
Defining (reflexive) transitive closure on finite
models

Jan van Eijck

revised version: 9th of June, 2008

Axiomatising (R)TC in FOL, modulo FIN

Let R be a binary relation on some domain. Use R∗ for the reflexive transitive
closure of R, i.e., the smallest binary relation S with R ⊆ S that is reflexive
and transitive. Use R+ for the transitive closure of R, i.e., the smallest binary
relation S with R ⊆ S that is transitive. Use I for the identity relation on
the domain. Let n range over natural numbers. Define Rn as follows, by
induction:

R0 := I

Rn+1 := R ◦Rn

Here ◦ expresses relational composition. For finite domains we have that
R∗ =

⋃
n≥0 Rn, and that R+ =

⋃
n>0 Rn.

Assume the domain of discourse is finite (FIN). Introduce a ternary relation
symbol C. Intended interpretation is as follows. C expresses:

λxyz.∃n, m ∈ N(n > 0 ∧ xRnyRmz ∧ ∀k ∈ N(k < n + m → ¬xRkz)).

This can be paraphrased as: y is at some finite non-zero distance n from x
on some shortest R-path from x to z.

It follows, given FIN, that λxy.Cxyy expresses R+ − I. Therefore, we can
define reflexive transitive closure by means of a binary relation symbol T , as

1

follows (all formulas universally closed).

Txy ↔ (x = y ∨ Cxyy) (DEF)

Now T expresses I ∪ (R+ − I) = I ∪R+ = R∗.

Since R+ = R ◦R∗, the following defines T ′ as transitive closure:

T ′xy ↔ ∃z(Rxz ∧ Tzy) (DEF’)

Clearly, λxy.Cxyu is irreflexive, for any choice of u. This is true in the
intended interpretation of C because if there is an R-step from x to x, and an
R-path xR · · ·Ru from x to u, then the path xRxR · · ·Ru that loops through
x is longer than the path xR · · ·Ru that avoids this loop. Irreflexivity of
λxy.Cxyu is expressed by:

¬Cxxu (C1)

Also, λxy.Cxyu is transitive, for any u. For if xRnyRmu is some shortest
R-path from x to u, and yRkzRpu is some shortest R-path from y to u,
then m = k + p, and xRn+kzRpu is some shortest R-path from x to u. This
transitivity requirement is expressed by:

(Cxyu ∧ Cyzu) → Cxzu (C2)

Axiom C3 expresses that (R+ − I) is almost transitive:

(Cxyy ∧ Cyzz ∧ x 6= z) → Cxzz (C3)

Next, we want to say that (R− I) ⊆ (R+ − I). This is expressed by:

(Rxy ∧ x 6= y) → Cxyy (C4)

The next axiom expresses that if (x, y) ∈ (R+ − I) then it is always possible
to make a first R-step on some shortest R-path from x to y.

Cxyy → ∃z(Rxz ∧ Cxzy) (C5)

Finally:
(Cxyz ∧ y 6= z) → Cyzz (C6)

This expresses that if y is somewhere along on a shortest R-path from x to
z, and y 6= z, then (y, z) ∈ (R+ − I).

2

This turns out to be a complete first order theory for (reflexive) transitive
closure on finite models.

Note: the finite domain constraint itself is not expressed by any first order
axiom. In fact, it follows from the compactness theorem for first order logic
that no first order sentence can express finiteness. For suppose FIN is a first
order sentence expressing the finite domain constraint. Let Ln express that
there are at least n objects. This is easily expressed in terms of equality. E.g.,
∃xyz(x 6= y ∧ x 6= z ∧ y 6= z) expresses that there are at least three objects.
Then the infinite set of first order sentences {FIN ∧ Ln | n ∈ N} has the
property that any finite subset of it has a (finite) model. By compactness,
the whole set has a model. It is easily seen that a model of {Ln | n ∈ N} has
to be infinite, and contradiction with the fact that FIN expresses finiteness.

Note that in the intended interpretation of C it holds that Cxyx is false, for
any x, y. This is derivable in the system, as follows. We assume Cxyx, and
derive a contradiction. From Cxyx, with C1: x 6= y. From Cxyx and x 6= y,
with C6: Cyxx. From Cyxx and Cxyx, with C2: Cyyx, and contradiction
with C1.

It is easy to check that these axioms are sound for the intended interpreta-
tion. We will now show that the theory consisting of C1–6 defines (reflexive)
transitive closure on finite models.

Theorem 1 In all finite models of C1–6, the interpretation of T is the re-
flexive transitive closure of the interpretation of R and the interpretation of
T ′ is the transitive closure of the interpretation of R.

Proof. Let M be a finite model of C1–6. Use [[·]] for relational interpreta-
tion in M . We show that [[R]]∗ = [[T]].

[[R]]∗ ⊆ [[T]]. Let [[R]]≥n be given by:

[[R]]≥n = {(a, b) | (a, b) ∈ [[R]]n ∧ ∀m < n (a, b) /∈ [[R]]m}.

We show by induction that for each n ∈ N, [[R]]≥n ⊆ [[T]]. Since the model
is finite, this proves the claim. By DEF, [[T]] is reflexive, so [[R]]≥0 ⊆ [[T]].
Assume that for some n ∈ N, [[R]]≥n ⊆ [[T]]. We show that [[R]]≥n+1 ⊆ [[T]].
Let (a, b) ∈ [[R]]≥n+1. Then a 6= b, and there is c in the domain with a 6= c,

3

b 6= c, (a, c) ∈ [[R]] and (c, b) ∈ [[R]]≥n. From (a, c) ∈ [[R]] and a 6= c it
follows by C4 that (a, c, c) ∈ [[C]]. By induction hypothesis it follows from
(c, b) ∈ [[R]]≥n that (c, b) ∈ [[T]]. Since c 6= b, by DEF, (c, b, b) ∈ [[C]]. Since
a 6= b we can apply C3. This yields (a, b, b) ∈ [[C]], and therefore (a, b) ∈ [[T]]
by DEF.

[[T]] ⊆ [[R]]∗. Let (a, b) ∈ [[T]]. If a = b then (a, b) ∈ [[R]]∗ and done. So
assume a 6= b. Then by DEF, (a, b, b) ∈ [[C]]. From this, by C5, there is an
a1 with (a, a1) ∈ [[R]] and (a, a1, b) ∈ [[C]]. By C1, a 6= a1. Suppose a1 = b.
Then (a, b) ∈ [[R]] and done. Suppose a1 6= b. Then by C6, (a1, b, b) ∈ [[C]],
and from this it follows, by C5, that there is an a2 with (a1, a2) ∈ [[R]] and
(a1, a2, b) ∈ [[C]]. By C1, a1 6= a2. If a = a2, then from (a1, a, b) ∈ [[C]] and
(a, a1, b ∈ [[C]] it would follow by C2 that (a1, a1, b) ∈ [[C]], and contradiction
with C1. So a 6= a2. If a2 = b then (a, b) ∈ [[R]]2 and done. So assume a2 6= b.
Then by C6, there is an a2 with (a2, b, b) ∈ [[C]]. And so on. This creates
a sequence a = a0, a1, a2, . . ., with the ai all different. By finiteness of the
domain, this process has to stop with an = b for some n ∈ N. It follows that
(a, b) ∈ [[R]]n.

From [[R]]∗ = [[T]] it follows immediately with DEF’ that [[T ′]] = [[R]] ◦ [[R]]∗ =
[[R]]+. �

First order logic cannot define transitive closure on arbitrary models. We
also know that any first order theory with an infinite model has a countably
infinite model. It follows that there are countably infinite models where the
above axioms do not define reflexive transitive closure.

Here is an example. Let N be the natural numbers and a an object /∈ N.
Consider the domain N ∪ {a} and let R = {(n, n + 1) | n ∈ N}. Then
R∗ = {(n, m) | n, m ∈ N, n ≤ m}. Let

T = R∗ ∪ {(n, a) | n ∈ N} ∪ {(a, a)}.

Let
C = λxyz.x(T − I)yTz.

It is not difficult to see that this is a model of the theory: all axioms are
satisfied by this interpretation.

4

Special case: reflexive transitive closure of loopfree

relations

The following result is from [1]. Consider the following theory.

Txx (J1)

(Rxy ∧ Tyz) → Txz (J2)

(Txy ∧ x 6= y) → ∃z(Rxz ∧ Tzy) (J3)

A binary relation R is loopfree if R+ is irreflexive.

Theorem 2 If R is a loopfree binary relation on a finite domain D, then
J1, J2, J3 defines R∗.

Proof. Let M be a finite model of J1, J2, J3, and assume [[R]] is loopfree.
We show that [[R]]∗ = [[T]].

[[R]]∗ ⊆ [[T]]. We show with induction on n that [[R]]n ⊆ [[T]] for all n. This
proves the claim. Clearly, [[R]]0 ⊆ [[T]], by J1. Assume (induction hypothesis)
that [[R]]n ⊆ [[T]]. We show that [[R]]n+1 ⊆ [[T]]. Let (a, b) ∈ [[R]]n+1. Then
there is a c with (a, c) ∈ [[R]] and (c, b) ∈ [[R]]n. By induction hypothesis, it
follows from (c, b) ∈ [[R]]n that (c, b) ∈ [[T]]. Hence, by J2, (a, b) ∈ [[T]].

[[T]] ⊆ [[R]]∗. Let (a, b) ∈ [[T]]. Then either a = b, and (a, b) ∈ [[R]]0, and
done, or a 6= b, and by J3 there is an a1 with (a, a1) ∈ [[R]] and (a1, b) ∈ [[T]].
By loopfreeness of [[R]], a 6= a1. If a1 = b then (a, b) ∈ [[R]]1, and done. If
c 6= b then by J3 there is an a2 with (a1, a2) ∈ [[R]] and (a2, b) ∈ [[T]]. By
loopfreeness of [[R]], a 6= a2 and a1 6= a2. If a2 = b then done. Otherwise, by
J3, there is an a3 . . . And so on. By the finiteness of the domain this process
has to stop with some an = b. It follows that (a, b) ∈ [[R]]n. �

Note that the conjunction of J1, J2 and J3 is equivalent to:

Txy ↔ (x = y ∨ ∃z(Rxz ∧ Tzy)) (J)

5

Comparison

The present axiomatisation was inspired by the axioms for RTC in Claessen
[2]. Claessen has the following axioms (tags are his):

Txx (I1)

Rxy → Txy (I2)

(Txy ∧ Tyz) → Txz (I3)

(Txy ∧ x 6= y) → R(x, s(x, y)) (E1)

(Txy ∧ x 6= y) → T (x, s(x, y)) (E2)

(Txy ∧ x 6= y) → C(x, s(x, y), y) (E3)

plus (C1) and (C2). Here s(,) is a binary function symbol that is added to
the signature.

Although calculi C1–6 and I1–3, E1–3, C1–2 both use a ternary relation
symbol C satisfying axioms C1 and C2, the interpretation of C in calculus
C1–6 is much more constrained. As we saw, it follows from C1–6 that ¬Cxyx,
for all x, y.

By contrast, the following is a model of I1–3, E1–3, C1–2:

U = {0, 1},
R = {(1, 0), (1, 1)},
s = {(0, 0, 1), (0, 1, 1), ((1, 0, 0), (1, 1, 0)},
C = {(1, 0, 0), (1, 0, 1)},
T = {(0, 0), (1, 0), (1, 1)}

Clearly, this predicate C does not satisfy the intuition that was used above
to motivate axioms C1–6, for we have that (1, 0, 1) in C, while there is no
R-path from 1 to 1 via 0.

I have briefly compared implementations of the two calculi in Alloy [3].

Here are some data for the calculus consisting of C1–6:

6

Executing "Check rtcFact for 2"

Solver=sat4j Bitwidth=4 MaxSeq=2 Symmetry=20

277 vars. 22 primary vars. 442 clauses. 5ms.

No counterexample found. Assertion may be valid. 0ms.

Executing "Check rtcFact for 3"

Solver=sat4j Bitwidth=4 MaxSeq=3 Symmetry=20

907 vars. 57 primary vars. 1571 clauses. 11ms.

No counterexample found. Assertion may be valid. 4ms.

Executing "Check rtcFact for 4"

Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20

2233 vars. 116 primary vars. 3872 clauses. 36ms.

No counterexample found. Assertion may be valid. 42ms.

Executing "Check rtcFact for 5"

Solver=sat4j Bitwidth=4 MaxSeq=5 Symmetry=20

4018 vars. 205 primary vars. 7137 clauses. 86ms.

No counterexample found. Assertion may be valid. 1260ms.

Executing "Check rtcFact for 6"

Solver=sat4j Bitwidth=4 MaxSeq=6 Symmetry=20

7141 vars. 330 primary vars. 12464 clauses. 243ms.

No counterexample found. Assertion may be valid. 26153ms.

Executing "Check rtcFact for 7"

Solver=sat4j Bitwidth=4 MaxSeq=7 Symmetry=20

12118 vars. 497 primary vars. 20769 clauses. 571ms.

No counterexample found. Assertion may be valid. 537403ms.

And here are the data for the calculus consisting of I1–3, E1–3, C1–2:

Executing "Check rtcFact for 2"

Solver=sat4j Bitwidth=4 MaxSeq=2 Symmetry=20

341 vars. 26 primary vars. 453 clauses. 6ms.

No counterexample found. Assertion may be valid. 1ms.

7

Executing "Check rtcFact for 3"

Solver=sat4j Bitwidth=4 MaxSeq=3 Symmetry=20

1062 vars. 75 primary vars. 1591 clauses. 12ms.

No counterexample found. Assertion may be valid. 5ms.

Executing "Check rtcFact for 4"

Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20

2641 vars. 164 primary vars. 4080 clauses. 34ms.

No counterexample found. Assertion may be valid. 63ms.

Executing "Check rtcFact for 5"

Solver=sat4j Bitwidth=4 MaxSeq=5 Symmetry=20

5703 vars. 305 primary vars. 9189 clauses. 108ms.

No counterexample found. Assertion may be valid. 1377ms.

Executing "Check rtcFact for 6"

Solver=sat4j Bitwidth=4 MaxSeq=6 Symmetry=20

9095 vars. 510 primary vars. 14421 clauses. 279ms.

No counterexample found. Assertion may be valid. 25575ms.

Executing "Check rtcFact for 7"

Solver=sat4j Bitwidth=4 MaxSeq=7 Symmetry=20

15517 vars. 791 primary vars. 24469 clauses. 744ms.

No counterexample found. Assertion may be valid. 2719276ms.

The tentative conclusion of this is that C1–6 scales up a bit better than I1–3,
E1–3, C1–2. For domain sizes up to 6 there are no significant differences,
but the check for domains up to size 7 was performed with the first calculus
in less than one/fifth of the time it took with the second calculus.

References

[1] Thomas Baar. The definition of transitive closure with OCL. In Fifth
Amdreo Ershov International Conference, Perspectives of System Infor-
matics, volume 2890 of LNCS, pages 358–365. Springer, 2003.

8

[2] Koen Claessen. Expressing transitive closures for finite domains in pure
first order logic. Unpublished draft, Chalmers University of Technology,
May 2008.

[3] Daniel Jackson. Software Abstractions; Logic, Language and Analysis.
MIT Press, 2006.

9

