
Natural Logic for Natural Language

Jan van Eijck1

CWI, Amsterdam and Uil-OTS, Utrecht University
jve@cwi.nl,

WWW home page: http://www.cwi.nl/∼jve

Abstract. For a cognitive account of reasoning it is useful to factor out
the syntactic aspect — the aspect that has to do with pattern matching
and simple substitution — from the rest. The calculus of monotonicity,
alias the calculus of natural logic, does precisely this, for it is a calculus
of appropriate substitutions at marked positions in syntactic structures.
We first introduce the semantic and the syntactic sides of monotonicity
reasoning or ‘natural logic’, and propose an improvement to the syntactic
monotonicity calculus, in the form of an improved algorithm for mono-
tonicity marking. Next, we focus on the role of monotonicity in syllogistic
reasoning. In particular, we show how the syllogistic inference rules (for
traditional syllogistics, but also for a broader class of quantifiers) can
be decomposed in a monotonicity component, an argument swap com-
ponent, and an existential import component. Finally, we connect the
decomposition of syllogistics to the doctrine of distribution.

1 Introduction

To develop a cognitive account of reasoning, a promising approach is to factor
out the syntactic aspect — the aspect that has to do with pattern matching
on syntactic structures — from the rest. An obvious candidate for this that has
been around for some time now is the so-called calculus of monotonicity. This
calculus has a semantic side and a syntactic side. The semantic foundation of
monotonicity reasoning is a generalization of the notion of logical consequence to
arbitrary types, by defining partial orderings =⇒ on all types (not just the type of
sentences, but also those of verb phrases, predicates, adjectives, quantifiers, and
so on). In terms of this, one can define what it means to be an order-preserving or
an order reversing function from type α to type β. Order preserving functions are
the functions f that are such that if x =⇒ y then f(x) =⇒ f(y). Order reversing
functions are the functions f that are such that if x =⇒ y then f(y) =⇒ f(x).

The syntactic side of the calculus of monotonicity is the marking of mono-
tonicity of syntactic components in a syntactic structure. Let S be a syntactic
structure, and let A be a component of that structure. Suppose that A has type
α and S has type β. Consider the syntactic function F that consists of replacing
component A by other suitable components of type α. In other words, consider
the function F = λY.S[Y/A]. Then the semantic counterpart of F is a function
f of type α → β. Soundness and completeness of a monotonicity calculus have
to do with the relation between F and f .

2

A monotonicity marking algorithm is sound if the following holds: if A is
marked + in S, then the function that interprets λY.S[Y/A] is monotonicity pre-
serving, and if A is marked − in S, then the function that interprets λY.S[Y/A]
is monotonicity reversing.

A monotonicity marking algorithm is complete if the following holds: if the
function that interprets λY.S[Y/A] is monotonicity preserving then A is marked
+ in S, and if the function that interprets λY.S[Y/A] is monotonicity reversing,
then A is marked − in S.

Explanations of aspects of the human reasoning faculty must be based on
hypotheses about calculating mechanisms. Monotonicity calculi have been pro-
posed time and again in the literature as candidates for such mechanisms, by
philosophers [23, 11], logicians [5, 22], computer scientists [21], linguists [8], and
most recently by cognitive scientists [15], with less or more explicit suggestions
to use them as a basis for generating hypotheses about processing load in hu-
man reasoning. The catch phrases for this enterprise used to be ‘natural logic’ or
‘logic for natural language’, for the logic that was meant to provide an account
of the way human reasoners actually reason.

The structure of the paper is as follows. First we review the semantic side of
monotonicity reasoning. Next, we look at the syntactic side, and propose an im-
provement of existing algorithms for monotonicity marking. Then, as a first step
in developing a cognitive perspective on reasoning, we look at syllogistic reason-
ing and slight extensions of it, under the aspect of monotonicity. We show how
the syllogistic reasoning rules can be decomposed in a monotonicity component
(a monotonicity rule), a rule for argument swapping in symmetric quantifiers
(a symmetry rule), and a rule for invoking the existential force of the syllogis-
tic quantifiers (an existential import rule). The paper winds up by linking the
monotonicity part of syllogistics to the doctrine of distribution.

2 Semantics of monotonicity

Just as we can say that ‘Gaia is smiling’ logically implies ‘Gaia is smiling or
Gaia is crying’, we would like to say that ‘smiling’ logically involves ‘smiling or
crying’, or that ‘dancing’ logically implies ‘moving’, but also that ‘at least three’
logically implies ‘at least two’, and so on.

‘Gaia is smiling’ is a sentence, ‘smiling’ is a predicate, ‘at least three’ is a
quantifier. We know what entailment means for sentences. One sentence entails
another if whenever the first one is true the second one is. The obvious way to
lift this notion to predicates is by stipulating that one predicate entails another
if it holds for every subject that the sentence one gets by combining that subject
with the first predicate entails the sentence one gets by combining the subject
with the second predicate. Similarly for quantifiers. To get a sentence from ‘at
least three’, one has to combine the quantifier with a noun and a verb. Since
indeed it holds for every noun N and verb V that ‘at least three N V’ entails ‘at
least two N V’, we can say that ‘at least three’ entails ‘at least two’.

3

This idea of lifting entailment from the category of sentences to arbitrary
categories was made fully precise by Van Benthem in [5]. The semantics of mono-
tonicity from [5], given in terms of partial orders on arbitrary semantic domains
(supposed to correspond to various syntactic categories), effectively extends the
notion of logical entailment from the level of sentences to that of verb phrases,
quantifiers, noun phrases, adjectives, and so on.

Van Benthem starts out from the basic types t (truth values, the type of
sentences), and e (entities, the type of proper names). Complex types are defined
by recursion, as follows: (i) e and t are types. (ii) if α and β are types, then
α→ β is a type. The entailment relation is defined as follows (we use E :: α for
“syntactic expression E has semantic type α):

– If E,E′ :: e then I(E) =⇒ I(E′) := I(E) = I(E′).
– If E,E′ :: t then I(E) =⇒ I(E′) := I(E) ≤ I(E′).
– If E,E′ :: α→ β then I(E) =⇒ I(E′) iff

for all x ∈ Dα, I(E)(x) =⇒ I(E′)(x).

Here I(E) denotes the interpretation of E, and Dα is used for the domain of
objects of type α. If E :: α then I(E) ∈ Dα, i.e., the interpretation of E is an
object in Dα, the domain of objects of type α.

This definition yields results like the following:

beautiful and intelligent =⇒ beautiful

cry =⇒ cry or sulk

Mary =⇒ some woman

at most 1 =⇒ at most 2

The ‘order calculus’ implied by this definition got reinvented in [13].

Theorem 1. If the domain De is finite, then for any type α the relation =⇒α

is decidable, and the monotonicity properties of any F : α→ β are decidable.

Proof. If De is finite, then Dα will be finite for any type α.
To decide whether f : Dα → Dβ is order preserving (monotone increasing),

check whether f(x) =⇒ f(y) for the finite number of pairs (x, y) with x =⇒ y.
To decide whether f is order reversing (monotone decreasing), check whether

f(y) =⇒ f(x) for the finite number of pairs (x, y) with x =⇒ y. ut

The decidability result was for fixed finite sizes of the domain. But note that
the result still holds if you put an arbitrary finite treshold on the domain size:

Theorem 2. For any finite threshold k on the domain size, and for any type
α the relation =⇒≤k

α (=⇒α for all domains up to size k) is decidable, and the
monotonicity properties of any F : α→ β are decidable.

Proof. Just check the =⇒0
α, . . . ,=⇒k

α in turn. ut

Below we will study the generalized syllogistic quantifiers based on ‘At most
K’. If we evaluate these in universes up to some fixed size, all inferences expressed
in terms of them are decidable.

4

3 General Structure of Rules for Monotonicity Reasoning

A monotonicity preserving function F can be represented as a kind of ‘mental
model’ [17], as follows:

X =⇒ Y
F (X) =⇒ F (Y)

F ↑

Here it is assumed that X,Y are expressions of a logical type α that is
partially ordered by =⇒, that F (X), F (Y) are expressions of logical type β that
is partially ordered by =⇒, and that F is an order-preserving function of type
α → β. One way of reading the rule is as an explication of the fact that F is
order preserving (or monotone increasing). Another way of reading the rule is as
an inference rule triggered by a function F that is known to be order preserving.
F ↑ expresses that F is order preserving.

The mental model somehow represents the ‘transfer’ by F of the growth of
X to the growth of F (X), with details largely irrelevant. Indeed, the lack of
formal detail of the publications in the mental models school seems to indicate
that mental models are meant to provide a suggestive metaphor of cognitive
processing rather than a formal mechanism. The metaphor suggests that when
the mental picture of ‘uniform growth’ is put in reverse, processing load increases:

X =⇒ Y
F (X) ⇐= F (Y)

F ↓

Again, there are various ways to read this rule. F ↓ expresses that F is order
reversing (or: monotone decreasing).

For an appreciation of the generality of the monotonicity rule, it is illuminat-
ing to look at some special cases. If X,Y, F (X), F (Y) all have type t, then =⇒
is logical consequence (or logical implication), and F (X), F (Y) are statements,
and we get:

X =⇒ Y F (X)
F (Y)

F ↑

An example of this would be: infer from ‘Mary dances implies Mary moves’ (with
‘Mary dances’ forX and ‘Mary moves’ for Y), and ‘Mary dances gracefully’ (with
‘gracefully’ for F) that ‘Mary moves gracefully’.

X =⇒ Y F (Y)
F (X)

F ↓

Reading X and Y as above, and reading F as negation, we get the following
example of this rule: infer from An example of this would be: infer from ‘Mary
dances implies Mary moves’ and ‘Mary does not move’ (with ‘does not’ for F)
that ‘Mary does not dance’.

In the case where X,Y are sets (type e → t) and F (X), (F (Y) are truth
values, F has type (e→ t) → t (the type of quantifiers), and we get:

5

Q(X) X ⊆ Y

Q(Y)
Q ↑

For an example, let X stand for ‘dancing’, Y for ‘moving’, and Q for ‘everyone’.
Then the rule says that one may conclude from ‘everyone is dancing’ and ‘dancing
involves moving’ that ‘everyone is moving’.

Q(Y) X ⊆ Y

Q(X)
Q ↓

To get an example of this, read X and Y as above, and interpret Q as ‘nobody’.
In fact, F may have further internal structure, i.e., F (X) may have the form

of binary generalized quantifier Quant(X,P) or Quant(P,X). This gives us four
possible monotonicity rules for binary quantifiers. Examples of binary quantifiers
are all, with monotonicity properties (↓, ↑), some, with (↑, ↑), no, with (↓, ↓), and
most, with (, ↑).

Quant(X,P) X ⊆ Y

Quant(Y, P)
Quant(↑,)

Example: infer from ‘some philosophers are mortal’ and ‘philosophers are hu-
mans’ that ‘some humans are mortal’.

Quant(P,X) X ⊆ Y

Quant(P, Y)
Quant(, ↑)

Example: infer from ‘most philosophers are human’ and ‘humans are mortal’
that ‘most philosophers are mortal’.

Quant(Y, P) X ⊆ Y

Quant(X,P)
Quant(↓,)

Example: infer from ‘all humans are mortal’ and ‘philosophers are human’ that
‘all philosophers are mortal’.

Quant(P, Y) X ⊆ Y

Quant(P,X)
Quant(, ↓)

Example: infer from ‘no philosophers are mortal’ and ‘humans are mortal’ that
‘no philosophers are human’.

4 Polarity Marking Revisited

If we can manage to parse a syntactic structure S in some way or other as a
monotonicity preserving function F taking an argument A, we can make an
inference step, given a suitable trigger. If we can parse S as a monotonicity
reversing function F taking an argument A, we can make an inference step,

6

given a suitable trigger. In an application of a monotonicity rule, one of the
premisses is of the form X ⇒ Y , for some X,Y of the same type. We call this
premisse the trigger of the rule. In fact, polarity marking is an enrichment of
syntax that can be viewed as a ‘shallow’ alternative for a translation into logical
form.

Existing polarity marking calculi [22, 8, 6] are all based in one way or another
on Sanchez’s [22] bottom-up algorithm for polarity marking, which needs a sep-
arate pass for determining polarity in context. We propose to replace this by a
top-down polarity marking algorithm, with the advantage that it takes context
into account and computes polarity in a single pass. Here are some comparisons:

– Our approach assigns marking maps as part of the (bottom-up) syntax struc-
ture building process and next computes markings top-down.

– Sanchez’ algorithm [22] works bottom-up and has three stages: (i) mark-
ing argument positions in lexical entries, (ii) propagating the markings to
other categories, and (iii) polarity determination of nodes C by counting the
number of plusses and minuses on a path from the root to C.

– The approach of Dowty [8] is constraint-based and bottom up. This necessi-
tates multiplication of syntactic categories for items that can occur in both
positive and negative positions.

– The approach of [6] is also bottom up. It uses the machinery of multimodal
categorial grammar, for which the issue of parsing complexity is still open
(no polynomial parsing algorithm is known). Our approach to monotonicity
marking avoids the machinery of multimodal categorial grammar.

– The ‘order calculus’ of [13] is a proof system for =⇒ for a particular natural
language fragment. The system does not separate out polarity marking from
=⇒ calculation. Because of the fact that for all but the simplest natural lan-
guage fragments the =⇒ relation has much higher complexity than polarity
marking (which can always be done in polynomial time), this is a design
flaw.

The three maps on polarity markings that our algorithm employs are (i)
preservation, (ii) reversal, and (iii) breaking of polarity. Polarity marking is fully
determined by the polarity preserving and reversing properties of the semantic
functions involved. Let polarity markings m range over {+,−, 0}. Instead of
explicitly giving the function, in a monotonicity calculus it is enough to give
the mappings on polarity markings: preservation (the mapping i), reversal (the
mapping r), or breaking of monotonicity (the mapping b), with i the identity
map, r the map given by r(+) = −, r(−) = +, r(0) = r(0), and b given by
b(x) = 0. Using m for the domain {+,−, 0}, we see that maps on polarity
markings have the type m→ m.

7

Si

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
HH

(Si/VP)r

�
�

�
�

��

H
H

H
H

HH

(Si/VP)r/CN

every

CNi

�
�

�
�

�
��

H
H

H
H

H
HH

CN

man

CN\CNi/VP

that

VPr

�� HH
VPr/INF

didn’t

INF

laugh

VP

smiled

Fig. 1. ‘Every man that didn’t laugh smiled.’

Polarity Map Assignment
Leaf Marking Functional lexical categories have all their result categories

labelled with marker transformers. Lexical argument categories get an
unlabelled basic category.

Tree Marking If C consists of a function Cf/A and an argument A, where
f is a marker transformer, (or of an argument A and a function A\Cf ,
or of an argument A, a function A\Cf/B and an argument B), then C
gets marker transformer f .

In this algorithm, polarity maps are annotations on result categories, as in
the following example lexicon.

C(every) = (Si/VP)r/CN C(did) = VPi/INF
C(some) = (Si/VP)i/CN C(didn’t) = VPr/INF
C(no) = (Sr/VP)r/CN C(man) = CN
C(any) = (Si/VP)i/CN C(that) = CN\CNi/VP
C(the) = (Si/VP)b/CN C(laugh) = INF
C(most) = (Si/VP)b/CN C(laughed) = VP
C(Ann) = Si/VP C(kissed) = VPi/(S/VP)

The category (Si/VP)r/CN for ‘every’ reflects the fact that the semantic
function for this quantifier reverses monotonicity direction for its first argument,
and keeps the monotonicity direction the same for its second argument.

Syntax trees are built using the familiar categorial grammar construction
process, where A/B combines with B to form [AA/B B], B\A combines with B

8

to form [AB B\A], and B\A/C combines with B and C to form [AB B\A/C C].
An example is in Figure 1.

The polarity marking algorithm works top-down, using the polarity marking
maps at the nodes as guidance for determining the polarity markings of the
argument nodes (the function nodes always inherit the marking of their parents,
for reasons explained in [5]).

Polarity Marking Algorithm
Root Marking The main structure C to be marked has positive polarity,

so it is marked with +.
Component Marking If a structure C has polarity marking k, then:

Leaf Marking If C is a leaf, then done.
Composite Marking If C consists of a function (C/A) and argument

A (or an argument A and a function A\C, or an argument A, a
function A\C/B and an argument B), then the function gets polarity
marking k, and the argument(s) get polarity marking f(k), where f
is the polarity marking map at node C.

This algorithm in fact defines a function from syntax trees with polarity
marking maps to syntax trees with polarity marking maps and markings. The
result of running the algorithm on the example tree is in Figure 2.

Si
+

��
�����

��

HHH
HHHHHH

S/VPr
+

���
���

HHH
HHH

(Si/VP)r/CN+

every

CNi
−

����
����

HHHH
HHHH

CN−

man

CN\CNi/VP−

that

VPr
−

�� HH
VPr/INF−

didn’t

INF+

laugh

VP+

smiled

Fig. 2. Marked version of Figure 1.

A monotonicity calculus can be based on the polarity marking algorithm
plus information about the mappings on polarity markings of functional lexical

9

elements and information about the =⇒ ordering, by means of the following
rules:

[S · · ·X+ · · ·] X =⇒ Y

[S · · ·Y + · · ·]

[S · · ·X− · · ·] Y =⇒ X

[S · · ·Y − · · ·]

Determination of [S · · ·X+ · · ·] and [S · · ·X− · · ·] is done by an algorithm for
parsing plus monotonicity marking; for any reasonable grammar formalism it
may be assumed that this can be done in polynomial time. Determination of
=⇒ for the category of X and Y is another manner. As is explained in [19], this
relation may have a high complexity, even for fairly simple fragments.

But even if =⇒ is hard to compute, partial information about this relation
(say, for basic categories), is enough for drawing interesting sound conclusions.
Information about the =⇒ ordering for basic categories is supposedly available as
basic semantic knowledge of language users. In an implementation, this kind of
knowledge can be extracted from semantic databases like Wordnet. The Wordnet
[12] hyperonym relation encodes the =⇒ relation on the logical type e → t of
nouns. If Wordnet gives the information that ‘cat’ has hyperonym ‘feline’, that
‘feline’ has hyperonym ‘mammal’, that ‘mammal’ has hyperonym ‘animal’, then
we can translate this as:

cat =⇒ feline

feline =⇒ mammal

mammal =⇒ animal

This combined with shallow text processing and monotonicity marking allows
us to use Wordnet to draw shallow inferences from texts about cats.

5 Monotonicity in Syllogistics

Monotonicity calculi can be viewed as the logical mechanics of syllogistic theory
[11, 4, 9]. The cornerstone of syllogistics is the following well-known Square of
Opposition:

All(↓, ↑) No(↓, ↓)y y
Some(↑, ↑) NotAll(↑, ↓)

In set-theoretic notation:

P ⊆ Q P ⊆ Qy y
P 6⊆ Q P 6⊆ Q

10

The inferencing that goes on in syllogistics reduces to applications of SYM,
EI, and MON, where MON is the monotonicity rule, while SYM and EI are the
following rules:

– SYM or Symmetry is the rule that infers Quant(Q,P) from Quant(P,Q)
for symmetric quantifiers. Some and No are symmetric.

– EI or Existential Import is the principle that every term has a non-empty
extension.

P ⊆ Q together with P 6= ∅ yields P ∩Q 6= ∅, i.e.: From All P are Q it follows
by EI that Some P are Q P ⊆ Q together with P 6= ∅ yields P ∩ Q 6= ∅, i.e.:
From No P are Q it follows by EI that Not all P are Q.

In the context of syllogistics, the Monotonicity triggers are the following
quantifiers:

– All P Q: P ⊆ Q,
– No P Q: P ⊆ Q, Q ⊆ P .

Since there is only a finite number of valid syllogistic patterns, completeness
of the rules MON, SYM, EI for syllogistics can be proved by checking that every
valid syllogistic pattern can be ‘decomposed’ into applications of MON, SYM
and EI (see Section 6 below for examples). A computer program for this is given
in [10]. Modulo the correctness of the program, this establishes:

Theorem 3. The calculus consisting of the rules MON, SYM and EI is complete
for syllogistics.

It is well-known that a generalization of syllogistics can be based on the
following parametrized version of Square of Opposition ([4, 9]):

AllExceptAtMost N (↓, ↑) AtMost N (↓, ↓)y y
AtLeast (N + 1) (↑, ↑) AtLeast (N + 1) Not (↑, ↓)

The traditional square is the special case of this with N set to 0.
Using P ⊆n Q for

∃P ′ ⊆ P (|P − P ′| ≤ n ∧ P ′ ⊆ Q),

we see that generalized monotonicity triggers now appear in the following guises:

– AllExceptAtMost n P Q: P ⊆n Q,
– AtMost n P Q: P ⊆n Q, Q ⊆n P .

Here is the generalized square in set-theoretic notation:

P ⊆n Q P ⊆n Qy y
P 6⊆n Q P 6⊆n Q

11

Applications of monotonicity reasoning in this generalized setting look like
this:

P ⊆n Q Q ⊆m R

P ⊆n+m R

Using P ∩nQ for |P ∩Q| ≥ n, we see that P ∩n+1Q is equivalent to P 6⊆n Q.
We get:

P ∩n Q Q ⊆m R

P ∩n−̇m R

where n−̇m denotes cut-off subtraction (if n ≤ m then n−̇m = 0).
Note that existential import yields nothing new for the new quantifiers. For

let n ≥ 1. Then from P 6= ∅ and P ⊆n Q it does not follow that P ∩Q 6= ∅.
The situation changes when we adopt the following natural generalization of

existential import, to keep in step with the new situation:

Generalized existential import (GEI) for predicate P is the requirement that
|P | > n.

Existential import for standard syllogistics is the special case of this where
n = 0. Note that GEI does have an effect: from |P | > n and P ⊆n Q it does
follow that P ∩Q 6= ∅.

Again, by a careful case by case analysis, we can establish:

Theorem 4. The calculus consisting of the rules MON, SYM and GEI is com-
plete for generalized syllogistics.

The monotonicity behaviour of the function λnλPλQ.P ⊆n Q is given by:

P ⊆n Q n ≤ m

P ⊆m Q

This yields the monotonicity marker map ((Si/VP)r/CN)i/NUM for ‘all except
at most’. To build natural language fragments for generalized syllogistics, one
can use a lexicon that has entries like the following:

C(all) = (Si/VP)r/CN C(Greeks) = CN
C(some) = (Si/VP)i/CN C(Atheneans) = CN
C(no) = (Sr/VP)r/CN C(barbarians) = CN

C(not all) = (Sr/VP)i/CN C(philosophers) = CN
C(1), C(2), . . . = NUM C(sophists) = CN

C(all except at most) = ((Si/VP)r/CN)i/NUM C(cynics) = CN
C(at least) = ((Si/VP)r/CN)r/NUM C(are) = VPi/CN
C(at most) = ((Si/VP)r/CN)i/NUM C(are not) = VPr/CN

12

For such fragments, one can state and prove completeness results for monotonic-
ity reasoning, by comparing the calculus with rules MON, SYM and GEI to
the semantic consequence relation for first order models that result from inter-
preting the fragment: domains of discourse, plus interpretations for the common
nouns. [19] gives an assessment of the complexity of the satisfiability problem
for a variety of fragments starting from syllogistic theory. Syllogistic satisfiabil-
ity is decidable in polynomial time. If relative clauses are added the complexity
becomes NP, further addition of transitive verbs moves the complexity to EX-
PTIME, and so on. One can look at these findings in various ways. In [19] the
conclusion is drawn that the programme of natural logic is hopeless:

[. . .] from a complexity-theoretic point of view, there is every reason
to believe that, for all but the most impoverished fragments, reasoning
using schemata based on the syntax of natural language will confer no
advantage whatever.

One may also draw the conclusion that natural logic is perhaps more complex
and more interesting and more challenging than people used to believe.

6 Fine Structure of Syllogisms

Every valid syllogism involves exactly one application of the monotonicity rule,
either triggered by ‘All’ or by ‘No’ (or in the generalized case, by ‘All except at
most N ’ or by ‘At most N ’). Arguably, the syllogisms that just involve mono-
tonicity are the simplest ones. A syllogism may or may not involve an application
of the following rules:

1. symmetry of a premise,
2. symmetry of the conclusion,
3. existential import of a premise
4. existential import of the conclusion.

As an example of decomposition of a syllogism in terms of the rules MON, SYM
and EI, here are two possible decompositions of the syllogism fesapo:

No C B
No B C

Sn

All B A
Some B A

Ea

Some A B
Ss

Some A C
Mn

No C B
No B C

Sn All B A
Some B A

Ea

Some C A
Mn

Some A C
Ss

Here Mn denotes an application of MON with No as trigger, Ea denotes EI for
All, Ss denotes SYM for Some, and so on.

13

Measured in terms of decomposition complexity, fesapo is the most complex
valid syllogism. In an empirical set-up of [7], the inference from ‘No B C, All B A’
to ‘NotAll A C’ (the fesapo pattern) is only recognized as valid in 8 percent of the
cases, while in a staggering 61 percent of the cases, subjects think, erroneously,
that the conclusion No A C follows from the premises. The only cases where
the scores are still lower for endorsement of a valid conclusion are cases where
the conclusion follows by existential import from a universal negative conclusion
that is also valid, and that is recognized in a majority of cases as being valid.

7 Monotonicity and Distribution

An important heuristics in traditional logic is the doctrine of distribution, con-
sisting of the following two rules:

1. the middle term of a valid syllogism has to be distributed in at least one of
the premises,

2. if a term of a valid syllogism is distributed in the conclusion it has to be
distributed in one of the premises.

Prior [20] gives the following explanation of what ‘distributed’ means in these
rules:

It is often said [. . .] that a distibuted term refers to all, and an undis-
tributed term to only a part, of its extension. But in what way does
“Some men are mortal”, for example, refer to only a part of the class of
men? Any man whatever will do to verify it: if any man whatever turns
out to be mortal, “Some men are mortal” is true. What the traditional
writers were trying to express seems to be something of the following
sort: a term t is distributed in a proposition f(t) if and only if it is re-
placeable in f(t), without loss of truth, by any term “falling under it”
in the way that a species falls under a genus.

Interpreting ‘being distributed’ like this, we can see that

From ‘All A B’ and ‘All B C’ infer ‘All A C’

has the middle term B distributed in ‘All B C’, in agreement with the first rule
of distribution, while B violates the first rule of distribution in the following
invalid pattern:

From ‘All A B’ and ‘Some B C’ infer ‘All A C’.

An invalid pattern that violates the second rule of distribution is:

From ‘Some A B’ and ‘All B C’ infer ‘All A C’.

Here A is distributed in the conclusion, but not in the premise where it occurs.
Prior’s suggestion of a modern version of the doctrine of distribution is taken

up in Van Benthem [4]. In Van Eijck [9] the relations between traditional logic

14

(syllogistic theory) and generalized quantifier theory [18, 1, 3] are worked out
further, with due attention to the role of monotonicity in syllogistic reasoning,
and with the observation that the square of opposition generalizes to quantifiers
defined from At least n.

Hodges [16] relates the doctrine of distribution to monotonicity (just as [20, 4,
9] had done before), and gives a semantic argument to show that the correctness
of the two rules of distribution follows from the interpretation of ‘distributed
term’ as ‘term in a downward monotone position’. The doctrine of distribution
also follows from our completeness result. Consider the first rule of distribution,
saying that the middle term has to be distributed in at least one of the premises.
If the trigger of the monotonicity rule is ‘No P Q’, then this condition is always
fulfilled, for both P and Q are in downward position. If the trigger of the mono-
tonicity rule is ‘All P Q’, then the condition is fulfilled if P is the middle term,
for P is in a downward position in ‘All P Q’, and it is also fulfilled if Q is the
middle term, for the monotonicity rule allows substitution of Q by P in the other
premise only if Q is in downward position in that premise. Hodges shows that
the second rule of distribution follows from the first rule, as follows. Let φ and
ψ be the two premises, and assume P is in downward position in χ(P), where

φ, ψ, therefore χ(P)

is a valid syllogism. Assume, without loss of generality, that P is a term in φ,
and suppose that P is in upward position in φ(P). Then

φ(P), χ(P), therefore ψ

is also a valid syllogism. But in this syllogism P is the middle term. Moreover,
the effect of wide scope negation is that P is in upward position in χ(P), and
we have a contradiction with the first rule of distribution.

8 Related and Future Work

Sanchez [22] is an extensive study of the role of monotonicity in ‘natural rea-
soning’, with as main contribution an algorithm for monotonicity marking, and
a system for monotonicity reasoning in terms of monotonicity markings. This
work is based on [5], and is in turn the basis of almost all later proposals for
monotonicity calculi.

In Geurts [14] a monotonicity based system of reasoning for syllogistics is
sketched, in terms of Sanchez-style monotonicity markings. The claim is made
that monotonicity, symmetry and existential import account for all syllogistic
inference, but the presentation of the rules is too informal to admit a proof of
this. Geurts’ intention is to explain empirical findings about accomplishment in
syllogistic reasoning tasks in terms of complexity of inference in his reasoning
system. It seems clear that the interest of syllogistics for cognitive science lies
in the mechanism of monotonicity. Connecting the logical exploration of this
mechanism with empirical findings in the psychology of reasoning is an obvious
next goal. The hypothesis of [15] that reversal of monotonicity increases human

15

processing load can be linked to the mental models metaphor. Interestingly, from
a logical point of view the reversed monotonicity pattern is no more complex
than the pattern of preserved monotonicity.

Monotonicity calculi can be specified in a fully precise manner, by presenting
them as proof calculi, consisting of axioms and inference rules. Such calculi are
meant to capture standard notions of logical consequence: they are not calculi
of logical falsehoods. If they can be used to explain where human reasoners err,
it should be in an indirect manner, by making clear what the added complexity
of a particular task is in comparison with tasks where human reasoners tend
not to err. This suggests that, given a suitably precise version of a monotonicity
calculus, it should be possible to flesh out the mental models metaphor as a
formally precise extension of the monotonicity calculus, a kind of add-on tool
that allows us to classify reasoning tasks with respect to their claims on the
human processing faculty [2].

Acknowledgement Thanks to Fabian Battaglini for getting me interested in the
topic of natural logic again, and for inspiring discussions. Thanks to Ian Pratt
and two anonymous referees for spotting errors in and providing illuminating
comments to an earlier version of this paper. All remaining errors are my own.

References

1. J. Barwise and R. Cooper. Generalized quantifiers and natural language. Linguis-
tics and Philosophy, 4:159–219, 1981.

2. Fabian Battaglini. Monotonicity and cognition, Manuscript, Uil-OTS, Utrecht,
2006.

3. J. van Benthem. Questions about quantifiers. Journal of Symbolic Logic, 49:443–
466, 1984.

4. J. van Benthem. Essays in Logical Semantics. Reidel, Dordrecht, 1986.
5. J. van Benthem. Language in Action: categories, lambdas and dynamic logic. Stud-

ies in Logic 130. Elsevier, Amsterdam, 1991.
6. R. Bernardi. Reasoning with Polarity in Categorial Type Logic. PhD thesis, Uil-

OTS, Utrecht University, 2002.
7. N. Chater and M. Oaksford. The probability heuristics model of syllogistic rea-

soning. Cognitive Psychology, 38:191–258, 1999.
8. D. Dowty. Negative polarity and concord marking in natural language reasoning.

In SALT Proceedings, 1994.
9. J. van Eijck. Generalized quantifiers and traditional logic. In J. van Benthem and

A. ter Meulen, editors, Generalized Quantifiers, Theory and Applications. Foris,
Dordrecht, 1985.

10. Jan van Eijck. Syllogistics = monotonicity + symmetry + existential import.
Technical Report SEN-R0512, CWI, Amsterdam, July 2005. Available from http:

//db.cwi.nl/rapporten/.
11. G. Englebretsen. Notes on the new syllogistic. Logique et Analyse, 85–86:111–120,

1979.
12. C. Fellbaum. Wordnet, an electronic lexical database. MIT Press, 1998.
13. Yaroslav Fyodorov, Yoad Winter, and Nissim Francez. Order-based inference in

natural logic. Logic Journal of the IGPL, 11:385–416, July 2003.

16

14. B. Geurts. Reasoning with quantifiers. Cognition, 86:223–251, 2003.
15. B. Geurts and F. van der Slik. Monotonicity and processing load. Journal of

Semantics, 22(97–117), 2005.
16. W. Hodges. The laws of distribution for syllogisms. Notre Dame Journal of Formal

Logic, 39:221–230, 1998.
17. P.N. Johnson-Laird. Mental Models; towards a cognitive science of language, in-

ference and consciousness. Cambridge University Press, 1983.
18. A. Mostowski. On a generalization of quantifiers. Fundamenta Mathematica, 44:12–

36, 1957.
19. I. Pratt-Hartmann. Fragments of language. Journal of Logic, Language and Infor-

mation, 13(2):207–223, 2004.
20. A.N. Prior. Traditional logic. In P. Edwards, editor, The Encyclopedia of Philos-

ophy, volume 5, pages 34–45. Macmillan, 1967.
21. W.C. Purdy. A logic for natural language. Notre Dame Journal of Formal Logic,

32:409–425, 1991.
22. V. Sánchez. Studies on Natural Logic and Categorial Grammar. PhD thesis, Uni-

versity of Amsterdam, 1991.
23. F. Sommers. The Logic of Natural Language. Cambridge University Press, 1982.

