At(Σ) | prex ∈ Γ},

for x ∈WA ∪WB. 4

Suppose that F is a propositional action emulation between A and 5

B. For Γ ∈ At(Σ) define EΓ ⊆WA ×WB by means of: 6

xEΓy iff xFy, prex ∈ Γ, prey ∈ Γ.

To prove that {EΓ}Γ∈At(Σ) is an action emulation we verify that the 7

relations {EΓ}Γ∈At(Σ) satisfy the conditions of Definition 15. Let sEΓt. 8

Invariance The invariance property follows from the definition of 9

relations EΓ. 10

Zig Suppose that x
i→x′, Γ′ ∈ G(x′), and Γ

i→Γ′. Since xFy and x
i→x′, 11

it follows by the Zig property of F that there is a non-empty set 12

Y ′ ⊆WB with t
ı→Y ′ such that x′

−→
F Y ′ and 13

prex′ |=
∨
{prey′ | y′ ∈ Y ′}.

The last condition implies that there is y′ ∈ Y ′ with prey′ ∈ Γ′. 14

Therefore, x′EΓ′y
′. 15

Zag The proof of Zag is analogous. 16

Now let x ∈ WA and let Γ ∈ G(x). By the properties of F , there is a 17

Y ⊆ WB with x
−→
F Y and prex |=

∨
{prey | y ∈ Y }. It follows that there 18

is some y with xFy and prey ∈ Γ. Then, by definition, xEΓy. This 19

shows that for every x ∈ WA and every Γ ∈ G(x) there is a y ∈ WB 20

with xEΓy. Similarly for the other direction. 21

For the proof of the second part of the Theorem, assume (A, s) �p 22

(B, t). Then pres and pret are logically equivalent. Define the emulation 23

relations as before, and verify that for all Γ with pres ∈ Γ it holds that 24

sEΓt. It follows that (A, s) � (B, t). 2 25

Next, we show that an action emulation between propositional ac- 26

tion models always induces a propositional action emulation. 27
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PROPOSITION 6. For all propositional action models A and B: 1

A� B implies A�p B.

If s ∈WA and t ∈WB then: 2

(A, s) � (B, t) implies (A, s) �p (B, t).

Proof. Suppose that A and B are propositional action models with 3

A � B. Let {EΓ}Γ∈At(Σ) be a set of relations witnessing this. Define 4

F by means of 5

xFy iff for some Γ ∈ At(Σ) : xEΓy.

We show that F is a propositional action emulation. Assume sF t, i.e., 6

there is some Γ ∈ At(Σ) with sEΓt. 7

Invariance The invariance property is inherited from Definition 15. 8

Zig Suppose that s
i→s′. Let 9

T ′ = {t′ ∈WB | t
i→t′ and ∃Γ′ ∈ At(Σ) : s′EΓ′t

′}.

Then by the Zig property of {EΓ}Γ∈At(Σ), T
′ is non-empty. 10

We still have to show pres′ |=
∨
{pret′ | t′ ∈ T ′}. So suppose for a 11

contradiction that pres′ ∧
∧
{¬pret′ | t′ ∈ T ′} is consistent. Then 12

there is some Γ∗ ∈ At(Σ) with 13

Γ∗ ⊇ {pres′} ∪ {∼pret′ | t′ ∈ T ′}.

By the fact that A and B are propositional, we have that Γ
i→Γ∗. 14

Therefore, by the properties of {EΓ}Γ∈At(Σ), there has to be some 15

y ∈WB with t
i→y and s′EΓ∗y. But this means that y ∈ T ′ by the 16

definition of T ′, and contradiction. It follows that 17

pres′ |=
∨
{pret′ | t′ ∈ T ′}.

Thus, s′
−→
F T ′ and t

ı→T ′. This establishes the proof of Zig for F . 18

Zag The proof of Zag is analogous. 19

For the proof of the second part of the Theorem, assume (A, s) � 20

(B, t). Then pres and pret are logically equivalent, and there is a set of 21

emulation relations such that for all Γ ∈ At(Σ) with pres ∈ Γ, sEΓt. 22
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Define F as before, and verify that F is a propositional action emulation 1

that connects s and t. 2 2

In the case of general (not necessarily propositional) action models, 3

action equivalence does not imply propositional action equivalence. To 4

establish this fact, in view of Theorem 3 it is sufficient to show the 5

following: 6

OBSERVATION 2. The equivalence of two pointed action models does 7

not imply the existence of a propositional action emulation between 8

them. 9

A counterexample is presented in Figure 6. 10

0 : [a]h

abc

1 : [a]h 2 : ¬h

abc abc

a

Figure 6. A pair of equivalent pointed action models that do not propositionally
emulate.

To see that the pointed action models of Figure 6 are equivalent, 11

first observe that the pointed action model on the left expresses a public 12

announcement [a]h (a public announcement “Alice knows that heads 13

has turned up”). The action model on the right describes a commu- 14

nication where [a]h gets announced, but Alice confuses this with the 15

announcement of ¬h (the public announcement “no heads”, i.e., “tails 16

has turned up”). The update result of this is the same as that of the 17

action model on the left, for pairs (w, 1) in the result of updating M 18

with the action model on the right will have to satisfy M,w |= [a]h, and 19

therefore M,v |= h will hold for all v with w
a→v. Since the precondition 20

of 2 is ¬h, there will be no pairs (v, 2) with (w, 1)
a→(v, 2) in the update 21

result. There may be (v, 2)
a→(w, 1), but these will not be reachable from 22

the distinguished world in the update result. 23

To see why there is no propositional action emulation between the 24

action models in this example, observe that in Figure 6, action 2 can 25

not emulate with the single world in the left model. 26

Note that the actions in Figure 6 have modal preconditions. As 27

shown above, the update of such an action can exert an influence on 28

the update of its successor in the resulting model. Consequently, in 29

contrast to bisimulation, the general version of action emulation has to 30

restrict the recursive Zig and Zag clauses to states whose preconditions 31

formulas are consistent with the preconditions of the predecessors (see 32
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Definition 15). In the definition of propositional action emulation such 1

checks are omitted. However, unlike bisimulation, it requires linking 2

points to sets in the recursive steps. 3

Consider however action models of the following special kind. Let Q
be a finite set of propositional letters. Then a Q-valuation action model
is an action model that has all its preconditions of the form:∧

q∈v
q ∧

∧
q∈(Q\v)

¬q,

for some v ⊆ Q (i.e., v is a Q-valuation). The proof of the last propo- 4

sition of this paper is immediate. 5

PROPOSITION 7. For any action models A and B a bisimulation 6

relation is also a propositional action emulation relation. When A and 7

B are Q-valuation action models, a propositional action emulation re- 8

lation is also a bisimulation relation (in fact, the two definitions are 9

equivalent). 10

Finally, let us remind you that for propositional action models that are
not of the above special kind, propositional action equivalence does
not imply bisimilarity. Figure 5 above provides an example of two
equivalent propositional pointed action models for which there is no
pointed bisimulation. Note that the relation

E1 = {(0, 2), (1, 3), (1, 4)}

between the domains of the left and the right action models in Figure 11

5 is a pointed propositional action emulation. 12

7. Conclusion and Further Issues 13

In this paper we addressed the following notion of action equivalence: 14

two action models always yield bisimilar results when they update any 15

state model. Our aim was to capture a more direct relation between 16

action equivalent models in terms of their preconditions and structures. 17

First, we gave a natural extension of the definition of a bisimulation to 18

action models, and showed that it is a sufficient condition for action 19

equivalence but not a necessary one. Next, we gave a sufficient and nec- 20

essary condition for action equivalence in terms of update on canonical 21

models. Our Theorem 3 shows that this notion indeed provides a full 22

characterization of action equivalence for action models with arbitrary 23

preconditions. 24
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Action emulation bears a close family resemblance to bisimulation, 1

as it is also defined in terms of invariance, zig and zag conditions. 2

This family tie with standard bisimulation generates a number of other 3

family resemblances. E.g., as with bisimulations, the union of all action 4

emulations connecting (A, s) and (B, t) is an action emulation, i.e., 5

there always is a largest action emulation connecting (A, s) and (B, t). 6

The proof of Theorem 3 (that action emulation characterizes action 7

equivalence) relies on a canonical model construction that is well known 8

from Henkin style completeness proofs. Van Ditmarsch and French [9] 9

prove that for finite models, refinements (or: simulations) correspond to 10

action models. This suggests that there might be a generalized notion of 11

simulation that characterizes action emulation. Finding a more direct 12

construction is future work. 13

What is the complexity of determining whether two action models 14

emulate, either for the propositional case or the general case? Is it possi- 15

ble to define emulation-minimal action models, in the propositional, or 16

even in the general case? If so, can something like a partition refinement 17

algorithm for computing bisimulation-minimal models in the style of 18

[16] be adapted to compute emulation-minimal action models? What is 19

the complexity of this reduction? We refer to [17] for some preliminary 20

results on expansion and contraction operations that preserve action 21

equivalence. We leave all these questions for future work. 22
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