
Propositional Dynamic Logic as a Logic of Belief
Revision

Jan van Eijck and Yanjing Wang

Center for Mathematics and Computer Science (CWI)
Kruislaan 413 1098 SJ Amsterdam, The Netherlands

{jve,y.wang}@cwi.nl

Abstract. This paper shows how propositional dynamic logic (PDL)
can be interpreted as a logic for multi-agent belief revision. For that we
revise and extend the logic of communication and change (LCC) of [9].
Like LCC, our logic uses PDL as a base epistemic language. Unlike LCC,
we start out from agent plausibilities, add their converses, and build
knowledge and belief operators from these with the PDL constructs. We
extend the update mechanism of LCC to an update mechanism that
handles belief change as relation substitution, and we show that the
update part of this logic is more expressive than either that of LCC
or that of doxastic/epistemic PDL with a belief change modality. It is
shown that the properties of knowledge and belief are preserved under
any update, and that the logic is complete.

Keywords: PDL, epistemic dynamic logic, belief revision, knowledge
update.

1 Introduction

Proposals for treating belief revision in the style of dynamic epistemic logic (see
Gerbrandy [15], van Ditmarsch [12], van Benthem [6, 10], and Baltag, Moss and
coworkers [3, 1, 2], or the textbook treatment in [13]) were made in [8] and [7],
where it is suggested that belief revision should be treated as relation substi-
tution. This is different from the standard action product update from [3], and
it suggests that the proper relation between these two update styles should be
investigated.

We propose a new version of action product update that integrates belief
revision as relation substitution with belief update by means of action product.
We show that this allows to express updates that cannot be expressed with
action product only or with relation substitution only.

We graft this new update mechanism on a base logic that can express knowl-
edge, safe belief, conditional belief, and plain belief, and we show that the proper
relations between these concepts are preserved under any update. The complete-
ness of our logic is also provided.

Our main source of inspiration is the logic of communication and change
(LCC) from [9]. This system has the flaw that updates with non-S5 action

models may destroy knowledge or belief. If one interprets the basic relations
as knowledge relations, then updating with a lie will destroy the S5 character of
knowledge; similarly, if one interprets the basic relations as belief, the relational
properties of belief can be destroyed by malicious updates. Our redesign does
not impose any relational conditions on the basic relations, so this problem is
avoided. Our completeness proof is an adaptation from the completeness proof
for LCC. The treatment of conditional belief derives from [11]. Our work can
be seen as a proposal for integrating belief revision by means of relation sub-
stitution, as proposed in [7] with belief and knowledge update in the style of
[3].

2 PDL as a Belief Revision Logic

A preference model M for set of agents Ag and set of basic propositions Prop
is a tuple (W,P, V) where W is a non-empty set of worlds, P is a function that
maps each agent a to a relation Pa (the preference relation for a, with wPaw

′

meaning that w′ is at least as good as w), and V is a map from W to P(Prop)
(a map that assigns to each world a Prop-valuation). A distinctive preference
model is a pair consisting of a preference model and a set of distinctive states
in that model. The intuitive idea is that the actual world is constrained to be
among the distinctive worlds. This information is typically not available to the
agents, for an agent’s knowledge about what is actual and what is not is encoded
in her Pa relation (see below).

There are no conditions at all on the Pa. Appropriate conditions will be
imposed by constructing the operators for belief and knowledge by means of
PDL operations.

We fix a PDL style language for talking about preference (or: plausibility).
Assume p ranges over Prop and a over Ag.

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= a | ǎ |?φ | π1;π2 | π1 ∪ π2 | π∗

We use PROG for the set of program expressions (expressions of the form π) of
this language.

This is to be interpreted in the usual PDL manner, with [[[π]]]M giving the
relation that interprets relational expression π in M = (W,P, V). [π]φ is true in
world w of M if for all v with (w, v) ∈ [[[π]]]M it holds that φ is true in v. We
adopt the usual abbreviations of ⊥, φ ∨ ψ, φ→ ψ, φ↔ ψ and 〈π〉φ.

The following additional abbreviations allow us to express knowledge, safe
belief, conditional belief and plain belief:

knowledge ∼a abbreviates (a ∪ ǎ)∗.
safe belief ≥a abbreviates a∗.
conditional belief [→φ

a]ψ abbreviates 〈∼a〉φ→ 〈∼a〉(φ ∧ [≥a](φ→ ψ)).
plain belief [→a]φ abbreviates [→>

a]φ. (note: it follows that [→a]φ is equivalent
to 〈∼a〉[≥a]φ).

2

We will occasionally use ≤a for the converse of ≥a.
Safe belief is belief that persists under revision with true information (see

Stalnaker [20]). The definition of [→φ
a]ψ (conditional belief for a, with condition

φ) is from Boutillier [11] This definition, also used in [5], states that conditional to
φ, a believes in ψ if either there are no accessible φ worlds, or there is an accessible
φ world in which the belief in φ → ψ is safe. The definition of [→φ

a]ψ matches
the well-known accessibility relations →P

a for each subset P of the domain, given
by:

→P
a := {(x, y) | x∼ay ∧ y ∈ MIN≤aP},

where MIN≤aP , the set of minimal elements of P under ≤a, is defined as

{s ∈ P : ∀s′ ∈ P (s′ ≤a s⇒ s ≤a s
′)}.

This logic is axiomatised by the standard PDL rules and axioms ([19, 18]) plus
axioms that define the meanings of the converses ǎ of basic relations a. The
PDL rules and axioms are:

Modus ponens and axioms for propositional logic
Modal generalisation From ` φ infer ` [π]φ

Normality ` [π](φ→ ψ) → ([π]φ→ [π]ψ)
Test ` [?φ]ψ ↔ (φ→ ψ)
Sequence ` [π1;π2]φ↔ [π1][π2]φ
Choice ` [π1 ∪ π2]φ↔ ([π1]φ ∧ [π2]φ)
Mix ` [π∗]φ↔ (φ ∧ [π][π∗]φ)
Induction ` (φ ∧ [π∗](φ→ [π]φ)) → [π∗]φ

The relation between the basic programs a and ǎ is expressed by the standard
modal axioms for converse:

` φ→ [a]〈ǎ 〉φ ` φ→ [ǎ]〈a〉φ

Any preference relation Pa can be turned into a pre-order by taking its reflexive
transitive closure Pa

∗. So our abbreviation introduces the ≥a as names for these
pre-orders. The knowledge abbreviation introduces the ∼a as names for the
equivalences given by (Pa ∪ Pa)̌∗. If the Pa are well-founded, MIN≤a

P will be
non-empty for non-empty P . Wellfoundedness of Pa is the requirement that there
is no infinite sequence of different w1, w2, . . . with . . . Paw2Paw1. Fortunately,
we do not have to worry about this relational property, for the canonical model
construction for PDL yields finite models, and each relation on a finite model is
well-founded.

This yields a very expressive complete and decidable PDL logic for belief
revision, to which we can add mechanisms for belief update and for belief change.

Theorem 1. The above system of belief revision PDL is complete for preference
models. Since the canonical model construction for PDL yields finite models, it
is also decidable.

3

Knowledge is S5 (equivalence), safe belief is S4 (reflexive and transitive),
plain belief is KD45 (serial, transitive and euclidean). Note that the following is
valid:

〈∼a〉[≥a]φ→ [∼a]〈≥a〉〈∼a〉[≥a]φ

This shows that plain belief is euclidean.

3 Action Model Update

We give the definition of action models A and of the update product operation
⊗ from Baltag, Moss, Solecki [3]. An action model is like a preference model for
Ag, with the difference that the worlds are now called actions or events, and
that the valuation has been replaced by a map pre that assigns to each event e
a formula of the language called the precondition of e. From now on we call the
preference models static models.

Updating a static model M = (W,P, V) with an action model A = (E,P,pre)
succeeds if the set

{(w, e) | w ∈W, e ∈ E,M, w |= pre(e)}

is non-empty. The update result is a new static model M ⊗ A = (W ′, P ′, V ′)
with

– W ′ = {(w, e) | w ∈W, e ∈ E,M, w |= pre(e)},
– P ′a is given by {(w, e), (v, f)) | (w, v) ∈ Pa, (e, f) ∈ Pa},
– V ′(w, e) = V (w).

If the static model has a set of distinctive states W0 and the action model a set
of distinctive events E0, then the distinctive worlds of M⊗A are the (w, e) with
w ∈W0 and e ∈ E0.

Below is an example pair of a static model with an update action. The static
model, on the left, pictures the result of a hidden coin toss, with three onlookers,
Alice, Bob and Carol. The model has two distinctive worlds, marked in grey; h
in a world means that the valuation makes h true, h in a world means that
the valuation makes h false in that world. The Pa relations for the agents are
assumed to be equivalences; reflexive loops for a, b, c at each world are omitted
from the picture.

0 : h 1 : h

abc

0 : h 1 : >

abc

The action model represents a secret test whether the result of the toss is h. The
distinctive event of the update is marked grey. The Pi relations are drawn, for
three agents a, b, c. The result of the update is shown here:

4

(0, 0) : h (0, 1) : h (1, 1) : h

abc abc

abc

This result can be reduced to the bisimilar model below:

0 : h 1 : h

abc

The result of the update is that the distinction mark on the h world has disap-
peared, without any of a, b, c being aware of the change.

4 Adding Factual Change and Belief Change

Factual change was already added to update models in LCC. We will now also
add belief change. Let an action model with both changes be a quintuple

A = (E,P,pre,Sub,SUB)

where E,P,pre are as before, Sub is a function that assigns a propositional
binding to each e ∈ E, and SUB is a function that assigns a relational binding
to each e ∈ E. A propositional substitution is a map from proposition letters to
formulas, represented by a finite set of bindings

{p1 7→ φ1, . . . , pn 7→ φn}

where the pk are all different, and where no φk is equal to pk. It is assumed that
each p that does not occur in a left-hand side of a binding is mapped to itself.

Similarly, a relational substitution is a map from agents to program expres-
sions, represented by a finite set

{a1 7→ π1, . . . , an 7→ πn}

where the aj are agents, all different, and where the πj are program expressions
from the PDL language. It is assumed that each a that does not occur in the
left-hand side of a binding is mapped to a. Use ε for the identity propositional
or relational substitution.

5

Definition 1 (Update execution). The update execution of static model M =
(W,P, V) with action model A = (E,P,pre,Sub,SUB) is a tuple: M ~ A =
(W ′, P ′, V ′) where:

– W ′ = {(w, e) | M, w � pre(e)}.
– P ′a is given by

{((w1, e1), (w2, e2)) |
there is a SUB(e1)(a) path from (w1, e1) to (w2, e2) in M⊗A}.

– V ′(p) = {(w, e) ∈W ′ | M, w � Sub(e)(p)}.

Note: the definition of P ′a refers to paths in the old style update product.
Consider the suggestive upgrade]aφ discussed in Van Benthem and Liu [8]

as a relation changer (uniform relational substitution):

]aφ =def ?φ; a; ?φ ∪ ?¬φ; a; ?¬φ ∪ ?¬φ; a; ?φ.

This models a kind of belief change where preference links from φ worlds to ¬φ
worlds for agent a get deleted. It can be modelled as the following example of
public belief change.

Example 1 (Public Belief Change). Action model

G = ({e},P,pre,Sub,SUB)

where:

– For all the i ∈ Ag, Pi = {(e, e)}.
– pre(e) = >.
– Sub(e) = ε.
– SUB(e) = {a 7→]aφ, b 7→]bφ}.

Note that our action model and its update execution implement the point-
wise relation substitutions which is more powerful than merely upgrading the
relations uniformly everywhere in the model, as the following example shows:

Example 2 (Non-public Belief Change). Action model

G′ = ({e0, e1},P,pre,Sub,SUB)

where:

– For all i ∈ Ag, if i 6= b then Pi = {(e0, e0), (e1, e1)},
Pb = {(e0, e0), (e1, e1), (e0, e1), (e1, e0)}

– pre(e0) = pre(e1) = >.
– Sub(e0) = Sub(e1) = ε.
– SUB(e0) = {a 7→]aφ}, SUB(e1) = ε.

Assume e0 is the actual event.

6

This changes the belief of a while b remains unaware of the change.
Let PDL+ be the result of adding modalities of the form [A, e]φ to PDL,

with the following interpretation clause:

M, w |= [A, e]φ iff M, w |= pre(e) implies M ~ A, (w, e) |= φ.

Theorem 2 (Soundness and Completeness for PDL+). � φ iff ` φ.

Proof. Completeness can be proved by a patch of the LCC completeness proof
in [9] where the action modalities are pushed through program modalities by
program transformations. See the first Appendix.

5 Expressivity of Action Update with Changes

Although PDL+ reduces to PDL, just like LCC, the new action update mech-
anism (the model transformation part) is more expressive than classic product
update and product update with factual changes, as we will show in this section.
Call a function on epistemic models that is invariant for bisimulation a model
transformer. Then each update can be viewed as a model transformer, and a set
of model transformers corresponds to an update mechanism. If U is an update
mechanism, let Tr(U) be its set of model transformers.

Definition 2. Update mechanism U1 is less expressive than update mechanism
U2 if Tr(U1) ⊂ Tr(U2).

First note that the classical product update (with factual changes) has the elimi-
native nature for relational changing: according to the definition, the relations in
the updated model must come from relations in the static model. For example,
it is not possible, by product update, to introduce a relational link for agent a
to a static model where the a relation was empty. However, we can easily do this
with an uniform relation substitution a 7→?>. Thus we have:

Proposition 1. Relational substitution can express updates that cannot be ex-
pressed with action product update(with factual changes) alone, so relational sub-
stitution is not less expressive than action product update.

On the other hand, relational substitution alone cannot add worlds into a static
model, while the classical product update mechanism can copy sets of worlds.
Therefore it is not hard to see:

Proposition 2. Action product update can express updates that cannot be ex-
pressed with relational substitution alone, so action product update is not less
expressive than relational substitution.

Our action update with both relational and factual changes combines the power
of product update and propositional/relational substitutions. Thus according
to Propositions 1 and 2, it is more expressive than relational eliminative prod-
uct update with factual changes in LCC, and more expressive than proposi-
tional/relation changing substitution simpliciter. Moreover, we can prove a even
stronger result for the case of S5 updates.

7

Theorem 3. In the class of S5 model transformers, action product update with
factual changes is less expressive than action update with both factual and rela-
tional changes.

Proof. Let A be the action model ({e},P,pre,Sub,SUB) where Pa = {(e, e)} =
Pb;pre(e) = >;Sub(e) = ε;SUB(e) = {a 7→ b}. It is easy to see that this action
model will change the relation a as b uniformly while keeping the updated model
being still S5, if the static model is indeed S5. We now show that it does not
have a corresponding action model in LCC style (only factual changes) which
can give the bisimilar updated result for every static model.

First consider the following static S5 model M (left) and its updated model
M ~ A(right) (reflexive loops are omitted):

w0 : p w1 : p

b
(w0, e) : p (w1, e) : p

a, b

For a contradiction, suppose there is a LCC action model A′ with distinctive
event e′ such that M1 ~ A, (w0, e) ↔ M ⊗ A′, (w0, e

′). Then according to the
definition of bisimulation, there must be an a−link from (w0, e

′) to a p world
(s, e′′) in M ⊗ A′. According to the definition of ⊗, (w0, s) ∈ pa in M and
(e′, e′′) ∈ Pa in A′. Thus s = w0 and M, w0 � pre(e′)∧ pre(e′′). Let us consider
the following S5 model M′ which consists of two copies of M with an a−link in
between:

t0 : p, q t1 : p, q

b

t3 : p, q t4 : p, q

b

a

where q does not show up in pre(e′) and pre(e′′). Thus it is not hard to see that
pre(e′)∧pre(e′) holds on t0 and t3. Then M′⊗A′, (t0, e′) must has an a link from
a q world (t0, e′) to a q world (t3, e′′), while in M′ ~ A, (t0, e) there is no such
link. Thus M′ ~ A, (t0, e) and M′ ⊗A′, (t0, e′) are not bisimilar. Contradiction.

An example illustrating the use of the new belief revision update mechanism
is worked out in the second Appendix. This example also shows the difference in
expressive power for the achievement of common knowledge between knowledge
update and belief revision.

8

6 Future Work

Several update mechanisms for dynamic epistemic logic have been proposed in
the literature. A very expressive one is the action-priority upgrade proposed
in [4, 5]. Comparing the expressiveness of our update with factual and relation
change with that of their mechanism is future work.

The new update mechanism proposed above is grafted on a doxastic/epistemic
logic that does not impose any conditions on the basic preference relations. Thus,
any update will result in a proper epistemic model. This situation changes as
soon as one imposes further conditions. E.g., if the basic preferences are assumed
to be locally connected, then one should restrict the class of update models to
those that preserve this constraint. For each reasonable constraint, there is a
corresponding class of model transformers that preserve this constraint. Finding
syntactic characterizations of these classes is future work.

We are interested in model checking with doxastic/epistemic PDL and
updates/upgrades in the new style, and we are currently investigating its com-
plexity. We intend to use the logic, and the new update/upgrade mechanism, in
the next incarnation of the epistemic model checker DEMO [14].

Acknowledgments. We have profited from discussions with Johan van Ben-
them, Hans van Ditmarsch and Barteld Kooi, and we thank two anonymous
referees for their comments. The second author is supported by the Dutch Or-
ganisation for Scientic Research (NWO) under research grant no. 612.000.528
(VEMPS).

9

References

1. A. Baltag. A logic for suspicious players: epistemic action and belief-updates in
games. Bulletin of Economic Research, 54(1):1–45, 2002.

2. A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese, 139(2):165–224,
2004.

3. A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements, common
knowledge, and private suspicions. In I. Bilboa, editor, Proceedings of TARK’98,
pages 43–56, 1998.

4. A. Baltag and S. Smets. Conditional doxastic models: A qualitative approach to dy-
namic belief revision. Electronic Notes in Theoretical Computer Science (ENTCS),
165:5–21, 2006.

5. A. Baltag and S. Smets. A qualitative theory of dynamic interactive belief revision.
In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Texts in Logic and
Games. Amsterdam University Press, 2008. To appear.

6. J. van Benthem. Language, logic, and communication. In J. van Benthem,
P. Dekker, J. van Eijck, M. de Rijke, and Y. Venema, editors, Logic in Action,
pages 7–25. ILLC, 2001.

7. J. van Benthem. Dynamic logic for belief revision. Journal of Applied Non-Classical
Logics, 2:129–155, 2007.

8. J. van Benthem and F. Liu. Dynamic logic of preference upgrade. Journal of
Applied Non-Classical Logics, 14(2), 2004.

9. J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Information and Computation, 204(11):1620–1662, 2006.

10. Johan van Benthem. One is a lonely number: on the logic of communication.
Technical Report PP-2002-27, ILLC, Amsterdam, 2002.

11. C. Boutilier. Toward a logic of qualitative decision theory. In J. Doyle, E. Sande-
wall, and P. Torasso, editors, Proceedings of the 4th International Conference on
Principle of Knowledge Representation and Reasoning (KR-94), pages 75–86. Mor-
gan Kaufmann, 1994.

12. Hans van Ditmarsch. Knowledge Games. PhD thesis, ILLC, Amsterdam, 2000.
13. H.P. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,

volume 337 of Synthese Library. Springer, 2006.
14. Jan van Eijck. DEMO — a demo of epistemic modelling. In Johan van Benthem,

Dov Gabbay, and Benedikt Löwe, editors, Interactive Logic — Proceedings of the
7th Augustus de Morgan Workshop, number 1 in Texts in Logic and Games, pages
305–363. Amsterdam University Press, 2007.

15. J. Gerbrandy. Bisimulations on planet Kripke. PhD thesis, ILLC, 1999.
16. J. Gray. Notes on database operating systems. In R. Bayer, R.M. Graham, and

G. Seegmuller, editors, Operating Systems: an advanced course, volume 66 of Lec-
ture Notes in Computer Science. Springer, Berlin/New York, 1978.

17. J.Y. Halpern and Y.O. Moses. Knowledge and common knowledge in a distributed
environment. In Proceedings 3rd ACVM Symposium on Distributed Computing,
pages 50–68, 1984.

18. D. Kozen and R. Parikh. An elementary proof of the completeness of PDL. The-
oretical Computer Science, 14:113–118, 1981.

19. K. Segerberg. A completeness theorem in the modal logic of programs. In
T. Traczyck, editor, Universal Algebra and Applications, pages 36–46. Polish Sci-
ence Publications, 1982.

20. R.C. Stalnaker. On logics of knowledge and belief. Philosophical Studies, 128:169–
199, 2006.

10

Appendix 1: Soundness and Completeness of PDL+

To define the proper program transformation for PDL+ we need a function ∪

that maps each PDL program to its converse (in the obvious sense that the
interpretation of π∪ is the converse of that of π):

(ǎ)∪ = a
(?φ)∪ = ?φ
(π1;π2)∪ = π2

∪;π1
∪

(π1 ∪ π2)∪ = π1
∪ ∪ π2

∪

(π∗)∪ = (π∪)∗

What is needed to get a completeness proof is a redefinition of the epistemic
program transformation operation TA

ij used in the LCC completeness to push
an action model modality [A, e] through an epistemic program modality [π].

TA
ij(a) =

{
?pre(ei);SUB(ei)(a) if ei 7→SUB(ei)(a) ej in A
?⊥ otherwise

TA
ij(ǎ) =

{
?pre(ei); (SUB(ei)(a))∪ if ei 7→(SUB(ei)(a))∪ ej in A
?⊥ otherwise

TA
ij(?φ) =

{
?(pre(ei) ∧ [A, ei]φ) if i = j
?⊥ otherwise

TA
ij(π1;π2) =

⋃n−1
k=0(TA

ik(π1);TA
kj(π2))

TA
ij(π1 ∪ π2) = TA

ij(π1) ∪ TA
ij(π2))

TA
ij(π

∗) = KA
ijn(π)

where it is assumed that the action model A has n states, and the states are
numbered 0, . . . , n− 1. KA

ijn is the Kleene path transformer, as in [9].
The proof system for PDL+ consists of all axioms and rules of LCC except

the reduction axiom:

[A, ei][π]φ↔
n−1∧
j=0

[TA
ij (π)][A, ej]φ.

In addition, PDL+ has the axioms for converse atomic programs as in section 2,
and reduction axioms of the form:

[A, ei][π]φ↔
n−1∧
j=0

[TA
ij(π)][A, ej]φ.

This is the patch we need to prove the completeness result (Theorem 2).

11

Appendix 2: Restricted Announcements Versus Restricted
Belief Changes

A restricted announcement of φ is an announcement of φ that is not delivered
to one of the agents i. Notation !φ−i. The action model for !φ−i has event set
{e0, e1}, with e0 the actual event, where e0 has precondition φ and e1 precondi-
tion >, and with the preference relation given by

Pi = {(e0, e0), (e1, e1), (e0, e1), (e1, e0)},

and Pj = {(e0, e0), (e1, e1)} for all j 6= i.

e0 : φ e1 : >

i

A protocol for restricted announcements, for epistemic situation M , is a set of
finite sequences of formula-agent pairs, such that each sequence

(φ0, i0), . . . , (φn, in)

has the following property:

∀k ∈ N : 0 ≤ k < n→ ∃i ∈ Ag : M, w |= [!φ−i0
0], . . . , [!φ−ik−1

k−1][∼i]φk.

Intuitively, at every stage in the sequence of restricted announcements, some
agent has to possess the required knowledge to make the next announcement in
the sequence. We can now prove that such protocols can never establish common
knowledge of purely propositional facts.

Theorem 4. Let C express common knowledge among set of agents Ag. Let M
be an epistemic model with actual world w such that M, w |= ¬Cφ, with φ purely
propositional. Then there is no protocol with

M, w |= [!φ−i0
0], . . . , [!φ−in

n]Cφ.

for any sequence (φ0, i0), . . . , (φn, in) in the protocol.

Proof. We show that ¬Cφ is an invariant of any restricted announcement.
Assume M, w |= ¬Cφ. Let (A, e) be an action model for announcement

!ψ−i, the announcement of ψ, restricted to Ag − {i}. Then A has events e and
e′, with pre(e) = ψ and pre(e′) = >. If M, w |= ¬ψ then the update does not
succeed, and there is nothing to prove. Suppose therefore that M, w |= ψ. Since
pre(e′) = >, the model M⊗A restricted to domain D = {(w, e′) | w ∈WM} is
a copy of the original model M. Thus, it follows from M, w |= ¬Cφ that

M⊗A � D, (w, e′) |= ¬Cφ.

12

Thus, there is an C-accessible world-event pair (w′, e′′) in D with

M⊗A � D, (w′, e′′) |= ¬φ.

Since φ is purely propositional, we get from this that:

M⊗A, (w′, e′′) |= ¬φ.

Observe that since common knowledge is preserved under model restriction,
absence of common knowledge is preserved under model extension. The C-
accessible world-event pair (w′, e′′) in M ⊗ A � D will still be C-accessible in
M ⊗ A. Therefore, it follows that M ⊗ A, (w, e′) |= ¬Cφ. By the construc-
tion of M ⊗ A, we get from this that M ⊗ A, (w, e) |= 〈i〉¬Cφ, and therefore
M⊗A, (w, e) |= ¬Cφ, by the definition of common knowledge.

It follows immediately that no protocol built from restricted announcements
can create common knowledge of propositional facts.

The case of the two generals planning a coordinated attack on the enemy,
but failing to achieve common knowledge about it [16, 17] can be viewed as a
special case of this theorem.

If there are just two agents i, j, the only way for agent i to send a restricted
message is by allowing uncertainty about the delivery. If i, j are the only agents,
and i knows φ then the restricted message !φ−j conveys no information, so
the only reasonable restricted announcement of φ is !φ−i. The upshot of this
announcement is that the message gets delivered to j, but i remains uncertain
about this. According to the theorem, such messages cannot create common
knowledge. Initial situation:

w0 : p w1 : p

b

Update action for general a (left) and general b (right):

e0 : p e1 : >

a

e0 : p e1 : >

b

Situation after first message from general a:

p p p

a b

13

Situation after update by a followed by update by b:

p p p p

b a b

And so on . . .
Now look at the case where restricted announcements are replaced by non-

public belief revisions. Then the power of restricted belief change turns up in the
following example. We start out from the initial situation again, and we update
using the action model for non-public belief change:

e0 : {b 7→]bp} e1 : ε

a

Here is the update result (after minimalisation under bisimulation):

p p

b

The example shows that it is possible to achieve common safe belief in p in a
single step, by means of a non-public belief change.

14

