
The Language of Social Software

Abstract

Computer software is written in languages like C, Java or Haskell. In
many cases social software is expressed in natural language. The pa-
per explores connections between the areas of natural language analysis
and analysis of social protocols, and proposes an extended program for
natural language semantics, where the goals of natural language com-
munication are derived from the demands of specific social protocols.

1 Introduction

Social software is an umbrella term for algorithms that are designed to regu-
lated social interactions. The term was coined by Rohit Parikh in [18]. Pro-
totypical examples of social algorithms are fair division protocols, of which
‘I cut, you choose’ is the simplest example. Other examples are election
procedures, protocols for establishing common knowledge in communities,
negotiation procedures, auction protocols, protocols for contract signing,
and so on.

Social software analysis is the attempt to analyse social procedures with
tools from logic and computer science. Compare Euclid’s greatest common
divisor algorithm with the ‘I cut, you choose’ procedure. Euclid’s procedure
is a formal recipe, and it can be analysed by formal means. The correctness
of the recipe follows from the insight that if A and B are two positive natural
numbers with A greater than B, then replacing A by A−B does not change
the set of common divisors of the pair.

Similarly, we can do a formal analysis of ‘cut and choose’ [23]. If X is
a set, then a valuation function V for X is a function from P(X) to [0, 1]
with the properties that V (∅) = 0, V (X) = 1, and A ⊆ B ⊆ X implies
V (A) ≤ V (B). Suppose Vm and Vy are functions for my and your valuation
of the contents of X. In general, the two of us will value the items in X
differently. Indeed, as was already observed by Steinhaus in 1948, if the two
parties have different estimations, then there exists a division that gives both

1

parties more than their due part; “this fact disproves the common opinion
that differences in estimation make fair division difficult”[23].

To analyse this, first consider the case that your valuation is unknown
to me, and vice versa. Then if I cut, the best I can do is pick sets A,B ⊆ X
with A ∩ B = ∅, A ∪ B = X, and Vm(A) = Vm(B). If you choose, you
will use Vy to pick the maximum of {Vy(A), Vy(B)}. It follows immediately
that cutting guarantees a fair share, but no more than that, while choosing
holds a promise for a better deal. So if you ever get the choice between
cutting and choosing in a situation where both parties only know their own
valuation, then it is to your advantage to leave the cutting to the other
guy. But if the valuations are common knowledge, the situation is reversed,
for then it is more advantageous to take the role of cutter, for the cutter
can attempt to make a division in A and B with A slightly more valuable
than B according to the valuation of the other party, while B is much more
valuable than A according to his own valuation (I thank Rohit Parikh for
an illuminating discussion about this). The example shows that issues of
knowledge and ignorance are crucial for analysis of fair division protocols.
Still, in traditional studies of fair division the role of knowledge is not taken
into account, as is witnessed by the comprehensive study of ‘cake cutting
algorithms’ in [20].

Social software is closely connected with game theory, action logic, epis-
temic logic and social choice theory. If a social protocol can be stated
precisely, it can be analysed with formal means. There is no doubt that
the formal analysis of social procedures has the potential to shed new light
on well established interaction protocols. In this paper we will also link up
with natural language analysis. In particular, we suggest that the study
of social mechanisms may offer an extended agenda for natural language
analysis, with the analysis of natural language communication in settings
where something more definite than just information exchange is the focus:
achievement of some well stated goals given by specific social protocols.

The structure of the paper is as follows. Section 2 introduces discourse
situations as important ingredients of social protocols, and gives an example
of a social software protocol that hinges on common knowledge. A logical
language for a formal analysis of communication in given discourse situa-
tions is presented in Section 3, and it is shown how this language can be
used to describe whether particular communications can establish common
knowledge. This language is used in Section 4 to analyse presuppositions in
terms of the concept of common knowledge. Section 5 adds factual change
to the logical toolbox, and shows how this addition allows for the analysis
of performative speech acts, and for an analysis of the communicative act

2

of asking a question as a performative. In Section 6 an example of a real
protocol is analysed with the tools presented in Sections 3 and 5. Section 7
concludes with a program for applying dynamic epistemic logic to natural
language analysis.

2 Discourse Situations in Social Protocols

Discourse situations in natural language communication are set up to achieve
broadly conceived social goals, like establishment of common knowledge.
Let us look at a famous example of a social protocol: the judgement of
Solomon. Here is the well-known story of the stratagem Solomon used to
settle a dispute about a child. Each woman claims that the child is hers,
and that the child of the other woman died.

23 Then said the king: The one saith, My child is alive, and thy
child is dead. And the other answereth: Nay; but thy child is
dead, and mine liveth. 24 The king therefore said: Bring me a
sword. And when they had brought a sword before the king, 25
Divide, said he, the living child in two, and give half to the one
and half to the other. 26 But the woman, whose child was alive,
said to the king; (for her bowels were moved upon her child) I
beseech thee, my lord, give her the child alive, and do not kill it.
But the other said: Let it be neither mine nor thine; but divide
it. 27 The king answered, and said: Give the living child to this
woman, and let it not be killed; for she is the mother thereof. 28
And all Israel heard the judgment which the king had judged,
and they feared the king, seeing that the wisdom of God was in
him to do judgment.

From the First Book of Kings, Third Chapter

For a rational reconstruction of this, see [17]. The key to the reconstruction
is that the two women are forced to reveal their valuation of the child, by
stating how much money they are willing to pay for it, or by how much
community service they are willing to put up with in order to get it. Now
suppose the child is worth A to the real mother and B to the pretender. We
shall assume that A is much larger than B.

Solomon makes the following announcement: “I will ask one of you if
you are willing to give the child to the other. If the answer is yes, the case is
settled. If not, I will ask the the same question to the other person. Again,
if the answer is yes, the case is settled. If both of you refuse to give up the

3

child, then I will have to sell it for what it is worth. I will toss a coin, and
the one who gets the child will have to pay A+B

2 , and the other pays a fine.”
If the women act rationally, one of them will give up the child, which

settles the case. It should be noted that this modified protocol is immune
to strategic behaviour in a way that the original stratagem is not. For
Solomon’s original ploy hinged on the surprise effect: in a second dispute
about a child, after “all Israel heard the judgement which the kings had
judged”, both parties in the dispute would no doubt exclaim that the child
should stay alive, even if this meant that they would have to give it up.

What interests us here is that Solomon’s announcement uses natural lan-
guage, and that the fact that the announcement creates common knowledge
is crucial to the mechanism. The common knowledge about what is going
to happen makes it possible for the women to make a rational decision.

There is, by the way, a nice Indian version of this judgement procedure,
as an Akbar and Birbal story [21]. In this version, Ramu and Shamu claimed
ownership of the same mango tree, and decided to ask Birbal to settle the
dispute. Birbal’s verdict: “Pick all the fruits from the tree and divide them
equally. Then cut down the tree and divide the wood.” Ramu thought
this was fair but Shamu was horrified, and Birbal declared Shamu the true
owner. Again: the proclamation of the verdict uses natural language to
create common knowledge between Ramu and Shamu.

I, We

You

He, She, They

Figure 1: General Structure of a Discourse Situation.

The link between social software analysis and natural language analysis
motivates a new focus for natural language semantics and pragmatics, for

4

analysis of social software calls for the study of natural language discourse
situations where the discourse is part of a well-defined social mechanism.

Focussing on the fact that the verdicts in the Solomon case and the Birbal
case are given in natural language, we can ask: what does the discourse
convey to the two parties in the dispute, and how does the mechanism
work?

• Natural language is used as a tool for creating (common) knowledge
and changing (common) beliefs.

• Natural language also employs common knowledge and common belief
to establish communication.

• Natural language is used to change the world by means of performa-
tives: Solomon’s announcement of how he is judging changes the world,
because Solomon’s words are uttered with the proper authority.

The three grammatical persons in natural language serve to refer to par-
ticipants in a discourse, and they partition the discourse situation in three
groups (see Figure 1):

• First person: I, We. Indicates the speaker, or the group represented
by the speaker.

• Second person: You. Indicates the audience.

• Third person: He, She, They. indicates the outside world.

In many situations, the aim of discourse can be viewed as: create com-
mon knowledge between Me and You. In what follows, we will illustrate
how dynamic epistemic logic, one of the key tools for analysing social situa-
tions, can be used to give an analysis of natural language discourse situations
as well. We focus on the phenomena of presupposition processing and ques-
tion answering.

3 DEL: A Language for Communication, Belief
and Knowledge

As we have seen, an act of judgement can be viewed as a communication
that changes the world, or, as philosophers of language call it, a performative
action. To analyse what goes on in social protocols we need a logic for
reasoning about knowledge, belief and communication in the presence of

5

operations that change the world. Dynamic epistemic logic or DEL (see [1]
or [3] or the textbook treatment in [8]) offers these ingredients.

Fix a PDL style language for talking about epistemic plausibility. As-
sume p ranges over a set of basic propositions Prop and a over a set of agents
Ag.

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ

π ::= a | ǎ |?φ | π1;π2 | π1 ∪ π2 | π∗

The intuition about the interpretation of a is that this gives the relation
of (unconstrained) plausibility for agent a. Here w

a→ v would express that
agent a considers world v at least as plausible as world w. The advantage
of interpreting a as plausibility rather than knowledge is that the typical
properties of knowledge can be destroyed by actions of communcation and
change that occur in social protocols. Assume Solomon knows a particular
fact p. Then someone deceives him and makes that fact false. Solomon,
who is unaware of this, still sticks to p, but can now no longer be said to
have knowledge that p. This problem is avoided if no constraints at all
are imposed on the plausibility relations for the agents involved in a social
protocol.

These plausibility relations can be used to define knowledge. E.g., we can
focus on individual knowledge of a by defining the operator ∼a as (a∪ ǎ)∗.
This definition guarantees that the knowledge is reflexive, transitive and
symmetric, even if no conditions are imposed on the plausibility relation

a→
that interprets a. Next, the PDL operations can be used to define common
knowledge, say between agents a and b. We stipulate that ∼a,b abbreviates
(∼a ∪ ∼b)∗. This defines common knowledge between a and b as the reflexive
transitive closure of the union of the knowledge relations for a and b. See
[13] for an account for how this can be extended to (conditional) belief, and
[10] for how it can be used to analyse multi-agent belief change.

This PDL language is to be interpreted in the usual PDL manner, with
the relational expressions π interpreted as relations on the domain of the
model. In particular, a is interpreted as the plausibility relation

a→ given
with the model. The intended interpretation of ǎ is the converse of this.
Next, we interpret π1;π2 as relational composition, π1 ∪ π2 as union of
relations, and π∗ as reflexive transitive closure.

Here is the formal version of the truth definition. Epistemic models M
are triples (W,P, V), where W is a set of worlds, P is a function that assigns
to each agent a a binary relation

a→ on W , and V is a valuation function,
i.e., V assigns to each world w in W a subset V (w) of the set of basic
propositions P .

6

Now let M be an epistemic model and let w be a world in the domain of
M. Then the notions of truth for formulas φ and relational interpretations
of relation expressions π are given by simultaneous recursion, as follows:

M |=w > always

M |=w p iff p ∈ V (w)

M |=w ¬φ iff not M |=w φ

M |=w φ1 ∧ φ2 iff M |=w φ1 and M |=w φ2

M |=w [π]φ iff for all v with (w, v) ∈ [[[π]]]M,M |=w φ

[[[a]]]M = {(w, v) ∈W 2 | w a→ v}
[[[ǎ]]]M = {(w, v) ∈W 2 | v a→ w}
[[[?φ]]]M = {(w,w) ∈W 2 |M |=w φ}

[[[π1;π2]]]
M = {(w, v) ∈W 2 | ∃u ∈W : (w, u) ∈ [[[π1]]]

M, (u, v) ∈ [[[π2]]]
M}

[[[π1 ∪ π2]]]M = [[[π1]]]
M ∪ [[[π2]]]

M

[[[π∗]]]M = ([[[π]]]M)?

In the final clause, ([[[π]]]M)? expresses the reflexive transitive closure of the
[[[π]]]M relation.

This logic is axiomatised by the standard PDL rules and axioms ([22, 16])
plus axioms that define the meanings of the relational converses ǎ . The PDL
rules and axioms are:

Modus ponens and axioms for propositional logic
Modal generalisation From ` φ infer ` [π]φ

Normality ` [π](φ→ ψ)→ ([π]φ→ [π]ψ)
Test ` [?φ]ψ ↔ (φ→ ψ)
Sequence ` [π1;π2]φ↔ [π1][π2]φ
Choice ` [π1 ∪ π2]φ↔ ([π1]φ ∧ [π2]φ)
Mix ` [π∗]φ↔ (φ ∧ [π][π∗]φ)
Induction ` (φ ∧ [π∗](φ→ [π]φ))→ [π∗]φ

The relation between the basic programs a and ǎ is expressed by the stan-
dard modal axioms for converse:

` φ→ [a]〈ǎ 〉φ ` φ→ [ǎ]〈a〉φ

Next step in the set-up is to add operators for communication. The most
straightforward example is public announcement. Use [!φ1]φ2 to express the
following:

7

If φ1 is true then after public announcement of φ1, it will be the
case that φ2 is true.

Let PDL+PA be the result of adding a clause [!φ]φ to the definition of PDL.
Formally, !φ is interpreted as a model changing operation. It changes an

epistemic model M = (W,P, V) to a model Mφ = (W ′, P ′, V ′) given by

W ′ = {w ∈W |M |=w φ}
P ′(a) = (

a→) ∩W ′2

V ′(w) = V (w).

The semantics of [!φ1]φ2 is now given by:

M |=w [!φ1]φ2 iff M |=w φ1 implies Mφ1 |=w φ2.

An important fact about public announcement is that everything that
can be expressed in PDL+PA can already be expressed in PDL without
announcements. In other words: the addition of public announcements
[!φ1]φ2 to the language does not increase expressive power.

This can be shown by establishing that for every φ and every α there is
a T φ(α) with the following property:

M |=w [!φ][α]ψ iff M |=w [T φ(α)][!φ]ψ.

Here is the definition of this function (this is based on Van Benthem’s anal-
ysis of public announcement in terms of relativized common knowledge; see
[4]):

T φ(a) = ?φ ; a

T φ(?ψ) = ?(φ ∧ [!φ]ψ)

T φ(α1;α2) = T φ(α1) ;T φ(α2)

T φ(α1 ∪ α2) = T φ(α1) ∪ T φ(α2)

T φ(α∗) = (?φ ;T φ(α))∗

But it turns out that we can be much more general than this, by using
the definition of update models A and of the update product operation ⊗
following Baltag, Moss, Solecki [1]. An action model is like a preference
model, but with the valuation replaced by a precondition map pre. The
individual states in an action model are called actions, and the precondition
map assigns to every action a formula of the language.

8

Updating a static model M = (W,P, V) with an action model A =
(E,P,pre) results in new static model M ⊗ A = (W ′, P ′, V ′), where the
new worlds are pairs (w, e) with w ∈W and e ∈ E, subject to the condition
that (w, e) occurs in the update result iff the precondition of e in the action
model holds in world w.

More precisely, the result of updating M = (W,P, V) with an action
model A = (E,P,pre) is the model M′ = (W ′, P ′, V ′) where W ′ = {(w, e) |
w ∈W, e ∈ E,M |=w pre(e)}, P ′ is given by {(w, e)P ′i(w′, e′) iff wPiw

′ and
ePie

′, and V ′(w, e) = V (w). (w, e) is a distinguished world of M′ iff w is a
distinguished world of M and e is a distinguished event of A.

The intuitive idea of distinguished states and distinguished events is
that the actual state (or ‘the real world’) has to be one of the distinguished
states. Likewise, the actual event (the event that actually takes place has
to be one of the distinguished events. Using distinguished states makes it
easy to indicate when an information update of a model is unsuccessful:
this happens precisely when its set of distinguished states becomes empty,
indicating that there is no room in the model for the actual world.

Let PDL+U be the result of extending the PDL language with update
operations [A,S]φ, where A is an update model, and S is a subset of the
state set of A (the set of distinguished events). Since formulas of PDL+U
can occur as preconditions in action models, we now have to define update
and truth by mutual recursion, as follows. We define the update of (M,U)
with (A,S), where U is the set of distinguished states for model M and S
is the set of distinguished events of action model A. Let

(M,U)⊗ (A,S)

be given by
((W ′, V ′, R′), U ′),

where

W ′ := {(w, s) | w ∈WM , s ∈WA,M |=w pres},
V ′(w, s) := VM (w),

(w, s)
i→ (w′, s′) ∈ R′ :≡ w

i→ w′ ∈ RM , s
i→ s′ ∈ RA,

U ′ := (U × S) ∩W ′,

9

and where the truth definition is given by:

M |=w > always
M |=w p :≡ p ∈ VM (w)
M |=w ¬φ :≡ not M |=w φ
M |=w φ1 ∧ φ2 :≡ M |=w φ1 and M |=w φ2
M |=w [α]φ :≡ for all w′ with w

α→ w′ M |=w′ φ
M |=w [A,S]φ :≡ M ′ |=(w,s) φ for all s ∈ S with M |=w pres,

where M ′ = (M, {w})⊗ (A,S),

with
α→ given by

i→ = RM (i)
?φ→ = {(x, x) |M |=x φ}
α1∪α2→ =

α1→ ∪ α2→
α1;α2→ =

α1→ ◦ α2→ (relational composition of
α1→ and

α2→)
α∗→ = (

α→)∗ (transitive closure of
α→).

Note that if the static model M has a set of distinguished states U and the
action model a set of distinguished events S, then the distinguished worlds
of M⊗A are the (w, s) with w ∈ U and s ∈ S.

The following examples should clarify these definitions. We will represent
worlds in static models as circles and events in action models as boxes.
Distinguished worlds and events are shaded grey. This indicates that the
actual world has to be one of the shaded worlds. Models without a shaded
world leave no room for reality, so to speak: their set of candidates for the
actual world is empty.

0 : h 1 : h

abc

0 : h 1 : >
abc

Figure 2: Static model and update model

Figure 2 gives an example pair of a static model with an update action.
The static model, on the left, pictures the result of a hidden coin toss,
with three onlookers, Alice, Bob and Carol. The update model represents
a secret test to the effect that the toss is h. Here and henceforth, we leave
out reflexive arrows, and use “—” for bidirectional links.

10

(0, 0) : h (0, 1) : h (1, 1) : h

abc abc

abc

Figure 3: Result of the update in Figure 2.

0 : h 1 : h

abc

Figure 4: Bisimulation-minimal version of result of the update in Figure 2.

The literal result of the update is given in Figure 3. This can be con-
tracted to a bisimulation minimal model: see Figure 4. The result of the
update is that the distinction mark on the h world has disappeared, without
any of a, b, c being aware of the change.

Factual change was added to update models in LCC [3], by means of
propositional substitutions (see also [6]). A propositional binding is a map
from proposition letters to formulas, represented by

{p1 7→ φ1, . . . , pn 7→ φn}

where the pk are all different, and where no φk is equal to pk. It is assumed
that each p that does not occur in a lefthand side of a binding is mapped to
itself.

Belief change can be added in a similar manner, by means of relational
substitutions. A relational binding is a map from agents to program expres-
sions, represented by

{a1 7→ π1, . . . , an 7→ πn}

See [2] for further details on how this is used for belief revision.

11

As an example of how public announcement creates common knowledge,
consider the following situation where a knows whether p is true while b
does not know. Both states of affairs might be actual:

w0 : p w1 : p

b

Now an update action consisting of a public announcement of p takes place.

e0 : p

Here is the update result:

(w0, e0) : p

All agents now know that p is the case. In fact, p has become common
knowledge: all agents know that all agents know that . . . that p is the case.

It is well-known that message exchange cannot create common knowledge
[15]. Here is a DEL version of the story that is often used to illustrate this,
the coordinated attack problem. Two generals a, b will succeed if they attack
together at a certain time, otherwise they will be defeated. Here is a picture
of the situation where a has decided to attack (p), but b does not know this:

w0 : p w1 : p

b

For an appropriate DEL encoding of what goes on we needs to find the right
update action. Admittedly, this is more art than science, but the following is
reasonable. The update action for general a consists of sending a message p.
Only, he cannot be sure that his message will get across, for the messenger

12

has to cross ennemy territory and might get captured. This creates an
uncertainty for a about which event is going to take place, an uncertainty
that is captured by the link with an event where nothing happens. Let us
say that in fact the messenger gets through, although a does not know this:

e0 : p e1 : >

a

The situation after this first message from general a gets across is like this:

p p p

a b

The update action for general b is symmetric. b will send an acknowledge-
ment of p, but just like the other general, he cannot be sure that this message
gets across:

e0 : p e1 : >

b

The situation after this second event is like this:

p p p p

b a b

And so it goes on . . .
We can contrast this with real life situations where co-presence creates

common knowledge. A prime example of this is cash withdrawal from a
bank. You withdraw a large amount of money from your bank account and
have it paid out to you in cash by the cashier. Typically, what happens is

13

this. The cashier looks at you earnestly to make sure she has your full atten-
tion, and then she slowly counts out the banknotes for you: one thousand
(counting ten notes while saying one, two, three, . . . , ten), two thousand
(counting another ten notes), three thousand (ten notes again), and four
thousand (another ten notes). This ritual creates common knowledge that
forty banknotes of one hundred euros each were paid out to you. To see
that this is different from mere knowledge, consider the alternative where
the cashier counts out the money out of sight, puts it in an envelope, and
hands it over to you. At home you open the envelope and count the money.
Then the cashier and you have knowledge about the amount of money that
is in the envelope. But the amount of money is not common knowledge
among you. In order to create common knowledge you will have to insist
on counting the money while the cashier is looking on, making sure that
you have her full intention. For suppose you fail to do that. On recounting
the money at home you discover there has been a mistake. One banknote
is missing. Then the situation is as follows: the cashier believed that she
knew there were forty banknotes. You now know there are only thirty-nine.
How are you going to convince your bank that a mistake has been made,
and that it is their mistake?

If you reflect on this, you see that what happens here is different from
what happens when money is paid out to you by an ATM. The machine
counts the money, dispenses it, and you can count it afterwards. You have
no part in the counting process by the machine, and the machine has no
part in your counting process, so this procedure does not create common
knowledge between you and the machine. Confidence has to be created in
other ways: by making the machines so reliable that errors seldom occur, by
carefully building a reputation that complaints about malfunctioning ATMs
are always taken seriously, and so on.

And here again an analogy with natural language analysis suggests itself.
Paying out money is a performative act, and it can be analysed as such with
the DEL toolset: counting out one, two, . . . ten, and handing the notes to
me is a communicative action that also changes the world. Technically, this
is done with an update action consisting of a public announcement together
with a public change (a substitution that changes certain truth values in the
world).

4 Presuppositions and Common Knowledge

.

14

A presupposition of an utterance is an implicit assumption about the
world or a background belief shared by speaker and hearer in a discourse.

Shall we do it again? (1)

Presupposition: we have done it before.

Jan is a bachelor. (2)

First presupposition: ‘Jan’ refers to a male person. (True in the Netherlands
and Poland, false in the United Kingdom.) Second presupposition: ‘Jan’
refers to an adult. Third presupposition: ‘bachelor’ presupposes ‘male’ and
‘adult’. To analyse this in the spirit of DEL [11], we need DEL with public
announcements. Let [!φ]ψ express that after public announcement of φ, ψ
holds. Formally:

M |=w [!φ]ψ iff (M |=w φ implies M | φ |=w ψ).

Now consider the special case of an update of the form “it is common knowl-
edge between i and j that φ”, i.e., an update of the form ![∼i,j]φ. Then we
have the following:

• In case φ is already common knowledge, this update does not change
the model.

• In case φ is not yet common knowledge, the update leads to a model
without actual worlds.

m, a, u m, a, u

m, a, u m, a, u

i

i

i

i, j i

Solid lines for i, j
accessibilities, dotted
lines for i accessibil-
ities. m for ‘male’,
a for ‘adult’, u for
‘unmarried’. Note that
j does not know about
u and i does not know
about a, u. Note also
that [∼ij]m holds, but
[∼ij]a and [∼ij]u do
not hold.

15

To analyze presupposition in terms of common knowledge, we can view
presuppositions as pieces of common knowledge shared between speaker and
hearer in a discourse. In the following model, m and a are common knowl-
edge between i and j:

m, a, u m, a, u

i, j

An update with ‘bachelor’ conveys that ‘male’ and ‘adult’ are presupposed
(common knowledge), while ‘unmarried’ is conveyed:

[∼ij](m ∧ a) ∧ u

Here is the update result:

m, a, u

Note the following fact about public announcement of common knowledge:

M |=w [![∼ij]φ]ψ iff M |=w [∼ij]φ→ ψ.

This says that public announcement of common knowledge has the force of
an implication.

M |=w [!([∼ij]φ ∧ φ′)]ψ iff M |=w [![∼ij]φ][!φ′]ψ.

This says that putting a presupposition before an assertion has the same
effect as lumping them together.

Within this framework we can analyse presupposition projection, by
checking how sequential composition of statements affects the presuppo-
sitions of the components. For a trivial but illustrative example, let us con-
sider the update without presupposition !m (the statement male) followed

16

by the update for bachelor). Using C for [∼ij] and C(φ, ψ) for [!φ][∼ij]ψ,
we get:

[!m][!(C(m ∧ a) ∧ u)]χ↔ [!(m ∧ [!m](C(m ∧ a) ∧ u))]χ

↔ [!(m ∧ [!m]Cm ∧ [!m]Ca ∧ [!m]u)]χ

↔ [!(m ∧ [!m]Ca ∧ [!m]u)]χ

↔ [!(m ∧ C(m, a) ∧m→ u)]χ

↔ [!(C(m, a) ∧m ∧ u)]χ

So the presuppositional part of the combined statement is C(m, a), and the
assertional part is m ∧ u.

Next, look at what the literature calls presupposition accommodation.
Suppose p is common knowledge. Then updating with statement !(Cp ∧ q)
has the same effect as updating with !q. Suppose on the other hand that p
is true in the actual world but not yet common knowledge. Then updating
with !(Cp∧q) will lead to an inconsistent state, but updating with !p followed
by an update with !(Cp∧ q) will not. Accommodation of the presupposition
would consist of replacement of !(Cp∧ q) by [!p][!(Cp∧ q)]. By invoking the
Gricean maxim ‘be informative’ one can explain why [!p][!(Cp ∧ q)] is not
appropriate in contexts where p is common knowledge.

5 Performatives and Question Answering

In order to analyse performative acts of communication, we need to use the
operation of public change. For this we use [p := φ]ψ, with the semantic
stipulation that this is true in world w of M if ψ is true in world wp:=[[φ]]w

of Mp:=[[φ]]. Here wp:=[[φ]]w is the result of changing the valuation of w in
such manner that p gets value [[φ]]w. Thus, p := φ changes the model M to
Mp:=[[φ]]. Note that the command p := φ also makes sense if p occurs in φ.
An example is the command p := ¬p, which just swaps the truth value of
p in every valuation in the model. Here are some examples of performative
speech acts.

I call you Adam. (3)

I declare you man and wife. (4)

Let’s illustrate the modelling of the marriage ceremony in DEL with public
changes. We suppose the initial situation looks like this:

17

m, a, u m, a, u

m, a, u m, a, u

i

i

i

i, j i

Below left is the action model for public change, and right the result of
updating the above model with this.

u := ⊥
m, a, u m, a, u

i

Other important ingredients in social protocol are questioning and ques-
tion answering. We illustrate how DEL can be used to give an analysis of
the notion of appropriateness of a yes/no question. See [14] for a standard
account. Our DEL analysis is based on the treatment in the last chapter
of [12]. Other relevant work in this area can be found in [?]. Let f be a
propositional variable for question focus.

Analyse a Yes/No
Question φ? as:

f := φ

Analyze the answer
‘yes’ as:

f
Analyze the answer
‘no’ as:

¬f

Question: ‘Is Johnny married?’ (5)

Answer: ‘Johnny is not an adult.’ (6)

18

This answer is appropriate: updating with this answer makes ‘John is not
married’ common knowledge. The update entails the answer ‘no’.

Thus, if the question modelled as an update with the public change
action f := φ, then the answer ψ is appropriate if either updating with ψ
has the effect that f becomes common knowledge, or updating with ψ has
the effect that ¬f becomes common knowledge.

6 Social Software Protocol Analysis with DEL

Finally, let us turn to the analysis of an example social software protocol.
We will first give a DEL analysis of a protocol that solves a riddle, and next
ask a meta-question: how can we explain that the agents in the protocol
agree to adopt the protocol? It will turn out that a rational explanation can
be given, but this requires an extension of DEL. Here is the riddle.

A group of 100 prisoners, all together in the prison dining area,
are told that they will be all put in isolation cells and then will
be interrogated one by one in a room containing a light with an
on/off switch. The prisoners may communicate with one another
by toggling the light-switch (and in no other way). The light is
initially switched off. There is no fixed order of the interroga-
tions. Every day one prisoner will get interrogated. At any stage
every prisoner will be interrogated again sometime.

When interrogated, a prisoner can either do nothing, or toggle
the light-switch, or announce that all prisoners have been inter-
rogated. If that announcement is true, the prisoners will (all)
be set free, but if it is false, they will all be executed. Can the
prisoners agree on a protocol that will set them free?

There are several ways for solving this [7]; we will discuss the simplest pro-
tocol that works, and then move on to the meta question: how can the
prisoners agree on adopting the protocol?

For n ≤ 2 the riddle is uninteresting, so assume there are n > 2 prisoners
The n prisoners appoint one among them as the counter. All prisoners except
the counter act as follows: the first time they enter the room when the light
is off, they switch it on; on all subsequent occasions, they do nothing. The
counter acts as follows: The first n − 2 times that the light is on when he
enters the interrogation room, he turns it off. Then the next time he enters
the room when the light is on, he (truthfully) announces that everybody has
been interrogated.

19

For simplicity, let us assume there are three prisoners 0, 1, 2, with 0
acting as counter. Let e0, e1, e2 be the interrogation events of the three
prisoners. Let p express that the light is on. For example: if the light is on
and if event e0 (interrogation of the counter) takes place, then afterwards
the light is off, and the counter knows that it is off:

p→ [e0]K0¬p.

Let qi, for i = 1, 2, express that prisoner i has been interrogated at least
once. Then the following is true:

[e1]q1.

And similarly for prisoner 2. After the events of their interrogation, the
prisoners have been interrogated at least once.

The key to the correct modelling of the protocol is the construction of the
update model. The update model for the counter update should distinguish
between two cases: the light is on (p) or the light is off (¬p). We call these
events e0p and e0p. This distinction is crucial, for we want to model the fact
that the counter learns from what he sees when he enters the interrogation
room. In case the counter finds the light on, he switches it off (p := ⊥); in
case he finds the light off, he does nothing (ε). The counter can of course
distinguish between these two events, for he sees whether the light is on or
off, but the other two prisoners will confuse them.

For the two other prisoners it only matters what they do, and what they
do is conditional on whether they have been interrogated before. Consider
prisoner 1. A bit of reflection shows that the following action takes place:
p := q1 → p, q1 := >. The assignment p := q1 → p ensures that if the light
is on nothing changes, and if the light is off, it is turned on on condition
that q1 is false. The assignment q1 := > makes q1 true, to express that at
least one interrogation of 1 has taken place. The treatment of the event for
the other non-counting prisoner is similar.

From the perspective of the counter, the update model looks like this
(this is in fact the implementation of update e0):

20

(p, p := ⊥)

(¬p, ε)

(>, p := q1 → p, q1 := >)

(>, p := q2 → p, q2 := >)

1, 2

2

1

0

1

2

Note that 1, 2 cannot see the difference between interrogation of 0 with the
light on or off. 1, 2 also cannot see the difference between the counter inter-
rogation and the interrogation of the other non-counting prisoner. Finally,
the counter cannot tell the interrogations of the other two prisoners apart.

From the perspective of prisoner 1 the update model looks similar, but
now with the event where p := q1 → p, q1 := > takes place as the actual
event. Call this update e1. Finally, update e2 is given by the same action
model, but now with the event where p := q2 → p, q2 := > takes place as
the actual event.

It is not hard to see that this gives a correct modelling of what takes
place during the interrogations, so it gives us a semantics for [ei]φ, with i
ranging over 1, 2, 3. Note that the update model can be viewed as a formal
version of the protocol that the prisoners have agreed on.

Now let us turn to the meta question. Why should the prisoners agree on
this protocol? After all, it is a matter of life and death to them. Intuitively,
the explanation is that it is common knowledge that if the interrogation
sequence is fair (in the sense that every prisoner will always be interrogated
again at some day in the future), then at some point in the future the counter
will know that all have been interrogated. Also, it is common knowledge

21

that the counter will never falsely believe that the prisoners have all been
interrogated. Can we express such facts in DEL? No, for DEL does not allow
temporal reasoning. But we can express them in the extension of DEL with
temporal operators (call this DEL + LTL):

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ | [e]φ |
Ne | Fφ | Gφ | Pφ | Hφ

π ::= a | ǎ |?φ | π1;π2 | π1 ∪ π2 | π∗

a ::= 0 | 1 | 2
e ::= e0 | e1 | e2

The intended semantics of [e]φ is the DEL semantics: either update with
event e fails, or in the updated model φ holds. The intended semantics of
Ne is that the next event is e. The meanings of F, P,G,H are the usual
ones from linear time logic (LTL; see [19]).

Formally, interpretation takes place with respect to infinite sequences of
events. If σ is such a sequence and if n is a positive natural number, then
we use σn is the n-th event of the sequence. So σ looks like σ1, σ2, . . . Then
Mσ,n is the model which results from doing updates σ1, . . . , σn on the initial
model (where the light is off and everyone knows that). Since all updates
are functional, this is well-defined. Here is an example of an interrogation
sequence where the prisoners get interrogated indefinitely in the sequence
0, 1, 2:

e0, e1, e2, e0, e1, e2, e0, e1, e2, e0, e1, e2, . . .

The truth definition for this language defines the relation (σ, n) |= φ, as
follows. (σ, n) |= p iff p is true in Mσ,n. Booleans and epistemic operations
are interpreted as usual, using Mσ,n for (σ, n). The clauses for the temporal
operators run like this:

(σ, n) |= Ne iff if σn+1 = e (the next event in the sequence σ equals e)

(σ, n) |= Fφ iff if for some m > n, (σ,m) |= φ.

(σ, n) |= Gφ iff if for all m > n, (σ,m) |= φ.

(σ, n) |= Pφ iff if for some m < n, (σ,m) |= φ.

(σ, n) |= Hφ iff if for all m < n, (σ,m) |= φ.

With this, we can express what it means that an interrogation sequence
is fair:

G(FNe0 ∧ FNe1 ∧ FNe2).

22

Knowledge of 0 that prisoners 1 and 2 have been interrogated:

[∼0](PNe1 ∧ PNe2).

Correctness of the protocol:

G(FNe0 ∧ FNe1 ∧ FNe2)→ F [∼0](PNe1 ∧ PNe2).

Common knowledge of correctness of the protocol:

[∼012](G(FNe0 ∧ FNe1 ∧ FNe2)→ F [∼0](PNe1 ∧ PNe2)).

An implementation of epistemic model checking for this example is available
from the author upon request [9].

7 Conclusions

Common knowledge and common belief are central notions in (natural lan-
guage) discourse analysis and in social software. An interesting program
for natural language semantics would be to analyze discourse as sequences
of public announcements to the discourse participants, using the tools from
dynamic epistemic logic. Public announcement logic can also shed light on
the analysis of presupposition, presupposition projection and presupposition
accommodation. Yes/no questions can be analyzed as public change of fo-
cus. Appropriate answers can be analysed in terms of ‘same update effect’.
A program for DEL applied to natural language analysis would be to extend
the hints given above to a full semantic/pragmatic theory of questions and
answers. Finally on the agenda is the program of investigating the logic of
DEL + LTL, comparing with the more general perspective of [5], analyzing
further social software protocols in DEL + LTL, and develop model checking
tools for this language.

Acknowledgement I wish to thank two anonymous Synthese reviewers
for useful advice on presentation.

References

[1] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announce-
ments, common knowledge, and private suspicions. In I. Bilboa, editor,
Proceedings of TARK’98, pages 43–56, 1998.

23

[2] J. van Benthem and F. Liu. Dynamic logic of preference upgrade.
Journal of Applied Non-Classical Logics, 14(2):157–182, 2007.

[3] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication
and change. Information and Computation, 204(11):1620–1662, 2006.

[4] Johan van Benthem. Information update as relativization. Techni-
cal report, ILLC, Amsterdam, 2000. Available from http://staff.

science.uva.nl/~johan/Upd=Rel.pdf.

[5] Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi, and Eric Pacuit.
Merging frameworks for interaction. Journal of Philosophical Logic,
38(5):491–526, 2009.

[6] Hans van Ditmarsch and Barteld Kooi. Semantic results for ontic and
epistemic change. In G. Bonanno, W. van der Hoek, and M. Wooldridge,
editors, Logic and the Foundations of Game and Decision Theory
(LOFT 7), Texts in Logic and Games, pages 87–117. Amsterdam Uni-
versity Press, 2008.

[7] Hans van Ditmarsch, Jan van Eijck, and William Wu. One hundred
prisoners and a lightbulb — logic and computation. Twelfth Interna-
tional Conference on the Principles of Knowledge Representation and
Reasoning, Toronto, Canada, May 2010.

[8] H.P. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2006.

[9] Jan van Eijck. DEMO — a demo of epistemic modelling. In Johan van
Benthem, Dov Gabbay, and Benedikt Löwe, editors, Interactive Logic
— Proceedings of the 7th Augustus de Morgan Workshop, number 1
in Texts in Logic and Games, pages 305–363. Amsterdam University
Press, 2007.

[10] Jan van Eijck and Floor Sietsma. Multi-agent belief revision with linked
plausibilities. In G. Bonanno, B. Loewe, and W. van der Hoek, editors,
Logic and the Foundations of Game and Decision Theory – LOFT 8,
volume 6006 of Lecture Notes in Artificial Intelligence. Springer, 2010.

[11] Jan van Eijck and Christina Unger. The epistemics of presupposition
projection. In Maria Aloni, Paul Dekker, and Floris Roelofsen, editors,
Proceedings of the Sixteenth Amsterdam Colloquium, December 17–19,
2007, pages 235–240, Amsterdam, December 2007. ILLC.

24

[12] Jan van Eijck and Christina Unger. Computational Semantics with
Functional Programming. To appear with Cambridge University Press,
2010.

[13] Jan van Eijck and Yanjing Wang. Propositional Dynamic Logic as a
logic of belief revision. In Wilfrid Hodges and Ruy de Queiros, editors,
Proceedings of Wollic’08, number 5110 in Lecture Notes in Artificial
Intelligence, pages 136–148. Springer, 2008. http://dx.doi.org/10.

1007/978-3-540-69937-8_13.

[14] J. Groenendijk and M. Stokhof. Studies on the Semantics of Questions
and the Pragmatics of Answers. PhD thesis, University of Amsterdam,
1984.

[15] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. In Proceedings of the 3rd ACM Symposium
on Principles of Distributed Computing (PODS), pages 50–61, 1984. A
newer version appeared in the Journal of the ACM, vol. 37:3, 1990, pp.
549–587.

[16] D. Kozen and R. Parikh. An elementary proof of the completeness of
PDL. Theoretical Computer Science, 14:113–118, 1981.

[17] J. Moore. Implementation, contracts, and renegotiation in environ-
ments with complete information. In J.-J. Laffont, editor, Advances in
Economic Theory — 6th World Congress, volume I, Cambridge, 1992.
Cambridge University Press.

[18] Rohit Parikh. Social software. Synthese, 132:187–211, 2002.

[19] A. Pnueli. A temporal logic of programs. Theoretical Computer Science,
13:45–60, 1981.

[20] Jack Robertson and William Webb. Cake-Cutting Algorithms. A.K.
Peters, 1998.

[21] Clifford Sahwney. 50 Wittiest Tales of Birbal. Unicorn Books, 2004.

[22] K. Segerberg. A completeness theorem in the modal logic of programs.
In T. Traczyck, editor, Universal Algebra and Applications, pages 36–
46. Polish Science Publications, 1982.

[23] H. Steinhaus. The problem of fair division. Econometrica, 16:101–104,
1948.

25

