
Logic of Information Flow on Communi-
cation Channels
Yanjing Wang, Floor Sietsma and Jan van Eijck
Centrum Wiskunde en Informatica,
y.wang, f.sietsma, Jan.van.Eijck@cwi.nl

Abstract
In this paper1, we develop an epistemic logic to specify and reason about
the information flow on the underlying communication channels. By com-
bining ideas from Dynamic Epistemic Logic (DEL) and Interpreted Systems
(IS), our semantics offers a natural and neat way of modelling multi-agent
communication scenarios with different assumptions about the observa-
tional power of agents. We relate our logic to the standard DEL and IS
approaches and demonstrate its use by studying a telephone call commu-
nication scenario.

1 Introduction

YW: Style of citation to be revised.
The 1999 ‘National Science Quiz’ of The Netherlands Organisation for Scientific

Research (NWO)2 had the following question Hurkens (2000), van Benthem
(2002)

Six friends each have one piece of gossip. They start making phone calls.
In every call they exchange all pieces of gossip that they know at that point.

1This paper is based on an extended abstract to appear in the proceeding of AAMAS10.
2It is the 10th question from the 1999 edition. For a list of references about the problem c.f.

Hurkens (2000).

2

How many calls at least are needed to ensure that everyone knows all six
pieces of gossip?

To reason about the information flow in such scenario, we need to take into
account the following issues: the messages that agents possess (e.g. secrets), the
knowledge of agents, the dynamics of the system in terms of the information
passing (e.g. telephone calls) and the underlying communication channels
(e.g. network of landlines). To incorporate specific designs for such issues,
we first need to make a choice between two mainstream logical frameworks to
multi-agent systems: Interpreted Systems and Dynamic Epistemic Logic.

Interpreted Systems (ISs), introduced by Fagin et al. (1995) and Parikh and
Ramanujam (1985) independently, are mathematical structures that combine
history-based temporal components of a system with epistemic ones (defined
in terms of local states of the agents). ISs are convenient to model knowledge
development based on the given temporal development of a system. In ISs
the epistemic structure is generated from the temporal structure in a uniform
way. However, the generation of temporal structures is not specified in the
framework.

A different perspective on the dynamics of multi-agent systems is provided
by Dynamic Epistemic Logic (DEL) Gerbrandy and Groeneveld (1997), Baltag
and Moss (2004). The main focus of DEL is not on the temporal structure of the
system but on the epistemic impact of events as the agents perceive them. The
development of a system through time is essentially generated by executing
so-called action models on a static initial model, to generate an updated static
model. The epistemic relations in the initial static model and in the action
models are not generated uniformly as in IS. It is customary to start out from a
static situation of universal ignorance, where the ignorance is supposed to be
common knowledge3.

Much has been said already about the comparison of the two frameworks
(see e.g. van Benthem et al. (2007), Hoshi and Yap (2009)), but at a purely the-
oretical level. In this paper, we will demonstrate the benefits of combining the
two approaches by presenting a framework where the temporal development
of the system is generated by executing DEL-style actions and where epistemic
relations are generated by matching local states and history of observations as
in ISs.

3In a situation with n atomic propositions, this gives an initial model consisting of 2n worlds,
with universal accessibility relations for all agents.

1 Introduction 3

Related Work and Contributions An early proposal to extend DEL with ex-
plicit communication channels is in Roelofsen (2005). Communication channels
in an IS framework made their appearance in Parikh and Ramanujam (2003).
Recent work Pacuit and Parikh (2007), Apt et al. (2009) addresses the informa-
tion passing on so-called communication graphs or interaction structures, where
“messages” are either atomic propositions or Boolean combinations of atomic
propositions. In Wang et al. (2009) a PDL-style DEL language is developed
that allows explicit specification of protocols. The present paper attempts to
blend the DEL and IS approaches to communication along channels. More
specifically, the contributions of this paper are:

• Combining insights from Dynamic Epistemic Logics and Interpreted Sys-
tems, we propose a logic LI

mpc to specify and reason about the informa-
tion flow over underlying communication channels. Unlike in previous
work Pacuit and Parikh (2007), Apt et al. (2009), Roelofsen (2005), we
can specify the communication protocols in our language and deal with
information flow in terms of both the messages and propositions.

• The semantics of LI
mpc is given on single-state models with respect to

different observational equivalence relations generated in IS-style, which
are also studied and compared in this paper.

• The DEL-style actions in LI
mpc allow us to model various communication

actions such as message passing and group announcements. In particular
we define an external informing action, which essentially announces the
protocol that agents are supposed to follow, thus making it common
knowledge that the future behavior of agents is constrained. It turns
to make a crucial difference whether epistemic protocols such as those
discussed in van Ditmarsch (2003), van Ditmarsch and Kooi (2008), van
Ditmarsch et al. (2007) are assumed to be common knowledge among the
agents carrying out the protocol or not (see also Wang et al. (2009)).

• Taking advantage of the concise nature of our semantics, we also propose
a generic method of epistemic modeling where the initial model is simply
the real world and all the initial assumptions are specified explicitly by
means of formulas of LI

mpc. This significantly simplifies the modeling
procedure. According to the semantics, the relevant possible states can
be automatically constructed on-the-fly while evaluating the formulas.
In particular, there is no need to specify the whole state space at the
beginning.

• When the exact values of the messages are irrelevant, e.g, I know you have
the password but don’t care about all the possible the value of it. We can

4

specify the protocol and the initial requirements in an intuitive and neat
way, as demonstrated by the study of telephone communications among
agents. We show that it is impossible to obtain new common knowledge
by telephone calls or voice mails but that we can get arbitrarily close to
common knowledge if we can not only send messages but also make
statements like “I just called a and I know he got m”.

YW: Mention Hans’s thesis and Johan&Eric (We generate the forest from
single point...)

The paper is organized as follows. We introduce our logicLI
mpc in Section 2.

Section 3 relates our logic to the standard DEL and IS approaches. Section 4
introduces a modeling method and illustrates this method by a study of vari-
ations on the puzzle that was mentioned at the start of the paper. The final
section concludes and lists future work.

2 Logic LI
mpc

2.1 Language

Let I be a finite set of agents, M be a finite set of message terms and A be a finite
set of basic actions. A network net is a hypergraph of agents in I, namely a set
of subsets of I as in Apt et al. (2009). For example if net = {{1, 2}, {1, 2, 3}} then
there is a private channel {1, 2} of agents 1, 2 and there is a public channel of all
the three agents.

The set PropI,A,M of basic propositions is defined by

p ::= hasim | com(G) | past(ᾱ) | future(ᾱ)

with i ∈ I, m ∈M, G ⊆ I, ᾱ = α0;α1; . . . ;αk ∈ A∗ and α ∈ A.
hasim is intended to mean that i possesses the message m4; while com(G)

expresses that group G forms a channel in the network; past(ᾱ) says that the
sequence of actions ᾱ just happened and future(ᾱ) means that ᾱ can be executed
according to the current protocol. The formulas of LI

mpc are built from the set
PropI,A,M as follows:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | 〈π〉φ | CGφ

π ::= α | π1;π2 | π1 ∪ π2 | π
∗

4has is a commonly used predicate in the logic of security protocols to model declarative knowl-
edge about messages c.f., e.g., Ramanujam and Suresh (2005).

2.1 Language 5

with p ∈ PropI,A,M, G ⊆ I and α ∈ A. Let ΠA′ be the set of all protocols π based
on basic actions in A′ ⊆ A. Let Π = ΠA and Form(LI

mpc) be the set of all theLI
mpc

formulas. Each α ∈ A is a tuple:

〈G, φ,M0 . . .M|I|, x〉 ∈ P(I) × Form(LI
mpc) × (P(M))|I| × (Π ∪ {#})

The intended meaning of the formulas is mostly as usual as in dynamic
epistemic logics: CGφ expresses “the agents in G commonly know φ”, 〈π〉φ
expresses “the protocol π can be executed, and at least one execution of π
yields a state where φ holds”. Here π is a regular expression built from the
basic actions.

For every atomic action α = 〈G, φ,M0 . . .M|I|, x〉, let obs(α) = G be the set
of agents that can observe α; let Pre(α) = φ be the precondition for α to be
executed and let Pos(α) = 〈M0 . . .M|I|, ρ〉 (with ρ ∈ Π∪ {#}) be the postcondition
of execution of α. The postcondition 〈M0 . . .M|I|, ρ〉 lists for each agent i the set
of messages Mi that get delivered to i by action α and the protocol ρ that the
agents are going to follow from now on. If ρ equals #, this expresses that the
agents keep following the current protocol, if ρ equals π ∈ Π this expresses that
they change their protocol to π. In this paper we assume that the agents can
always observe the actions which deliver some messages to him, namely if β
has M j , ∅ then j ∈ obs(β). Note that it is not an “iff” relation since agent may
also observe some action even he is not delivered with any messages by it.

As usual, we define ⊥, φ ∨ ψ, φ → ψ, 〈CG〉φ and [π]φ as the abbreviations
of ¬>, ¬(¬φ∧¬ψ), ¬φ∨ψ, ¬CG¬φ and ¬〈π〉¬φ respectively. Moreover, we use
the following abbreviations:

K jφ:=C{ j}φ
hasiM′:=

∧
m∈M′ hasim

dhasGM′:=
∧

m∈M′
∨

j∈G has jm
com(net):=

∧
G∈net com(G) ∧

∧
G<net ¬com(G)

πn:=π;π; . . . ;π︸ ︷︷ ︸
n

ΣΠ′:=
⋃
π∈Π′ π where Π′ ⊂ Π is finite.

〈〉
≤nφ:=〈

⋃
k≤n(ΣA)k

〉φ
〈〉

min(n)φ:=〈〉≤nφ ∧ ¬〈〉≤n−1φ
Knowi∃has jm:=Kihas jm ∧ ¬hasim
∃Knowihas jm:=Kihas jm ∧ hasim

where: K jφmeans that agent j knowsφ; dhasGM′ says M′ are distributed among

6

agents in G; com(net) specifies the communication channels in the network;
〈〉
≤nφ should be read as “φ can be realized with a sequential protocol within n

steps” and 〈〉min(n)φ says “φ can be realized in n steps and needs at least n steps”.
Note that the usual temporal operator ^ (sometimes called F) of IS approaches
(e.g. Pacuit and Parikh (2007)) can be defined by 〈(ΣA)∗〉 while 〈〉≤n serves as
a generalization of the arbitrary announcement that is added to DEL in Agotnes
et al..

By having both has and K in the language we can make a distinction between
knowing a message and knowing its content. Knowi∃has jm and ∃Knowihas jm
express the de dicto and de re reading of knowing a message: Knowi∃has jm says
that agent i knows that there is a certain message m that agent j possesses,
but he doesn’t know the content of m himself. ∃Knowihas jm expresses that
agent i knows that agent j has certain message m and he also possesses the
message m himself thus knows the content. For example, let m be the hid-
ding place of Bin Laden and suppose it is commonly known that Al-Qaeda
knows the place secretly, then Knowi∃hasAl-Qaedam should intuitively hold but
not ∃KnowihasAl-Qaedam for i , Al-Qaeda.

2.2 Semantics

In order to interpret basic propositions PropI,A,M, we let the finer structure of
the basic propositions correspond with a finer structure in the states (replacing
the traditional valuation in Kripke structures):

Definition 2.1. A state for LI
mpc s is a tuple:

〈net,M0, . . . ,M|I|, ᾱ,M′

0, . . . ,M
′

|I|, π〉 ∈ Net × F × (A)∗ × F ×Π.

where Net = P(P(I)) and F = (P(M))|I|. Let IS(s, i) = M′i be i’s current set of
messages (information set), AM(s) = ᾱ be the action history, CC(s) = net be the
available communication channels and Prot(s) = π be the protocol the agents
need to follow from this state. Let AMk(s) = αk in ᾱ. The initialization of s is
another state:

Init(s) = 〈net,M0, . . . ,M|I|, ε,M0, . . . ,M|I|, (ΣA)∗〉.

The length of s is l(s) = |AM(s)|.

Intuitively, each state represents a possible development of the system with
the constraint for the future. Note that past is linear (it consists of a sin-

2.2 Semantics 7

gle sequence), but the future can be branching (it may consist of several se-
quences). As for Init(s), we do not record any actions thus AM(Init(s)) = ε and
Prot(Init(s)) = (ΣA)∗ simply says every protocol is possible in the future.

hasim, com(G) and past(ᾱ) can be interpreted in a straightforward way at
state s according to IS(s, i),AM(s) and CC(s) respectively. To give the semantics
for future(α) at a state s, we need to check whether α complys with the current
protocol Prot(s) and compute the remaining protocol after the execution of
α when we define the postcondition for α later on. For this, we recall the
derivative operation \α on regular expressions with the auxiliary constants ε
(empty sequence) and δ (deadlock) and the termination function o : Π→ {δ, ε}
as follows Brzozowski (1964), Conway (1971):

ε\α = δ\α = β\α = δ α\α = ε
(π;π′)\α = (π\α);π′ + o(π); (π′\α) (π ∪ π′)\α = π\α ∪ π′\α
o(π;π) = o(π); o(π′) (π)∗\α = π\α; (π)∗

o(π∗) = ε o(ε) = ε
o(δ) = o(α) = δ o(π ∪ π′) = o(π) ∪ o(π′)

We may turn an arbitrary π with ε and δ into one regular expression without
the auxiliary constants by applying the absorbing rules below first:

ε;π = π δ;π = (δ)∗ = δ
δ ∪ π = π (ε)∗ = ε

For example: (α∪ (β;γ))∗\β = (α\β∪ (β;γ)\β); (α∪β;γ)∗ = (δ∪ (ε;γ)); (α∪β;γ)∗ =
γ; (α ∪ (β;γ))∗. Note that in general we do not have β; (π\β) = π.

Let L(π) be the language of the regular expressions defined by the following:

L(δ) = ∅ L(ε) = {ε} L(α) = {α}
L(π;π′) = {ᾱ; β̄ | ᾱ ∈ L(π), β̄ ∈ L(π′)}
L(π ∪ π′) = L(π) ∪ L(π′)
L(π∗) = {ᾱ1; . . . ; ᾱn | ᾱ1, . . . , ᾱn ∈ L(π)}

Let π\α0;α1; . . . ;αn = (π\α0)\α1 . . . \αn. It is clear that the operation we defined
can compute the remaining of the protocol after executing the sequence of the
basic actions ᾱ:

Proposition 1. L(π\ᾱ) = {β̄ | ᾱ; β̄ ∈ L(π)}.

Similar to Cohen and Dam (2007), Apt et al. (2009), we give the truth value
of complexLI

mpc formula on single states but not pointed Kripke models, while the

8

possible states to interpret epistemic formulas are generated in a uniform way
by ∼x

i defined later.
Let s = 〈net,M0, . . . ,M|I|, β̄,M′0, . . . ,M

′

|I|, π〉, we have:

s � hasi(m) ⇔ m ∈ IS(s, i)
s � com(G) ⇔ G ∈ CC(s)
s � past(ᾱ) ⇔ ᾱ is a suffix of AM(s)

s � future(ᾱ) ⇔ Prot(s)\ᾱ , δ
s � ¬φ ⇔ s 2 φ

s � φ ∧ ψ ⇔ s � φ and s � ψ
s � CGφ ⇔ for all v, if s ∼x

G t then t � φ
s � 〈π〉φ ⇔ ∃s′ : s~π�s′ and s′ � φ

where ∼x
G is the reflexive transitive closure of {∼x

i | i ∈ G} mutual-recursively
defined later with the protocols π functioning as state changers:

s~α�s′ ⇔ s � Pre(α) and s′ = s|Pos(α)

s~π1;π2�s′ ⇔ s~π1� ◦ ~π2�s′

s~π1 ∪ π2�s′ ⇔ s~π1� ∪ ~π2�s′

s~(π1)∗�s′ ⇔ s~π1�∗s′

where ◦,∪ and ∗ at right-hand side express the usual composition, union and
reflexive transitive closure on relations respectively. If Pos(α) = 〈N0, . . . ,N|I|, ρ〉
then

s|Pos(α) = 〈net,M0, . . . ,M|I|, β̄;α,M′0 ∪N0, . . . ,M′|I| ∪N|I|, f (ρ)〉

where f (ρ) =

{
π\α if ρ = #
π′ if ρ = π′

.

Now we define ∼x
i among states. A state s is said to be consistent if

Init(s)~AM(s)�s. For the special case that AM(s) = ε we let s~ε�s′ ⇔ s = s′.
It is then easy to see that for any s, Init(s) is always consistent5.

We say t ∼x
i t′ iff the following conditions are met:

consistency t and t′ are consistent.

local initialization IS(Init(t), i) = IS(Init(t′), i)

local history AM(t) ≈x
i AM(t′) where x is the type of the observational power

defined below.
5Note that we can actually omit the current information sets IS(s, i) in the definition of a state,

but compute it by applying the actions in AM(s), thus only generate consistent states. We keep the
current information sets there to simplify notations and make it more efficient to evaluate basic
propositions according to the semantics.

2.3 Communication Actions 9

Let AM(t) ≈x
i AM(t′) ⇔ AM(t)|xi = AM(t′)|xi . Then we can have several reason-

able definitions of AM(t)|xi to capture different observation powers of agents:

1. AM(t)|set
i = {α | i ∈ obs(α) and α appears in AM(t)} as in Apt et al. (2009).

2. AM(t)|1st
i is the subsequence that only keeps the first occurrence of each

α ∈ AM(t)|set
i as in Baskar et al. (2007).

3. AM(t)|asyn
i is the subsequence that only keeps α ∈ AM(t)|set

i .

4. AM(t)|τi is the sequence that replaces each occurrence of α < AM(t)|set
i by

τ.

where x ∈ Sem = {set, asyn, 1st, τ}, we then have:

Proposition 2. ≈τi ⊆≈
asyn
i ⊆≈

1st
i ⊆≈

set
i .

We then call the semantics defined by ∼x
i the x-semantics, and denote the

corresponding satisfaction relation as �x.
Recall that we require that the agents can always observe the actions that

change his information set. We then have:

Proposition 3. For any consistent state t: t ∼x
i t′ implies IS(t, i) = IS(t′, i) where

x ∈ Sem.

Proof. Note that our actions can only add messages to the information sets of
agents but never delete any messages. According to this monotonicity, we only
need to check the above claim for ∼set

i and it is straightfoward since agent can
always observe the action that changes his information set. �

2.3 Communication Actions

In the following we define a few very useful basic actions.
Let s = 〈net,M0, . . . ,M|I|, ᾱ,M′0, . . . ,M

′

|I|, π〉. Postconditions of basic action
β are in the form Pos(β) = 〈N0, . . . ,N|I|, ρ〉 where N j = ∅ for j < obs(β) and
ρ ∈ Π ∪ {#}. We list the basic actions in the table below (where j ∈ obs(β)):

10

β (communication obs Pre common part is: Pos common part. is:
resp. channels) com(obs(β)) ∧ future(β) ρ = #
sendi

G(M′) G ∪ {i} hasiM N j = M′

shareG(M′) G dhasGM′ N j = M′

sendalli
G(M′) G ∪ {i} hasiM′

∧
∧

m<M′ ¬hasim N j = M′

shareallG(M′) G dhasGM′
∧
∧

m<M′ ¬dhasim N j = M′

informi
G(φ) G ∪ {i} Kiφ N j = ∅

β (external info) obs Pre common part is: future(β) Pos no common part
exinfo(φ) I φ ρ = #
exprot(π′) I 〈π′〉> ρ = π′

The first group of actions are communication actions that respect the channels.
sendi

G(M′) is the action that i sends the set of messages M′ to the group G with
precondition com(obs(sendi

G(M′)))∧future(sendi
G(M′))∧hasiM meaning that there

is a channel to perform this action and it is allowed by the current protocol and
i should possess all the messages in M. Pos(sendi

G(M′)) = 〈N0, . . . ,N|I|, #〉 where
N j = M′ for j ∈ obs(sendi

G(M′)). shareG(M′) shares the messages distributed
among the members of group G. sendalliG(M′) differs from sendi

G(M′) in the
extra precondition that M′ should be all the messages that i has. Similar for
shareallG(M′). informi

G(φ) is the group announcement of φ within G ∪ {i}.
The second group of actions are public announcements that do not respect

the channels. They model the external information which is given to the agents.
For example, after executing exinfo(hasim), the states agents consider possible
will all satisfy hasim due to the definition of ∼x

G and the fact that all the agents
can observe this action. exprot(π′) announces the protocol π′ that the agents
are supposed to follow in the future. Note that it is different from the ac-
tion exinfo(〈π′〉>). Actually exprot(π′) can never be defined by exinfo(φ) since
exprot(π′) shapes the future by changing Prot(s).

We can define more complex actions based on the above basic actions. For
example:

mailiG(M′) =
⋃

M′′⊆M′
sendalliG(M′′)

models the voice mail from i for the group G, in which i shares all the mes-
sages that he possesses within M′6. Similarly calliG(M′) =

⋃
M′′⊆M′ sharealli(G)M′′

models the conference call which shares all the messages that the group have
in M′.

6 Here M′ encodes the relevant context e.g. messages that are “about work”.

3 Comparison with IS and DEL 11

Similarly, new operator 〈〉≤n
A′ := 〈exprot((Σα∈A′α)∗)〉; 〈〉≤n can be defined to

obtain a restricted version of bounded future operator such that 〈〉≤n
A′ φ expresses

that “there is a sequential protocol using only actions in A′ to achieve φ in less
or equal than n steps”.

3 Comparison with IS and DEL

The results in this section relate our logic to IS and DEL approaches. Theo-
rem 1 shows that by the semantics of LI

mpc, an interpreted system is generated
implicitly from a single state. Proposition 4 and Theorem 1 demonstrate that
our approach is powerful and concise in modelling actions, comparing to DEL.

Let us compare our approach to IS first. Note that in the following we only
consider consistent states.

Let the history of s be a sequence: hist(s) = s0s1 . . . sl(s) where s0 = Init(s),
sl(s) = s and sk~αk�sk+1 for any k such that αk = AMk(s). It is easy to see that
if hist(s) = s0s1 . . . sl(s) then s0s1 . . . sk = hist(sk) for any k ≤ l(s). Let ExpTx be
the Interpreted System with actions labels with respect to x−semantics: {H,→α

, {Ri | i ∈ I},V}where: YW: Maybe we need to define V?

• H = {hist(s′) | s′ is consistent.}
• 〈s0 . . . sn〉 →α 〈s0 . . . snsn+1〉 ⇔ sn~α�sn+1.
• 〈s0 . . . sn〉Ri〈s′0 . . . s

′
m〉 iff sn ∼

x
i s′m.

• V(〈s0 . . . sn〉)(p) = > ⇔ sn �x p where p ∈ PropI,A,M.

It is clear that the language of LI
mpc can be seen as a fragment of the Proposi-

tional Dynamic Logic (PDL): LI
pdl with basic action set A ∪ I such that CG can be

seen as (ΣG)∗. Let PDL denote the usual semantics of LI
pdl then it is not hard to

see:

Theorem 1. For any formula φ ∈ LI
mpc and for each consistent LI

mpc-state s:

s �x φ⇔ ExpTx, hist(s) PDL φ.

This result shows that if we abstract away the inner structure of basic propo-
sitions and actions, then our logic can be looked as a PDL language interpreted
on ISs that are generated in a particular way w.r.t the some constraints. Note
that this result does not implies the decidability ofLI

mpc since although PDL lan-
guage is decidable on general Kripke structures, we do not know yet whether
it is decidable on the restricted class of the generated models ExpTx.

12

Now consider the DEL language LI
del :

φ ::= > | p | ¬φ | φ1 ∧ φ2 | 〈A, e〉φ | CGφ

where p is in a set of basic propositions Prop, G ⊆ I and A is an action
model with e as a designated action. Action models are tuples in the form
of (E, {�i}i∈I,Pre,Pos) where �i models agents i’s observational power on events
in E (e.g. e1 �i e2 means i is not sure which one of e1 and e2 happened); the
precondition function Pre : E→ LI

del describes when an event can happen and
the postcondition Pos : E→ (Prop→ LI

del) makes (finitely many) basic proposi-
tions p change their truth values, after executing the events, to the truth values
of Pos(e)(p) in the static Kripke model, thus model the factual changes caused
by the event van Benthem et al. (2006).

The semantics for epistemic formulas is usual and

M, s DEL 〈A, e〉φ⇔M ⊗A, (s, e) � φ

where the operation ⊗ is defined below:
Given a static Kripke model M = (W, {Ri}i∈I,V) and an action model A =

(E, {�i}i∈I,Pre,Pos), the updated modelM ⊗A = (W′, {R′i }i∈I,V
′) is defined:

W′ = {〈w, e〉 |M,w � Pre(e)}
R′i = {(〈w, e〉, 〈v, e′〉) | wRiv and e �i e′}

V′(〈w, e〉)(p) = V(w)(Pos(e)(p))

To facilitate the comparison, let us consider LI
mpc−∗, the star-free fragment of

L
I
mpc

7. Let ExpKx(s) be the Kripke model {W, {Ri | i ∈ I},V} obtained by the
expansion of the state s according to x−semantics:
• W = {s′ | s ∼x

I s′}where ∼x
I is the reflexive transitive closure of {∼x

i | i ∈ I}.
• Ri =∼x

i |W×W .
• V(s)(p) = > ⇔ s �x p where p ∈ PropI,A,M.

Note that although I,A,M are assumed to be finite, W in ExpKx(s) can still be
infinite due to the fact that we record the past explicitly in the states. For x ∈
{set, 1st, asyn} which correspond to asynchronized semantics and an sequence
of actions α, {β̄ | ᾱ ≈x

i β̄} is infinite thus W can be infinite in ExpKx(s).
Based on ExpKx(s), it seems plausible to obtain a similar correspondence

result as Theorem 1 forLI
mpc−∗andLI

del, since the basic actions inLI
mpc−∗ look like

special cases of pointed action models in DEL. However, it is not the case in

7∗ should not appear in the preconditions of actions.

3 Comparison with IS and DEL 13

general. To see this, we first recall a fact from van Benthem et al. (2007): If we
look 〈A, e〉 as a basic action modality when considering PDL semantics, then
for any formula φ ∈ LI

del :

M, s DEL φ⇔ Forest(M,A), (s) PDL φ (?)

where Forest(M,A) is the IS generated by executing all the possible sequences
of action models inA onM, s8. We now show the effects of actions in LI

mpc can
not be simulated by action models.

Proposition 4. There is no translation T : A → A such that for all consistent
L

I
mpc-state s:

T(ExpTx), hist(s)↔ Forest(ExpKx(s),A), s

where x ∈ {set, 1st, asyn}, T(ExpTx) is the IS obtained from ExpTx by replacing each
label of α ∈ A by T(α) ∈ A and↔ is the bisimulation for transitions labled by I ∪A.

Proof. van Benthem et al. (2007) shows that Forest(ExpKx(s)) must satisfy the
property of Perfect Recall meaning that if the agents can not distinguish two
sequences of action ᾱ;α and β̄; β then they can not distinguish ᾱ and β̄. However,
ExpTx clearly does not satisfy this property for x ∈ {set, 1st, asyn} in general. For
example, sendi

j(M);γ ≈x
j γ; sendi

j(M) where x ∈ {set, 1st, asyn} and γ is some

action j can not observe, however sendi
j(M) 0x

j γ. �

If we consider τ−semantics, then a correspondence result can be obtained.
First let TDEL : LI

mpc−∗ → L
I
del be defined as follows:

TDEL(>) = >

TDEL(p) = p
TDEL(¬φ) = ¬TDEL(φ)

TDEL(φ1 ∧ φ2) = TDEL(φ1) ∧ TDEL(φ2)
TDEL([α]φ) = [ExpAx(α)]TDEL(φ)

TDEL([π1 ∪ π2]φ) = TDEL([π1]φ) ∧ TDEL([π2]φ)
TDEL([π1;π2]φ) = TDEL([π1][π2]φ)

where ExpAτ(α) is the pointed action model {E, {Ri | i ∈ I},V, eα} obtained by the
saturation of the action α according to x−semantics:

• E = {eβ | β ∈ A}
• eβRieβ′ ⇔ β = β′ or i < obs(β) ∪ obs(β′).

8Due to the limit of space, readers are refered to van Benthem et al. (2007) for details.

14

• Pre(eβ) = TDEL(Pre(β)).
• If Pos(β) = 〈M0, . . . ,MI, x〉 then:

Pos(eβ)(hasim) =

{
> if m ∈Mi
hasim if otherwise

Pos(eβ)(com(G)) = com(G)

Pos(eβ)(past(γ̄;γ)) =

{
past(γ̄) if γ = β
⊥ if otherwise

Note that we have not defined Pos(eβ)(future(γ)) yet. Unfortunately it is
undefinable by postcondition in DEL framework, namely, by a function as-
signing each future(γ) a DEL formula. To see this, first note that the truth
value of future(γ) depends on the protocol that agents are going to follow and
it is not expressible so far in our language. Moreover, even if we introduce
protocol(π) in the langauge to denote it, we still need infinite disjunctions:
Pos(eβ)(future(γ)) =

∨
{protocol(π) | π\(β;γ) , δ}.

To go around this, we can restrict ourselves to the actions that do not change
the protocol, namely those α such that Pos(α) = 〈M0, . . . ,MI, #〉. Clearly this will
exclude exprot(π) defined earlier. And then we can set Pos(eβ)(future(γ)) = >
and obtain the following result:

Theorem 2. If A does not contain any “protocol changer”, then for any φ ∈ LI
mpc−∗

for any consistent LI
mpc-state s:

s �τ φ⇔ ExpKτ(s), s DEL TDEL(φ).

4 Applications

4.1 Common Knowledge

Our framework gives an interesting perspective on common knowledge. We
first focus on asynchronous semantics. It may not be surprising that we cannot
reach common knowledge without public communication. We might think
that achieving common knowledge becomes easier if we can publicly agree on
a common protocol before the communication is limited to non-public commu-
nication. However, in the case of asynchronous semantics we can still not reach
common knowledge, even if we can publicly agree on a protocol.

Theorem 3. For any state s with I < CC(s), any protocol π containing only commu-
nications that respect the communication channels, any ϕ ∈ LI

mpc and any sequence of

4.1 Common Knowledge 15

actions ᾱ:
s �asyn

〈exprot(π)〉(¬CIϕ→ ¬〈ᾱ〉CIϕ)

Proof. Let s~exprot(π)�t and suppose t �asyn
¬CIφ. Towards a contradiction, let

ᾱ be the minimal sequence of actions such that t �asyn
〈ᾱ〉φ. Let ᾱ = β̄;α, t~β̄�u

and u~α�v. Let j < obs(α). Such j exists since I < CC(s). Then AM(u)| j = AM(v)| j
so u ≈ j v. Since ᾱ was minimal, u 2asyn CIϕ. But then u �asyn

¬K jCIϕ so
v �asyn

¬K jCIϕ. So v 2asyn CIϕ. �

Essentially, even if the agents agree on a protocol beforehand, the agents that
cannot observe the final action of the protocol never know whether this final
action has been executed and thus common knowledge is never established.
This is because in the asynchronous semantics, there is no sense of time. If we
could add some kind of clock and the agents would agree to do an action on
every “tick”, the agents would be able to establish common knowledge. This is
exactly what we try to achieve with our τ-semantics. Here every agent receives
a “tick” the moment some action is executed. This way, they can agree on a
protocol and know when it is finished. We will show examples of how this can
result in common knowledge in the next section on the telephone call scenario.

Here we will first investigate what happens in τ-semantics if we cannot
publicly agree on a protocol beforehand. We will show that in this case we
cannot reach common knowledge of basic formulas. We start out with a lemma
stating that actions preserve the agent’s relations.

Lemma 1. For any two states s and t and any action α, if s ≈τi t and we have s′, t′

such that s~α�s′ and t~α�t′ for some G ⊆ I, then s′ ≈τi t′.

Proof. Suppose s ≈τi t. Then AM(s)|τi = AM(t)|τi . Suppose i ∈ obs(α). Then
AM(s′)|τi = AM(s)|τi , α = AM(t)|τi , α = AM(t′)|τi . Suppose i < obs(α). Then
AM(s′)|τi = AM(s)|τi , τ = AM(t)|τi , τ = AM(t′)|τi . So s′ ≈τi t′. �

This result may seem counter-intuitive, since for example a public an-
nouncement action may give the agents new information and thus destroy their
epistemic relations. However, in our framework we model the new knowledge
introduced by communicative actions by the fact that these actions would not
be possible in states that do not satisfy the precondition of the action. In this
lemma we assume that there are s′, t′ such that s~α�s′ and t~α�t′. This means
that s and t both satisfy the preconditions of α, so essentially no knowledge that
distinguishes s and t is introduced by α.

16

Now we define a fragment Lbool of our logic as follows:

φ ::= hasim | com(G) | f uture(α) | ¬φ1 | φ1 ∧ φ2

We will show that any action that does not change the agent’s message sets or
the protocol does not change the truth value of these basic formulas:

Lemma 2. Let α be an action that does not change the agent’s message sets or the
protocol. For any φ ∈ Lbool and any state s with a protocol π such that π\α = π,
s � φ↔ 〈α〉φ.

Proof. Trivial, with induction on φ. �

Combining the properties of the actions from the previous lemma, we call an
action αG

d to be a dummy action for a group of agents G if it has the precondition
(com(obs(αG

d)) ∧ f uture(αG
d), it does not change the message sets of the agents

or the protocol and obs(αG
d) = G. An example of such a dummy action is

informi
G(>). We could see it as “talking about irrelevant things”.

Theorem 4. Let A be a set of basic actions respecting the communication channels
such that for any action α there is a dummy action αobs(α)

d . Let s be a state such that
I < CC(s) and it is common knowledge in s that the protocol is π = (ΣA)∗. Then for
any n ∈N and any φ ∈ Lbool,

s �τ ¬CIφ→ ¬〈〉
≤nCIφ

Proof. Suppose towards a contradiction that s � ¬CIφ and there is a minimal n
such that s �τ 〈〉≤nCIφ. Then there is a sequence of actions ᾱ of length n such
that after executing ᾱ, φ is common knowledge. Let ᾱ = β̄;α and G = obs(α).
Let s~β̄�u. Since n is minimal, u � ¬CIφ, so there is a ≈∗I-path from u to a world
t such that t 2τ φ. Since the protocol is common knowledge, any world on the
path from u to t must also have the protocol π = (ΣA)∗. This means that in
all these worlds we can execute αG

d . By lemma ?? αG
d preserves the relations

between states so there are states u′, t′ such that u~αG
d �u

′, t~αG
d �t
′ and u′ ≈∗I t′.

Also, since t 2τ φ and by lemma ??, t′ 2τ φ. So u′ 2τ CIφ. This means that if we
would execute αG

d in state u, then CIφ would not hold.
Now let j be some agent not in G. Let u~αG

d �u
′ and u~α�v. Because j < G, j

cannot see the difference between executing αG
d and α: AM(u′)|i = AM(u)|i, τ =

AM(v)|i so u′ ≈ j v. But we just saw that u′ 2τ CIφ, so then v 2τ CIφ. But this
contradicts our assumption that β̄;α induced common knowledge of φ. �

4.2 Telephone Calls 17

4.2 Telephone Calls

Let us recall the scenario: a group of people each know a secret and they can
make telephone calls between every two people in order to communicate all
their secrets. We want to know the minimal number of telephone calls needed
to make sure everyone knows all secrets. Before modeling this particular
situation, we first propose a general modeling method based on our semantics
and actions we defined in Section 2.3:

1. Select a set of suitable actions A to model the communications in the
scenario.

2. Build a single state as the real world to model the initial setting. i.e.
s = 〈net, M̄i, ε, M̄i, (ΣA)∗〉 where net is the network, M̄i models “who has
what” and (ΣA)∗ restricts the actions agents can use.

3. Translate the informal assumptions of the scenario into formulas or pro-
tocols in LI

mpc.

4. Use exinfo(φ) exprot(π) to make the above assumptions common knowl-
edge.

Now we are ready to model the telephone call scenario. We already defined
calliG(MI) and mailiG(MI) in Section 2.3 as a conference call or mail to a group G,
sharing all messages the group has. Here the call between two people is just
a special case, thus we complete the first step. Let MI = {m0, . . .m|I|}, network
nettel

I = {{i, j} | i , j ∈ I}. Here mi is the secret of agent i. Then the initial state is:

stel
I = 〈nettel

I , {m0} . . . {m|I|}, ε, {m0} . . . {m|I|}, π〉

where π := (
⋃

G∈nettel A)∗ is the protocol the agents follow and expresses that the
agents can only make one on one telephone calls, sharing all their messages.
As we can see, in the initial situation each agent only knows his own secret. We
use some abbreviations for facts we need to express:

OneSecEachI:=
∧

i∈I(hasimi ∧
∧

j,i ¬has jmi)
HasAllI:=

∧
i∈I hasiMI

TP:=exinfo(com(nettel
I) ∧ OneSecEachI)

TPA:=TP; exprot((
⋃
α∈A α)∗)

OneSecEachI translates the assumption that “all agents know one secret not
known to the other agents”. HasAllI expresses that all agents know all secrets,

18

as the goal we want to achieve. It is easy to see that:

stel
I �

x
〈exinfo(OneSecEachI)〉CI

∧
i, j∈I

Knowi∃has jm j

so after a public announcement that each agent has one secret, it is common
knowledge that every agent knows that every other agent j has a secret m j, and
also that the agents except j do not have this secret. However,

stel
I 2

x
〈exinfo(OneSecEachI)〉

∨
i, j∈I

∃Knowihas jm j

so after this same public announcement there is not one agent who knows the
secret of another agent. These results hold for any x ∈ Sem. In our framework,
we use public announcements to set the communication channel and protocol.
TP summarizes the announcements needed for the starting situation of the
telephone puzzle without the protocol and TPA adds the information that the
agents can use the actions from A. We use call,mail,inform to denote the sets of
actions with the corresponding types.

Then the following result states that we need exactly 2|I| − 4 calls to make
sure every agent knows all secrets:

Proposition 5. For any x ∈ Sem:

stel
I �

x
〈TPcall〉〈〉

min(2|I|−4)HasAllI

A proof of this proposition is given in Hurkens (2000). The protocol given
there is the following: pick a group of four agents 1 ... 4 and let 4 be their infor-
mant. Let all other agents call agent 4, then let the four agents communicate all
their secrets within their group and let all other agents call agent 4 again. In our
framework we can express this as follows: call45(MI); ...; call4

|I|(MI); call12(MI); call34(MI);
call13(MI); call24(MI); call45(MI); ...; call4

|I|(MI)
Now assume the agents cannot make direct telephone calls, but they can

only leave voicemail messages. This means that any agent can tell the secrets
he knows to another agent, but he cannot in the same call also learn the secrets
the other agent knows. How many voicemail messages would we need in this
case?

Intuitively we can use mailij(MI); mail j
i (MI) to mimic each callij(MI), thus we

have:
stel

I �
x
〈TPmail〉〈〉

≤4|I|−8HasAllI.

However, we can do much better:

4.2 Telephone Calls 19

Proposition 6. For any x ∈ Sem:

stel
I �

x
〈TPmail〉〈〉

min(2|I|−2)HasAllI

Proof. Consider the following protocol: mail12(MI);
mail23(MI); ...; mail|I|−1

|I| (MI); mail|I|1 (MI); mail|I|2 (MI); ...; mail|I|
|I|−1(MI). Clearly, this

results in all agents knowing all secrets. The length of this protocol is 2|I| − 2.
This protocol is minimal. To see why this holds, first observe that there has to
be one agent who is the first to learn all secrets. For this agent to exist all other
agents will first have to make at least one call to reveal their secret to someone
else. This is already |I| − 1 calls. The moment that agent learns all secrets, since
he is the first, all other agents do not know all secrets. So each of them has to
receive at least one more call in order to learn all secrets. This also takes |I| − 1
calls which brings the total number of calls to 2|I| − 2. �

Note that to obtain the above results, we did not use the full power of our
framework, since the agents can only communicate the content of their mes-
sages and not about higher-order knowledge. In the following, we will study
whether we can reach common knowledge of HasAllI under τ−semantics. We
give the agents more power by allowing them to communicate not only mes-
sages but arbitrary formulas of the language in one-on-one calls by doing an
inform action. Even in this case, we can never reach common knowledge of all
messages:

Proposition 7. For any n ∈N, if |I| > 2 then:

sI 2
τ
〈TPcall,in f orm〉〈〉

≤nCIHasAllI

Proof. Follows from Theorem 3. �

However, we can approach common knowledge arbitrarily close. For any
finite sequence of agents w = i j...k define:

Kwϕ := KiK j...Kkϕ

Proposition 8. For any finite sequence w of agents from I, there exists some n ∈ N
such that:

sI �
τ
〈TPcall,in f orm〉〈〉

≤nKwHasAllI

20

Proof. We will give a protocol that results in the desired property. First we exe-
cute the protocol given in the proof of Proposition 6. Note that after executing
this protocol, agent |I| knows that everyone knows all secrets. Let w = a1...an.
We execute inform|I|an

(HasAllI); inform|I|an−1
(KanHasAllI);

...; inform|I|a1
(K2...KanHasAllI) and clearly, after these actions the desired property

will hold. �

Surprisingly, if we do not give the agents the extra power of communicating
arbitrary formulas then in the case that |I| = 3 we can reach common knowledge.
In our τ-semantics, when two agents call each other the third one will know
something happened because he observes a τ action. This is a bit like trying to
use a telephone line and getting a busy tone: you know some communication
is going on, but you don’t know between which agents it is. If there are only
three agents and it is common knowledge that the only possible communicative
action is calling, then the third agent knows the other two are calling each other.
This gives the following result:

Proposition 9. If |I| ≤ 3 then for some n ∈N:

sI �
τ
〈TPcall〉〈〉

≤nCIHasAllI

Proof. For |I| < 3 the proof is trivial. Suppose |I| = 3, say I = {1, 2, 3}. A protocol
that results in the desired property is as follows. First, execute call12(MI), call23(MI)
and call21(MI). Now all agents know all secrets, and agent 2 knows this. Also,
since agent 1 learned the secret of agent 3 from agent 2, he knows that agent
2 and 3 must have communicated after the last time he spoke to agent 2, so
agent 3 must know the secret of agent 1. Regarding agent 3, he knows agent 2
has all secrets the moment he communicated with agent 2, and he observed a τ
when agent 2 called agent 1 after that. Since there are only three agents agent
3 can deduce that agent 1 and 2 communicated so he knows agent 1 knows all
secrets. Since all agents can reason about each others knowledge it is common
knowledge that all agents have all secrets. �

Now imagine a situation where the agents are allowed to publicly announce
a protocol they are going to follow, which is more complex than just the set of
actions they can choose from. Then, in our τ-semantics, it is possible to reach
common knowledge:

Proposition 10. There is a protocol π of call actions such that

sI �
τ
〈TP; exprot(π)〉〈〉≤nCIHasAllI

REFERENCES 21

Proof. Let π be the protocol given in the proof of proposition 5. Let the agents
agree to execute πwith an exprot(π) action and then execute π. Since each agent
receives a τ at every communicative actions, they can all count the number of
communicative actions that have been executed and they all know when the
protocol has been executed. So at that moment, it will be common knowledge
that everyone has all secrets. �

This shows the use of the ability to communicate about the future protocol
and not only about the past and present. There are many more situations
where announcing the protocol is very important, for example the puzzle of 100
prisoners and a light bulb Dehaye et al. (2003) or many situations in distributed
computing.

However, when we use asyn-semantics, the agents cannot count the number
of communicative actions happening and so they can never know when the
protocol has been executed. Because of this they can never reach common
knowledge:

Proposition 11. There is no protocol π of call and in f orm actions such that

sI �
asyn
〈TP; exprot(π)〉〈〉≤n

call,informCIHasAllI

Proof. Follows from Theorem 4. �

These results show the way we can use our framework to model a lot of
different situations, often with surprising outcomes.

Acknowledgements We should thank Johan and Alexandra and anonymous
referees of AAMAS10.

References

T. Agotnes, P. Balbiani, H. van Ditmarsch, and P. Seban. Group announcement
logic. To appear in Journal of Applied Logic.

K. R. Apt, A. Witzel, and J. A. Zvesper. Common knowledge in interaction
structures. In A. Heifetz, editor, TARK, pages 4–13, 2009. doi: 10.1145/
1562814.1562820. URL http://dx.doi.org/10.1145/1562814.1562820.

A. Baltag and L. Moss. Logics for epistemic programs. Synthese, 139(2):165–
224, March 2004. doi: 10.1023/B:SYNT.0000024912.56773.5e. URL http:
//dx.doi.org/10.1023/B:SYNT.0000024912.56773.5e.

http://dx.doi.org/10.1145/1562814.1562820
http://dx.doi.org/10.1023/B:SYNT.0000024912.56773.5e
http://dx.doi.org/10.1023/B:SYNT.0000024912.56773.5e

22 REFERENCES

A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of
voting protocols. In TARK ’07: Proceedings of the 11th conference on Theoretical
aspects of rationality and knowledge, pages 62–71, New York, NY, USA, 2007.
ACM. doi: 10.1145/1324249.1324261. URL http://dx.doi.org/10.1145/
1324249.1324261.

J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
October 1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL http:
//dx.doi.org/10.1145/321239.321249.

M. Cohen and M. Dam. A complete axiomatization of knowledge and cryptog-
raphy. In LICS, pages 77–88. IEEE Computer Society, 2007.

J. H. Conway. Regular Algebra and Finite Machines (Chapman and Hall
mathematics series). Chapman and Hall, September 1971. ISBN
0412106205. URL http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0412106205.

P. O. Dehaye, D. Ford, and H. Segerman. One hundred prisoners and a light
bulb. Mathematical Intelligencer, 24(4):53–61, 2003.

R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses. Reasoning about knowledge.
MIT Press, Cambridge, MA, USA, 1995.

J. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal
of Logic, Language and Information, 6(2):147–169, April 1997. doi: 10.1023/A:
1008222603071. URL http://dx.doi.org/10.1023/A:1008222603071.

T. Hoshi and A. Yap. Dynamic epistemic logic with branching temporal struc-
tures. Synthese, 169(2):259–281, July 2009. doi: 10.1007/s11229-009-9552-6.
URL http://dx.doi.org/10.1007/s11229-009-9552-6.

C. A. J. Hurkens. Spreading gossip efficiently. Nieuw Archief voor Wiskunde, 5/1
(2):208–210, 2000.

E. Pacuit and R. Parikh. Reasoning about communication graphs. In J. van
Benthem, D. Gabbay, and B. Löwe, editors, Interactive Logic — Proceedings
of the 7th Augustus de Morgan Workshop, Texts in Logic and Games, pages
135–157, Amsterdam, 2007.

R. Parikh and R. Ramanujam. A knowledge based semantics of messages.
Journal of Logic, Language and Information, 12(4), 2003.

http://dx.doi.org/10.1145/1324249.1324261
http://dx.doi.org/10.1145/1324249.1324261
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1145/321239.321249
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0412106205
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0412106205
http://dx.doi.org/10.1023/A:1008222603071
http://dx.doi.org/10.1007/s11229-009-9552-6

REFERENCES 23

R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge.
In Proceedings of the Conference on Logic of Programs, pages 256–268, London,
UK, 1985. Springer-Verlag. ISBN 3-540-15648-8. URL http://portal.acm.
org/citation.cfm?id=747610.

R. Ramanujam and S. P. Suresh. Deciding knowledge properties of security
protocols. In Proc. Theoretical Aspects of Rationality and Knowledge, pages 219–
235. Morgan Kaufmann, 2005.

F. Roelofsen. Exploring logical perspectives on dis- tributed information and
its dynamics. Master’s thesis, University of Amsterdam, 2005.

J. van Benthem. ‘one is a lonely number’: on the logic of communication.
In Z. Chatzidakis, P. Koepke, and W. Pohlers, editors, Logic Colloquium ’02,
pages 96–129, Wellesley MA, 2002. ASL & A.K. Peters.

J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and
change. Information and Computation, 204(11):1620–1662, November 2006. doi:
10.1016/j.ic.2006.04.006. URL http://dx.doi.org/10.1016/j.ic.2006.04.
006.

J. van Benthem, J. Gerbrandy, and E. Pacuit. Merging frameworks for in-
teraction: Del and etl. In TARK ’07: Proceedings of the 11th conference on
Theoretical aspects of rationality and knowledge, pages 72–81, New York, NY,
USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1324249.1324262. URL
http://dx.doi.org/http://doi.acm.org/10.1145/1324249.1324262.

H. van Ditmarsch. The russian cards problem. Studia Logica, pages 31–62,
October 2003. ISSN 0039-3215. URL http://www.ingentaconnect.com/
content/klu/stud/2003/00000075/00000001/05151348.

H. van Ditmarsch and B. Kooi. Semantic results for ontic and epistemic change.
In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic and the
Foundations of Game and Decision Theory (LOFT 7), pages 87–117, October 2008.
URL http://arxiv.org/abs/cs/0610093.

H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. (Synthese Library). Springer, 1st edition, November 2007. ISBN
1402069081. URL http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/1402069081.

http://portal.acm.org/citation.cfm?id=747610
http://portal.acm.org/citation.cfm?id=747610
http://dx.doi.org/10.1016/j.ic.2006.04.006
http://dx.doi.org/10.1016/j.ic.2006.04.006
http://dx.doi.org/http://doi.acm.org/10.1145/1324249.1324262
http://www.ingentaconnect.com/content/klu/stud/2003/00000075/00000001/05151348
http://www.ingentaconnect.com/content/klu/stud/2003/00000075/00000001/05151348
http://arxiv.org/abs/cs/0610093
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/1402069081
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/1402069081

24 REFERENCES

Y. Wang, L. Kuppusamy, and J. van Eijck. Verifying epistemic protocols under
common knowledge. In TARK ’09: Proceedings of the 12th Conference on The-
oretical Aspects of Rationality and Knowledge, pages 257–266, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-560-4. doi: 10.1145/1562814.1562848.
URL http://dx.doi.org/10.1145/1562814.1562848.

http://dx.doi.org/10.1145/1562814.1562848

