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Let R be a relational variable of arity m, and let x̄ be an m-tuple of variables.
Let φ be a first order formula that is positive in R, i.e., all occurrences of
R in φ are in the scope of an even number of negations. Then λRλx̄φ is a
function from m-ary relations to m-ary relations. Given a model M where
R is interpreted as [[R]], it yields [[λx̄.φ]], so we can say that it maps [[R]] to
[[λx̄.φ]]. From the fact that φ is positive in R it follows that this function f
is monotone, i.e., that S ⊆ S′ implies that f(S) ⊆ f(S′).

By the Knaster-Tarski fixpoint theorem ([2]; see, e.g., [1] for background),
any monotone function has a fixpoint, and the least fixpoint of a monotone
function f on P(Dm) can be reached by repeated application of the function
f , starting from ∅. To be more precise, the least fixpoint is given by

⋃
κ f↑κ(∅),

where κ ranges over all ordinals of cardinality at most |Dm|, and where f↑κ

is defined by:

f↑0(X) = X,

f↑κ+1(X) = f(f↑κ(X)),

f↑λ(X) =
⋃
κ<λ

f↑κ(X) for λ a limit ordinal.

We use [lfpR,x̄φ] for the least fixpoint of the function λRλx̄.φ. Thus, [lfpR,x̄φ]
denotes the smallest m-ary relation T with the property that λRλx̄.φ(T )
equals T .
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Here is an example with a binary relation. Let φ be the following formula.

x1 = x2 ∨ ∃y(Sx1y ∧Ryx2).

Then φ is positive in R, and therefore λRλx1x2.φ denotes a monotone func-
tion from binary relations to binary relations. The least fixpoint [lfpR,x1,x2

φ]
of this function is the relation S∗ (the reflexive and transitive closure of S).

Let a structure M , an m-ary relation symbol R and a formula φx̄ that is
positive in R be given. Define Rn as follows, by induction:

R0 := ∅
Rn+1 := {b̄ | M |={R 7→Rn,x̄ 7→b̄} φ}

The following fact follows from the Knaster-Tarski theorem:

Fact 1 On finite structures,
⋃

n∈N Rn equals the least fixpoint of λRλx̄.φ.

Assume ā is an arbitrary tuple in M . Define Rn
ā as follows:

R0
ā := {ā}

Rn+1
ā := {b̄ | M |={R 7→Rn

ā ,x̄ 7→b̄} φ}

Lemma 2 On all finite structures it holds for all n ∈ N that

Rn+1 =
⋃

ā∈R1

Rn
ā .

Proof. Induction on n. Clearly, the assertion holds for n = 0, for
R1 =

⋃
ā∈R1{ā} =

⋃
ā∈R1 R0

ā.

Suppose Rn+1 =
⋃

ā∈R1 Rn
ā . We show that Rn+2 =

⋃
ā∈R1 Rn+1

ā .

Rn+2 = {b̄ | M |={R 7→Rn+1,x̄ 7→b̄} φ}
ih
= {b̄ | M |={R 7→

S
ā∈R1 Rn

ā ,x̄ 7→b̄} φ}
∗
=

⋃
ā∈R1

{b̄ | M |={R 7→Rn
ā ,x̄ 7→b̄} φ}

=
⋃

ā∈R1

Rn+1
ā
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Equality
∗
= expresses continuity of λRλx̄.φ, which holds for all monotone

functions on finite domains. �

Combining the fact and the lemma, we get:

Theorem 3 On finite structures,
⋃

n∈N,ā∈R1 Rn
ā equals the least fixpoint of

λRλx̄.φ.

Write x̄Rmȳ for ȳ ∈ Rm
x̄ . Introduce a 3m-ary relation symbol L, with the

following intended interpretation:

λx̄λȳλz̄.∃n, m ∈ N(0 < n ≤ m∧ x̄Rnȳ∧ x̄Rmz̄ ∧∀k ∈ N(k < m → ¬x̄Rkz̄)).

Notice that if L is interpreted like this, then λx̄λȳ.Lx̄ȳȳ expresses the fol-
lowing:

∃n ∈ N.(n > 0 ∧ x̄Rnȳ ∧ x̄ 6= ȳ).

Here x̄ = ȳ abbreviates the conjunction x1 = y1∧· · ·∧xm = ym. Let I denote
the identity function for vectors of length m. Then λx̄λȳ.Lx̄ȳȳ denotes R+−I
(if we view R as a binary relation on vectors of length m).

Let φ0 be the formula that results from φ by replacing each occurrence of
R by λx̄.x̄ 6= x̄ (the m-ary predicate that is always false). Then, given the
intended interpretation of L, the following defines the least fixpoint of λRλx̄.φ
on finite structures. Here and henceforth, read the formulas as universally
closed.

[lfpR,x̄φ](x̄) ↔ φ0x̄ ∨ ∃ȳ(φ0ȳ ∧ Lȳx̄x̄). (DEF)

We will present six axioms L1–6 and we will show that these together enforce
the intended interpretation of L.

Clearly, λx̄ȳ.Lx̄ȳū is irreflexive, for any choice of ū. This is true in the
intended interpretation of L because if x̄Rx̄ holds, and also x̄Rmȳ for m > 1,
then clearly x̄Rkȳ for some k < m+1. Irreflexivity of λx̄ȳ.Lx̄ȳū is expressed
by:

¬Lx̄x̄ū (L1)

Also, λx̄ȳ.Lx̄ȳū is transitive, for any ū. For if x̄Rnȳ and x̄Rmz̄ with 0 < n ≤
m and for no k < m, x̄Rkz̄, and x̄Rpz̄ and x̄Rqū with 0 < p ≤ q and for
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no r < q, x̄Rrū, then m = p and it follows that x̄Rpȳ and x̄Rqū, and for no
r < q, x̄Rrū, i.e., Lx̄ȳū holds. This transitivity requirement is expressed by:

(Lx̄ȳz̄ ∧ Lȳz̄ū) → Lx̄z̄ū (L2)

Axiom L3 expresses that (R+ − I) is almost transitive:

(Lx̄ȳȳ ∧ Lȳz̄z̄ ∧ x̄ 6= z̄) → Lx̄z̄z̄ (L3)

Assume φȳ has no free occurrences of x̄. Let φ1x̄ȳ be the result of replacing
occurrences of R in φȳ by λz̄.z̄ = x̄. Then φ1x̄ȳ expresses x̄Rȳ. We can use
this to express that (R− I) ⊆ (R+ − I), as follows:

(φ1x̄ȳ ∧ x̄ 6= ȳ) → Lx̄ȳȳ (L4)

The next axiom expresses that if xy ∈ (R+ − I) then it is always possible to
make a first R-step on some shortest R-path from x̄ to ȳ.

Lx̄ȳȳ → ∃z̄(φ1x̄z̄ ∧ Lx̄z̄ȳ) (L5)

Finally:
(Lx̄ȳz̄ ∧ ȳ 6= z̄) → Lȳz̄z̄ (L6)

This expresses that if ȳ is somewhere along on a shortest R-path from x̄ to
z̄, and ȳ 6= z̄, then yz ∈ (R+ − I).

This turns out to be a complete first order theory for least fixpoint on finite
structures. The above discussion should have convinced the reader that the
axioms are sound for the intended interpretation. We will now show that the
theory consisting of L1–6 defines least fixpoint on finite models.

Theorem 4 Let R be an m-ary relation symbol. Let φx̄ be a first order
formula that is positive in R. Let M be a finite model of L1–6, let f be the
interpretation of λRλx̄.φ in M , and let S be the interpretation of [lfpR,x̄φ] in
M . Then S is the least fixpoint of f .

Proof. Let M , f and S be as stated in the theorem. To show that S is the
least fixpoint of f , by Theorem 3 it is enough to show that

⋃
n∈N,ā∈R1 Rn

ā = S.

⇒: Let R≥n
ā be given by

R≥n
ā = {b̄ | b̄ ∈ Rn

ā ∧ ∀m < n b̄ /∈ Rm
ā }.
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We show by induction:

For all n ∈ N : b̄ ∈ R≥n+1
ā implies abb ∈ [[L]]. (*)

Base case: Let b̄ ∈ R≥1
ā . This is equivalent to ā 6= b̄ and b̄ ∈ R1

ā. The second
conjunct is equivalent to ab ∈ [[φ1]]. By an application of L4 we get that
abb ∈ [[L]].

Induction step: Assume b̄ ∈ R≥n+1
ā implies abb ∈ [[L]]. Suppose b̄ ∈ R≥n+2

ā .
Then ā 6= b̄, and there is some c̄ ∈ R1

ā with ā 6= c̄, c̄ 6= b̄, and b̄ ∈ R≥n+1
c̄ .

c̄ ∈ R1
ā is equivalent to ac ∈ [[φ1]]. From ac ∈ [[φ1]] and ā 6= c̄ it follows

by L4 that acc ∈ [[L]]. By induction hypothesis it follows from b̄ ∈ R≥n+1
c̄

that cbb ∈ [[L]]. Since ā 6= b̄ we can apply L3. This yields abb ∈ [[L]]. This
establishes (*).

Now assume b̄ ∈
⋃

n∈N,ā∈R1 Rn
ā . Then either b̄ ∈ R1 = [[φ0]], or there is some

ā ∈ R1 = [[φ0]] and some n ∈ N with b̄ ∈ R≥n+1
ā , whence by (*), abb ∈ [[L]].

It follows from DEF that b̄ ∈ S.

⇐: Let b̄ ∈ S. We show that b̄ ∈
⋃

n∈N,ā∈R1 Rn
ā .

If b̄ ∈ [[φ0]], then b̄ ∈ R0
b̄
, and done. Otherwise, by DEF, there is a ā with

ā ∈ [[φ0]] and abb ∈ [[L]]. By L5, there is a a1 with aa1 ∈ [[φ1]] and aa1b ∈ [[L]].
By L1, a1 6= ā. Suppose a1 = b̄. Then ab ∈ [[φ1]] and therefore b ∈ R1

ā, and
done. Suppose a1 6= b̄. Then by L6, a1bb ∈ [[L]], and from this it follows, by
L5, that there is a a2 with a1a2 ∈ [[φ1]] and a1a2b ∈ [[L]]. By L1, a1 6= a2.
If ā = a2 then from a1ab ∈ [[L]] and aa1b ∈ [[L]] it would follow by L2 that
a1a1b ∈ [[L]], and contradiction with L1. So ā 6= a2. If a2 = b̄ then b ∈ R2

ā,
and done. If a2 6= b then by L6, there is a a3, and so on. This creates a
sequence of m-tuples

ā = a0, a1, a2, . . .

with the ai all different. By finiteness of the domain, this process has to stop
with an = b̄ for some n ∈ N. It follows that b̄ ∈ Rn

ā . �

References

[1] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order (Sec-
ond Edition). Cambridge University Press, Cambridge, 2002. First edi-
tion: 1990.

5



[2] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

6


