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Abstract

Dynamic logic, broadly conceived, is the logic that analyses change by decom-
posing actions into their basic building blocks and by describing the results of
performing actions in given states of the world. The actions studied by dynamic
logic can be of various kinds: actions on the memory state of a computer, ac-
tions of a moving robot in a closed world, interactions between cognitive agents
performing given communication protocols, actions that change the common
ground between speaker and hearer in a conversation, actions that change the
contextually available referents in a conversation, and so on.

In each of these application areas, dynamic logics can be used to model the
states involved and the transitions that occur between them. Dynamic logic is a
tool for both state description and action description. Formulae describe states,
while actions or programs express state change. The levels of state descriptions
and transition characterisations are connected by suitable operations that allow
reasoning about pre- and postconditions of particular changes.

From a computer science perspective, dynamic logic is a formal tool for reasoning
about programs. Dynamic logics provides the means for formalising correctness
specifications, for proving that these specifications are met by a program un-
der consideration, and for reasoning about equivalence of programs. From the
perspective of the present paper, this is but one of many application areas. We
will also look at dynamic logics for cognitive processing, for communication and
information updating, and for various aspects of natural language understanding.
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1 Introduction

Notions involving change often have a dual character, an interplay between pro-
cess and product. While travelling from one place to another, one can either
focus on the process of ‘being on the road’ or on the result of this process, ‘be-
ing somewhere else’. Intellectual activities also have this dual nature: scientific
discovery denotes a process of reaching for new insights but also the resulting
insights, judgement denotes both the process of reaching a rational decision and
the decision that results from that process, computation involves a process of
stepwise changes, and the outcome of such a process, and so on.

The logical study of the interplay between process and product is called dynamic
logic. This paper gives an overview of various systems of dynamic logic, with il-
lustrations drawn from various application areas: programming, communicative
action and interaction, cognitive processing, natural language understanding. It
is aimed at researchers who have an interest in the formal analysis of compu-
tational and communicative processes. A more extended textbook introduction
to dynamic logics that is explicitly geared to computer science is the infor-
mative [63]. An earlier overview is [62]. Cf., also [15] for an introduction that
focuses on cognitive applications.

Dynamic logic can be viewed as dealing with the logic of action and the result of
action, and it can be used to model various kinds of actions and their results. A
rough classification might be the following. First of all there are computations,
i.e., actions performed on computers. Examples are computing the factorial
function, computing square roots, etc. Such actions typically involve changing
the memory state of a machine. Another type of action is that of communicative
actions, such as reading an English sentence and updating one’s state of knowl-
edge accordingly, engaging in a conversation, sending an email with cc’s, telling
one’s husband a secret. These actions typically change the cognitive states of
the agents involved. And then there are actions in the world, such as building
churches, destroying bridges, spilling milk. Such actions change the state of the
world. Of course there are connections between these categories and actions of
a mixed nature: a communicative action will usually involve some computation
involving memory, and the utterance of an imperative is a communicative action
that aims at an action in the world.

For a researcher who is interested in the formal analysis of actions of various
kinds dynamic logic can be viewed as a tool box: it provides concepts and
methods for description of actions and means to characterise the properties
of the resulting systems. Using these tools the researcher can then develop
specialised, tailored systems for dealing with specific kinds of actions: logics of
computation, logics of communication, logics of action. Inasmuch as they are
geared toward specific applications such systems may differ quite widely, but in
many cases their core can nevertheless be characterised formally in a uniform
way: many of these logics can be related to one or more varieties of modal logic,
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taken in a suitably broad sense, viz., as the logic of ‘labelled transition systems’.

A labelled transition system (or LTS, or multi-modal Kripke model) over sig-
nature P,A, with P a set of propositions and A a set of actions, is a triple
〈S, V,R〉 where S is a set of states, V : S → P(P ) is a valuation function, and
R = { a→⊆ S × S | a ∈ A} is a set of labelled transitions, i.e., binary relations
on S, one for each label a. Let us illustrate the idea of an LTS by a few simple
examples.

If one interprets the labelled transitions as the changes in the memory state
of a computer, LTSs model computations, for example the simple assignment
x := y:

x 3

y 2

z 4

x 2

y 2

z 4

x:=y

The command to put the value of register y in register x makes the contents of
registers x and y equal. Pioneer papers in the logic of computation are [43,70].

If one interprets the labelled transitions as accessibility relations on the cognitive
state space of a group of agents, LTSs can be used to model the information
that such agents have about the world, about each other’s information about
the world, each other’s information about each other’s information about the
world, and so on. And it can be used to describe changes in such information
states:

p

a,b

-pab

a,b

pM a p

a,b

p
b -p

b

a,b

a,b

a,b

On the left is an epistemic situation where p is in fact the case (indicated by
a double circle), but a and b cannot distinguish between p and ¬p. If in such
a situation a receives the message that p is the case, while b is not informed
of this, the epistemic situation changes to what is pictured on the right. In the
new situation, a knows that p, and a also is aware of the fact that b does not
know, while b still does not not know, and b still assumes that a does not know.
See [68] for one of the earliest treatments of epistemic logic along these lines.
An overview of the development of epistemic logic is given in [48]. Cf., also [15].

Communicative actions may provide more detailed information about the world
than the information that a certain state of affairs is realised. In a discourse

5



(text, conversation), information is (often) conveyed piecemeal, and languages
contains various means for keeping track of what has been said about what.
Anaphoric pronouns are a case in point. Their role can be modelled by inter-
preting states as consisting of discourse items to which information is added in
an incremental fashion. The following illustrates the action on such a state that
is triggered by the use of an anaphoric pronoun:

0 man (0)

1 woman (1)

0 man (0) 
angry (0)

1 woman (1)

"he is angry"

In a discourse where a man and a woman have been mentioned recently, an
utterance of ‘He is angry’ receives a natural interpretation by linking the pro-
noun to the most salient appropriate discourse item, viz., the man that was just
mentioned. Early work in this area is in [65,79,83]. See [47] for an overview.

Yet another illustration of how LTSs can be used to model action is when one
interprets labelled transitions as actions on the state of the world. In that case
LTSs model changes in the world itself:

 

 

 

 
 

open window

The action of window-opening changes a state in which the window is closed
into one in which it is open. More complex actions call for more complex models,
of course, in particular when we are interested in a more fine grained analysis of
the causality involved in bringing about changes. An early overview of the logic
of action is in [134]. For a more recent survey, cf., [114]. A different approach is
the stit-logic of Belnap, cf. [12].

These examples illustrate that it is possible to approach a wide variety of kinds
of actions from a unified perspective. What follows is intended to show that this
is not only possible, but also fruitful. Note that the diversity of applications of
dynamic logic also indicates that it is difficult to trace the various systems and
application to a single historic root. In fact, some of what appears uniform now,
as a matter of historical fact had quite diverse origins. For this reason we have
opted for a mainly systematic treatment, with occasional historical side remarks
where relevant.

*

The larger part of the survey of dynamic logic that follows is devoted to an ex-
position of two core systems of dynamic logic, viz., propositional dynamic logic
and quantificational dynamic logic, and three illustrative areas of application,
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viz., programming, communicative action and dynamic semantics of natural
language.

One of the seminal papers in computer science is Hoare’s [70]. where the fol-
lowing notation is introduced for specifying what an imperative program does:

{P} C {Q}.

Here C is a program from a formally defined programming language for imper-
ative programming, and P and Q are conditions on the programming variables
used in C. Statement {P} C {Q} is true if whenever C is executed in a state
satisfying P and if the execution of C terminates, then the state in which ex-
ecution of C terminates satisfies Q. The ‘Hoare-triple’ {P} C {Q} is called a
partial correctness specification; P is called its precondition and Q its post-
condition. Floyd-Hoare logic, as the logic of reasoning with such correctness
specifications is called, is the precursor of all the dynamic logics known today.
We will demonstrate Floyd-Hoare logic in Section 2.4, for the toy language
specified in Section 2.1. The specification of a toy programming language has
the additional benefit that it will allow us to demonstrate various approaches
to the semantics of programming. We will present example programs, formu-
late questions about their behaviour, and show how some of these questions are
answered with Floyd-Hoare logic. After that, we turn to dynamic logic proper
as a more general means of tackling such questions.

In section 3 we present what is perhaps the most basic system of dynamic
logic, propositional dynamic logic (PDL), a logic in which basic actions are
primitives. This feature makes PDL applicable in a wide variety of cases. For
example, if one interprets the basic actions as communicative actions that effect
cognitive states of sets of interacting agents, then dynamic logic takes the shape
of dynamic epistemic logic. This important area of application is treated in
detail in section 4.

When one takes memory change as the basic action, one gets quantified dynamic
logic (QDL), the system that is introduced and discussed in section 5. QDL has
its origin in correctness reasoning based on annotating programs with pre- and
postconditions. These historical connections are briefly traced. It is possible to
interpret QDL programs also in a different way, viz., as changing the cognitive
state of a language user. This potential relevance of QDL for an understanding
of natural language was actualised in what has been called the ‘dynamic turn’
in natural language semantics. In section 6 we focus on dynamic predicate logic
(DPL) as a subsystem of QDL. A more detailed treatment of the application
of dynamic concepts in natural language semantics is given in section 7.
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2 Describing Change and Reasoning about Change

Consider the following problem concerning the outcome of a pebble drawing
action.

A vase contains 35 white pebbles and 35 black pebbles. Proceed as
follows to draw pebbles from the vase, as long as this is possible.
Every round, draw two pebbles from the vase. If they have the same
colour, then put a black pebble back into the vase, if they have
different colours, then put the white pebble back. You may assume
that there are enough additional black pebbles. In every round one
pebble is removed from the vase, so after 69 rounds there is a single
pebble left. What is the colour of this pebble?

Here is an implementation of this procedure, where the vase is represented as a
list of integers, the white pebbles are the occurrences of 0, and the black pebbles
the occurrences of 1. The draw function is coded in the programming language
Haskell [78]:

draw :: [Integer] -> [Integer]
draw [x] = [x]
draw (0:0:xs) = draw (1:xs)
draw (1:1:xs) = draw (1:xs)
draw (0:1:xs) = draw (0:xs)
draw (1:0:xs) = draw (0:xs)

The question: if this function is called with a list of thirty-five 0’s and thirty-five
1’s, in unknown order, will the outcome of the function be [0] or [1]?

The key to the solution is finding an invariant of the procedure, i.e., finding
a condition that does not change when a single pebble is removed from the
vase. It is not hard to see that when a pebble is drawn, the number of white
pebbles always remains odd. It follows that the last pebble is white. So the
draw function will return [0] on any permutation of the list of thirty-five 0’s
and thirty-five 1’s.

With this piece of reasoning we are in the realm of dynamic logic. Rather than
encode examples in an existing programming language like Haskell or Java,
it will turn out useful to introduce our own toy language for illustrations. As
dynamic logic describes the interplay between actions and resulting states, the
action description language is part and parcel of the dynamic logic language.

2.1 The WHILE Language

In what follows we define a simple programming language for programming
over the data type of the natural numbers, i.e., the set N = {0, 1, 2, 3, . . .}, with
functions + for addition, ∗ for product, and −̇ for cut-off subtraction.

First, we distinguish between numbers and their names. Numbers are objects
in the mathematical realm, names are syntactic objects. A numeral is a name
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for a natural number. E.g., ‘5’ is a name for the natural number 5. Assume N
is a set of numerals. Assume V is a set of variables. The sets N and V may
have further internal structure, but we will not bother to spell this out. Given
sets N,V , arithmetic expressions can be defined by means of +, ∗, −̇, as follows
(assume n ranges over the numerals and v over the variables):

a ::= n | v | a1 + a2 | a1 ∗ a2 | a1−̇a2.

This says that 345 ∗ (67+8) and (345 ∗ 67)+8 are arithmetic expressions. (The
brackets indicate the manner of construction).

In terms of these arithmetic expressions we will now fix a small programming
language for programming with the natural numbers. We assume two further
primitive relation symbols ‘=’ for ‘equal’, and ‘≤’ for ‘less than or equal’. This
allows us to define Boolean expressions (named after [20]), as follows:

B ::= > | a1 = a2 | a1 ≤ a2 | ¬B | B1 ∨B2

Note that instead of listing equalities a1 = a2 explicitly, we might have in-
troduced them by way of abbreviation, as shorthand for a1 ≤ a2 ∧ a2 ≤ a1.
Arithmetic expressions and Boolean expressions figure in programming com-
mands, as follows:

C ::= SKIP | v := a | C1 ; C2 | IF B THEN C1 ELSE C2 | WHILE B DO C.

The basic programming constructs of the WHILE language are SKIP for the
program that does nothing, and v := a for the program that assigns the value
of a to the variable v. Programs or commands can be composed by means of
sequencing, by means of conditionalisation, and by means of guarded repetition.
Further programming constructs can now be defined, e.g., REPEAT:

REPEAT C UNTIL B := C ; WHILE ¬B DO C.

The WHILE language looks deceptively simple, but it is extremely expressive.
In fact, this little language is Turing complete, i.e., one can specify the behaviour
of any Turing machine in it ( [124]). This means in turn that anything that can
be computed on the natural numbers can (in principle) be computed by means
of a WHILE program.

2.2 Semantics

To specify the semantics, we take the natural numbers N with the operations
+, ∗, −̇ and the relation ≤ as given. We also assume that every numeral n in N
has an interpretation I(n) ∈ N. Let g be a mapping from V to N (an assignment
of natural numbers to the variables). The arithmetic expressions of the language
are now interpreted relative to assignment g, as follows:
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[[n]]g := I(n)
[[v]]g := g(v)

[[a1 + a2]]g := [[a1]]g + [[a2]]g
[[a1 ∗ a2]]g := [[a1]]g ∗ [[a2]]g
[[a1−̇a2]]g := [[a1]]g−̇[[a2]]g

The semantics of the Boolean expressions (or ‘Booleans’) of the language is
defined as follows:

[[>]]g := T

[[a1 = a2]]g :=
{
T if [[a1]]g = [[a2]]g
F otherwise

[[a1 ≤ a2]]g :=
{
T if [[a1]]g ≤ [[a2]]g
F otherwise

[[¬B]]g :=
{
T if [[B]]g = F
F otherwise

[[B1 ∨B2]]g :=
{
T if [[B1]]g = T or [[B2]]g = T
F otherwise

2.2.1 Natural Semantics for Commands

The semantics of the commands can be given in various styles. First we give
the so-called natural semantics, in the form of a specification of a transition
system.

For any valuation g, any variable v and any natural number d, let g[v 7→ d]
be the valuation g′ that differs from g at most in the fact that g′(v) = d. This
notion is familiar from the semantics of first order logic. Then the transition for
assignment commands is given by:

g v:=a−−−−−→ g[v 7→ [[a]]g]

The SKIP command does nothing:

g SKIP−−−−−−→ g

Sequential composition combines two transition arrows:

g C1−−−−→ g′ g′ C2−−−−→ g′′

g C1 ; C2−−−−−−−→ g′′
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Conditional action makes a choice from two transition relations, depending on
the evaluation of the condition.

g C1−−−−→ g′

g IF B THEN C1 ELSE C2−−−−−−−−−−−−−−−−−−→ g′
[[B]]g = T

g C2−−−−→ g′

g IF B THEN C1 ELSE C2−−−−−−−−−−−−−−−−−−→ g′
[[B]]g = F

Guarded iteration does nothing if the guard fails to hold:

g WHILE B DO C−−−−−−−−−−−−−→ g
[[B]]g = F

Otherwise the guarded action is performed and the WHILE command is exe-
cuted again in the result state.

g C−−−→ g′ g′ WHILE B DO C−−−−−−−−−−−−−→ g′′

g WHILE B DO C−−−−−−−−−−−−−→ g′′
[[B]]g = T

These rules define a transition relation C−→ on the set of all valuations, for
every command C. In order to derive a transition g C−−→ g′, construct a finite
derivation tree with g C−−→ g′ at the root, with axioms at the leaves and each
internal nodes licensed by a transition rule. Here is an example, for the command
z := x ; x := y ; y := z, executed in the state g = {x 7→ 3, y 7→ 2, z 7→ 5}.
We use g1 as shorthand for {x 7→ 3, y 7→ 2, z 7→ 3}, g2 as shorthand for {x 7→
2, y 7→ 2, z 7→ 3}, g3 as shorthand for {x 7→ 2, y 7→ 3, z 7→ 3}.

g z:=x−−−−→ g1

g1
x:=y−−−−→ g2 g2

y:=z−−−−→ g3
g1

x:=y ; y:=z−−−−−−−−−→ g3
g z:=x ; x:=y ; y:=z−−−−−−−−−−−−−→ g3

This command computes the remainder upon division of x by y in x:

WHILE y ≤ x DO x := x−̇y.

The following variant computes the result of the division of x by y in z, and
the remainder in x:

z := 0 ; WHILE y ≤ x DO (x := x−̇y ; z := z + 1).

Abbreviate ¬a1 = a2 as a1 6= a2, ¬a1 ≤ a2 as a1 > a2 and ¬a1 ≥ a2 as
a1 < a2. Euclid’s well known Greatest Common Divisor algorithm is now readily
expressed as a WHILE command. The following program computes the GCD
of x and y in x (and in y).

WHILE x 6= y DO IF x > y THEN x := x−̇y ELSE y := y−̇x. (1)
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For state g = {x 7→ 24, y 7→ 9}, program (1) leads to the following execution:

{x 7→ 24, y 7→ 9} x := x−̇y {x 7→ 15, y 7→ 9}
x := x−̇y {x 7→ 6, y 7→ 9}
y := y−̇x {x 7→ 6, y 7→ 3}
x := x−̇y {x 7→ 3, y 7→ 3}.

Consider the following command:

y := 1 ; WHILE x 6= 1 DO (y := y ∗ x ; x := x−̇1). (2)

Let g be a valuation with g(x) = 3. Then one can use the transition rules to
show:

g y:=1 ; WHILE x6=1 DO (y:=y∗x ; x:=x−̇1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ g[x 7→ 1, y 7→ 6].

When executed in a state g, command (2) computes the factorial of g(x) in y.

We say that a command C terminates in state g if there is a state g′ with
g

C−→ g′, and that C loops in state g if C does not terminate in state g. It can
be shown by induction that it holds for all C that if g C−→ g′ and g C−→ g′′ then
g′ = g′′ (WHILE programs are deterministic).

In simple cases it is easy to say whether a command terminates in a given
state. For example, the factorial command terminates for all states g, and the
command

WHILE x > 0 DO x := x+ 1

loops for all states g with g(x) 6= 0. In general, however, termination of WHILE
programs for infinite state sets is undecidable. As an example of a difficult
decision problem about program termination, take the question whether the
following program terminates for all states with positive x:

WHILE x 6= 1 DO IF even (x) THEN x := x/2 ELSE x := (3 ∗ x) + 1

Note that this example uses an operator / for integer division and a predicate
for evenness, but this is not crucial, for these extensions are definable in the
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WHILE language. Here is an example run of the program:

x0 = 7
x := (3 ∗ x) + 1 → x1 = 22

x := x/2 → x2 = 11
x := (3 ∗ x) + 1 → x3 = 34

x := x/2 → x4 = 17
x := (3 ∗ x) + 1 → x5 = 52

x := x/2 → x6 = 26
x := x/2 → x7 = 13

x := (3 ∗ x) + 1 → x8 = 40
x := x/2 → x9 = 20
x := x/2 → x10 = 10
x := x/2 → x11 = 5

x := (3 ∗ x) + 1 → x12 = 16
x := x/2 → x13 = 8
x := x/2 → x14 = 4
x := x/2 → x15 = 2
x := x/2 → x16 = 1

Counterexamples against termination have never been found, but a proof of
termination has not been found either. This termination problem was posed by
Collatz in 1937, and it is still open.

2.2.2 Structural Operational Semantics for Commands

An alternative fashion of specifying the semantics of an imperative program-
ming language, due to Plotkin [104], specifies the transition system for a pro-
gram in a slightly different way, focusing on the smallest steps that a com-
putation can take. Here are the rules of what is called ‘structural operational
semantics’, or ‘small step semantics’. The transitions are now from pairs of a
state and a command to a state (such a transition expresses that the command
finishes in a single step), and from pairs of a state and a command to a new
state and a new command (such a transition expresses that the first step of the
command causes a shift to the new state, where the remainder of the command
is left to be executed).

Assignment commands finish in one step:

(g, v := a) =⇒ g[v 7→ [[a]]g].

The SKIP command also finishes in a single step, and it does not change the
state.

(g,SKIP) =⇒ g.
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If the first command of a command sequence finishes in a single step, then the
second command of the sequence is all that is left:

(g, C1) =⇒ g′

(g, C1 ; C2) =⇒ (g′, C2)

If the first command of a command sequence does not finish in a single step,
we get:

(g, C1) =⇒ (g′, C1
′)

(g, C1 ; C2) =⇒ (g′, C1
′ ; C2)

Rules for conditional action: the action depends on the outcome of the test.

(g, IF B THEN C1 ELSE C2) =⇒ (g, C1)
[[B]]g = T

(g, IF B THEN C1 ELSE C2) =⇒ (g, C2)
[[B]]g = F

Finally, the guarded iteration command. If the guard is not satisfied, the com-
mand finishes in a single step, and it does not change the state:

(g,WHILE B DO C) =⇒ g
[[B]]g = F

Otherwise the first step of the guarded action is performed, and in the result
state the remainder of the action plus the conditional iteration command are
put on the to-do list:

(g, C) =⇒ (g′, C ′)
(g, WHILE B DO C) =⇒ (g′, C ′;WHILE B DO C)

[[B]]g = T

To see how this works, consider the command z := x ; x := y ; y := z, executed
in the state g = {x 7→ 3, y 7→ 2, z 7→ 5}. The structural operational semantics
rules yield the following:

({x 7→ 3, y 7→ 2, z 7→ 5}, z := x ; x := y ; y := z)
=⇒ ({x 7→ 3, y 7→ 2, z 7→ 3}, x := y ; y := z)
=⇒ ({x 7→ 2, y 7→ 2, z 7→ 3}, y := z)
=⇒ {x 7→ 2, y 7→ 3, z 7→ 3}

It can now be proved by induction that these rules define the same ‘extensional’
behaviour as the original rules, in the sense that g C−−−→ g′ iff (g, C) =⇒∗ g′.

The difference between natural semantics (large step semantics) and structural
operational semantics (small step semantics) shows up as soon as we add a
construct for error abortion to the language. Suppose ABORT is a program
that in any state g stops execution without yielding a new output state. Then
the difference between SKIP and ABORT is that we have (g,SKIP) =⇒ g and
g SKIP−−−−−→ g, while from (g,ABORT) there are no =⇒ arrows, and there are no

14



states g′ with g ABORT−−−−−−−→ g′. It turns out that in natural semantics there is no
way to distinguish between abnormal termination and looping behaviour, while
in structural operational semantics there is. In natural semantics, ABORT and
WHILE > DO SKIP are equivalent, but in structural operational semantics
they are not, for the first has no derivation sequence at all, while the second
has an infinite one:

(g,WHILE > DO SKIP) =⇒ (g,WHILE > DO SKIP)
=⇒ (g,WHILE > DO SKIP)
=⇒ . . .

The natural semantics can be made more expressive by adding a special error
state • different from all the regular states, and adding the transition rules
g ABORT−−−−−−−→ •, and • C−−−→ • for all commands C. Under this modification
ABORT and WHILE > DO SKIP become distinguishable again in natural se-
mantics, for the first has a transition to • from anywhere, and the second has
no transitions from anywhere.

2.2.3 Interpreted versus Uninterpreted Semantics

The WHILE language over N is an example of an interpreted language. We can
also choose to interpret WHILE over different data structures. To see that this
makes a difference, consider the following program:

WHILE x 6= 0 DO x := p(x)

If p is interpreted as predecessor, this program will always terminate when
executed on N, but it will only terminate for states with a non-negative value
for x when executed on Z (the domain of integers). As another example, let T
be the infinite binary tree given by:

T ::= 〈〉 | T 0 | T 1

with a unary function ↑:: T → T defined by means of

↑〈〉 = 〈〉, ↑T 0 =↑T 1 = T .

This specifies the following infinite binary tree:

〈〉
��� HHH

0
��HH

00

...

11

...

1
��HH

10

...

11

...
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Then the following WHILE program over T

WHILE x 6= 〈〉 ∧ y 6= 〈〉 DO (x :=↑x ; y :=↑y)

will always terminate in a state where x = 〈〉 or y = 〈〉, depending on which of
x, y is closer to the root 〈〉 in the initial state.

WHILE programs can also be studied under the aspect of uninterpreted com-
putation. Given a first order signature σ, we may be interested in equivalence
of WHILE programs for arbitrary σ models. E.g., the commands

IF B THEN C1 ELSE C2

and
IF ¬B THEN C2 ELSE C1

are equivalent for any choice of B,C1, C2 and any model M for the predicate
and function symbols that occur in B,C1, C2. Uninterpreted reasoning is the
right level for comparing expressive power of programming language constructs,
for on the fixed domain N with zero, successor, addition and multiplication all
reasonable programming language have the same expressive power: they all
compute exactly the partial recursive functions. At the uninterpreted level,
extending the WHILE language with a construct for non-deterministic choice
C1 OR C2 strictly increases expressive power.

2.3 Non-determinism

Non-deterministic WHILE is the extension of WHILE with a construct for
choice C1 OR C2, with semantics given by the following transition rules:

g C1−−−−→ g′

g C1 OR C2−−−−−−−−−→ g′

g C2−−−−→ g′

g C1 OR C2−−−−−−−−−→ g′

What this says is that a program like x := x+1 OR x := x+2, when executed
in a state {x 7→ 3} will produce two output states {x 7→ 4} and {x 7→ 5}.

The structural operational semantics rules for choice are as follows:

(g, C1 OR C2) =⇒ (g, C1)

(g, C1 OR C2) =⇒ (g, C2)

Now consider program (3).

(WHILE > DO SKIP) OR x := x+ 2. (3)
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According to the natural semantics, for no input state g is there an output
state g′ with g WHILE > DO SKIP−−−−−−−−−−−−−−−→ g′. Therefore, program (3) will only get
one derivation tree, namely that for:

g (WHILE > DO SKIP) OR x:=x+2−−−−−−−−−−−−−−−−−−−−−−−−→ g{x 7→ x+ 2}.

According to the structural operational semantics, we get two derivation se-
quences, one infinite

(g, (WHILE > DO SKIP) OR x := x+ 2)
=⇒ (g, (WHILE > DO SKIP)
=⇒ (g, (WHILE > DO SKIP)
=⇒ . . .

and the other finite

(g, (WHILE > DO SKIP) OR x := x+ 2)
=⇒ (g, x := x+ 2)
=⇒ g{x 7→ x+ 2}.

This illustrates that the structural operational semantics is more ‘fine-grained’
than the natural semantics. It also shows that the presence of non-determinism
may make looping behaviour more difficult to detect.

Programming language semantics in various styles for WHILE and its exten-
sions are discussed in [98]. Classics on denotational semantics for programming
are [119] and [112].

2.4 Floyd-Hoare Logic

One way of reasoning about WHILE commands (or about imperative programs
in general) is by using first order predicate logic for making assertions about
command execution. Floyd [43] and Hoare [70] proposed to use correctness
statements of the following form:

{ϕ} C {ψ}

This expresses that command C takes us from a precondition ϕ, true at the
state where the command gets executed (the input state), to a postcondition ψ,
true immediately after execution of the command. Since we are programming
over the natural numbers, we interpret the pre- and postconditions in N. This
gives the following formal interpretation of Floyd-Hoare correctness triples:

N |= {ϕ} C {ψ} iff
for all g, h, if N |=g ϕ and g C−−−→ h, then N |=h ψ.

An example of a true correctness statement is the following:

{x! = Z} y := 1 ; WHILE x 6= 1 DO (y := y ∗ x ; x := x−̇1) {y = Z}
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Figure 1: Floyd-Hoare Calculus for WHILE

assignment {ϕv
a} v := a {ϕ}

skip {ϕ} SKIP {ϕ}

sequence
{ϕ} C1 {ψ} {ψ} C2 {χ}

{ϕ} C1 ; C2 {χ}

conditional choice
{ϕ ∧B} C1 {ψ} {ϕ ∧ ¬B} C2 {ψ}

{ϕ} if B then C1 else C2 {ψ}

guarded iteration
{ϕ ∧B} C {ϕ}

{ϕ} while B do C {ϕ ∧ ¬B}

precondition strengthening
N |= ϕ′ → ϕ {ϕ} C {ψ}

{ϕ′} C {ψ}

postcondition weakening
{ϕ} C {ψ} N |= ψ → ψ′

{ϕ} C {ψ′}
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In connection with Floyd-Hoare style correctness assertions, the notions of
strongest postcondition and weakest liberal precondition arise in a natural way.
The strongest postcondition SP(ϕ,C) of a predicate logical formula ϕ and a
command C is the condition that holds in a state g if there is a state h satisfy-
ing ϕ that has a C transition to g. Formally:

N |=g SP(ϕ,C) iff there is an h with N |=h ϕ and h C−−−→ g.

The weakest liberal precondition WLP(C,ϕ) of a predicate logical formula ϕ
and a command C has the following interpretation:

N |=g WLP(C,ϕ) iff there is an h with N |=h ϕ and g C−−−→ h.

The connection with Floyd-Hoare correctness statements is as follows:

N |= {ϕ} C {SP(ϕ,C)},

if N |= {ϕ} C {ψ} then N |= SP(ϕ,C) → ψ,

N |= {WLP(C,ϕ)} C {ϕ},

if N |= {ϕ} C {ψ} then N |= ϕ→ WLP(C,ψ).

This illustrates the view of WHILE programs as predicate transformers, map-
ping weakest precondition predicates on the natural numbers into strongest
postcondition predicates on the natural numbers.

A Floyd-Hoare calculus for WHILE programs is given in Figure 2.4. In the rule
for assignment, ϕv

a denotes the result of substitution of a for v in ϕ. At first sight,
one might think that the assignment axiom should run {ϕ} v := a {ϕv

a} instead
of {ϕv

a} v := a {ϕ}. This would be a mistake, for consider the example where ϕ
equals the statement v = 0, and a equals v + 1. Then the rule {ϕ} v := a {ϕv

a}
yields the incorrect statement {v = 0} v := v+ 1 {v+ 1 = 0}, while the correct
rule {ϕv

a} v := a {ϕ} yields the correct statement {v+1 = 0} v := v+1 {v = 0}.

Note that the rules of precondition strengthening and postcondition weakening
in N are a kind of oracle rules, for implications ψ → ψ′ on the natural numbers
may be undecidable.

Illustration To illustrate the use of the calculus, consider the factorial program
(2) again. Here are the correctness statements that prove the fact that this
program actually computes the factorial function:

1. {x! = Z} y := 1 {y ∗ x! = Z}
2. {y ∗ x! = Z ∧ x 6= 0} y := y ∗ x {y ∗ x! = Z ∗ x}
3. {y ∗ x! = Z ∗ x ∧ x 6= 0} x := x−̇1 {y ∗ x! = Z}
4. {y ∗ x! = Z ∧ x 6= 0} y := y ∗ x ; x := x−̇1 {y ∗ x! = Z}
5. {y∗x! = Z}WHILE x 6= 0 DO (y := y∗x ; x := x−̇1) {y∗x! = Z∧x = 0}.
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6. {x! = Z}
y := 1 ; WHILE x 6= 0 DO (y := y ∗ x ; x := x−̇1)
{y ∗ x! = Z ∧ x = 0}.

7. {x! = Z}
y := 1 ; WHILE x 6= 0 DO (y := y ∗ x ; x := x−̇1)
{y = Z}.

2.4.1 Properties

The Floyd-Hoare calculus for WHILE programs is sound, in the following sense:
if {ϕ} C {ψ} is derivable, using the rules for precondition strengthening and
postcondition weakening in N, then N |= {ϕ} C {ψ}. Soundness is easily shown
by induction on the length of Floyd-Hoare derivations.

The presence of the precondition strengthening and postcondition weakening
introduce an element of model checking into the Floyd-Hoare calculus, making
it into a hybrid tool for deduction and evaluation in N.

Since arithmetical truth is not effectively axiomatisable, the true correctness
statements for WHILE programs over N are not effectively axiomatisable either.
Indeed, we have, for every arithmetical formula ϕ:

N |= ϕ iff N |= {>} SKIP {ϕ}.

However, because strongest postconditions can be expressed in the language of
N by means of encoding, we can get around this by allowing members of Th(N)
(the set of all predicate logical statements that are true on the natural numbers)
in correctness proofs [28]:

Theorem 1 (Cook, Relative Completeness) N |= {ϕ} C {ψ} implies that
{ϕ} C {ψ} is derivable using Floyd-Hoare rules together with Th(N).

Proof. An induction on the structure of programs works. We just give the
case of guarded iterations. Let N |= {ϕ} WHILE B DO C {ψ}. Now use the
fact that strongest postconditions are encodable in N to define

χ = ∃y1 · · · yn(SP(ϕ, WHILE B ∧ (x1 6= y1 ∨ · · · ∨ xn 6= yn) DO C))

where x1, . . . , xn are all the variables occurring in C, and y1, . . . , yn are new.
Then χ defines the states that can be reached from a ϕ state by means of a
finite number of C transitions through B states. Thus, N |= {χ ∧ B} C {χ}.
This formula is derivable by the induction hypothesis. By the Floyd-Hoare rule
for guarded iteration, it follows from this that

{χ} WHILE B DO C {χ ∧ ¬B}
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is derivable too. Since ϕ → χ and χ ∧ ¬B → ψ are both true in N (the latter
because χ ∧ ¬B is equivalent to SP(ϕ, WHILE B DO C)), by the rules for
precondition strengthening and postcondition weakening we get that

{ϕ} WHILE B DO C {ψ}

must be derivable too. 2

It is important to note that Floyd-Hoare correctness statements if this simple
form are not expressive enough to reason about termination. The following
correctness statement is true:

{x ≥ 1}
WHILE x 6= 1 DO IF even (x) THEN x := x/2 ELSE x := (3 ∗ x) + 1
{x = 1}

This expresses that if the command is executed in a state where x has a pos-
itive value, after termination x will have value 1. It does not express that the
command will terminate for all states with x positive. This is the reason that
Floyd-Hoare correctness statements are sometimes called partial correctness
statements.

To remedy this, calculi have been proposed with a stronger interpretation, for
reasoning about Floyd-Hoare triples expressing total correctness:

{ϕ} C {⇓ ψ}

Such a total correctness statement expresses that if precondition ϕ is fulfilled
then C is guaranteed to terminate in a state satisfying ψ. To make this work,
the rule for guarded iteration has to be reformulated in terms of a decreasing
measure function M on the natural numbers, as follows (it is assumed that
N |= (ϕ ∧M = i+ 1) → B and N |= (ϕ ∧M = 0) → ¬B):

{ϕ ∧M = i+ 1} C {⇓ ϕ ∧M = i}
{∃i(ϕ ∧M = i)} WHILE B DO C {⇓ ϕ ∧M = 0}

An overview of the development of Floyd-Hoare reasoning can be found in [2].
Floyd-Hoare reasoning is still a dominant tradition in program verification;
pre- and postcondition annotations can be used as formal specifications with
respect to which a program can be verified, where the verification process can
be partially automated [51,75].

Floyd-Hoare reasoning, the original flavour of dynamic logic for the analysis of
programming, is applicable to sequential transformational programs. Sequential
programs run on a single processor without involving concurrency. Transforma-
tional programs are programs that are expected to terminate with an output
after a finite number of steps. Sequential transformational programs are in the
realm of dynamic logic in the sense of the present paper.
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Reactive systems are systems that are expected to ‘run forever’; examples are
text editors, operating systems. Concurrent reactive systems also involve in-
teraction between processes; examples can be found in hardware systems, and
embedded systems like the software that controls ignition and fuel injection
of cars. The analysis and verification of (concurrent) reactive systems calls for
model checking methods using temporal computation tree logics such as CTL,
LTL and CTL∗ [26, 27, 105], and is outside the scope of our survey (but see
Section 3.6.8 below).
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3 Propositional Dynamic Logic

The language of propositional dynamic logic was defined by Pratt in [106,108] as
a generic language for reasoning about computation. Axiomatisations were given
independently by Segerberg [113], Fisher/Ladner [42], and Parikh [99]. These
axiomatisations make the connection between propositional dynamic logic and
modal logic very clear.

3.1 Language

Propositional dynamic logic can be viewed as a basic logic of change. Proposi-
tional dynamic logic abstracts over the set of basic actions, in the sense that
basic actions are atoms. This means that its range of applicability is vast. In
the WHILE language, the basic actions are definite assignments v := a and the
trivial action SKIP. Now the basic actions can be anything. The only thing that
matters about a basic action a is that it is interpreted by some binary relation
on a state set.

Dynamic logics have two basic syntactic categories: formulae and programs.
Formulae are used for talking about states, programs for classifying transitions
between states.

The same distinction can be found in all imperative programming languages,
by the way. Imperative programming languages have programs (often called
‘statements’) versus formulae (often called ‘Boolean expressions’). In the case
of the WHILE language, the booleans appeared as conditions in conditional
statements and as guards in guarded iterations.

Propositional dynamic logic is an extension of propositional logic with pro-
grams, just like basic modal logic is an extension of propositional logic with
modalities. Let a set of basic propositions P be given. Appropriate states will
contain valuations for these propositions. Assume a set of basic actions A. Every
basic action corresponds to a binary relation on the state set.

Let p range over the set of basic propositions P , and let a range over a set of
basic actions A. Then the formulae ϕ and programs α of propositional dynamic
logic are given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ
α ::= a |?ϕ | α1 ; α2 | α1 ∪ α2 | α∗

We employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1∧ϕ2 is shorthand
for ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 is shorthand
for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and [α]ϕ is shorthand for ¬〈α〉¬ϕ. Also, we will
use αn for the program consisting of a sequence of n copies of α, i.e., we define
αn by means of α0 :=?>, αn+1 := α ; αn.
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Taking the basic actions to be computations, we can use PDL to talk about
programming: for any program α, 〈α〉> expresses that the program has at least
one successful computation, and [α]⊥ expresses that the program fails (does
not produce any output). If the basic actions are communicative actions, e.g.,
public announcements, then 〈α〉ϕ expresses that a public announcement of α
may have the effect that ϕ holds. If the basic actions are changes in the world,
such as spilling milk S or cleaning C, then [C ; S]d expresses that cleaning
up followed by spilling milk always results in a dirty state, while [S ; C]¬d
expresses that the occurrence of these events in the reverse order always results
in a clean state.

Nor does this exhaust the application areas of PDL. In [19] and [87], variants
of PDL are used for defining a variety of structural relations in syntax trees for
natural language, and in [90] PDL is used to analyse XPath, a node addressing
language of XML documents.

3.2 Semantics

If R1, R2 are binary relations on a state set S, then the relational composition
R1 ◦R2 of R1 and R2 is given by:

R1 ◦R2 = {(t1, t2) ∈ S × S | ∃t3 ∈ S ((t1, t3) ∈ R1 ∧ (t3, t2) ∈ R2)}.

Let I be the identity relation on S. Then the n-fold composition of a binary
relation R on S with itself is defined by recursion, as follows:

R0 = I

Rn = R ◦Rn−1

The reflexive transitive closure of R is given by:

R∗ =
⋃
n∈N

Rn.

The semantics of PDL over P,A is given relative to a labelled transition sys-
tem M = 〈S, V,R〉 for signature P,A. The formulae of PDL are interpreted
as subsets of SM, the actions a of PDL as binary relations on SM (with the
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interpretation of basic actions a given as a→), as follows:

[[>]]M = SM

[[p]]M = {s ∈ SM | p ∈ VM(s)}
[[¬ϕ]]M = SM − [[ϕ]]M

[[ϕ1 ∨ ϕ2]]M = [[ϕ1]]M ∪ [[ϕ2]]M

[[〈α〉ϕ]]M = {s ∈ SM | ∃t (s, t) ∈ [[α]]M and t ∈ [[ϕ]]M}

[[a]]M = a→M

[[?ϕ]]M = {(s, s) ∈ SM × SM | s ∈ [[ϕ]]M}
[[α1 ; α2]]M = [[α1]]M ◦ [[α2]]M

[[α1 ∪ α2]]M = [[α1]]M ∪ [[α2]]M

[[α∗]]M = ([[α]]M)∗

If s ∈ SM then we use M |=s ϕ for s ∈ [[ϕ]]M.

These definitions specify how formulae of PDL can be used to make assertions
about PDL models. The formula 〈a〉>, when interpreted at some state in a
PDL model, expresses that that state has a successor in the a→ relation in that
model.

A PDL formula ϕ is true in a model if it holds at every state in that model,
i.e., if [[ϕ]]M = SM. Truth of the formula 〈a〉> in a model expresses that a→ is
serial in that model.

A PDL formula ϕ is valid if it holds for all PDL models M that ϕ is true in
that model, i.e., that [[ϕ]]M = SM. An example of a valid formula is 〈a ; b〉> ↔
〈a〉〈b〉>.

Note that ? is an operation for mapping formulae to programs. Programs of the
form ?ϕ are called tests; they are interpreted as the identity relation, restricted
to the states satisfying the formula.

Programming Constructs The following abbreviations illustrate how PDL ex-
presses the key constructs of imperative programming:

SKIP := ?>
ABORT := ?⊥

IF ϕ THEN α1 ELSE α2 := (?ϕ ; α1) ∪ (?¬ϕ ; α2)
WHILE ϕ DO α := (?ϕ ; α)∗ ; ?¬ϕ

REPEAT α UNTIL ϕ := α ; (?¬ϕ ; α)∗ ; ?ϕ.
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3.3 PDL Equivalences

The two PDL programs β ; WHILE ϕ DO β and REPEAT β UNTIL ¬ϕ are
equivalent, in the sense that they will receive the same interpretations in all
PDL models, for any choice of PDL formula ϕ and PDL program β. What this
means is that for any formula ψ, the formula

〈β ; WHILE ϕ DO β〉ψ ↔ 〈REPEAT β UNTIL ¬ϕ〉ψ

will be true in all PDL models.

Similarly, the formula

〈 IF ϕ THEN β ELSE γ〉ψ ↔ 〈 IF ¬ϕ THEN γ ELSE β〉ψ

will be true in all PDL models, for all choices of β, γ, ϕ, ψ.

The regular expressions over a finite alphabet Σ are given by (σ ranges over Σ):

E ::= ε | σ | E1 ; E2 | E1 ∪ E2 | E∗

The denotations of regular expressions over Σ are precisely the regular lan-
guages over Σ. Two regular expressions are equivalent if they denote the same
language. It is clear that if the basic actions are taken as the alphabet Σ, regular
expressions correspond to PDL programs (take ?> for the empty string ε).

Regular expression equivalence can be expressed in PDL, as follows. The regular
expressions (A∪B)∗ and (A∗ ; B∗)∗ are equivalent. This law translates into PDL
as the equivalence of the programs (α∪ β)∗ and (α∗ ; β∗)∗ (or the equivalence
of the formulae 〈(α ∪ β)∗〉ϕ and 〈(α∗ ; β∗)∗〉ϕ). And so on.

3.4 Axiomatisation

The logic of PDL is axiomatised as follows. Axioms are all propositional tau-
tologies, plus the following axioms (we give box ([α])versions here, but every
axiom has an equivalent diamond (〈α〉) version):

(K) ` [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)
(test) ` [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) ` [α1 ; α2]ϕ↔ [α1][α2]ϕ
(choice) ` [α1 ∪ α2]ϕ↔ [α1]ϕ ∧ [α2]ϕ

(mix) ` [α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ
(induction) ` (ϕ ∧ [α∗](ϕ→ [α]ϕ)) → [α∗]ϕ

and the following rules of inference:

(modus ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2.
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(modal generalisation) From ` ϕ, infer ` [α]ϕ.
The first axiom is the familiar K axiom from modal logic. The second captures
the effect of testing, the third captures concatenation, the fourth choice. These
axioms together reduce PDL formulae without ∗ to formulae of multi-modal
logic. The fifth axiom, the so-called mix axiom, expresses the fact that α∗ is a
reflexive and transitive relation containing α, and the sixth axiom, the axiom of
induction, captures the fact that α∗ is the least reflexive and transitive relation
containing α.

All axioms have dual forms in terms of 〈α〉, derivable by propositional reasoning.
For example, the dual form of the test axiom reads

` 〈?ϕ1〉ϕ2 ↔ (ϕ1 ∧ ϕ2).

The dual form of the induction axiom reads

` 〈α∗〉ϕ→ ϕ ∨ 〈α∗〉(¬ϕ ∨ 〈α〉ϕ).

Use Γ ` ϕ to express that ϕ is derivable using hypotheses from Γ by means of
the axioms and inference rules of PDL. By induction on the length of proofs it
can be shown that PDL satisfies the deduction theorem:

Γ ∪ {ϕ} ` ψ iff Γ ` ϕ→ ψ.

The deduction theorem will be used to facilitate PDL reasoning in what follows.

The following theorem shows that in the presence of the other axioms, the
induction axiom is equivalent to the so-called loop invariance rule:

ϕ→ [α]ϕ
ϕ→ [α∗]ϕ

Theorem 2 In PDL without the induction axiom, the induction axiom and the
loop invariance rule are interderivable.

Proof. For deriving the loop invariance rule from the induction axiom, assume
the induction axiom. Suppose

` ϕ→ [α]ϕ.

Then by modal generalisation:

` [α∗](ϕ→ [α]ϕ).

Now assume ϕ. Then:
ϕ ` ϕ ∧ [α∗](ϕ→ [α]ϕ).

From this by the induction axiom and propositional reasoning:

ϕ ` [α∗]ϕ.
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From this by conditionalisation (the left-to-right direction of the deduction
theorem):

` ϕ→ [α∗]ϕ.

Now assume the loop invariance rule. We have to establish the induction axiom.
Assume ϕ and [α∗](ϕ→ [α]ϕ). Then by the mix axiom:

ϕ, [α∗](ϕ→ [α]ϕ) ` ϕ→ [α]ϕ.

From this, by propositional reasoning:

ϕ, [α∗](ϕ→ [α]ϕ) ` [α]ϕ.

Conditionalisation:
` (ϕ ∧ [α∗](ϕ→ [α]ϕ)) → [α]ϕ.

Applying the loop invariance rule to this yields the induction axiom:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ)) → [α∗]ϕ.

2

3.5 PDL and Floyd-Hoare Reasoning

Floyd-Hoare correctness assertions are expressible in PDL, as follows. If ϕ,ψ
are PDL formulae and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ→ [α]ψ is true in that state
in that model.

The Floyd-Hoare inference rules can now be derived in PDL. As an example we
derive the rule for guarded iteration:

{ϕ ∧ ψ} α {ψ}
{ψ} WHILE ϕ DO α {¬ϕ ∧ ψ}

Let the premise {ϕ ∧ ψ} α {ψ} be given, i.e., assume (4).

` (ϕ ∧ ψ) → [α]ψ. (4)

We wish to derive the conclusion

` {ψ} WHILE ϕ DO α {¬ϕ ∧ ψ},

28



i.e., we wish to derive (5).

` ψ → [(?ϕ;α)∗ ; ?¬ϕ](¬ϕ ∧ ψ). (5)

From (4) by means of propositional reasoning:

` ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

` ψ → [ϕ ; α]ψ.

Applying the loop invariance rule gives:

` ψ → [(ϕ ; α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ→ (¬ϕ ∧ ψ), we get from this by
propositional reasoning:

` ψ → [(ϕ ; α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (5).

3.6 Properties

3.6.1 Failure of Compactness

The presence of the ∗ (Kleene star) operator causes true infinitary behaviour.
In particular, the compactness theorem, which says that finite satisfiability of
an infinite set of formulae Γ implies satisfiability of Γ, fails for PDL. Here is an
example of a set of PDL formulae that is finitely satisfiable but not satisfiable:

{〈a∗〉p〉} ∪ {¬p,¬〈a〉p,¬〈a2〉p, . . .}.

3.6.2 Finite Model Property

A logic has the finite model property (fmp) if every non-theorem of the logic has
a finite counterexample. Having the fmp implies decidability, but not conversely
(there are decidable logics without the fmp). We will now show that PDL has
the fmp.

For normal modal logic, the fmp can be shown by means of the so-called filtra-
tion method [18, Ch 2], using subformula closed sets of formulae. Because of the
presence of the star operator, in the case of PDL closure under subformulae is
not enough. We also need to make sure that program modalities are decomposed
in an appropriate way. For this, we use so-called Fisher-Ladner closures [42].

Define FL(ϕ), the Fisher-Ladner closure of a PDL formula ϕ, as follows. FL(ϕ)
is the smallest set of formulae X containing ϕ that is closed under the follow-
ing operations (the definition assumes diamond modalities here; an equivalent
formulation in terms of box modalities is also possible):
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• if ¬ψ ∈ X then ψ ∈ X,
• if (ψ1 ∨ ψ2) ∈ X then ψ1 ∈ X,ψ2 ∈ X,
• if 〈α〉ψ ∈ X then ψ ∈ X,
• if 〈α1 ; α2〉ψ ∈ X then 〈α1〉〈α2〉ψ ∈ X,
• if 〈α1 ∪ α2〉ψ ∈ X then 〈α1〉ψ ∨ 〈α2〉ψ ∈ X,
• if 〈?ψ1〉ψ2 ∈ X then ψ1 ∈ X,ψ2 ∈ X,
• if 〈α∗〉ψ ∈ X then 〈α〉〈α∗〉ψ ∈ X.

Note that FL(ϕ) is always finite. E.g., FL(〈(a ; b)∗〉(p ∨ q)) equals

{〈(a ; b)∗〉(p ∨ q), p ∨ q, p, q,
〈(a ; b)〉〈(a ; b)∗〉(p ∨ q), 〈a〉〈b〉〈(a ; b)∗〉(p ∨ q), 〈b〉〈(a ; b)∗〉(p ∨ q)}.

Using FL(ϕ), define filtrations of LTSs, as follows. Let M = (S, V,R) be an
LTS. For every s, let s̄ = {ψ ∈ FL(ϕ) | M |=s ψ}.

Set s̄R̄at̄ if ∃u, v ∈ S such that uRav and ū = s̄ and v̄ = t̄. Finally, put
V̄ (s̄) = {p ∈ P | p ∈ s̄}. Let M = (S̄, V̄ , R̄). Then one can prove:

Lemma 3 (Filtration Lemma) For all ψ ∈ FL(ϕ), all s ∈ S:

M |=s ψ iff M |=s̄ ψ.

Proof. One shows with induction on the complexity of formulae and programs
occurring in FL(ϕ) that:

• M |=s ψ iff M |=s̄ ψ.
• if sRαt then s̄R̄αt̄.

The crucial step is the following. Suppose that 〈α〉ψ is true in M on s̄. Then
there exists a computation path for α consisting of a finite sequence of atomic
transitions

s̄→ s̄1 → · · · → s̄n = t̄,

with appropriate atomic R̄a links between s̄i and s̄i+1, and possible appropriate
tests ?χi at s̄i, and with ψ true at t̄.

By the definition of R̄a, there has to be a corresponding ‘pseudo computation
path’

s ∼ u→ s1 ∼ u1 → · · · → un ∼ t,

where x ∼ y expresses that x̄ = ȳ. Moreover, we have by the induction hypoth-
esis that the same test conditions ?χi hold at si and ui, and that ψ holds at un

and t.

Next, prove by induction on α:

If 〈α〉ψ ∈ FL(ϕ) and there is pseudo computation path for α from
s to t with M |=t ψ then M |=s 〈α〉ψ.

This clinches the argument. 2
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3.6.3 Decidability

Decidability follows from the filtration lemma:

Theorem 4 Universal validity for PDL is decidable

Proof. By the filtration lemma, counterexamples for a formula ϕ must already
show up in models with at most 2|FL(ϕ)| states. It is possible, in principle, to
inspect all of these. 2

It follows immediately that satisfiability for PDL is decidable too: to check that
ϕ is satisfiable, just find a satisfying model with at most 2|FL(ϕ)| states.

3.6.4 Converse

Let ˘ (converse) be an operator on PDL programs with the following interpre-
tation:

[[α ]̆]M = {(s, t) | (t, s) ∈ [[α]]M}.

It is easy to see that the following equations hold:

(α ; β)̆ = β˘ ; α˘
(α ∪ β)̆ = α˘∪ β˘

(α∗)̆ = (α )̆∗

This means that it is enough to add converse to the PDL language for atomic
programs only. To see that adding converse in this way increases expressive
power, observe that in state 0 in the following picture 〈ă 〉> is true, while in
state 2 in the picture 〈ă 〉> is false. On the assumption that 0 and 2 have
the same valuation, no PDL formula without converse can distinguish the two
states.

0

1

a

2

Suitable axioms to enforce that ă behaves as the converse of a are well known
from temporal logic (read 〈a〉 as F ‘once in the future’, [a] as G ‘always in the
future’, 〈ă 〉 as P ‘once in the past’, [ă ] as H ‘always in the past’, [109,110]):

ϕ → [a]〈ă 〉ϕ
ϕ → [ă ]〈a〉ϕ
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3.6.5 Wellfoundedness, Halting

For deterministic programs α, formula 〈α〉> expresses that α does not loop. For
non-deterministic programs α, however, there turns out to be no PDL way to
express non-looping behaviour. If α is non-deterministic, 〈α〉> merely says that
in the current state there exists a terminating run for α, it does not preclude
the existence of diverging runs. For example, formula 〈(?>)∗〉> will be true at
any state, while (?>)∗ has diverging runs from every state.

One way to deal with this situation is to add a predicate to PDL to express
wellfoundedness. A relation R is wellfounded in s0 if there does not exist an
infinite sequence s0, s1, . . . with

s0Rs1, s1Rs2, . . .

Let wellfounded be a predicate for this. Then its interpretation is:

[[wellfounded(α)]]M = {s0 ∈ SM | ¬∃s1, s2, . . .∀i ≥ 0(si, si+1) ∈ [[α]]M}.

In terms of wellfounded, a predicate halt for program termination can be
defined as follows:

halt(a) :≡ >
halt(?ϕ) :≡ >

halt(α ; β) :≡ halt(α) ∧ [α]halt(β)
halt(α ∪ β) :≡ halt(α) ∧ halt(β)

halt(α∗) :≡ wellfounded(α) ∧ [α∗]halt(α)

What the definition of halt for programs of the form α∗ says is that for α∗ to
halt it has to be the case that α is wellfounded at the present state (so that
its execution can not be repeated without end), and also α has to halt at all
states that can be reached in a finite number of α steps from the present state.
This expresses that α∗ can loop for two reasons: (i) because α can be repeated
without end, or (ii) because after repeated execution of α there is a state where
α itself does not terminate.

Applying this to the example program (?>)∗, we get:

halt((?>)∗) ≡ wellfounded(?>) ∧ [(?>)∗]halt(?>)
≡ wellfounded(?>) ∧ [(?>)∗]>
≡ wellfounded(?>) ∧ >
≡ ⊥

What this says is that (?>)∗ does not halt because the test ?> is not wellfounded
(for ?> can be repeated an arbitrary number of times).
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Floyd-Hoare total correctness statements for PDL programs α,

{ϕ} α {⇓ ψ}

can now be expressed as:

ϕ→ [α]ψ ∧ ϕ→ halt(α).

Every state in the infinite model of the following picture satisfies halt(a), but
clearly, any filtration of this model must collapse some of the states, and in
these collapsed states halt(a) will fail. This shows that extending PDL with a
halt predicate (and, a fortiori, extending PDL with a wellfounded predicate)
increases expressive power.
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1

a

2

a

3

a

3.6.6 Further Extensions and Variations

Other possible extensions of PDL are with intersection and nominals [101]. The
extension with nominals turns PDL into a kind of hybrid logic [4]. Replacing the
regular programs of PDL by finite automata yields a formalism with the same
expressive power but allowing more succinct descriptions: see [63]. Replacing
the regular programs of PDL with another data structure such as pushdown
automata or context free grammars or flowcharts yields more expressive (but
also more complex) formalisms.
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3.6.7 Complexity

Although satisfiability checking in individual LTSs can be done quite efficiently
(i.e., in polynomial time), the above algorithm for checking satisfiability is highly
inefficient, because the size of the models to check is exponential in the size of
the formula, and the number of these models is doubly exponential in the size of
the formula. So the naive satisfiability checking algorithm is doubly exponential
in the size of the formula.

Time complexity of the satisfiability problem for PDL is singly exponential: an
exponential algorithm is given in [107]. One cannot do better than this: [42]
establishes an exponential-time lower bound for PDL satisfiability, by showing
how PDL formulae can encode computations of linear-space-bounded alternat-
ing Turing machines. An exponential time satisfiability algorithm for PDL with
converse is given in [120]. Intuitively, adding converse does not increase complex-
ity, for converses of atomic programs a can be taken as atoms, and the definition
of converse for complex programs is linear in the size of the programs.

3.6.8 Modal µ calculus

For a proper perspective on PDL, it is useful to contrast it with a much more
expressive dynamic logic, the modal µ calculus.

Let a set of proposition letters P = {p0, p1, . . .}, a set of actionsA = {a0, a1, . . .},
and a set of variables V = {X0, X1, . . .} be given. Assume p ranges over P , a
ranges over A, and X ranges over V . Then the set of µ formulae is given by the
following definition:

ϕ ::= > | p | X | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ | µX.ϕ,

with the syntactic restriction on µX.ϕ that occurrences of X in ϕ are positive.
An occurrence of X in a formula ϕ is positive if the occurrence is in the scope
of an even number of negation signs.

Interpretation is in LTSs M, relative to an assignment g : V → P(SM). If T is
a subset of SM, g[X 7→ T ] is the assignment that is like g except for the fact
that it maps X to T .

[[>]]Mg = SM

[[p]]Mg := {s ∈ SM | p ∈ VM(s)}
[[X]]Mg := g(X)

[[¬ϕ]]Mg = SM − [[ϕ]]Mg
[[ϕ1 ∨ ϕ2]]Mg = [[ϕ1]]Mg ∪ [[ϕ2]]Mg

[[〈a〉ϕ]]Mg = {s ∈ SM | ∃t s a→ t and t ∈ [[ϕ]]Mg }

[[µX.ϕ]]g =
⋂
{T ⊆ SM | [[ϕ]]Mg[X 7→T ] ⊆ T}
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The clause for µX.ϕ expresses that the interpretation of this formula is the
least fixed point of the operation T 7→ [[ϕ]]Mg[T 7→S]. Thanks to the fact that X
only occurs positively in ϕ, this operation is monotone:

if T ⊆ S then [[ϕ]]Mg[X 7→T ] ⊆ [[ϕ]]Mg[X 7→S].

It follows, by a theorem of Knaster and Tarski (see, e.g., [29]), that the operation
has a least fixed point, and that this least fixed point is given by the semantic
clause for µX.ϕ. The proof of this fact is instructive.

For simplicity we use [ϕ]T for [[ϕ]]Mg[X 7→T ], and [ϕ] for T 7→ [ϕ]T . Let

W :=
⋂
{T ⊆ SM | [ϕ]T ⊆ T}

F := {T ⊆ SM | [ϕ]T ⊆ T}.

We have to show that W is the least fixed point of [ϕ].

First we show [ϕ]W ⊆ W . Observe that for all U ∈ F we have W ⊆ U and
[ϕ]U ⊆ U . By monotonicity of [ϕ], [ϕ]W ⊆ [ϕ]U , and therefore, by [ϕ]U ⊆ U ,
[ϕ]W ⊆ U . From the fact that for all U ∈ F it holds that [ϕ]W ⊆ U we get the
desired result [ϕ]W ⊆W .

Next we show W ⊆ [ϕ]W . We start out from the previous result [ϕ]W ⊆ W .
By monotonicity of [ϕ] we get from this that [ϕ][ϕ]W ⊆ [ϕ]W . This shows that
[ϕ]W ∈ F , whence W ⊆ [ϕ]W .

Finally, to show that W is the least fixpoint, observe that any fixpoint U of [ϕ]
is in F , so that W ⊆ U .

The modal µ calculus translates into second order predicate logic as follows:

X◦ := X(x)
(µX.ϕ)◦ := ∀X(∀x(ϕ◦ → X(x)) → X(x)).

This translation is called the standard translation into monadic second order
logic, monadic because the predicate variables X quantified over in the trans-
lation are unary.

The µ calculus can be presented in PDL format by distinguishing between
formulae and programs, as follows:

ϕ ::= > | p | X | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ | µX.ϕ
α ::= a |?ϕ | α1 ∪ α2 | α1;α2 | α∗

again with the syntactic restriction on µX.ϕ formulae that X occurs only pos-
itively in ϕ.
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This PDL version of the µ calculus does not have greater expressive power than
the original, for we have the following equivalences:

〈?ϕ1〉ϕ2 ≡ ϕ1 ∧ ϕ2

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ
〈α1;α2〉ϕ ≡ 〈α1〉〈α2〉ϕ

〈α∗〉ϕ ≡ µX.(ϕ ∨ 〈α〉X).

To see that 〈α∗〉ϕ and µX.(ϕ ∨ 〈α〉X) are equivalent, observe that the least
fixpoint of the operation

T 7→ [[ϕ]]M ∪ {s ∈ SM | ∃t ∈ T.s α→ t}

is equal to the set
{s ∈ SM | ∃t ∈ [[ϕ]]M.s

α∗
→ t}.

We will now show that the µ calculus has greater expressive power than PDL.
In PDL, there is no way to express that a program is wellfounded. The following
formula expresses wellfoundedness of α in the µ calculus:

µX.[α]X.

The meaning of this may not be immediately obvious, so let us analyse this a
bit further. Let

W := {s ∈ SM | there is no infinite α path from s}.

Then clearly, {s ∈ SM | if s α→ t then t ∈ W} = W . If there is no infinite α
path starting form s, then there is no infinite α path from any α successor of α,
and if at no α successor of s an infinite α path starts, then no infinite α path
starts from s. In other words, W is a fixpoint of the operation

T 7→ {s ∈ SM | if s α→ t then t ∈ T}.

We still have to show that W is also the least fixpoint of the operation. So
suppose U is another solution:

{s ∈ SM | if s α→ t then t ∈ U} = U. (*)

We have to show that W ⊆ U . Assume, for a contradiction, that there is some
s ∈W with s /∈ U . From (*),

s /∈ {s ∈ SM | if s α→ t then t ∈ U}.

It follows that for some t ∈ SM we have s α→ t and t /∈ U . Continuing like this,
we find t

α→ t′ with t′ /∈ U , t′ α→ t′′ with t′′ /∈ U , and so on, an infinite α path
starting from s, which contradicts the assumption that s ∈W .
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To define a greatest fixpoint operator dual to µ, use

νX.ϕ := ¬µX.(ϕ[X 7→ ¬X]),

where ϕ[X 7→ ¬X] denotes the result of replacing every occurrence of X in ϕ
by ¬X.

The µ calculus originates in [86]. It has great expressive power (it subsumes
PDL, CTL, LTL and CTL∗), it is decidable and has the finite model property
[121], but it has greater complexity than PDL: known decision procedures use
doubly exponential time.

Kozen [86] proposed an elegant proof system: the axioms and rules of multi-
modal logic together with the axiom

µX.ϕ↔ ϕ[X 7→ µX.ϕ]

and the following rule of inference:
ϕ[X 7→ ψ] → ψ

µX.ϕ→ ψ

This axiomatisation is sound and complete.

Alternatively, PDL style µ calculus is axiomatised by the axioms and rules of
PDL plus the µ axiom and the µ rule of inference.

3.6.9 Bisimulation

PDL and modal µ calculus are both interpreted in LTSs. But the correspondence
between LTSs and processes is not one-to-one. The process that produces an
infinite number of a transitions and nothing else can be represented as an LTS
in lots of different ways. The following representations are all equivalent:
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The notion of bisimulation is intended to capture such process equivalences. A
bisimulation C between LTSs M and N is a relation on SM × SN such that if
sCt then the following hold:
Invariance VM(s) = VN(t) (the two states have the same valuation),
Zig if for some a ∈ S1 s

a→ s′ ∈ RM then there is a t′ ∈ S2 with t
a→ t′ ∈ RN

and s′Ct′.
Zag same requirement in the other direction.
One uses M, s ↔ N, t to indicate that there is a bisimulation that connects s
and t. In such a case one says that s and t are bisimilar.
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In the LTSs of the picture, 0 ↔ 2 ↔ 4 and 1 ↔ 3 ↔ 5.

Bisimulation is intimately connected to modal logic, as follows. Modal logic
is a sublogic of PDL. It is given by restricting the set of programs to atomic
programs. Usually, one writes 3a for 〈a〉:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ

Bisimulations can be viewed as a motivation for modal logic. A global property
of LTSs is a function P that assigns to any LTS M over a given signature
a property PM ⊆ SM. A global property P is invariant for bisimulation if
whenever C is a bisimulation between M and N with sCt, then s ∈ PM iff
t ∈ PN.

Modal formulae may be viewed as global properties, for if ϕ is a modal formula,
then λM.[[ϕ]]M is a global property. Similarly for formulae of first order logic.

An example of a first order logic formula that is not invariant for bisimulation
is the formula Ra(x, x). This formula is true in state 0, but false in bisimilar
state 1 in the following picture:
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Another example of a first order logic formula that is not invariant for bisimu-
lation:

ϕ(x) = ∃y(Ra(x, y) ∧Rb(x, y)).

The picture below indicates that ϕ(x) is not invariant for the example bisimu-
lation that links 0 to 2 and 1 to 3 and 4. The state 0 satisfies ϕ(x) while 2 does
not, and the two states are bisimilar.
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Clearly, all modal formulae are invariant for bisimulation: If ϕ is a modal formula
that is true of a state s, and s is bisimilar to t, then an easy induction on the
structure of ϕ establishes that ϕ is true of t as well.

More surprisingly, it turns out that all first order formulae that are invariant
for bisimulation are translations of modal formulae. If first order logic is given
and bisimulation is given, modal logic results from the following theorem:

Theorem 5 (Van Benthem, [13]) A first order formula ϕ(x) is invariant for
bisimulation iff ϕ(x) is equivalent to a modal formula.

One direction of this can easily be verified by the reader: if ϕ is a modal formula,
it can be proved by induction on formula structure that ϕ cannot distinguish
between bisimilar points.
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The argument for the other direction is more involved. We give a sketch of
the proof. Define Ψ as the set of modal formulae that are implied by ϕ(x), as
follows:

Ψ := {ψ | ψ is a modal formula and ϕ(x) |= ψ}.

Next, if we can prove that Ψ |= ϕ(x), then the compactness theorem for FOL
gives us {ψ1, . . . , ψn} ⊆ Ψ with ψ1, . . . , ψn |= ϕ(x), and we see that ϕ(x) is
equivalent to the modal formula ψ1 ∧ · · · ∧ ψn.

So suppose M |=s Ψ. We are done if we can show that M |=s ϕ(x). For this,
consider the modal theory of s, i.e., the set of modal formulae true at s:

Φ := {ϕ | ϕ is a modal formula and M |=s ϕ}.

Now Φ ∪ {ϕ(x)} must be finitely satisfiable (i.e., any finite subset must be
satisfiable), for if not then there are ϕ1, . . . , ϕn ∈ Φ with ϕ(x) |= ¬ϕ1 ∨ · · · ∨
¬ϕn, which contradicts the fact that ¬ϕ1 ∨ · · · ∨ ¬ϕn is false at s. Using the
compactness theorem for FOL again, we see that there must be some node t in
an LTS N with N |=t Φ ∪ {ϕ(x)}.

There is one given that we haven’t used yet: ϕ(x) is invariant for bisimulation.
To use that given, we replace M and N by so-called ω saturated elementary
extensions M• and N•.

A FOL model M is ω saturated if whenever Φ(x, y1, . . . , yn) is a set of first order
formulae, and d1, . . . , dn are elements of the domain of M, then Φ[x, d1, . . . , dn]
is finitely satisfiable, i.e., for every finite subset Φ0 of Φ we can find a d in the
domain of M with M |= Φ[d, d1, . . . , dn].

Every FO model has a an ω saturated elementary extension (see Chang and
Keisler [23, Ch 6] for a proof), so the replacement of M,N by M•,N• is war-
ranted. Moreover, N• |= ϕ(x), for truth of ϕ(x) is preserved under the extension.

Lemma: If M,N are ω saturated, then the relation of modal equivalence is a
bisimulation between them.

Proof of the lemma: Let M,N be ω saturated. Let ≡ be the relation of being
modally equivalent. Let M, s ≡ N, t. We show that s ↔ t, by checking the
clauses for bisimulation:
Invariance Clearly, s and t have the same valuation.
Zig Suppose s

a→ s′. Let Φ be the set of modal formulae that are true at
s′. Then for every finite subset Φ0 of Φ, M |=s 〈a〉

∧
Φ0. Since s ≡ t,

M |=t 〈a〉
∧

Φ0, so there is a t′ with t
a→ t′ and M |=t′ Φ0. Thus, Φ is

finitely satisfiable in a successors of t. By the fact that N is ω saturated,
it follows that there is a t′ with t a→ t′ and N |=t′ Φ.

Zag Same argument in the other direction.
Back to the main proof. N• |=t Φ ∧ ϕ(x) and M• |=s Φ, where Φ is the modal
theory of s. Thus, s, t have the same modal theory, and invoking the lemma
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we see that s↔ t. Since ϕ(x) is invariant for bisimulation, M• |=s ϕ(x), hence
M |=s ϕ(x).

Bisimulations are also intimately connected to PDL, as follows.

A global relation is a function R that assigns to any LTS M over a given
signature a relation RM ⊆ SM×SM. A global relation R is safe for bisimulation
if whenever C is a bisimulation between M and N with sCt, then:
Zig: if sRMs′ then there is a t′ with tRNt

′ and s′Ct′,
Zag: vice versa: if tRNt

′ then there is an s′ with sRMs′ and s′Ct′.
An example of a relation that is not safe for bisimulation is the relation given
by the following first order formula:

ϕ(x, y) = Ra(x, y) ∧ x = y.

Look at the counterexample picture for invariance of Ra(x, x) again. Formula
ϕ(x, y) is true of state pair (0, 0) and false of the state pair (1, 2) in that picture,
but 0 and 1 are bisimilar, and (0, 0) satisfies the zig, and (1, 2) the zag condition
for bisimulation.

Another counterexample for safety for bisimulation is provided by the following
formula:

ψ(x, y) = Ra(x, y) ∧Rb(x, y).

Look at the counterexample picture for invariance of ∃y(Ra(x, y) ∧ Rb(x, y))
again. Formula ψ(x, y) is true of state pair (0, 1) and false of state pairs (2, 3)
and (2, 4), while 0 and 2 are bisimilar, (0, 1) satisfies the zig condition, and both
(2, 3) and (2, 4) satisfy the zag condition for bisimulation.

In fact, invariance for bisimulation and safety for bisimulation are closely con-
nected. If ϕ(x) is invariant for bisimulation then ϕ(x)∧ x = y is safe for bisim-
ulation. Conversely, if ϕ(x, y) is safe for bisimulation, and P is some unary
predicate that does not occur in ϕ then ∃y(ϕ(x, y) ∧ P (y)) is invariant for
bisimulation.

Note that the notion of safety for bisimulation generalises the zig and zag con-
ditions of bisimulations, while invariance for bisimulation generalises the invari-
ance condition of bisimulations.

A modal program is a PDL program that does not contain ∗. Modal programs
can be viewed as global relations, for if α is a modal program, then λM.[[α]]M

is a global relation.

It is not difficult to see that all modal programs are safe for bisimulation.
The surprising thing is the converse: all first order relations that are safe for
bisimulation turn out to be translations of modal programs.

Theorem 6 (Van Benthem [14]) A first order formula ϕ(x, y) is safe for
bisimulation iff ϕ(x, y) is equivalent to a modal program.
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Proofs of this can be found in [14, 73]. The perspective on Van Benthem’s
characterisations of modal logic and PDL is from [73]. In fact, Van Benthem
gives a slightly different characterisation. He proves that any bisimulation safe
first order formula can be generated from atomic tests ?p, atomic actions a,
sequential composition ; , choice ∪ and dynamic negation ∼, where ∼α is
interpreted by:

[[∼α]]M = {(s, s) ∈ SM × SM | ¬∃t(s, t) ∈ [[α]]M}

The two characterisations are equivalent, for ∼α is definable as the PDL pro-
gram ?([α]⊥), while any modal PDL test ?ϕ can be expressed in terms of
dynamic negation using the following translation:

(?>)◦ = ∼⊥
(?(ϕ1 ∨ ϕ2))◦ = (?ϕ1)◦ ∨ (?ϕ2)◦

(?¬ϕ)◦ = ∼(?ϕ)◦

(?〈α〉ϕ)◦ = ∼∼(α ; (?ϕ)◦)

Looking at PDL programs from an algebraic perspective, the obvious notion to
be axiomatised is that of PDL program equivalence. A calculus that produces
precisely the equations of the form α1 = α2 for those α1, α2 that have the same
interpretation in any PDL model is given in [71] (see also [72], where equivalence
of modal PDL programs is axiomatised). The axiomatisation has the following
quasi-equations between programs:

associativity of ; α ; (β ; γ) = (α ; β) ; γ
associativity for ∪ α ∪ (β ∪ γ) = (α ∪ β) ∪ γ
commutativity of ∪ α ∪ β = β ∪ α
idempotency of ∪ α ∪ α = α
left distributivity (α ∪ β) ; γ = ((α ; γ) ∪ (β ; γ))
right distributivity α ; (β ∪ γ) = ((α ; β) ∪ (α ; γ))
left identity ?> ; α = α
right identity α ; ?> = α
left zero ?⊥ ; α =?⊥
right zero α ; ?⊥ =?⊥
zero sum α∪?⊥ = α
∗ expansion α∗ =?> ∪ (α ; α∗)
left induction α ; β ≤ β ⇒ α∗ ; β ≤ β
right induction β ; α ≤ β ⇒ β ; α∗ ≤ β
test choice ?(ϕ ∨ ψ) =?ϕ∪?ψ
test sequence ?(ϕ ∧ ψ) =?ϕ ; ?ψ
domain test ?〈α〉> ; α = α

where α ≤ β is defined as α ∪ β = β, and the following equations between
booleans hold:
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equations of boolean algebra
choice 〈α ∪ β〉ϕ = 〈α〉ϕ ∨ 〈β〉ϕ
sequence 〈α ; β〉ϕ = 〈α〉〈β〉ϕ
iteration 〈α∗〉ϕ = ϕ ∨ 〈α〉〈α∗〉ϕ
induction 〈α∗〉ϕ = ϕ ∨ 〈α∗〉(¬ϕ ∧ 〈α〉ϕ)
test diamond 〈?ϕ〉ψ = ϕ ∧ ψ

If one restricts attention to the modal part of PDL (PDL without ∗, for this
is equivalent to multi-modal logic), the quasi-equations for ∗ drop out, and an
equational axiomatisation of modal PDL results.

We end with mentioning an intimate connection between modal µ calculus and
bisimulation:

Theorem 7 (Janin and Walukiewicz [76]) A monadic second order formula
ϕ(x) is invariant for bisimulation iff it is equivalent to the standard translation
in monadic second order logic of a µ sentence.
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4 Analysing the Dynamics of Communication

Dynamic logic is the logic of action and the results of action, but it is also a
branch of modal logic, and it enjoys the same breadth of applications as modal
logic. What happens if we reinterpret the atomic action modalities as something
else? In epistemic logic, atomic accessibilities denote epistemic similarity rela-
tions of agents in a multi-agent epistemic setting. Epistemic PDL is the result
of reinterpreting the basic action modalities as epistemic relations. Now [a; b]ϕ
means that agent a knows that agent b knows that ϕ. This is more expressive
than multi-agent epistemic logic. E.g., [(a ∪ b)∗]ϕ expresses that ϕ is common
knowledge among a and b, and it is well known that common knowledge for a, b
cannot be expressed in terms of basic modalities [a], [b] alone.

As an aside, expressing implicit knowledge would require extending epistemic
PDL with an intersection operation. Implicit knowledge among a, b that ϕ can
be expressed in this extended language as [a ∩ b]ϕ. This extension results in a
logic that is still decidable, but the invariance for bisimulation gets lost. Implicit
knowledge will not concern us in what follows.

Interestingly, the shift of application from computation to epistemics turns PDL
into a description tool for static situations, for under this interpretation LTSs
denote multi-agent epistemic situations instead of sets of computations within
a set of states. Still, at a higher level, there is again a dynamic turn. We can
study how multi-agent epistemic situations evolve as a result of communicative
actions. An important example of such actions is public announcement. What
happens to the knowledge of a set of participating agents if it is suddenly
announced to all that ϕ is the case? On the assumption that none of the agents
takes ϕ to be impossible, this should result in a new epistemic state of affairs
where it is common knowledge among the agents that ϕ. In this section we will
see that epistemic PDL (PDL, with the basic modalities interpreted as epistemic
relations) is eminently suited for the analysis of the dynamics of communication.

Dynamic epistemic logic (cf., e.g., [5–8]) analyses the changes in epistemic in-
formation among sets of agents that result from various communicative actions,
such as public announcements, group messages and individual messages. The
logics studied in [8] add information update operations to epistemic description
languages with a common knowledge operator, in such a way that the addi-
tion increases expressive power. This makes axiomatisations complicated and
completeness proofs hard. In [85] it is demonstrated how update axioms can
be made susceptible to reduction axioms, by the simple means of switching
to more expressive epistemic description languages. In particular, it is shown
in [85] how generic updates with epistemic actions can be axiomatised in au-
tomata PDL [63, Chapter 10.3].

We will follow [37] in giving a direct reduction of the logic of generic updates
with epistemic actions in the style of [7, 8] to PDL.
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4.1 System

Let L be a language that can be interpreted in labelled transition systems. Then
action models for L look like this:

Definition 8 (Action models for L, Ag) Let a set of agents Ag and an
LTS language L with label set Ag be given. An action model for L,Ag is a
triple

A = ([s0, . . . , sn−1], pre, T )

where [s0, . . . , sn−1] is a finite list of action states, pre : {s0, . . . , sn−1} → L
assigns a precondition to each action state, and T : Ag → P({s0, . . . , sn−1}2)
assigns an accessibility relation a→ to each agent a ∈ Ag.

L actions can be executed in labelled transition systems for L, by means of the
following product construction:

Definition 9 (Action Update) Let an LTS M = (W,V,R), a world w ∈W ,
and a pointed action model (A, s), with A = ([s0, . . . , sn−1], pre, T ), be given.
Then the result of executing (A, s) in (M, w) is the model (M⊗A, (w, s)), with
M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}
V ′(w, s) = V (w)
R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

For the set of basic propositions P and the set of agents Ag, the language of
PDLDEL (which we will call ‘update PDL’) over P,Ag is like that for standard
PDL over P,Ag, but with a construct for action update added: if ϕ is an update
PDL formula, and [A, s] is a single pointed action model, then [A, s]ϕ is an
update PDL formula. If B is a set of agents {b1, . . . , bn}, then we abbreviate
b1 ∪ · · · ∪ bn as B. Now [B]ϕ expresses that ϕ is general knowledge among B
(they all know ϕ, but they need not know that the others know ϕ) and [B∗]ϕ
expresses that ϕ is common knowledge among B (they all know ϕ and they all
know that the others know ϕ).

The semantics of PDLDEL is given by the standard PDL clauses, with the
following clause for update added:

[[[A, s]ϕ]]M = {w ∈WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

Using 〈A, s〉ϕ as shorthand for ¬[A, s]¬ϕ, we see that the interpretation for
〈A, s〉ϕ turns out as:

[[〈A, s〉ϕ]]M = {w ∈WM | M |=w pre(s) and (w, s) ∈ [[ϕ]]M⊗A}.
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Updating with multiple pointed update actions is also possible. A multiple
pointed action is a pair (A,S), with A an action model, and S a subset of the
state set of A. Extend the language with updates [A,S]ϕ, and interpret this as
follows:

[[[A,S]ϕ]]M = {w ∈WM | ∀s ∈ S( if M |=w pre(s) then M⊗A |=(w,s) ϕ)}.

The reason to employ multiple pointed models for updating is that it allows us
to handle choice. Suppose we want to model the action of testing whether ϕ
followed by a public announcement of the result. More precisely:

A test is performed to check whether ϕ holds in the actual world.
If the outcome of the test is affirmative, then ϕ gets announced. If
the test reveals that ϕ does not hold, then ¬ϕ gets announced.

Single pointed update models do not allow us to model this.

Theorem 10 (Preservation of bisimulation; Baltag, Moss, Solecki) The
action update operation ⊗ preserves bisimulation on epistemic models:

if M ↔ N then M⊗A ↔ N⊗A.

We can also look at the update models modulo action bisimulation. An action
bisimulation is like an ordinary bisimulation, with the clause for ‘same valua-
tions’ replaced by a clause for ‘equivalent preconditions’.

Theorem 11 (Preservation of action bisimulation) The action update op-
eration preserves action bisimulation:

if A ↔ B then M⊗A ↔ M⊗B.

Proof. Let Z be a bisimulation between A and B. Define a relation relation
on M⊗A×M⊗B by means of

(u, s)C(v, t) iff u = v and sZt.

It is easily shown that this is a bisimulation. 2

4.2 Logics of Communication

In terms of the system just defined a variety of types of communicative actions
can be described. The two most important ones are public announcements and
group announcements.
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4.2.1 Public Announcements

The language of public announcements is the language that one gets if one
allows action models for public announcement. The action model for public
announcement that ϕ consists of a single state s0 with precondition ϕ and
epistemic relation {s0

a→ s0 | a ∈ Ag}. Call this model Pϕ.

The following equivalence shows how public announcement relates to common
knowledge among set of agents B:

[Pϕ, s0][B∗]ψ ↔ [(?ϕ;B)∗][Pϕ, s0]ψ. (6)

What this says is that after public announcement with ϕ it is common knowl-
edge among B that ψ if and only if before the update it holds at the end of every
(?ϕ ; B)∗ path through the model that a public update with ϕ will result in
ψ. Axiomatisations of public announcement logic are given in [103] and [45,46],
for a language that cannot express common knowledge. An axiomatisation for
a language with a common knowledge operator is given in [85]. Below we will
show how this equivalence emerges in the axiomatisation of PDLDEL from [37].

4.2.2 Group Announcements

The language of group announcements is the result of allowing action models
for group messages. These will be defined below. Similarly, we can define the
languages of secret group communications, of individual messages, of
tests, of lies, and so on [5]. All these languages are comprised in the language
of PDLDEL, because all these communicative actions can be characterised by
appropriate action models.

4.3 Program Transformation

We will now show how PDLDEL formulae can be reduced to PDL formulae. For
every action model A with states s0, . . . , sn−1 we define a set of n2 program
transformers TA

i,j (0 ≤ i < n, 0 ≤ j < n), as follows:

TA
ij (a) =

{
?pre(si) ; a if si

a→ sj ,
?⊥ otherwise

TA
ij (?ϕ) =

{
?ϕ if i = j,
?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃
k=0

(TA
ik(π1) ; TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)
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where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj that

can be traced through A while avoiding a pass through intermediate states sk

and higher. Thus, KA
ijn(π) is a program for all the π∗ paths from si to sj that

can be traced through A, period.

KA
ijk(π) is defined by recursion on k, as follows:

KA
ij0(π) =

 ?> ∪ TA
ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =



(KA
kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k 6= j,

KA
ikk(π) ; (KA

kkk(π))∗ if i 6= k = j,

KA
ijk(π) ∪ (KA

ikk(π) ; (KA
kkk(π))∗ ; KA

kjk(π)) otherwise (i 6= k 6= j).

For some runs through example applications of these definitions, see section 4.5
below.

Lemma 12 (Kleene Path) Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π path

from (w, si) to (w′, sj) in M ⊗ A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there is a π∗

path from (w, si) to (w′, sj) in M⊗A.

Proof. Use the definition of KA
ijk to prove by induction on k that (w,w′) ∈

[[KA
ijk(π)]]M iff there is a π∗ path from (w, si) to (w′, sj) in M⊗A that does not

pass through any pairs (v, s) with s ∈ {sk, . . . , sn−1}.

Base case, i = j: A π∗ path from (w, si) to (w′, sj) that does not visit any
intermediate states is either the empty path or a single π step from (w, si) to
(w′, sj). Such a path exists iff (w,w′) ∈ [[?> ∪ TA

ij ]]M iff (w,w′) ∈ [[KA
ij0(π)]]M.

Base case, i 6= j: A π∗ path from (w, si) to (w′, sj) that does not visit any
intermediate states is a single π step from (w, si) to (w′, sj). Such a path exists
iff (w,w′) ∈ [[TA

ij ]]M iff (w,w′) ∈ [[KA
ij0(π)]]M.

Induction step. Assume that (w,w′) ∈ [[KA
ijk(π)]]M iff there is a π∗ path from

(w, si) to (w′, sj) in M ⊗ A that does not pass through any pairs (v, s) with
s ∈ {sk, . . . , sn−1}.

Case i = k = j. A path from (w, si) to (w′, sj) in M ⊗ A that does not pass
through any pairs (v, s) with s ∈ {sk+1, . . . , sn−1} now consists of an arbitrary
number of π∗ paths from sk to sk that do not visit any intermediate states with
action component sk or higher. By the induction hypothesis, such a path exists
iff (w,w′) ∈ [[(KA

kkk(π))∗]]M iff (w,w′) ∈ [[KA
ij(k+1)(π)]]M.
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Case i = k 6= j. A path from (w, si) to (w′, sj) in M ⊗ A that does not pass
through any pairs (v, s) with s ∈ {sk+1, . . . , sn−1} now consists of a π∗ path
starting in (w, sk) visiting states of the form (u, sk) an arbitrary number of
times, but never touching on states with action component sk or higher in
between, and ending in (v, sk), followed by a π∗ path from (v, sk) to (w′, sj)
that does not pass through any pairs (v, s) with s ∈ {sk, . . . , sn−1}. By the
induction hypothesis, a path from (w, sk) to (v, sk) of the first kind exists iff
(w, v) ∈ [[(KA

kkk(π))∗]]M. Again by the induction hypothesis, a path from (v, sk)
to (w′, sj) of the second kind exists iff (v, w′) ∈ [[KA

kjk]]
M. Thus, the required

path from (w, si) to (w′, sj) in M⊗A exists iff (w,w′) ∈ [[(KA
kkk(π))∗;KA

kjk(π)]]M

iff (w,w′) ∈ [[KA
ij(k+1)(π)]]M.

The other two cases are similar. 2

The Kleene path lemma is the key ingredient in the following program trans-
formation lemma.

Lemma 13 (Program Transformation) Assume A has n states s0, . . . , sn−1.
Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj ]ϕ.

Proof. Induction on the complexity of π.

Basis, epistemic link case:

M |=w [A, si][a]ϕ
iff M |=w pre(si) implies M⊗A |=(w,si) [a]ϕ
iff M |=w pre(si) implies for all sj ∈ A, all w′ ∈ M :

if si
a→ sj , w

a→ w′, then M |=w′ [A, sj ]ϕ

iff for all sj ∈ A : if si
a→ sj then M |=w [pre(si) ; a][A, sj ]ϕ

iff M |=w

n−1∧
j=0

[TA
ij (a)][A, sj ]ϕ.

Basis, test case:

M |=w [A, si][?ψ]ϕ
iff M |=w pre(si) implies M⊗A |=(w,si) [?ψ]ϕ
iff M |=w pre(si) implies M |=w [?ψ][A, si]ϕ

iff M |=w

n−1∧
j=0

[TA
ij (?ψ)][A, sj ]ϕ.

Induction step, cases π1 ; π2 and π1 ∪ π2 are straightforward. The case of π∗

is settled with the help of the Kleene path lemma. 2
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4.4 Reduction Axioms for Update PDL

The program transformations can be used to translate PDLDEL to PDL by
means of the following mutually recursive definitions of translations t for for-
mulae and r for programs:

t(>) = >
t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)

t([π]ϕ) = [r(π)]t(ϕ)
t([A, s]>) = >
t([A, s]p) = t(pre(s)) → p

t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)
t([A, s](ϕ1 ∧ ϕ2) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)

t([A, si][π]ϕ =
n−1∧
j=0

[TA
ij (r(π))]t([A, sj ]ϕ)

t([A, s][A′, s′]ϕ = t([A, s]t([A′, s′]ϕ))

r(a) = a

r(?ϕ) = ?t(ϕ)
r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2)
r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspection, using
the program transformation lemma for the translation of [A, si][π]ϕ formulae.
The translation points the way to appropriate reduction axioms, as follows.

Take all axioms and rules of PDL [42, 99, 113], plus the following reduction
axioms:

[A, s]p ↔ (pre(s) ⇒ p)
[A, s]¬ϕ ↔ (pre(s) ⇒ ¬[A, s]ϕ)

[A, s](ϕ1 ∧ ϕ2) ↔ ([A, s]ϕ1 ∧ [A, s]ϕ2)

[A, si][π]ϕ ↔
n−1∧
j=0

[TA
ij (π)][A, sj ]ϕ

and necessitation for action model modalities. The reduction axioms for [A, s]p,
[A, s]¬ϕ and [A, s](ϕ1 ∧ ϕ2) are as in [85]. The final reduction axiom is based
on program transformation and is new. Note that if we allow multiple action
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models, we need the following reduction axiom for those:

[A,S]ϕ ↔
∧
s∈S

[A, s]ϕ

If updates with multiple pointed action models are also in the language, we
need the following additional reduction axiom:

[A,S]ϕ ↔
∧
s∈S

[A, s]ϕ

Theorem 14 (Completeness) If |= ϕ then ` ϕ.

Proof. The proof system for PDL is complete, and every formula in the
language of PDLDEL is provably equivalent to a PDL formula. 2

4.5 Special Cases

4.5.1 Public Announcement and Common Knowledge

As introduced above, in section 4.2.1, the action model for public announcement
that ϕ consists of a single state s0 with precondition ϕ and epistemic relation
{s0

a→ s0 | a ∈ Ag}. We call this model Pϕ.

p

Ag

We are interested in how public announcement that ϕ brings about common
knowledge of ψ among group of agents B, i.e., we want to compute [Pϕ, s0][B∗]ψ.
For this, we need TPϕ

00 (B∗), which is defined as KPϕ

001(B).

To work out KPϕ

001(B), we need K
Pϕ

000(B), and for KPϕ

000(B), we need T
Pϕ

00 (B),
which turns out to be

⋃
b∈B(?ϕ ; b), or equivalently, ?ϕ;B. Working upward

from this, we get:

K
Pϕ

000(B) =?> ∪ TPϕ

00 (B) =?> ∪ (?ϕ;B),

and therefore:

K
Pϕ

001(B) = (KPϕ

000(B))∗

= (?> ∪ (?ϕ;B))∗

= (?ϕ;B)∗.
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Thus, the reduction axiom for the public announcement action Pϕ with respect
to the program for common knowledge among agents B, works out as follows:

[Pϕ, s0][B∗]ψ ↔ [Pϕ, s0][B∗]ψ

↔ [TPϕ

00 (B∗)][Pϕ, s0]ψ

↔ [KPϕ

001(B)][Pϕ, s0]ψ
↔ [(?ϕ;B)∗][Pϕ, s0]ψ.

This expresses that every B path consisting of ϕ worlds ends in a [Pϕ, s0]ψ
world, i.e., it expresses exactly what is captured by the special purpose operator
CB(ϕ,ψ) introduced in [85]. Indeed, the authors remark in a footnote that their
proof system for CB(ϕ,ψ) essentially follows the usual PDL treatment for the
PDL transcription of this formula.

4.5.2 Secret Group Communication and Common Belief

The logic of secret group communication is the logic of email CCs. The action
model for a secret group message to B that ϕ consists of two states s0, s1, where
s0 has precondition ϕ and s1 has precondition >, and where the accessibilities
T are given by:

T = {s0
b→ s0 | b ∈ B}

∪{s0
a→ s1 | a ∈ Ag−B}

∪{s1
a→ s1 | a ∈ Ag}.

The actual world is s0. The members of B are aware that action ϕ takes place;
the others think that nothing happens. In this they are mistaken, which is
why CC updates generate KD45 models: i.e., CC updates make knowledge
degenerate into belief.

p

B

TAg - B

Ag

We work out the program transformations that this update engenders for com-
mon knowledge among some group of agents D. Call the action model CCB

ϕ .

We will have to work out K
CCB

ϕ

002 D, K
CCB

ϕ

012 D, K
CCB

ϕ

112 D, K
CCB

ϕ

102 D.

For these, we need K
CCB

ϕ

001 D, K
CCB

ϕ

011 D, K
CCB

ϕ

111 D, K
CCB

ϕ

101 D.

For these in turn, we need K
CCB

ϕ

000 D, K
CCB

ϕ

010 D, K
CCB

ϕ

110 D, K
CCB

ϕ

100 D.
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For these, we need:

T
CCB

ϕ

00 D =
⋃

d∈B∩D

(?ϕ ; d) = ?ϕ ; (B ∩D)

T
CCB

ϕ

01 D =
⋃

d∈D−B

(?ϕ ; d) = ?ϕ ; (D −B)

T
CCB

ϕ

11 D = D

T
CCB

ϕ

10 D = ?⊥

It follows that:

K
CCB

ϕ

000 D = ?> ∪ (?ϕ ; (B ∩D))

K
CCB

ϕ

010 D = ?ϕ ; (D −B)

K
CCB

ϕ

110 D = ?> ∪D,

K
CCB

ϕ

100 D = ?⊥

From this we can work out the Kij1, as follows:

K
CCB

ϕ

001 D = (?ϕ ; (B ∩D))∗

K
CCB

ϕ

011 D = (?ϕ ; (B ∩D))∗ ; (D −B)

K
CCB

ϕ

111 D = ?> ∪D

K
CCB

ϕ

101 D = ?⊥.

Finally, we get K002 and K012 from this:

K
CCB

ϕ

002 D = K
CCB

ϕ

001 D ∪KCCB
ϕ

011 D ; (K
CCB

ϕ

111 D)∗ ; K
CCB

ϕ

101 D

= K
CCB

ϕ

001 D (since the right-hand expression evaluates to ?⊥)
= (?ϕ ; (B ∩D))∗

K
CCB

ϕ

012 D = K
CCB

ϕ

011 D ∪KCCB
ϕ

011 D ; (K
CCB

ϕ

111 D)∗

= K
CCB

ϕ

011 D ; (K
CCB

ϕ

111 D)∗

= (?ϕ ; (B ∩D))∗ ; (D −B) ; D∗.

Thus, the program transformation for common belief among D works out as
follows:

[CCB
ϕ , s0][D

∗]ψ

↔ [(?ϕ ; (B ∩D))∗][CCB
ϕ , s0]ψ ∧ [(?ϕ ; (B ∩D))∗ ; (D −B) ; D∗][CCB

ϕ , s1]ψ.

Compare [111] for a direct axiomatisation of the logic of CCs.
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4.5.3 Group Messages and Common Knowledge

The action model for a group message to B that ϕ consists of two states s0, s1,
where s0 has precondition ϕ and s1 has precondition >, and where the accessi-
bilities T are given by:

T = {s0
b→ s0 | b ∈ B}

∪{s1
b→ s1 | b ∈ B}

∪{s0
a→ s1 | a ∈ Ag−B}

∪{s1
a→ s0 | a ∈ Ag−B}.

This captures the fact that the members of B can distinguish the ϕ update
from the > update, while the other agents (the members of Ag − B) cannot.
The actual action is s0. Call this model GB

ϕ .

p

B

TAg - B

B

A difference with the CC case is that group messages are S5 models. Since
updates of S5 models with S5 models are S5, group messages engender common
knowledge (as opposed to mere common belief). Let us work out the program
transformation that this update engenders for common knowledge among some
group of agents D.

We will have to work out K
GB

ϕ

002D, K
GB

ϕ

012D, K
GB

ϕ

112D, K
GB

ϕ

102D.

For these, we need K
GB

ϕ

001D, K
GB

ϕ

011D, K
GB

ϕ

111D, K
GB

ϕ

101D.

For these in turn, we need K
GB

ϕ

000D, K
GB

ϕ

010D, K
GB

ϕ

110D, K
GB

ϕ

100D.

For these, we need:

T
GB

ϕ

00 D =
⋃
d∈D

(?ϕ ; d) =?ϕ ; D,

T
GB

ϕ

01 D =
⋃

d∈D−B

(?ϕ ; d) =?ϕ ; (D −B),

T
GB

ϕ

11 D = D,

T
GB

ϕ

10 D = D −B.
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It follows that:

K
GB

ϕ

000D = ?> ∪ (?ϕ ; D),

K
GB

ϕ

010D = ?ϕ ; (D −B),

K
GB

ϕ

110D = ?> ∪D,

K
GB

ϕ

100D = D −B.

From this we can work out the Kij1, as follows:

K
GB

ϕ

001D = (?ϕ ; D)∗,

K
GB

ϕ

011D = (?ϕ ; D)∗ ; ?ϕ ; D −B,

K
GB

ϕ

111D = ?> ∪D ∪ (D −B; (?ϕ ; D)∗; ?ϕ ; D −B),

K
GB

ϕ

101D = D −B ; (?ϕ;D)∗.

Finally, we get K002 and K012 from this:

K
GB

ϕ

002D = K
GB

ϕ

001D ∪KGB
ϕ

011D ; (K
GB

ϕ

111D)∗ ; K
GB

ϕ

101D

= (?ϕ ; D)∗ ∪
(?ϕ ; D)∗ ; ?ϕ ; D −B;

(D ∪ (D −B; (?ϕ ; D)∗ ; ?ϕ ; D −B))∗ ; D −B ; (?ϕ ; D)∗,

K
GB

ϕ

012D = K
GB

ϕ

011D ; (K
GB

ϕ

111D)∗

= (?ϕ ; D)∗ ; ?ϕ ; D −B ; (D ∪ (D −B ; (?ϕ;D)∗ ; ?ϕ ; D −B))∗.

Abbreviating D∪ (D−B ; (?ϕ ; D)∗ ; ?ϕ ; D−B) as π, we get the following
transformation for common knowledge among D after a group message to B
that ϕ:

[GB
ϕ , s0][D

∗]ψ
↔
[(?ϕ ; D)∗ ∪ ((?ϕ ; D)∗ ; ?ϕ ; D −B ; π∗ ; D −B ; (?ϕ ; D)∗)][GB

ϕ , s0]ψ
∧
[(?ϕ ; D)∗ ; ?ϕ ; D −B ; π∗][GB

ϕ , s1]ψ.

This equivalence gives a precise characterisation of two path requirements that
have to hold in the original model in order for common knowledge among D to
result from the group message to B. The formula may look complicated, but
mechanical verification of the requirement is quite easy.

55



5 Quantified Dynamic Logic

The second core system of dynamic logic that will be discussed in detail is
that of quantified dynamic logic (QDL). QDL was developed by Harel [61]
and Goldblatt [49]. Both monographs were inspired by Pratt [106]. Further
information about the development of QDL can be found in [50,62,63].

Quantified dynamic logic can be viewed as the first order version of proposi-
tional dynamic logic. It is less abstract than PDL, for program atoms now get
further analysed as assignments of values to program variables or as relational
tests, and states take the concrete shape of mappings from program variables
to appropriate values. At the background is a first order structure M consisting
of a domain plus interpretations of relation and function symbols.

Recall that the assignment programs of WHILE looked like v := t, with v a
program variable and t a term of the WHILE language. In QDL, the basic
actions are:
• assigning a random value to a variable:

v :=?,

• assigning a definite value to a variable:

v := t,

• and testing for the truth of a formula:

?ϕ.

Various versions of QDL result from imposing further restrictions on testing,
e.g., by only allowing tests on boolean combinations of relational and equational
atoms.

Consider a state where x has value 3 and y value 2. Assuming we are computing
on the natural numbers, random assignment of a new value to x causes infinite
branching to the states with

{x 7→ 0, y 7→ 2}, {x 7→ 1, y 7→ 2}, {x 7→ 2, y 7→ 2}, {x 7→ 3, y 7→ 2},

and so on. The subsequent test x = y only succeeds for the state with {x 7→
2, y 7→ 2}. The nett effect of x :=? ; ?(x = y) is a transition from {x 7→ 3, y 7→ 2}
to {x 7→ 2, y 7→ 2}.
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5.1 Language

Take a signature for first order logic. Define terms, formulae and programs, as
follows:

t ::= v | ft1 · · · tn
ϕ ::= > | Rt1 · · · tn | t1 = t2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃vϕ | 〈π〉ϕ
π ::= v :=? | v := t |?ϕ | π1 ; π2 | π1 ∪ π2 | π∗

Abbreviations are as in the case of PDL. In particular, the SKIP, ABORT,
WHILE, REPEAT, IF-THEN-ELSE constructs are also defined as in the case
of PDL. What Quantified Dynamic Logic gives us is a fleshed out version of
PDL, with assignments (random and definite) and tests as basic actions. The
assignments change relational structures, and therefore the appropriate asser-
tion language is built from first order predicate logic rather than propositional
logic, as in PDL.

Floyd-Hoare correctness statements for WHILE programs can be expressed di-
rectly in QDL. Recall the example of the correctness statement for the factorial
program from section 2.4:

x! = Z → [y := 1 ; WHILE x 6= 1 DO (y := y ∗ x ; x := x−̇1)]y = Z.

This expresses partial correctness of the factorial program. Total correctness of
the factorial program can be expressed in QDL as the conjunction of the above
with the following:

〈y := 1 ; WHILE x 6= 1 DO (y := y ∗ x ; x := x−̇1)〉>.

5.2 Semantics

A first order signature is a pair (f ,R) where f is a list of function symbols with
their arities and R is a list of relation symbols with their arities. Nullary function
symbols are individual constants, nullary relation symbols are propositional
constants, unary relation symbols are predicates.

A model for a signature (f ,R) is a structure of the form

M = (EM, fM, . . . , RM, . . .),

where E is a non-empty set, the fM are interpretations in E for the members
of f (i.e., if f is an n-ary function symbol, then fM : En → E), and the RM

are interpretations in E for the members of R (i.e., if R is an n-ary relation
symbol, then RM ⊆ En).

Let V be the set of variables of the language. As usual g ∼v h expresses that
state h differs at most from state g on v. Interpretation of terms in M is defined
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relative to a variable assignment g : V → EM, as follows:

[[v]]Mg = g(v)

[[ft1 · · · tn]]Mg = fM([[t1]]Mg , . . . , [[tn]]Mg )

Truth in M for formulae and relational meaning in M for programs are defined
by simultaneous recursion:

M |=g > always
M |=g Rt1 · · · tn iff ([[t1]]Mg , . . . , [[tn]]Mg ) ∈ RM

M |= t1 = t2 iff [[t1]]Mg is the same as [[t2]]Mg
M |=g ¬ϕ iff not M |=g ϕ

M |=g ϕ1 ∨ ϕ2 iff M |=g ϕ1 or M |=g ϕ2

M |=g ∃vϕ iff for some h with g ∼v h,M |=h ϕ

M |=g 〈π〉ϕ iff for some h with g[[π]]Mh ,M |=h ϕ

g[[v :=?]]Mh iff g ∼v h

g[[v := t]]Mh iff h equals g[v 7→ [[t]]Mg ]

g[[?ϕ]]Mh iff g = h and M |=g ϕ

g[[π1 ; π2]]Mh iff there is an assignment f with

g[[π1]]Mf and f [[π2]]Mh

g[[π1 ∪ π2]]Mh iff g[[π1]]Mh or g[[π2]]Mh
g[[π∗]]Mh iff (g, h) ∈ ([[π]]M)∗

Validity of QDL formulae over a given signature is defined in terms of truth in all
models for the signature. A QDL formula ϕ over a given signature is satisfiable
if there is model M for that signature together with a variable assignment g in
the domain of that model, such that M |=g ϕ.

Note that the presence of v :=? does not increase the expressive power of the
language. Indeed, we have the following validities:

∃vϕ ↔ 〈v :=?〉ϕ
∀vϕ ↔ [v :=?]ϕ

Next, if v does not occur in t, definite assignment of t to v is equivalent to
random assignment to v followed by a test of the equality v = t. In other words,
if v does not occur in t we have the following validities:

〈v := t〉ϕ ↔ 〈v :=? ; ?v = t〉ϕ
[v := t]ϕ ↔ [v :=? ; ?v = t]ϕ.
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5.2.1 Substitution and Assignment

The computational process of assigning a value to a variable is intimately linked
to the syntactic process of making a substitution of a term for a variable.

Recall the situation in first order logic. There, the basic truth definition is
phrased in terms of a first order model M, a variable assignment g, and a
formula ϕ: M |=g ϕ means that variable assignment g makes ϕ true in M. Let
tvs be the result of replacing variable v everywhere in term t by term s. Then
the following term substitution lemma holds for FOL and for QDL:

Lemma 15 (Term substitution) [[tvs ]]
M
g = [[t]]M

g[v 7→[[s]]Mg ]
.

This is easily proved with induction on the structure of t.

Using this, one can prove the substitution lemma for FOL. Recall that a term t
is substitutable for v in ϕ (or: free for v in ϕ) if the substitution process does not
cause accidental capture of variables in t. Use ϕv

t for the result of substituting
t for all free occurrences of v in ϕ. The following holds for FOL:

Lemma 16 (Substitution) If t is free for v in ϕ then

M |=g ϕ
v
t iff M |=g[v 7→[[t]]Mg ] ϕ.

The proof uses induction on the structure of ϕ, using the term substitution
lemma for the atomic case. In the case of QDL, we can rephrase this as follows:

Lemma 17 (Assignment)

M |=g [v := t]ϕ iff M |=g[v 7→[[t]]Mg ] ϕ.

What this means is that in QDL we can replace syntactic substitutions ϕv
t by

[v := t]ϕ.

Below we will be interested in the subsystem of QDL defined by

π ::= ?Rt1 · · · t2 |?t1 = t2 | v :=? | ∼π | π1 ; π2.

where ∼π is an abbreviation of ?[π]⊥.

It turns out that this subsystem, baptised DPL in [55], has the same expres-
sive power as first order logic, but its quantifier v :=? has different binding
behaviour from the quantifiers of first order logic. [55] proposes to employ the
dynamic binding behaviour of the DPL quantifiers for analysing anaphoric link-
ing (establishing the links between pronouns and their antecedents) in natural
language.
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5.2.2 Expressiveness

We can immediately see that the expressive power of QDL is greater than that
of FOL. The following formula in the language of natural number arithmetic
expresses induction on the natural numbers:

∀y〈x := 0 ; WHILE x 6= y DO x := x+ 1〉>. (7)

This asserts that for all y the program x := 0 ; WHILE x 6= y DO x :=
x+ 1 has a terminating execution. That is, every y can be reached by starting
from 0 and repeatedly applying the successor function. This defines the natural
numbers up to isomorphism, and no first order formula can do that. Let ϕN be
the conjunction of formula (7) with the Peano axioms for arithmetic except the
induction axiom. Then the valid QDL sentences of the form ϕN → ψ, with ψ a
first order sentence, specify the first order sentences ψ that are true on N. But
we know from Gödel’s incompleteness theorem and Church’s Thesis that this
set of sentences cannot be effectively enumerated.

5.3 Interpreted versus Uninterpreted Reasoning

As was the case with the WHILE-language and other systems, we are often
interested in computation with respect to some standard structure, such as the
natural numbers. In such cases, we evaluate QDL formulae and programs in this
structure, and talk, e.g., about N-validity: truth for all variable assignments in
N, and so on.

Note that all WHILE programs over a given signature are QDL programs over
that same signature. Thus, we can use QDL for making assertions about the
behaviour of WHILE programs. When interpreting with respect to N, we can
specify Euclid’s GCD algorithm as the following QDL program:

π = WHILE x 6= y DO IF x > y THEN x := x− y ELSE y := y − x.

Clearly, Floyd-Hoare correctness statements about WHILE programs can be
expressed in QDL. E.g., the following QDL statements about the GCD program,
expressing the total correctness of the program, are valid in N:

(x = x′ ∧ y = y′ ∧ x× y > 0) → [π] x = gcd(x′, y′).

x× y > 0 → 〈π〉>
The first of these says that if program π over N terminates then in the output
state x holds the value of the GCD of x′ and y′. The second of these expresses
that the program does indeed terminate for all states with x× y > 0, for 〈π〉>
expresses termination for all deterministic programs.

In the case of uninterpreted reasoning we are interested in truth in all structures.
The following is valid in all models:

(x = x′ ∧ y = y′) → [z := x ; x := y ; y := z](x = y′ ∧ y = x′).
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5.4 Undecidability and Completeness

QDL is a proper extension of classical FOL, and, as we have seen, its validity
problem is not effectively enumerable. This means that there can be no proof
theory for QDL based on an enumerable set of axioms and an enumerable set
of decidable inference rules. A proof theory will have to be based on infinitary
(hence undecidable) inference rules.

The following axioms relate random assignment to quantification and definite
assignment to substitution:

∀vϕ↔ [v :=?]ϕ
∀vϕ→ [v := t]ϕ
∀w[v := w]ϕ→ ∀vϕ w /∈ {v} ∪ var(ϕ)
∀vϕ→ [v := t]∀vϕ
∀w[v := t]ϕ→ [v := t]∀wϕ w /∈ {v} ∪ var(t)
〈v := t〉ϕ↔ [v := t]ϕ
[v := t]Rt1 · · · tn ↔ Rt1

v
t · · · tnv

t

[v := t]t1 = t2 ↔ t1
v
t = t2

v
t

[v := t][v := s]ϕ→ [v := sv
t ]ϕ

[v := t][w := s]ϕ→ [w := sv
t ][v := t]ϕ w /∈ {v} ∪ var(t)

s = t→ ([v := t]ϕ↔ [v := s]ϕ)

Now take as axiom schemes the following:

• All instances of valid FOL formulae,
• all instances of valid PDL formulae,
• the assignment axiom schemes above,

and as rules of inference:

• modus ponens
• quantifier generalisation

ϕ

∀vϕ

• program generalisation
ϕ

[π]ϕ

• and infinitary convergence:

ϕ→ [πn]ψ, n ∈ N
ϕ→ [π∗]ψ

where πn is given by π0 =?>, πn+1 = π ; πn

A proof in this calculus may have infinitely many premises. This infinitary proof
system is sound and complete (Harel [62] or Goldblatt [50]):
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Theorem 18 For any QDL formula ϕ,

|= ϕ iff ` ϕ.
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6 DPL as a fragment of QDL

In the introduction we mentioned that dynamic logic is also used in linguistics,
in particular in the analysis of various phenomena involving information flow
in discourse (text, conversation). In this section we turn to the study of a
particular formalism, that of Dynamic Predicate Logic (DPL), that has played
a prominent role in the development of dynamic semantic theories for natural
language.

The DPL system is a representative instance of a whole variety of systems that
have been developed in formal semantics of natural language to deal with dy-
namic aspects of meaning and information flow: the contribution of declaratives
to the ‘common ground’, presuppositional phenomena, anaphoric links across
sentence boundaries, the temporal structure of discourse, the semantic effects
of imperatives, and so on. DPL is an illustrative example in the present con-
text because of its obvious affinities with systems developed in other areas, in
particular with PDL and QDL. The formal properties of the DPL system have
been studied quite extensively (cf., e.g., [15] and the references below). Also,
DPL provides a nice illustration of some of the central concepts of QDL. A
more eleborate discussion of the specific linguistic issues involved can be found
in section 7.

6.1 System

DPL is the subsystem of QDL that is given by the following syntax:

Definition 19 (DPL syntax)

t ::= v | c | ft1 · · · tn
π ::= ?Rt1 · · · t2 |?t1 = t2 | v :=? | ∼π | π1 ; π2.

Semantics: as in the definition of QDL. The meaning of ∼π is given by:

g[[∼π]]h iff g equals h and for no g′ it holds that g[[π]]Mg′ .

As was noted earlier, ∼π can be taken as an abbreviation of ?[π]⊥.

FOL can be interpreted in DPL, as follows:

(Rt1 · · · tn)• = ?Rt1 · · · tn
(t1 = t2)• = ?t1 = t2

(¬ϕ)• = ∼ϕ•

(ϕ1 ∨ ϕ2)• = ∼(∼ϕ•1 ; ∼ϕ•2)
(∃vϕ)• = ∼∼(v :=? ; ϕ•)
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6.1.1 DPL and FOL

An inspection of the DPL semantics yields:

Lemma 20 (Embedding) For all FOL formulae ϕ, all models M for the sig-
nature of ϕ, all assignments g, h in M:

M |=g ϕ and g = h iff g[[ϕ•]]Mh .

DPL programs can be reversed, as follows:

(?Rt1 · · · tn)̆ = ?Rt1 · · · tn
(?t1 = t2)̆ = ?t1 = t2

(v :=?)̆ = v :=?
(∼π)̆ = ∼π

(π1 ; π2)̆ = π2˘ ; π1˘

This definition shows that ˘ is definable in DPL, because ?Rt1 · · · tn, ?t1 = t2,
∼π, v :=? and ∼π are all symmetric and hence self-converse. What this means
is that adding a converse operator to DPL does not increase expressive power.
The following reversal lemma is proved by induction on DPL program structure:

Lemma 21 (Reversal) For all DPL programs π, all models M, all assign-
ments g, h in M:

g[[π]]Mh iff h[[π ]̆]Mg .

6.1.2 DPL and DPL′

One of the features of DPL is that it does not have the distinction between
programs (interpreted as binary relations on a set of appropriate valuations)
and formulae (interpreted as predicates on a set of appropriate valuations). Still,
it is sometimes useful to be able to make statements about DPL programs. For
this, we define DPL′ formulae as follows (π ranges over DPL programs):

ϕ ::= > | Rt1 · · · tn | t1 = t2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃vϕ | 〈π〉ϕ.

Statements about DPL programs can now be made in DPL′. The formula 〈π〉>
characterises the assignments where π succeeds. In [55] this is called the satis-
faction set of π. The set of possible output assignments for π (the production
set of π) is characterised by 〈π 〉̆>. The following formula expresses that π1 and
π2 have the same satisfaction and production sets:

(〈π1〉> ↔ 〈π2〉>) ∧ (〈π1 〉̆> ↔ 〈π2 〉̆>). (8)
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Note that it does not follow from (8) that π1 and π2 are equivalent. Let π1 be
?x = x and let π2 be x :=?. Then 〈π1〉> ↔ > ↔ 〈π1〉> and 〈π1 〉̆> ↔ > ↔
〈π1 〉̆>, but the two programs are not equivalent. The interpretation of π1 is
the identity relation on the set of assignments, that of π2 is the set of all pairs
g, h such that g ∼x h.

6.2 Proof theory

6.2.1 Reduction to FOL

There are various proof systems for DPL or closely related logics. An early ex-
ample is the Floyd-Hoare-type system of Van Eijck and De Vries [39]. Basically,
this calculus uses Floyd-Hoare rules to reduce DPL to FOL. We can also use
QDL to reduce DPL to FOL. Here is a translation function from DPL′ to FOL:

(>)◦ = >
(Rt1 · · · tn)◦ = Rt1 · · · tn

(t1 = t2)◦ = t1 = t2

(¬ϕ)◦ = ¬ϕ◦

(ϕ1 ∨ ϕ2)◦ = ϕ◦1 ∨ ϕ◦2
(∃vϕ)◦ = ∃vϕ◦

(〈?Rt1 · · · tn〉ϕ)◦ = Rt1 · · · tn ∧ ϕ◦

(〈?t1 = t2〉ϕ)◦ = t1 = t2 ∧ ϕ◦

(〈v :=?〉ϕ)◦ = ∃vϕ◦

(〈∼π〉ϕ)◦ = ¬(〈π〉>)◦ ∧ ϕ◦

(〈π1 ; π2〉ϕ)◦ = (〈π1〉〈π2〉ϕ)◦.

Direct inspection of the semantics reveals that this translation is correct, in the
following sense:

Lemma 22 (Translation Correctness) For all DPL′ formulae ϕ, all FO
models M for the signature of ϕ, all variable assignments g in M:

M |=g ϕ iff M |=g (ϕ)◦.

It follows from this that the following reduction axioms for DPL are sound:
test relation 〈?Rt1 · · · tn〉ϕ↔ Rt1 · · · tn ∧ ϕ
test equality 〈?t1 = t2〉ϕ↔ t1 = t2 ∧ ϕ
random assignment 〈v :=?〉ϕ↔ ∃vϕ
dynamic negation 〈∼π〉ϕ↔ ¬〈π〉> ∧ ϕ
sequence 〈π1 ; π2〉ϕ↔ 〈π1〉〈π2〉ϕ.

The boxed counterparts of these axioms can be derived by propositional rea-
soning:
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test relation [?Rt1 · · · tn]ϕ↔ (Rt1 · · · tn → ϕ)
test equality [?t1 = t2]ϕ↔ (t1 = t2 → ϕ)
random assignment [v :=?]ϕ↔ ∀vϕ
dynamic negation [∼π]ϕ↔ ([π]⊥ → ϕ)
sequence [π1 ; π2]ϕ↔ [π1][π2]ϕ.

The calculus for DPL′ can now consist of the axioms for FOL, the axioms for
test relation, test equality, dynamic negation and sequence (either in their box
or in their diamond versions), and the inference rules of FOL: modus ponens and
generalisation. It follows from the translation lemma that this axiomatisation
is sound. The axiomatisation is also complete.

Theorem 23 (DPL′ completeness)
For all DPL′ formulae ϕ: if |= ϕ then ` ϕ.

Proof. The proof system for FOL is complete, and every DPL′ formula ϕ is
provably equivalent to some FOL formula. 2

By way of example of the application of the calculus we give the derivation of
the FOL counterpart to the DPL rendering of so-called ‘donkey sentences’ (cf.,
section 7.2.1 below for more extensive discussion of this type of phenomenon):

1 If a farmer owns a donkey then he beats it.

DPL translates this using a defined operator for dynamic implication, given by:

ϕ⇒ ψ :≡ ∼(ϕ ; ∼ψ).

The DPL rendering of (1) looks like this:

(x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy) ⇒?Bxy.

Here is the reduction to FOL using the reduction axioms:

〈∼(x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy ; ∼?Bxy〉>
↔ 〈∼(x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy〉〈∼?Bxy〉>
↔ [x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy ; ∼?Bxy]⊥
↔ ∀x[?Fx ; y :=? ; ?Dy ; ?Oxy ; ∼?Bxy]⊥
↔ ∀x(Fx→ [y :=? ; ?Dy ; ?Oxy ; ∼?Bxy]⊥)
↔ ∀x(Fx→ ∀y[?Dy ; ?Oxy ; ∼?Bxy]⊥)
↔ ∀x(Fx→ ∀y([?Dy ; ?Oxy ; ∼?Bxy]⊥))
↔ ∀x(Fx→ ∀y(Dy → [?Oxy ; ∼?Bxy]⊥))
↔ ∀x(Fx→ ∀y(Dy → (Oxy → [∼?Bxy]⊥)))
↔ ∀x(Fx→ ∀y(Dy → (Oxy → ([?Bxy]⊥ → ⊥))))
↔ ∀x(Fx→ ∀y(Dy → (Oxy → Bxy))).

Clearly, this is the desired universal reading of the example.
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6.2.2 Axiomatisation

Axiomatising DPL becomes more of a challenge if one is after an axiomatisation
at the level of programs, without recourse to a static assertion language like
FOL. Such a direct axiomatisation is provided in Van Eijck [34]. Key element
of the calculus is an appropriate treatment of substitution in DPL.

For readability, it is useful to slightly rephrase the DPL language, by leaving
out the spurious test operators and by using quantifier notation for random
assignment:

Definition 24 (DPL syntax again)

π ::= > | Rt1 · · · t2 | t1 = t2 | ∃v | ∼π | π1 ; π2.

Types of Variable Occurrences Let V be the variables of the DPL language.
The set of variables which have a fixed occurrence in a DPL program π is given
by a function free : DPL → PV , the set of variables which are introduced in
a formula is given by a function intro : DPL → PV , and the set of variables
which have a classically bound occurrence in a formula is given by a function
cbnd : DPL → PV .

The introduced variables of π (called ‘blocked’ variables in [133]) are the vari-
ables y such that π contains an ∃y not in the scope of a negation. The free
variables of π are the variables on which input valuations have to agree on
output valuations. The classically bound variables of π are the variables that
behave like the bound variables of FOL. Let var(Pt1 · · · tn) be the set of all
variables among t1 · · · tn.

Definition 25 (free, intro, cbnd)

• free(>) := ∅, intro(>) := ∅, cbnd(>) := ∅.
• free(∃v ; π) := free(π)− {v},

intro(∃v ; π) := {v} ∪ intro(π),
cbnd(∃v ; π) := cbnd(π).

• free(Pt1 · · · tn ; π) := var(Pt1 · · · tn) ∪ free(π),
intro(Pt1 · · · tn ; π) := intro(π),
cbnd(Pt1 · · · tn ; π) := cbnd(π).

• free(∼(π1) ; π2) := free(π1) ∪ free(π2),
intro(∼(π1) ; π2) := intro(π2),
cbnd(∼(π1) ; π2) := intro(π1) ∪ cbnd(π1) ∪ cbnd(π2).

• free((π1π2) ; π3) := free(π1 ; (π2 ; π3)),
intro((π1π2) ; π3) := intro(π1 ; (π2 ; π3)),
cbnd((π1π2) ; π3) := cbnd(π1 ; (π2 ; π3)).
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Some examples may clarify this definition. Let

π := ∃v ; ∃w ; Ruvw.

Then intro(π) = {v, w}, free(π) = {u}, cbnd(π) = ∅. The occurrence of u in
Ruvw is free.

Variables introduced within the scope of negation become classically bound.
Let

π := ∼(∃v ; ∃w ; Ruvw).

Then intro(π) = ∅, free(π) = {u}, cbnd(π) = {v, w}. The occurrence of u in
Ruvw is still free.

A variable can have fixed, bound and introduced occurrences in an expression.
Let

π := Px ; ∃x ; ∼Px ; ∼(∃x ; Qx).

Then intro(π) = {x}, free(π) = {x}, cbnd(π) = {x}. The leftmost occurrence
of x is free, the other occurrences are not.

Binding Note that for all DPL programs π, intro(π)∩ free(π) = ∅. Let g ∼X h
if variable assignments g and h differ at most in the values of variables among
X. Let g[X]h if g ∼V−X h, where V is the set of all variables. Thus, g[X]h
expresses that g and h agree on the values of variables in X.

Lemma 26 (DPL binding) If g[[ϕ]]Mh then g ∼intro(ϕ) h and g[free(ϕ)]h.

Thus, the leftmost occurrence of x in Px ; ∃x ; ∼Px ; ∼(∃x ; Qx) is free,
the other occurrences are not. Use πv

t for the result of substituting t for all free
occurrences of v in π:

Definition 27 (πv
t )

>v
t := >

(Rt1 · · · tn ; π)v
t := Rt1

v
t · · · tnv

t ; πv
t

(t1 = t2 ; π)v
t := t1

v
t = tn

v
t ; πv

t

(∃v ; π)v
t := ∃v ; π

(∃w ; π)v
t := ∃w ; πv

t

(∼(π1) ; π2)v
t := ∼(π1

v
t ) ; π2

v
t

((π1 ; π2) ; π3)v
t := (π1 ; (π2 ; π3))v

t

Note that this definition of substitution takes the dynamic binding force of ∃v
over the text that follows into account (cf. the clause for (∃v ; π)v

t , where the
occurrence of ∃v blocks off the π that follows). Visser [133] calls this substitution
‘left’ substitution.
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Figure 2: The Calculus for DPL

test axiom T =⇒ T

transitivity
ϕ =⇒ ψ ψ =⇒ χ

ϕ =⇒ χ intro(ψ) ∩ free(χ) = ∅

test swap
C1T1 ; T2C2 =⇒ ϕ

C1T2 ; T1C2 =⇒ ϕ

quantifier move
C1T ; ∃v C2 =⇒ ϕ

C1∃v ; TC2 =⇒ ϕ
v /∈ free(T )

C1∃v ; TC2 =⇒ ϕ

C1T ; ∃v C2 =⇒ ϕ
v /∈ free(T )

quantifier intro
ϕ =⇒ ψv

t

ϕ =⇒ ∃v ; ψ
t free for v in ψ

var refreshment
C1∃v C2 =⇒ ϕ

C1∃w(C2 =⇒ ϕ)v
w

w /∈ intro(C1) ∪ free(C1)

sequencing
ψ =⇒ χ

ϕ ; ψ =⇒ χ

ϕ =⇒ ψ ϕ =⇒ χ

ϕ =⇒ ψ ; χ
intro(ψ) ∩ free(χ) = ∅

negation
ϕ =⇒ ψ

ϕ ; ∼ψ =⇒ ⊥
ϕ ; ψ =⇒ ⊥
ϕ =⇒ ∼ψ

double negation
ϕ =⇒ ∼∼ψ
ϕ =⇒ ψ

ϕ ; ∼∼ψ =⇒ ⊥
ϕ ; ψ =⇒ ⊥

69



Sequent Deduction Rules Figure 6.2.2 gives a set of sequent deduction rules
for DPL, using the format ϕ =⇒ ψ, where =⇒ is the sequent separator. Note
that ϕ =⇒ ⊥ expresses that ϕ is inconsistent. The calculus defines a relation
=⇒⊆ DPL2 by means of: ϕ =⇒ ψ iff ϕ =⇒ ψ is at the root of a finite tree with
sequents at its nodes, such that the sequents at a leaf node are axioms of the
calculus, and the sequents at the internal nodes follow by means of a rule of the
calculus from the sequent(s) at the daughter node(s) of that internal node.

In the calculus, C, with and without subscripts, is used as a variable over
contexts, where a context is a formula or the empty list ε. Substitution and
evaluation are extended to contexts in the obvious way. If C is a context and
ϕ a formula, then we use Cϕ for the formula given by: Cϕ := ϕ if C = ε,
Cϕ := ψ;ϕ if C = ψ. Similarly for ϕC, and for C1ϕC2.

It is convenient to extend the definition of substitution to sequents.

Definition 28 ((C =⇒ ϕ)v
t ) Induction on the structure of C

(ε =⇒ ϕ)v
t := ε =⇒ ϕv

t

(ψ =⇒ ϕ)v
t :=

{
ψv

t =⇒ ϕ if v ∈ intro(ψ)
ψv

t =⇒ ϕv
t otherwise.

Substitution for sequents carries in its wake a notion of being free for a variable
in a sequent:

Definition 29 (t is free for v in C =⇒ ψ)
1. t is free for v in ε =⇒ ψ if t is free for v in ψ.
2. t is free for v in ϕ =⇒ ψ if t is free for v in ϕ, and either v ∈ intro(ϕ)

or t is free for v in ψ.

When a rule mentions a substitution ϕv
t in the consequent of a sequent then

the standard assumption is made hat t is free for v in ϕ. When a rule mentions
a substitution C1(C2 =⇒ ϕ)v

t then it is assumed that t is free for v in C2 =⇒ ϕ.

In the rules of Figure 6.2.2 T is used as an abbreviation of formulae ϕ with
intro(ϕ) = ∅ (T for Test formula).

Here is an example application of the quantifier intro rule.
Rxx =⇒ Rxx

Rxx =⇒ ∃y ; Rxy

Rxx equals (Rxy)y
x, so this is indeed a correct application of the rule.

Variable refreshment allows the liberation of a captured variable, e.g., of the
first two occurrences of x in ∃x ; Px ; ∃x ; Qx, by means of replacement
by a variable that does not occur as an introduced or free variable in the left
context in the given sequent:
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∃x ; Px ; ∃x ; Qx =⇒ Qx

∃y ; Py ; ∃x ; Qx =⇒ Qx

It is also possible to change the other occurrences of x in the same example.
The following is also a correct application of the rule:

∃x ; Px ; ∃x ; Qx =⇒ Qx

∃x ; Px ; ∃y ; Qy =⇒ Qy

Note that the rule can also be used to recycle a variable:

∃y ; Py ; ∃x ; Qx =⇒ Qx

∃x ; Px ; ∃x ; Qx =⇒ Qx

This application is also correct, for

(∃x ; Px ; ∃x ; Qx =⇒ Qx) = (∃x ; (Py ; ∃x ; Qx =⇒ Qx)y
x).

An example application of the rule for ; right is:

Rxx =⇒ ∃y ; Ryx Rxx =⇒ ∃z ; Rxz

Rxx =⇒ ∃y ; Ryx ; ∃z ; Rxz
; right

In case the condition on the rule for ; right is not satisfied, e.g. for the two
sequents ∼Px ; ∃x ; Px =⇒ ∃x ; ∼Px and ∼Px ; ∃x ; Px =⇒ Px, this
can always be remedied by one or more applications of ∃ Right to the second
premise.

It is not hard to see that the rules of the calculus are sound. The calculus is
also complete. For the proof — a modification of the standard Henkin style
completeness proof for classical first order logic — we refer to [34].

6.3 Computational DPL

In [3] a computational interpretation of standard first order logic is proposed,
with as key ingredient a new interpretation of identity statements (in suitable
contexts) as assignment actions. Computation states are partial maps of vari-
ables to values. The gist of the proposal is this: in a state α that is defined for
a term t but undefined for a variable v, an identity statement v = t or t = v is
interpreted as an instruction to assign the value tα to the variable v.

Let M = (M, I) be a FO model, and let V be a set of variables. Let A := {α ∈
MX | X ⊆ V }. If α ∈MX , then call X the domain of α; a term t is α-closed if
all variables in t are in X, an atom Pt1 · · · tn is α-closed if all ti are α-closed,
and an identity t1 = t2 is α-closed if both of t1, t2 are. Use ↑ for ‘undefined’
and ↓ for ‘defined’. Term interpretation in model M = (M, I) with respect to
valuation α has now to take the possibility into account that the value of the
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term under α is undefined.

vα :=
{
α(v) if v is α-closed
↑ otherwise

(ft1 · · · tn)α :=
{
I(f)tα1 · · · tαn if t1, . . . , tn α-closed
↑ otherwise

An identity t1 = t2 is an α-assignment if either t1 ≡ v, tα1 =↑, tα2 =↓, or t2 ≡ v,
tα1 =↓, tα2 =↑. An α-assignment can be used as a statement that extends a
valuation α with a new value.

A first order predicate with its arguments Pt1 · · · tn is interpreted as a test that
can either fail or succeed, provided that all of the ti are defined for the input
state α; otherwise an error is generated. The empty conjunction is interpreted
as the instruction to succeed in any state α, with output α.

This is then extended to finite conjunctions of implications, negations, disjunc-
tions and existential quantifications, according to the following rule set: [[ϕ]]α
denotes the computation tree for ϕ on input α. A tree is successful if it contains
at least one leaf consisting of just a variable map, failed if all its leafs equal fail.

[[ϕ ∧ ψ]]α

∃vϕ ∧ ψ, α
if v /∈ dom (a), v not free in ψ.

[[ψ]]α

¬ϕ ∧ ψ, α
if ϕ α-closed, [[ϕ]]α failed.

fail

¬ϕ ∧ ψ, α
if ϕ α-closed, [[ϕ]]α successful.

[[ψ]]α

(ϕ1 → ϕ2) ∧ ψ, α
if ϕ1 α-closed, [[ϕ1]]α failed.

[[ϕ2 ∧ ψ]]α

(ϕ1 → ϕ2) ∧ ψ, α
if ϕ1 α-closed,[[ϕ1]]α successful.

[[ϕ1 ∧ ψ]]α [[ϕ2 ∧ ψ]]α

"""
bbb

(ϕ1 ∨ ϕ2) ∧ ψ, α

All cases not listed generate an error.

This computation procedure has the property that for any ϕ and any input
valuation α, the valuations at success nodes in [[ϕ]]α are extensions of α. Com-
putations never change the input valuations. In particular, ∃xϕ∧ψ is treated as
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equivalent with ϕ∧ψ provided the variable conditions hold. Thus, the quantifier
has no computational effect, but acts as a prohibition sign: its only function is
to rule out occurrences of x in the outside context of ∃xϕ.

The computational engine can be adapted to a setting where quantifiers are
read dynamically, by giving assignments v :=? an appropriate computational
meaning. The relational interpretation of v :=? is computationally infeasible,
for the instruction to replace the value of register v by an arbitrary new value is
awkward if one is computing over an infinite domain, say the domain of natural
numbers. As a statement on N, v :=? is an instruction to pick an arbitrary
natural number and assign it to v. Since this can be done in an infinity of ways,
this does not represent any finite computational procedure.

In the computational interpretation of DPL one therefore changes the quantifier
action as follows. Instead of letting the quantifier action v :=? perform its full
duty, the action v :=? is split into two tasks:

1. throwing away the old value of v, and
2. identifying appropriate new values for v.

On infinite domains any attempt to perform task (2) immediately will cause an
infinite branching transition, and therefore this task is postponed. The duty of
finding an appropriate new value for v is relegated to an appropriate identifying
statement for v further on. This move is inspired by the computational inter-
pretation of identity statements from [3]. See [40] and [64] for more information
on computing with DPL.

6.4 Extensions of DPL

DPL can be viewed as the most basic of a hierarchy of formulae-as-programs
languages. We will now look at extensions of DPL with the six operations ∪,
,̆ σ, σ̆, ∩, ∃∃. Extensions of DPL with ∩ (relation intersection) and ∃∃ (local

variable declaration) are studied in [133], while in [40], an extension of DPL
with ∪ (relation union) and σ (simultaneous substitution) is axiomatised, and
ω-completeness is proved for the extension of DPL with ∪, σ and Kleene star.

6.4.1 Extended Semantics

A substitution is a finite set of bindings x 7→ t, with the usual conditions that
no binding is trivial (of the form x 7→ x) and that every x in the set has at
most one binding (substitutions are functional). Examples of substitutions are
{x 7→ f(x)} (“set new x equal to f -value of old x”), {x 7→ y, y 7→ x} (“swap
values of x and y”). If a substitution contains just a single binding we omit the
curly brackets and write just the assignment statement x := t. Note that if x
occurs in t, the assignment x := t is not expressible in DPL. Similarly , there
is no DPL program that is equivalent to {x 7→ y, y 7→ x}.
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Left-to-right substitutions σ have right-to-left counterparts σ̆ (converse substi-
tutions). For pre- and postcondition reasoning with extensions of DPL, converse
substitution and relation converse ˘ are attractive.

A converse substitution is a finite set of converse bindings (x 7→ t)̆ , with the
same conditions as those for substitutions. An example is (x 7→ f(x))̆ (“set old
x equal to f -value of new x”, or “look at all inputs g that differ from the output
h only in x, and that satisfy f(g(x)) = h(x)”).

The semantics definition for the new operators runs:

[[σ]]M = {(g, gx1···xn
d1···dn

) | {x1, . . . , xn} = dom(σ) and di = σ(xi)M,g

[[σ̆]]M = {(gx1···xn
d1···dn

, g) | {x1, . . . , xn} = dom(σ) and di = σ(xi)M,g

[[∃∃x(π)]]M = {(g, kx
g(x)) | for some d : (gx

d , k) ∈ [[π]]M}

[[π1 ∩ π2]]M = [[π1]]M ∩ [[π2]]M

[[π ]̆]M = {(g, h) | (h, g) ∈ [[π]]M}

The ∃∃ operator allows for the declaration of local variables. Simultaneous sub-
stitution permits performing certain computations without the use of auxiliary
variables. Converse and converse simultaneous substitution are useful for pre-
and postcondition reasoning, as they allow us to define the inverses of programs
under certain conditions [52, Chapter 21].

6.4.2 Left-to-Right and Right-to-Left Substitution

Because the semantics of DPL programs is completely symmetric, performing
a substitution in a DPL program can be done in two directions: left-to-right
and right-to-left [133] (see also [131], where substitutions for DPL with a stack
semantics are studied). Left-to-right substitutions affect the left-free variable
occurrences, right-to-left substitutions the right-free (or ‘actively bound’) vari-
able occurrences.

DPL has two directional analogues to the substitution lemma from FOL: one
for left-to-right substitution and one for right-to-left substitution. For left-to-
right substitution we get that g[[σ(π)]]Mh iff gσ[[π]]Mh. Viewing the substitution
itself as a state change, we can decompose this into g[[σ]]Mg′[[π]]Mh. This uses
g[[σ]]Mk iff k = gσ.

The right-to-left substitution lemma for DPL says that g[[σ̆(π)]]Mh iff g[[π]]Mhσ.
Viewing the right-to-left substitution itself as a state change, we can decompose
this into g[[π]]Mh′[[σ̆]]Mh. This uses k[[σ̆]]Mh iff k = hσ. Again, since in general
σ̆ is not expressible in DPL, we have a motivation to extend the language with
converse substitutions.

Use ◦ for relational composition of substitution expressions, defined as follows:
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Definition 30 (Composition of substitutions) Let

σ = {v1 7→ t1, . . . , vn 7→ tn} and ρ = {w1 7→ r1, . . . , wm 7→ rm}

be substitutions. Then σ ◦ ρ is the result of removing from the set

{w1 7→ σ(r1), . . . , wm 7→ σ(rm), v1 7→ t1, . . . , vn 7→ tn}

the bindings w1 7→ σ(ri) for which σ(ri) = wi, and the bindings vj 7→ tj for
which vj ∈ {w1, . . . , wm}.

It is easily proved now that σ ; ρ is equivalent to σ◦ρ. E.g., x := x+1 ; y := x
is equivalent to {x 7→ x+ 1, y 7→ x+ 1}, and x := y ; x := x+ 1 is equivalent
to x := y + 1.

Every DPL(∪, σ) formula can be written with ; associating to the right, as
a list of predicates, quantifications, negations, choices and substitutions, with
a substitution ρ at the end (possibly the empty substitution). Left-to-right
substitution in DPL(∪, σ) is defined by:

σ(ρ) := σ ◦ ρ
σ(ρ ; π) := σ ◦ ρ ; π

σ(∃v ; π) := ∃v ; σ′π where σ′ = σ\{v 7→ t | t ∈ T}
σ(P t̄ ; π) := Pσt̄;σπ

σ(t1 = t2 ; π) := σt1 = σt2 ; σπ

σ(∼(π1) ; π2) := ¬(σπ1) ; σπ2

σ((π1 ∪ π2);π3) := σ(π1;π3) ∪ σ(π2;π3)

A term t is left-to-right free for v in π if all variables in t are input-constrained
in all positions of the left-free occurrences of v in π. A substitution σ is safe for
π if all bindings v 7→ t of σ are such that t is left-to-right free for v in π. This
allows us to prove:

Lemma 31 (Left-to-Right Substitution) If σ is safe for π then g[[σ(π)]]h
iff gσ[[π]]h.

Right-to-left substitution is defined in a symmetric fashion, now reading the
formulae in a left-associative manner, with a converse substitution at the front,
and overloading the notation by also using ◦ for the relational composition of

75



converse substitutions (defined as one would expect, to get σ̆ ◦ ρ̆ = (ρ ◦ σ)̆ ):

σ̆(ρ̆) := σ̆ ◦ ρ̆
σ̆(π ; ρ̆) := π ; σ̆ ◦ ρ̆
σ̆(π;∃v) := σ̆′π ; ∃v where σ̆′ = σ̆\{(v 7→ t)̆ | t ∈ T}

σ̆(π ; P t̄) := σ̆π ; Pσt̄

σ̆(π ; t1 = t2) := σ̆π ; σt1 = σt2

σ̆(π1 ; ∼(π2)) := σ̆π1 ; ∼(σ̆π2)
σ̆(π1 ; (π2 ∪ π3)) := σ̆(π1;π2) ∪ σ̆(π1;π3)

A term t is right-to-left free for v in π if all variables in t are output-constrained
in all positions of the right-free (actively bound) occurrences of v in π. A con-
verse substitution σ̆ is safe for π if all converse bindings (v 7→ t)̆ of σ̆ are such
that t is right-to-left free for v in π. This allows us to prove:

Lemma 32 (Right-to-Left Substitution) If σ̆ is safe for π then g[[σ̆(π)]]h
iff g[[π]]hσ.

6.4.3 Expressive Power

The following results are from [22]; many of the proofs are adapted from proofs
given in [133].

Theorem 33 DPL(∃∃ ) is equally expressive as DPL(∪,∩, ,̆ σ, σ̆,∃∃ ).

Proof. Let a formula π be given, and let V be the set of variables occur-
ring in π. Furthermore, let V ′ and V ′′ be sets of variables, such that V, V ′ and
V ′′ are mutually disjoint and of equal cardinality. Let V = {x1, . . . , xn}, V ′ =
{x′1, . . . , x′n}, and V ′′ = {x′′1, . . . x′′n}. The following function C translates a for-
mula from DPL(∪,∩, ,̆ σ, σ̆,∃∃ ) into a test from DPL.

C(∃y) =
∧

x∈V \{y} x
′ = x

C(Rt1 . . . tn) =
∧

x∈V x
′ = x ; Rt1 . . . tn

C(t1 = t2) =
∧

x∈V x
′ = x ; t1 = t2

C(∼π) =
∧

x∈V x
′ = x ; ∼(∃x′1; . . . ;∃x′n ; C(π))

C(π1;π2) = ∼∼(∃x′′1; . . . ;∃x′′n;C(π1)[x
′
1/x′′

1 ,...,x′
n/x′′

n] ; C(π2)[x1/x′′
1 ,...,xn/x′′

n])
C(π1 ∩ π2) = C(π1);C(π2)
C(π1 ∪ π2) = ∼(∼C(π1);∼C(π2))
C(π )̆ = C(π)[x1/x′

1,...,xn/x′
n,x′

1/x1,...,x′
n/xn]

C(σ) =
∧

x∈dom(σ) x
′ = σ(x);

∧
x∈V \dom(σ) x

′ = x

C(σ̆) =
∧

x∈dom(σ) x = σ(x)[x1/x′
1,...,xn/x′

n];
∧

x∈V \dom(σ) x
′ = x

C(∃∃x.π) = ∼∼(∃x;∃x′;C(π));x′ = x
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Here,
∧

is used as a shorthand for a long composition, which is non-ambiguous
because the order of the particular sentences involved doesn’t matter. By induc-
tion, it can be shown that every π containing only variables in V , is equivalent
to ∃∃x′1 . . . x′n(C(π);x1 := x′1; . . . ;xn := x′n). 2

Theorem 34 DPL(∗,∃∃ ) is equally expressive as DPL(∗,∪,∩, ,̆ σ, σ̆,∃∃ )

Proof. As the proof of Theorem 33, now adding the following clause to the
definition of C.

C(π∗) = ¬¬(∃x′′1 ; . . . ; ∃x′′n; (C(π)[x
′
i/x′′

i ] ;
∧

x∈V x := x′′)∗ ;
∧

x∈V x = x′)

2

It follows immediately that every formula π ∈ DPL(∪,∩, ,̆ σ, σ̆,∃∃ ) is equivalent
to a first order logic formula, in the sense that π can be executed in M with
input assignment g iff the first order translation of π is true in M under g.

Theorem 35 (Visser) DPL(∃∃ ) can be embedded into DPL(∩).

Proof. Let π be of the form ∃∃x(ψ), and let {y1, . . . , yn} = I(π)\{x}, where
I(π) are the introduced variables of π, i.e., the variables in intro(π), i.e., the
variables y such that π contains an ∃y not in the scope of a negation. Then π
is equivalent to (∃x;ψ;∃x) ∩ (∃y1; . . . ;∃yn) 2

In a similar way, the following can be proved:

Theorem 36 DPL(∗,∃∃ ) can be embedded into DPL(∗,∩).

It is also easy to show that ∗ gets us beyond first order expressive power:

Theorem 37 The formula

¬(∃y ; y = 0 ; (∃z ; z = f(y) ; ∃y ; y = f(z))∗ ; x = y)

cannot be expressed in DPL(∪,∩, ,̆ σ, σ̆,∃∃ ).

Proof. On the natural numbers (interpreting f as the successor relation), this
formula defines the odd numbers. Oddness on the natural numbers cannot be
captured in a first order formula with only successor. 2

Definition 38 A substitution {x1 7→ t1, . . . , xn 7→ tn} is full if every xi occurs
in some tj and every ti contains some xj.

Examples of full substitutions are x := f(x) and {x 7→ y, y 7→ x}, while the
substitution x := y is not full. It is easy to see that full substitutions are closed
under composition. Note that a substitution without function symbols is full iff
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it is a renaming. Also, note that any formula of DPL(σ) or any of its extensions
can be transformed into a formula in the same language containing only full
substitutions, by replacing bindings of the form x 7→ t, where t does not contain
variables, by ∃x ; x = t.

Lemma 39 Every formula π ∈ DPL(σ) is equivalent to a formula of one of
the following forms (for some ψ, x, χ, σ, where σ is full):

1. ¬¬χ;σ.
2. ψ;∃x;¬¬χ;σ.

Proof. First rewrite π into a formula that contains only full substitutions.
After that, the only non-trivial case in the translation instruction is the case
of τ ; ψ, where τ is full and ψ is of the first form, i.e., where ψ is equivalent
to ¬¬χ;σ, for some χ, σ, with σ full. In this case, τ ; ψ is equivalent to
¬¬(τ ;χ) ; τ ◦ σ, where τ ◦ σ is full because σ and τ are. 2

Theorem 40 (∃x ∪ ∃y) cannot be expressed in DPL(σ).

Proof. Suppose π ∈ DPL(σ) is equivalent to (∃x∪∃y). Take a model with as
domain the natural numbers, and let R be the interpretation of π. By Lemma
39, it follows that π is equivalent to ψ;∃z;¬¬χ;σ, for some formulae ψ, χ, some
variable z and some full substitution σ (otherwise, π would be deterministic).
Two cases can be distinguished.

1. z does not occur in σ. Without loss of generality, assume that z 6= x. Take
any pair of assignments g, h such that g 6= h and g ∼x h. Then gRh. Take
any k 6= h such that k ∼z h. Then gRk, but g and k differ with respect
to two variables (x and z), which is in contradiction with the fact that π
is equivalent to (∃x ∪ ∃y).

2. z occurs in σ. By the fact that there are no function symbols involved,
and by the fact that σ is full, there must be exactly one binding in σ of
the form u 7→ z. We can apply the same argument as before, now using u
instead of z, and again we arrive at a contradiction.

2

Every substitution is equivalent to a DPL formula containing only full substitu-
tions, and since every full substitution without function symbols is a renaming,
and therefore has a converse that is also a renaming, we get:

Lemma 41 Every converse substitution containing no function symbols is equiv-
alent to a formula in DPL(σ).

This immediately gives:

Theorem 42 (∃x ∪ ∃y) cannot be expressed in DPL(σ, )̆.
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Lemma 43 Every formula in DPL(σ,∪) is equivalent to a formula of the form
π1 ∪ . . . ∪ πn (n ≥ 1) where each πi ∈ DPL(σ).

Theorem 44 (x 7→ f(x))̆ cannot be expressed in DPL(σ,∪).

Proof. Suppose π ∈ DPL(σ,∪) is equivalent to (x 7→ f(x))̆ . By Lemma 43,
we can assume that π is of the form π1 ∪ . . . ∪ πn, where each πi ∈ DPL(σ).
Consider the model with as domain {0, . . . , n}, and where f is interpreted as
the “successor modulo n+ 1” function.

Let us say that a relation R fixes a variable x if for ∀gh ∈ cod(R): g ∼x h implies
that h = g. Analysing each πi, we can distinguish the following two cases.
• πi is equivalent to ¬¬χ;σ, with σ full. Then [[πi]] fixes x.
• πi is equivalent to ψ;∃y;¬¬χ;σ, again with σ full. If y occurs in σ, then

let zi be the (unique) variable such that σ contains a binding of the form
zi 7→ fk(y). If σ does not contain y then let zi = y. Then it must be the
case that [[πi]] fixes zi, for otherwise [[πi]] is not injective.

Thus, we have that every πi fixes some variable zi. Let {z1, . . . , zm} be all
variables that are fixed by some πi (where m ≤ n).

Consider all possible ways of assigning objects from the domain to the variables
z1, . . . zm (assigning 0 to all other variables). This gives us (n+1)m assignments,
each of which is in the co-domain of π. Now, of this space of assignments, each πi

can cover only a small part: at most (n+1)m−1 (since one variable is fixed). So,
together, π1, . . . , πn can cover at most n∗ (n+1)m−1 = (n+1)m− (n+1)m−1 <
(n + 1)m assignments, which means that some assignments are not in the co-
domain of π. This is in contradiction with the fact that π is equivalent to
(x 7→ f(x))̆ . 2

By symmetry, we get the following

Theorem 45 x 7→ f(x) cannot be expressed in DPL(σ̆,∪).

Finally we have

Theorem 46 ∃∃ y(y = x;∃x ; Rxy) cannot be expressed in DPL(∪, σ, )̆.

Proof. The same proof as for Theorem 44 can be used. Assume a signature
without function symbols. Let the domain of the model be the set {0, . . . , n}.
Let R be interpreted as “successor modulo n + 1”. Then R is interpreted in
the same way as f was in the proof of Theorem 44. Notice that, under this
interpretation, ∃∃ y(y = x ; ∃x ; Rxy) means the same as (x 7→ f(x))̆ did
in the proof of Theorem 44. It follows that ∃∃ y(y = x;∃x ; Rxy) cannot be
expressed in DPL(∪, σ). Since the signature contains no function symbols, it
follows by Lemma 41 that this formula cannot be expressed in DPL(∪, σ, )̆
either. 2
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6.4.4 DPL and Dynamic Relational Algebra

Yet another way in which the logic of DPL and sundry systems has been studied
is by looking at the connection with dynamic relational algebra.

A dynamic relation algebra is an algebra for the signature {⊥,∼, ; }, i.e., it
consists of all binary relations on a set B (all members of P(B × B)), with ⊥
interpreted as the empty relation , ; as relation composition, and ∼ as dynamic
negation. A dynamic relation algebra is completely determined by its carrier
set B.

Note that this is different from the usual relational algebra in the sense of [122],
where the signature consists of the Boolean operations {−,∩,∪,⊥,>} and the
order operations plus the identity relation {◦, ,̆ id}. In fact, dynamic relation
algebra can be viewed as a small non-Boolean fragment of relation algebra.
Dynamic negation can be defined in ordinary relation algebra by means of:

∼R := id ∩ −(R;>)

Hollenberg [72] gives the following axiomatisation of dynamic relation algebra:

∼R;R = ⊥ (falsum definition)
R;⊥ = ⊥ (falsum right)
id;R = R (identity left)

R; (S;T ) = (R;S);T (associativity)
∼R;∼S = ∼S;∼R (test permutation)

R = (∼∼R);R (domain test)
∼∼(∼R;∼S) = ∼R;∼S (test composition)
∼(R;S);R = (∼(R;S)R);∼S (modus ponens)

∼(R : (S ∨ T )) = ∼((R : S) ∨ (R;T )) (distribution),

where R ∨ S is an abbreviation of ∼(∼R;∼S).

Note that ∼R;R = ⊥ can be viewed as a definition of ⊥. Order is important,
for R;∼R does not always denote the empty relation.

Tests are subsets of the identity relation. ∼R is always a test, and R is a test iff
∼∼R = R, so ∼∼(∼R;∼S) = ∼R;∼S expresses that the composition of two
tests is again a test.

The fact that ∼(R;S);R = (∼(R;S)R);∼S is called modus ponens is explained
by defining R⇒ S as ∼(R;∼S) and substituting ∼S for S. This gives:

(R⇒ S);R = (R⇒ S);R;∼∼S.

Hollenberg [72] has a proof that this axiomatisation is sound and complete for
dynamic relation algebra. In [74] it is proved that in any model (M,⊥,∼, ; )
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of this axiom system, dynamic negation is fully determined by the underlying
monoid (M, ; ).

In [16] it was shown that DPL-negation ∼ is the only permutation-invariant
operator in dynamic relational algebra that satifies the following conditions:

∼⊥ = id
∼(∪iRi) = ∪i(∼Ri)

∼∼R ∪ (R;>) = R;>
∼R;R = R.

Permutation-invariant operators are operators O satisfying

π(O(R,S)) = O(π(R), π(S))

for every permutation π on the state set on which the relations are defined.

This result about DPL-negation led [16] to conjecture that DPL is complete
for dynamic relational algebra, in the sense that counterexamples to relational
identities in the vocabulary {⊥,∼, ; } are expressible in DPL. This conjecture
was proved in [132].

Theorem 47 (Visser) Schematic validity in DPL is complete for dynamic
relational algebra.

Proof. Suppose some relational equation E in the vocabulary {⊥,∼, ; } is
refuted by a family of binary relations {Ra | a ∈ A} over some carrier set B,
where A is the set of atomic relation symbols occurring in the equation E.

We will consider DPL formulae over the variables x, y. Consider the space B{x,y}

of all assignments in B to x and y.

DPL formulae in x, y denote relations between input and output assignments
to {x, y}. For each Ra we define a new relation R̂a on B{x,y}, by setting

R̂a = {({x 7→ s1, y 7→ s2}, {x 7→ s3, y 7→ s4}) | Ras1s3}.

The crucial insight is that the function g 7→ g(x) is a functional bisimulation
(also known as: a p-morphism) from the transition system of the R̂a on B{x,y}

to the transition system of the Ra on B, since ∼ and ; are safe for bisimulation.

Let the new relation symbol I denote identity in (B, {Ra | a ∈ A}). Then the
relations R̂a can be defined in DPL by means of:

∃y;Raxy;∃x; Ixy;∃y.

If the relations at the lefthand and the righthand side of E are different, their
originals under g are different too. Thus, an inequality defined in terms of ∼
and ; on (B, {Ra | a ∈ A}) corresponds to an inequality on

(B{x,y}, {R̂a | a ∈ A}).

81



This shows that the left- and righthand sides of the equation E yield a pair of
non-equivalent DPL formulae. 2
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7 Dynamic logic and natural language semantics

7.1 Introduction

As we saw in Section 6 the difference between dynamic predicate logic (DPL)
and quantified dynamic logic (QDL) is that whereas the latter makes a dis-
tinction, both in the syntax and in the semantics, between static formulae and
dynamic programs, the former has basically only one kind of construct: pro-
grams. All formulae are programs, so there is no distinction either in syntactic
category or in semantic type, between different kinds of linguistic construc-
tions: all constructs are given a dynamic interpretation. The motivation for this
is not a matter of expressive power, but one of ‘ideology’. The difference can
be characterised as follows: whereas QDL acknowledges two different notions of
meaning: one descriptive and one imperative, DPL embodies a unified concep-
tion: all meanings are relations between states. By doing so, DPL instantiates a
conception of meaning that has become prominent in natural language seman-
tics from the early eighties onward and that sometimes is summarised in the
slogan ‘Meaning is context change potential’.

This view on meaning is often referred to as ‘dynamic semantics’. Various peo-
ple have contributed to it, motivated by various concerns. Broadly speaking we
may discern two main trends. First of all there is work that focuses on epistemic
and pragmatic issues, that arise in connection with presuppositions, the struc-
ture of information exchange, but also with conditionals and modal expressions.
Very influential in this trend is the early work by Stalnaker on assertion and
presuppositions [115,116]. Other early work is that of Veltman [125]. A second
influx of ideas derives from issues concerning semantics, in particular pronom-
inal reference and quantification. This is exemplified by work of Heim [65, 66]
and Kamp [79, 81]. Somewhat orthogonal to these two trends is the work on
game-theoretical semantics for natural language explored by Hintikka and oth-
ers [69]. Another approach that has clear affinities with a dynamic approach is
that of situation semantics [10].

The variety of empirical subjects that prompted the use of dynamic concepts
have resulted in an analogous variety of systems. Also, different authors en-
tertain different views on how the use of these concepts affect the notion of
meaning as it applies to natural language. Some maintain a truth conditional,
propositional notion of meaning and relegate dynamics to the realm of lan-
guage use, i.e., pragmatics, whereas others argue that the notion of meaning
as such needs to be viewed as a dynamic concept. Yet others take a middle
position and locate the dynamic aspects in the construction of representations
that themselves have a static interpretation. Cf., [56, 80, 117] for discussion. In
what follows we focus on those systems in which the use of dynamic concepts
directly interacts with the concept of meaning that is modelled.

The general characteristic of dynamic systems is that formulae are interpreted as
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entities that change the context. In natural language semantics and pragmatics,
‘context’ is an umbrella concept, that covers a wide variety of elements that
are somehow tied to the use and the interpretation of expressions. Speaker
and addressee, time and place, elements from preceding discourse, objects and
properties introduced in conversation, information of speech participants about
the world, themselves, each other, and so on, — all these factors may be involved
in linguistic exchanges.

Within a particular system the relevant aspects of the context are represented
in the system as states. Which aspects counts as relevant depends on the specific
application and/or the expressive resources of the system. For example, in DPL
states are simply assignments of values to variables, and this reflects that DPL is
focused on those aspects of context that concern binding relationships between
antecedents, i.e., quantified noun phrases and proper names, and anaphoric
expressions, i.e., pronouns. When one extends or alters the scope of application,
the notion of a state changes as well, resulting in a modification or extension
of the original system. In this type of system states consist of objects and
their properties and relationships and dynamic interpretation changes them by
adding new objects, establishing new relationships, and so on.

As we noted, another important aspect of the context is the information of the
speech participants. On a dynamic view the utterance of a sentence is to be
regarded as an instruction to the speech participants to update their informa-
tion with the content of the utterance. (Hence the name ‘update semantics’.) A
system modelling this will have states that represent the informational states of
speech participants, e.g., as sets of propositions, sets of worlds, possibilities, or
situations. Utterances then are interpreted as updates of such states. For exam-
ple, a dynamic (‘update’) semantics for a conditional ϕ → ψ would (roughly)
be defined as an operation that checks whether every update of a given set of
possibilities with the antecedent satisfies satisfy the consequent.

Actually, these points of view are not incompatible. For example, we can look
upon DRT- and DPL-like systems as concerned with information as well, viz.,
with information about the discourse: the entities that have been introduced,
their properties and relationships, and the various possibilities that are avail-
able for anaphoric reference. Information in the update sense is then information
about the world: information about the actual state of things as well as possibil-
ities that are still open. As a matter of fact, combining these two perspectives is
a more interesting exercise than just putting two orthogonal systems together:
there are interesting interactions between the two.

In the remainder of this section we start with the use of dynamic logic in
accounting for certain problems in semantics . Then we will turn to systems
motivated by epistemic-pragmatics concerns. Finally, we will briefly look at
combined systems.
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7.2 Dynamic Semantics

7.2.1 Dynamic Phenomena

Discourse Representation Theory (DRT, [41, 79, 81]), File Change Semantics
(FCS, [66]), dynamic predicate logic (DPL, [55]) are systems that originated
in the late eighties, early nineties of the last century. Their initial motivation
was linguistic. They grew out of attempts to deal with certain facts concern-
ing anaphora and binding that had resisted adequate treatment in the Mon-
tague framework that dominated natural language semantics at the time. Other
important areas of application are tense and aspect, presupposition, plural-
ity. For more extensive discussion of the linguistic applications of these sys-
tems, cf., [25], [17], and the references given above. Here it suffices to give just
a brief illustration of one example of the kind of phenomena these systems
were intended to deal with: scope and binding. Basically, in this area there are
two groups of problems: cross-sentential anaphoric relationships and so-called
‘donkey’-constructions, which present a particular form of intra-sentential bind-
ing.

Cross-sentential anaphora refers to constructions such as:
A man entered the pub. He wore a black hat.

The pronoun ’He’ in the second sentence is most naturally taken to refer back,
i.e., as an anaphoric reference to, the referent of ‘a man’ in the first sentence.
At the time there was a preference for dealing with anaphora – antecedents
relationships in terms of variable binding: the antecedent ‘a man’ semantically
operates as a quantifier, binding the variable that corresponds to the pronoun.
The problem with this type of cross-sentential antecedent – anaphora relation-
ships is, of course, that the binding can be established only when the discourse
is finished. And even then, one must take care with such antecedents as ‘One
man’, so as not to end up with the wrong interpretation (‘One man ϕ. He ψ’ is
not the same as ‘One man ϕ and ψ’)

Donkey anaphora is connected with intra-sentential binding, e.g., between an-
tecedent and consequent in conditional constructions:

If John spots a good investment opportunity, he grasps it.
The fact to be accounted for here is the binding of the anaphoric pronoun
in the consequent by the indefinite noun phrase in the antecedent in such a
way that the indefinite gets ‘universal’ force: the sentence is most naturally
taken to express that John grasps every opportunity he sees. (Not all sentences
with this structure have a universal (also called ‘strong’) reading: ‘If I have a
quarter, I’ll put it in the parking meter’ (Pelletier & Schubert). Cf., [82] for
extensive discussion of so-called ‘weak’ and ‘strong’ readings of these kinds of
constructions.)

Note that in each case the problem is not finding an adequate representation
of the meanings of these sentences in (first) order logic. Rather, the problem
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is coming up with such a representation while using the standard meanings of
the expressions involved, and deriving the representation in an ‘on line’, i.e.,
incremental fashion, without delayed interpretation or after the fact re-analysis.

7.2.2 DPL again

Although it was not the first system to be developed, we focus on DPL be-
cause it is the most ‘pure’ instantiation of a dynamic view on meaning. It was
developed because of a certain dissatisfaction with the representational, non-
compositional nature of, e.g., DRT. It intends to do away with dynamically
constructed representations as part of the semantics and wants to locate the
dynamics purely in the meanings themselves.

The system The standard reference is [55], earlier similar views were developed
in [9] and [118]. The original DPL-system stayed as close as possible to standard
first order logic FOL: it employed the same language and only changed the
semantics. In section 6 the system was given in a form that stayed close to that
of QDL. What follows is the original formulation, i.e., with the syntax of FOL
and an adapted semantics.

t ::= v | c
ϕ ::= Rt1 . . . tn | t1 = t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃vϕ

The other connectives and the universal quantifier can be defined in the usual
fashion. (But note that compared to FOL the choice of base logical constants
is limited.)

The semantics uses the same ingredients as that of FOL. A model M is a pair
〈E,F 〉, where E is a non-empty set and FM(c) ∈ E and FM(Rn) ⊆ En. States
g ∈ S are assignments V → E. As usual g ∼v h denotes the state h that differs
from g at most on v.

Interpretation of terms is given by: [[t]]Mg = g(t), FM(t) for variables and con-
stants respectively. Formulae denote subsets of S × S:

g[[Rt1 . . . tn]]Mh iff g = h& 〈[[t1]]Mg . . . [[tn]]Mg 〉 ∈ FM(R)

g[[ti = tj ]]Mh iff g = h& [[ti]]Mg = [[tj ]]Mg

g[[¬ϕ]]Mh iff g = h& there exists no g′ : g[[ϕ]]Mg′

g[[ϕ1 ∧ ϕ2]]Mh iff there exists a g′ : g[[ϕ1]]Mg′ & g′ [[ϕ2]]Mh

g[[∃vϕ]]Mh iff there exists a g′ : g ∼v g
′ & g′[[ϕ]]Mh

Note that although all formulae denotes relations between states (assignments),
only conjunction and existentially quantified formulae actually change states,
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the others are tests. Conjunction is effectively re-interpreted as program com-
position, and an existential quantified formula has the cumulative effect of re-
setting the state with respect to the variable and feeding the result into the
formulae. It is easy to see that

for all M, g, h : g[[∃xϕ]]Mh iff g[[x :=? ; ϕ]]Mh

The definitions of truth and validity as given in section 6 carry over, as do the
notions of production set and satisfaction set. Equivalence as identity of inter-
pretation transcends identity of input (satisfaction set) and output (production
set). Cf. section 6 for an example in DPL′. ¬(Px ∧ ¬Px) and ∃x¬(Px ∧ ¬Px)
both have S as their satisfaction set and as their production set. But their
meanings are different: the identity relation on S, and the set of all pairs g, h
such that g ∼x h, respectively. Note the meaning of a test can be completely
characterised in terms of its satisfaction set and its production set and that all
valid tests denote the identity relation on S.

Some characteristic examples The following two examples exhibit character-
istic properties of the semantics of DPL. Both concern the extended binding
force of the existential quantifier.

The first one concerns the interaction of the existential quantifier and conjunc-
tion. In ∃xPx ∧ Qx the existential quantifier ∃x randomly assigns a value to
x that is passed on to Px, and tested. If it succeeds, conjunction, which is
relational composition, passes it on to Qx, to be tested again. (We leave out
reference to the model M whenever this does not lead to confusion.)

g[[∃xPx ∧Qx]]h iff there exists a g′ : g[[∃xPx]]g′ & g′ [[Qx]]h
iff there exists a g′ : g ∼x g

′ & g′(x) ∈ F (P ) & g′(x) ∈ F (Q)

This allows DPL to deal with cross-sentential anaphora of the kind: ‘A man
. . . . He . . . ’

Note that extended binding can also occur across other quantifiers, as e.g., in
∃xPx ∧ ∃yRxy, where the occurrence of x in Rxy is bound by ∃x; and across
negation: in ∃xPx ∧ ¬Qx the x in ¬Qx is also bound by ∃x. Note that since
we do not prohibit the same quantifier to occur more than once we have to be
careful which occurrence of a quantifier binds a particular variable occurrence:
in ∃xPx∧Qx∧∃xHx the occurrence of x in Hx is bound by the last occurrence
of ∃x.

The second example of extended binding concerns the behaviour of the existen-
tial quantifier in conditional constructions. Consider the formula ∃xPx→ Qx,
which is shorthand for ¬(∃xPx∧¬Qx). Here we have an existential quantifier in
the antecedent of a conditional and an occurrence of x in the consequent that
in FOL would be free. However, if we compute its meaning, we see that the
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second occurrence is bound by the existential quantifier, and, moreover, that
the latter gets universal force:

g[[∃xPx→ Qx]]h iff g[[¬(∃xPx ∧ ¬Qx)]]h
iff there exists no g′ : g[[∃xPx]]g′ &g′ [[¬Qx]]h
iff for all g′ : if g[[∃xPx]]g′ then g′ [[Qx]]h

So, every way of re-setting the value of x to one that satisfies P is one that
satisfies Q.

Note that the extended binding force of the existential quantifier is blocked by
negation: in ¬∃xPx ∧ Qx the occurrence of x in Qx is free. This is because
the negation turns ∃xPx into a test: the value assigned by ∃x to x remains
local to Px, and is not passed on to Qx. Thus in ∃xPx → Qx the binding of
the existential quantifier in the antecedent extends to the consequent, but not
beyond the formula as a whole.

Thus we can distinguish between formulae that are internally dynamic, i.e., in
which an existential quantifier binds variables outside its scope, but only in
the formula itself; and those that are externally dynamic, in which existential
quantifiers have the power to bind variables in additional formulae that are
added to its right. The latter are responsible for DPL’s treatment of extra-
sentential, i.,e., discourse binding; the former deal with internal binding from
antecedent to consequent.

Other properties Other characteristic properties of the DPL-logic follow in a
straightforward manner from the semantics. Double negation fails in view of
negation blocking dynamic binding; conjunction and the existential quantifier
can not be defined in terms of, e.g., negation, disjunction and the universal
quantifier, because of the asymmetry of the respective expressions w.r.t. bind-
ing; conjunction is not unconditionally commutative and idempotent; the exis-
tential and universal quantifiers are not fully interdefinable; and finally, we can
not take alphabetic variants of existentially quantified formulae.

As for entailment, neither inclusion of truth conditions, nor meaning inclusion,
provide a suitable definition. The reason is that we want existential quantifiers
in the premises of an argument to be able to bind variables in the conclusion,
in view of the possibilities of antecedent – anaphora links in natural language
reasoning: from ‘A man came in carrying a stick’ we want to be able to con-
clude ‘So, he was carrying a stick’. So ψ follows from ϕ1 . . . ϕn iff in all models
every interpretation of the premises (in sequential order, of course) leads to a
successful interpretation of the conclusion:

ϕ1, . . . , ϕn |= ψ iff
for all M, g, h : if g[[ϕ1 ∧ · · · ∧ ϕn]]Mh , then there exists an h′ : h[[ψ]]Mh′
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In terms of DPL′ (see section 6):

ϕ1, . . . , ϕn |= ψ iff for all M : [[[ϕ1 ; · · · ; ϕn]〈ψ〉>]]M

equals the set of all assignments.

It is easily checked that, e.g., ∃xPx |= Px, as required. Further we have:

ϕ1, . . . , ϕn |= ψ iff |= (ϕ1 ∧ · · · ∧ ϕn) → ψ

Notice that if no binding occurs from premises to conclusion, the notion of
entailment defined boils down to the truth-conditional one. It is easily checked
that entailment is not reflexive and also not transitive.

DPL being a first order language, it differs from FOL in its non-standard bind-
ing behaviour. As we saw in section 6, FOL can be embedded in DPL in a
straightforward way. Since DPL′ can be translated into FOL (cf., section 6),
the same holds for DPL.

Context As was noted above, contexts in DPL are assignments of values to
variables, satisfying certain descriptive conditions. What they represent are the
individuals and their properties that have been introduced in a discourse (a
text, a conversation), e.g., by proper names or descriptions, or by indefinite
NPs. Other expressions, such as pronouns, may draw from this pool of avail-
able referents. In DPL this is accounted for via the use of (indexed) variables.
Context-change is represented through operations on assignments, as, for ex-
ample, by the existential quantifier, which ‘resets’ the context with regard to a
particular variable. (Cf., the formulation of DPL in section 6, that brings this
out more explicitly, by regarding the existential quantifier as a construct of its
own.)

7.2.3 Discourse Representation Theory

Now we briefly introduce a very streamlined and basic version of Discourse
Representation Theory (DRT). For an extensive introduction, the reader is
referred to the standard [81]. The differences between DPL and DRT are quite
like those between DPL and DPL′ or DPL and QDL: whereas DPL is a ‘pure’
language in which no distinction is made between programs and statements,
DRT, like DPL′ and QDL, does make such a distinction, between what are called
‘conditions’ and what are called ‘discourse representation structures’ (DRSs).
This syntactic distinction is reflected in the semantics, and is motivated by
what Kamp in his seminal paper on DRT [79] claims is essential for a proper
account of natural language meaning, viz., that it ‘combines a definition of truth
with a systematic account of semantic representations’ (op.cit., p.1). Thus, the
dynamics in DRT takes place in the building of semantic representations.
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The system The canonical format of DRT uses so-called box-notation (see be-
low for some examples). In order to facilitate comparison, however, we recast
the syntax and semantics of DRT in a linear format. The non-logical vocabu-
lary consists of n-place predicates, individual constants, and variables. Logical
constants are negation ¬, implication →, and identity =.

DRT terms are constants and variables:

t ::= x | c

Conditions ϕ and DRSs Φ are defined as follows:

ϕ ::= Rt1 . . . tn | t1 = t2 | ¬Φ | Φ1 ⇒ Φ2

Φ ::= [x1 . . . xk][ϕ1 . . . ϕn]

Disjunction of DRSs can be defined in the usual way.

In the box notation, a DRS looks like this:

x1 . . .xk

ϕ1
...
ϕn

where the ϕi are conditions and the xi introduced variables. An example of a
conditional DRS built from two other DRSs in box notation looks like this:

x, y
Px, Qy, Rxy ⇒

Sxy

The language of DRT resembles that of QDL and DPL′ in its ‘mixed mode’
nature. This carries over to the semantics.

Models for the DRS-language are the same as those for DPL, as are assignments
and the interpretation of terms. Conditions are interpreted as FOL-formulae,
whereas DRSs get a relational meaning. Thus, like in the case of QDL (cf.,
section 6)), the semantics is defined by simultaneous recursion. Note that we
use total assignments instead of partial ones, as is customarily the case in DRT.
For present purposes, the difference can be neglected.

M |=g Rt1 . . . tn iff 〈[[t1]]Mg . . . [[tn]]Mg 〉 ∈ FM(R)

M |=g t1 = t2 iff [[t1]]Mg = [[t2]]Mg }
M |=g ¬Φ iff there exists no h : g[[Φ]]Mh

M |=g Φ1 ⇒ Φ2 iff for all h : if g[[Φ]]
M
h there exists a k : h[[Φ2]]Mk

g[[[x1 . . . xk][ϕ1 . . . ϕn]]]Mh iff g ∼x1...xk
h& M |=h ϕ1 . . .M |=h ϕn
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DRT and DPL The close link between DRT and DPL is illustrated by the
following embedding of DRT into DPL:

(Rt1 . . . tn)† = Rt1 . . . tn

(ti = tj)† = ti = tj

(¬Ψ)† = ¬(Ψ†)
(Φ1 ⇒ Φ2)† = Φ1† → Φ2 †

([x1 . . . xk][ϕ1 . . . ϕn])† = ∃x1 . . .∃xn[ϕ1 † ∧ . . . ∧ ϕn†]

The embedding is meaning-preserving in the following sense:

M |=g ϕ iff there exists an h : g[[ϕ†]]Mh
g[[Φ]]Mh iff g[[Φ†]]Mh

Context As it turns out, the notion of a context in DRT does not differ all
that much from the one DPL is concerned with: both model basically the same
features of a discourse context. But the two systems model context in different
ways: DPL uses only assignments and operations on them, DRT uses special
types of expressions in its syntax.

7.2.4 Variations and extensions

A number of variations on DRT, DPL and other systems have been proposed in
the literature. Some are motivated by reasons of formal simplicity and elegance,
others by conceptual and descriptive reasons. It is beyond the scope of this
article to discuss them extensively; here it suffices to point to a number of
issues motivating these alternatives.

Partial assignments One difference between DPL and DRT is the use that the
former makes of total assignment functions, instead of the partial ones used by
DRT. The choice for partial assignments, that interpret only the variables that
are explicitly introduced in a discourse, is a natural one from the perspective of a
procedural interpretation, which was one of the motivations of the original DRT-
system (cf. above). The use of total assignments in the original DPL system
was mainly motivated by a wish to stay as close as possible to the semantics
of standard first order logic. Reformulating the DPL-semantics using partial
assignments is an easy exercise. We simply let the interpretation be undefined
in case a formula contains occurrences of variables that are not in the domain of
the assignment function. The only interesting case is the existential quantifier.
Here we should let the quantifier extend the domain of the assignment function,
if necessary, and let it assign an arbitrary value to the new element in its domain.
Cf., e.g., [129] and the system in section 7.4 below.
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Fresh variables One of the advantages of using partial assignments is that it
becomes more natural to constrain the use of variables in the syntax. Recall
some of the more awkward logical properties of DPL, such as the failure of
reflexivity of entailment:

Px ∧ ∃xPx 6|= Px ∧ ∃xPx

This essential depends on the possibility of a variable occurring in the same
formula first free and then bound by an existential quantifier. One way of pre-
venting this (and similar) issues, is to require the existential quantifier to always
use a ‘fresh’ variable. Cf., also the discussion below, on incremental semantics.

Compositionality As the preceding discussion will have made clear, the discus-
sion between DPL and DRT centres on compositionality. In DRT the represen-
tational level of DRSs plays an essential role, and the cognitive plausibility of the
resulting system depends on their presence (cf., the discussion in [79, section 1]).
Other formulations of a compositional alternative for DRT have been proposed
by, among others, Zeevat [136], Muskens [97], and Van Eijck and Kamp [41].
DPL’s reliance on an indexing mechanism on variables to account for anaphoric
binding has been criticised since it diminishes the plausibility of the appeal to
compositionality considerations, and has spurred a number of alternative ap-
proaches:, such as Dekker’s ‘predicate logic with anaphora’ [32], [21]. Cf., also
the incremental system discussed below in section 7.2.5, and the combination
of update semantics and dynamic semantics in section 7.4.

Stacks and registers The use of DPL as a theory of testing an resetting registers
was explored by Visser [133] and Vermeulen [129,130]. The basic idea of a stack
semantics for DPL is developed in [131]. The idea is to replace the destructive
assignment of ordinary DPL, which throws away old values when resetting, by a
stack valued one, that allows old values to be re-used. Stack valued assignments
assign to each variable a stack of values, the top of the stack being the current
value. Existential quantification pushes a new value on the stack, but there is
also the possibility of popping the stack, to re-use a previously assigned value.
Adding explicit ‘push’ and ‘pop’-operators to the language, has some interesting
consequences. An illustrative example concerns its efficiency in expressing mixed
scopes.The idea is as follows. We add [x and x] as two new programs and define
their semantics as follows:

g[[ [x ]]h iff g[x〉h
g[[ x] ]]h iff h[x〉g

where g[x〉h holds by definition iff there is a d in the domain with h(x) = d :
g(x), (i.e., h(x) equals the result of pushing d on top of the x-stack of g), and
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h(y) = g(y) for all y with y 6= x. Clearly, the programs [x and x] then function
as pop and push for the x-stack.

Now consider the FOL-statement:

∃x∃y∃z∃u(Rxy ∧Ryz ∧Rzu ∧Rux)

This can be expressed in DPL more succinctly as:

∃x∃y(∃zRxy ∧ ∃x(Ryx ∧Rxz) ∧Rzx)

But using the push and pop programs we can express the same in terms of only
two variables.

[x [yRxy[xRyx[yRxyx]Ryxy] x] y]

The variable free indexing of [36] is a special case of the Vermeulen method,
where there is just a single variable. Below we take a variation on DPL with
variable free indexing as point of departure for the development of a fragment
of dynamic Montague grammar.

7.2.5 Incremental Semantics

Destructive assignment is the main weakness of DPL as a basis for a composi-
tional semantics of natural language: in DPL, the semantic effect of a quantifier
action ∃x is such that the previous value of x gets lost. In what follows we
first replace DPL by the strictly incremental system from [36]. Subsequently,
we develop its type theoretic version. This will allow us to give of a fully compo-
sitional and incremental semantics that is without the destructive assignment
flaw. Similar ideas were developed in [30,31].

We start with a slight variation of the DPL language, in which ∃ is a separate
expression and ; is used for dynamic conjunction. Assume a first order model
M = (D,F ). We will use contexts c ∈ D∗, and replace variables by indices into
contexts. The set of terms of the language is N. We use |c| for the length of
context c.

Given a model M = (D,F ) and a context c = c[0] · · · c[n − 1], where n = |c|
(the length of the context), we interpret terms of the language by means of
[[i]]c = c[i]. Note that [[i]]c is undefined for i ≥ |c|; we will therefore have to make
sure that indices are only evaluated in appropriate contexts. ↑ will be used for
‘undefined’. This allows us to define the two relations

M |=c Ri1 · · · in and M =| cRi1 · · · in

by means of:

M |=c Ri1 · · · in :⇔ ∀j(1 ≤ j ≤ n→ [[ij ]]c 6= ↑) and 〈[[i1]]c, . . . , [[in]]c〉 ∈ F (R),
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M =| cRi1 · · · in :⇔ ∀j(1 ≤ j ≤ n→ [[ij ]]c 6= ↑) and 〈[[i1]]c, . . . , [[in]]c〉 /∈ F (R),

and similarly for the relations:

M |=c i1 = i2, M =| ci1 = i2

If c ∈ Dn and d ∈ D we use ĉ d for the context c′ ∈ Dn+1 that is the result of
appending d at the end of c.

The interpretation of formulae can now be given as a map in D∗ ↪→ P(D∗) (a
partial function, because of the possibility of undefinedness):

[[∃]](c) := {ĉ d | d ∈ D}

[[Ri1 · · · in]](c) :=


↑ if ∃j(1 ≤ j ≤ n and [[ij ]]c = ↑)
{c} if M |=c Pi1 · · · in
∅ if M =| cPi1 · · · in

[[i1 = i2]](c) :=


↑ if [[i1]]c = ↑ or [[i1]]c = ↑
{c} if M |=c i1 = i2

∅ if M =| ci1 = i2

[[¬ϕ]](c) :=


↑ if [[ϕ]](c) = ↑
{c} if [[ϕ]](c) = ∅
∅ otherwise

[[ϕ1 ; ϕ2]](c) :=


↑ if [[ϕ1]](c) = ↑

or ∃c′ ∈ [[ϕ1]](c) with [[ϕ2]](c′) = ↑⋃
{[[ϕ2]](c′) | c′ ∈ [[ϕ1]](c)} otherwise.

The definition of [[ϕ1 ; ϕ2]] employs the fact that all contexts in [[ϕ]](c) have the
same length This property follows by an easy induction on formula structure
from the definition of the relational semantics. Thus, if one element c′ ∈ [[ϕ1]](c)
is such that [[ϕ2]](c′) = ↑, then all c′ ∈ [[ϕ1]](c) have this property.

Dynamic implication ϕ1 → ϕ2 is defined in terms of ¬ and ; by means of
¬(ϕ1 ; ¬ϕ2). Universal quantification ∀ϕ is defined in terms of ∃,¬ and ; as
¬(∃ ; ¬ϕ), or alternatively as ∃ → ϕ.

One advantage of the use of contexts is that indefinite NPs do not have to
carry index information anymore. Thus a sentence such as ‘Some man loved
some woman’ can be analysed as:

∃ ; Mi ; ∃ ; Wi+ 1 ; Li(i+ 1)

where i denotes the length of the input context. On the empty input context,
this gets interpreted as the set of all contexts [e0, e1] that satisfy the relation
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‘love’ in the model under consideration. The result of this is that a subsequent
sentence ‘He0 kissed her1.’ can use this contextual discourse information to pick
up the references. Thus we assume that pronouns carry index information. But
if a procedure for reference resolution of pronouns in context is added we can
do away with that assumption.

7.2.6 Extension to Type Logic

Compositionality has always been an important concern in the use of logical
systems in natural language semantics. And it is through the use of higher order
logics (such as type theory) that a thoroughly compositional account of, e.g.,
the quantificational system of natural language could be achieved. The prime
example of this development is that of classical Montague Grammar [92–94].
Cf., [100] for an overview. It is only natural, therefore that the dynamic approach
was extended to higher order systems.

However, the various proposals that have been made, such as [24,33,41,54,77,
84, 88, 95–97], all share a problem with the DPL-system, viz., that of making
re-assignment destructive. Interestingly, DRT itself does not suffer from this
problem: the discourse representation construction algorithms of [79] and [81]
are stated in terms of functions with finite domains, and carefully talk about
‘taking a fresh discourse referent’ to extend the domain of a verifying function,
for each new noun phrase to be processed.

Here we present the extension to typed logic of incremental dynamics that
is based on variable free indexing and that avoids the destructive assignment
problem.

We now extend incremental dynamic semantics to a higher order language.
The resulting system is called Incremental Type Logic (ITL) [35]. Exploiting
techniques from polymorphic type theory [67, 91] it uses type specifications of
contexts that carry information about the length of the context. E.g., the type
of a context is given as [e]i, where i is a type variable. Here, we will cavalierly
use [e] for the type of any context, and ι for the type of any index, thus relying
on meta-context to make clear what the current constraints on context and
indexing into context are. In types such as ι→ [e], we will tacitly assume that
the index fits the size of the context. Thus, ι→ [e] is really a type scheme rather
than a type, although the type polymorphism remains hidden from view. Since
ι → [e] generalises over the size of the context, it is shorthand for the types
0 → [e]0, 1 → [e]1, 2 → [e]2, and so on.

Let us illustrate this by considering how this applies to the ordinary static
higher order translation of an indefinite noun phrase. In extensional Montague
grammar ‘a man’ translates as:

λP∃x(man x ∧ Px).
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In ITL this becomes:

λPλcλc′.∃x(man x ∧ P |c|(ĉ x)c′).

Here P is a variable of type ι → [e] → [e] → t, while c, c′ are variables of
type [e] (variables ranging over contexts). The translation as a whole has type
(ι → [e] → [e]) → [e] → [e] → t. The P variable marks the slot for the VP
interpretation. |c| gives the length of the input context, i.e., the position of the
next available slot. Note that ĉ x[|c|] = x.

Note that the translation of the indefinite NP does not introduce an anaphoric
index, as would be the case for example in DMG [54]. Instead, an anaphoric
index i is picked up from the input context. Also, the context is not reset but
incremented: context update is not destructive, whereas it is in DPL and DMG.

In order to obtain a proper dynamic higher order system we first define the
appropriate dynamic operations in typed logic. Assume ϕ and ψ have the type
of context transitions, i.e., type [e] → [e] → t, and that c, c′, c′′ have type [e].
Note that ˆ is an operation of type [e] → e→ [e].

E := λcc′.∃x(ĉ x = c′)
∼ϕ := λcc′.(c = c′ ∧ ¬∃c′′ϕcc′′)

ϕ ; ψ := λcc′.∃c′′(ϕcc′′ ∧ ψc′′c′)

These operations encode the semantics for incremental quantification, dynamic
incremental negation and dynamic incremental conjunction in typed logic. Dy-
namic implication, ⇒, is defined in the usual way.

We have to assume that the lexical meanings of CNs, VPs are given as one-
place predicates (type e → t) and those of TVs as two place predicates (type
e → e → t). We therefore define blow-up operations for lifting one-placed and
two-placed predicates to the dynamic level. Let A be an expression of type
e→ t, and B an expression of type e→ e→ t; we use c, c′ as variables of type
[e], and j, j′ as variables of type ι, and we employ postfix notation for the lifting
operations:

A◦ := λjcc′.(c = c′ ∧Ac[j])
B• := λjj′cc′.(c = c′ ∧Bc[j]c[j′])

The encodings of the dynamic operations in typed logic and the blow-up oper-
ations for one- and two-placed predicates are employed in the semantic spec-
ification of the following simple fragment. The semantic specifications employ
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variables P,Q of type ι → [e] → [e] → t, variables j, j′ of type ι, and variables
c, c′ of type [e].

We also define an operation ! : (ι → [e] → [e] → t) → [e] → [e] → t (from
lifted one-place predicates to context transformers), to express that a lifted
predicate applies to a single individual in a given context. Assuming P to be
an expression of type (ι→ [e] → [e] → t) (a lifted predicate), and c, c′ to be of
type [e] (contexts), we define ! as follows:

!P := λcc′.∃x∀y(P |c|(ĉ y)c′ ↔ x = y).

This expresses that P is the lift of a predicate that applies to a single individual.

As said above, we assume that pronouns are the only NPs that carry indices;
pronoun reference resolution is not treated. Appropriate indices for proper
names are extracted from the current context. In the rules, X refers to the
semantics of the left-hand side of the syntax rule, to be defined in terms of
the semantic translations of the members of the right-hand side of the syntax
rule. Xi refers to the semantics of the i-th member of the right-hand side of the
syntax rule.

S ::= NP VP X ::= (X1X2)
S ::= if S S X ::= X2 ⇒ X3

S ::= S . S X ::= X1 ; X3

NP ::= Mary X ::= λPcc′.∃j(c[j] = m ∧ Pjcc′)
NP ::= PROk X ::= λPcc′.(Pkcc′)
NP ::= DET CN X ::= (X1X2)
NP ::= DET RCN X ::= (X1X2)
DET ::= every X ::= λPQc.(∼(E ; P |c| ; ∼Q|c|))c
DET ::= some X ::= λPQc.(E ; P |c| ; Q|c|)c
DET ::= no X ::= λPQc.(∼(E ; P |c| ; Q|c|))c
DET ::= the X ::= λPQc.(!P ; E ; P |c| ; Q|c|)c
CN ::= man X ::= M◦

CN ::= woman X ::= W ◦

CN ::= boy X ::= B◦

RCN ::= CN that VP X ::= λj.((X1 j) ; (X3 j))
RCN ::= CN that NP TV X ::= λj.((X1 j) ; (X3(λj′.((X4 j

′)j))))
VP ::= laughed X ::= L◦

VP ::= smiled X ::= S◦

VP ::= TV NP X ::= λj.(X2 ; λj′.((X1 j
′)j))

TV ::= loved X ::= L′•

TV ::= respected X ::= R•

Note that determiners do not carry indices, the appropriate index is provided by
the length of the input context. It is assumed that all proper names are linked
to anchored elements in context. In fact, the anchoring mechanism has been
greatly improved by the switch to the incremental, non-destructive approach,
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for the incremental nature of the context update mechanism ensures that no
anchored elements can ever be overwritten.

The following very simple example illustrates how the system deals with cross-
sentential anaphora:

2 Some man smiled. He laughed.

The structures assigned to the sentences making up this sequence by the system
are the following:

(2) a. S

���
HHH

NP
�� HH

DET

some

CN

man

VP

smiled

b. S
�� HH

NP

He

VP

laughed

Note that the tree for the second sentence in sequence 2 actually can not be
produced by the rules given above: those rules assume that surface pronouns
are generated as indexed abstract PRO-elements, as in:

(2) b′. S
�

��
H

HH

NP

PRO5

VP

laughed
Translations of the two sentences are derived in a compositional fashion. For
example, the NP ‘Some man’ translates as:

(λPQc.(E ; P |c| ; Q|c|)c)(M◦)

With S◦ as the translation of the VP ‘smile’, the sentence, ‘Some man smiled’
then receives the following translation:

E ; M◦|c| ; S◦|c|

This is an expression of type [e] → [e] → t and denotes a relation between
contexts. It takes a context and extends it with an object that is both a man and
that smiles, as is evident if we reduce it as follows, using the definitions of the
dynamic existential quantifier, the dynamic conjunction and the lift operation.

We first rewrite E :

(λcc′.∃x(ĉ x = c′) ; M◦|c| ; S◦|c|

and next the lifted predicates:

(λcc′.∃x(ĉ x = c′) ; (λcc′(c = c′ ∧Mc[|c|]) ; (λcc′(c = c′ ∧ Sc[|c|])
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The indefinite determiner extends the context with a new object. The other
clauses test the last element of the current context for the properties M and S,
respectively.

Rewriting the dynamic conjunction shows how the element introduced by the
indefinite determiner is passed on to the other clauses. The first two clauses
become:

λcc′.∃c′′((λcc′.∃x(ĉ x = c′)cc′′ ∧ (λcc′(c = c′ ∧Mc[|c|])c′′c′)

which after some reduction becomes:

λcc′.∃x(ĉ x = c′ ∧Mx)

Rewriting the second occurrence of the dynamic conjunction gives the following
reduced translation for the first sentence:

λcc′.∃x(ĉ x = c′ ∧Mx ∧ Sx)

For the second sentence we get:

λcc′.(L◦5cc′)

which reduces to
λcc′.(c = c′ ∧ Lc[5])

and for the sequence as a whole we get:

λcc′.∃x(ĉ x = c′ ∧Mx ∧ Sx) ; λcc′.(c = c′ ∧ Lc[5])

which reduces to:

λcc′.∃x(ĉ x = c′ ∧Mx ∧ Sx ∧ Lc[5])

Note that we obtain the reading in which the pronoun in the second sentence
of 2 refers back to the man introduced in the first sentence only if the index of
the PRO-element is suitably chosen. This means that this approach relies on a
separate pronoun resolution component in the grammar.

7.3 Update Semantics

In section we illustrate the use of dynamic logic in another area of natural
language semantics, one that is concerned with epistemic concerns, modal ex-
pressions and with the interaction between issues that are strictly semantic
and phenomena that are of a pragmatic nature, i.e., that pertain to the use of
language in information exchange.

The gist of the dynamic approach to natural language meaning is captured in
the slogan ‘Meaning is context-change potential’. In the case of a theory such
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as DPL, the context consists of assignments of objects (individuals) satisfy-
ing certain properties to variables, In that case, context-change means change
of assignments. Such changes are brought about typically by referring expres-
sions such as proper names or temporal expressions and by quantificational
expressions such as noun phrases or tense operators. All other expressions are
tests. In the case of DRT a different notion of context is used, viz. that of
a discourse representation that contains discourse referents satisfying certain
properties that point to objects satisfying corresponding properties: here con-
text change is change of the discourse representation. With respect to empirical
coverage that does not make a difference, again it is referential and quantifi-
cational expressions that change the context, other expressions are treated as
parts of conditions.

In epistemic systems, context is yet another type of object, viz., information,
modelled by a set of possible worlds or possible situations or propositions. The
pioneering work in this area is that of Stalnaker (cf., among others, [115,116]).
Stalnaker focused on the context as the ‘common ground’, i.e., the information
that is available by all speech participants and that is maintained as it gets
updated during a linguistic information exchange. This common ground can be
characterised as a set of worlds, viz., those worlds which are compatible with
the shared information, or, alternatively, as a set of propositions. A linguistic
exchange then consists of utterances that shift the context, by updating the
common ground, or that test whether something holds in the context. Each ut-
terance represents a particular way of updating or testing the common ground,
and this update is conceived as the meaning of the utterance in question.

Within such an approach, sentences that are tests in DPL or conditions in
DRT in most cases do have an effect on the context, and thus are treated
dynamically. A simple subject-predicate sentence such as ‘John is at home’
updates the common ground with the information that John has the property
of walking, and conjunctions are ordered updates. Examples of exceptions, i.e.,
sentences that do not update the context but test it, are modal sentences, such
as ‘John might be at home’, and ‘John must be at home’. These do not add
new information, but check whether the existing common ground satisfies a
requirement: that it is possible that John is at home, and that it not possible
that John is not at home, respectively.

Another type of linguistic construction that can be treated in this fashion con-
cerns presuppositions. A sentence carrying a presupposition typically tests the
common ground for the presence of the presupposed information, besides up-
dating it with new information And yet another example is presented by con-
ditionals: the sentence ‘If John is at home, Mary is there, too’ tests the context
by checking whether updating with the antecedent ‘John is at home’ leads to a
context in which ‘Mary is at home’ holds.

Of particular interest is what consequences obtain if a test or an update fails.
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In the case of a presupposition failing because the information is not present,
but is consistent with the common ground, the presupposition is often said to
be ‘accommodated’, i.e., an implicit update takes place [11]. In other cases, e.g.,
the failure of a test such as ‘John might be at home’, or of a straightforward
update such as ‘John is at home’, the context needs to be down-dated, i.e.,
revised. This is the area of belief revision [44] another aspect of the dynamics
of information exchange.

7.3.1 System

Update semantics was originally devised as a way of dealing with the seman-
tics of modal expressions such as ‘might’ and ‘must’ [125]. These expressions
have a specifically epistemic meaning, which makes implicit reference to the in-
formation states of speaker and hearer. Other uses of update semantics are,
among others, in accounts of conditionals [126], defaults [127], presupposi-
tions [11], [137], and other issues involving information exchange.

Here we present a core system that forms the basis of many variations in the
literature.

Let P be a set of atomic sentences. The language is that of propositional logic,
with an additional operator 3. Assume p ranges over set of basic propositions
P .

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | 3ϕ
ϕ′ ::= 3ϕ

The other connectives are defined in the usual fashion.

A model M consists of a set of possible worlds W and in interpretation function
V : P → P(W ). Information states s are subsets of W , with ∅ the absurd
information state, W the state of no information, and singletons {wi} states of
maximal information.

The semantics takes the form of a definition of ‘s[ϕ]M’, i.e., the result of up-
dating an information state s in M with (the information conveyed by) ϕ:

s[p]M = s ∩ {s ∈ S | s ∈ VM(p)}
s[¬ϕ]M = s \ s[ϕ]M

s[ϕ1 ∧ ϕ2]M = s[ϕ1]M[ϕ2]M

s[3ϕ]M =

{
s if s[ϕ]M 6= ∅
∅ otherwise

An atomic formula updates s with the information it conveys; a negation ¬ϕ
deletes those worlds in which the information conveyed by ϕ holds from s;
conjunction is a sequential update with the conjuncts. The modal 3ϕ is a test:
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it returns the original state if an update with ϕ is possible, the absurd state
otherwise.

This system analyses a special case of public announcement logic [46, 103],
where the knowledge of a single agent is modelled. The model M above can
be viewed as an S5 model with a universal accessibility relation [38]. Updating
with a propositional formula F has the effect of announcing F to the agent, i.e.,
updating with action model

F

in the sense of [6]. Updating with a modal formula 3F boils down to updating
with the following action model:

<>F

The notion of ‘acceptance in M, s’ is defined as follows:

s |=M ϕ iff s ⊆ s[ϕ]M

Validity can be defined in a number of ways; the most common one is as follows:

ϕ1 . . . ϕn |= ψ iff for all M, s : s[ϕ1]Mψ . . . [ϕn]M |= ψ

I.e., every state that accepts the premises, accepts the conclusion.

This system is eliminative (s[ϕ]M ⊆ ϕ); not distributive (s ⊆ s′ 6⇒ s[ϕ] ⊆
s′[ϕ]); neither right- nor left-monotone; and conjunction is not commutative. A
complete sequent calculus can be found in [59, chapter 3].

7.3.2 Characteristic examples

A characteristic example, that illustrates the non-commutativity of conjunc-
tion, involves the 3-operator. If we read it as the formal counterpart of the
modal expression ‘might’ (in its epistemic meaning), and represent discourse
sequencing as conjunction, we can explain the difference between the following
two sentences:

a. Somebody is knocking at the door . . . It might be John . . . It is Mary
b. Somebody is knocking at the door . . . It is Mary . . . ∗It might be John
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In the first sequence the second sentence ‘It might be John’ tests the state (that
contains the information that somebody is at the door, due to the update with
the first sentence) for the possibility that the person knocking is John. If that
succeeds, it is only confirmed that this is a possibility. The subsequent update
with the information that in fact it is Mary, is consistent with that. In the
second sequence the information that it is Mary is added before the test takes
place, resulting in its failure, which explains the odd status of this sequence.

The failure of right- en left-monotonicity is also due to the 3-operator:

3¬ϕ |= 3¬ϕ but 3¬ϕ,ϕ 6|= 3¬ϕ
|= 3ϕ but ¬ϕ 6|= 3ϕ

Another instantiation of the ideas behind update semantics is provided by con-
ditionals. Many aspects of conditionals in natural language can be captured in
an update framework, by keeping in mind the ‘modal’ nature of the conditional
construction:

s[ϕ1 → ϕ2]M = {i ∈ s | if i ∈ s[ϕ1]M then i ∈ s[ϕ1]M[ϕ2]M}

The update effect of a condition thus is to retain those possibilities in a given
state s such that updating them with the antecedent allows a subsequent update
with the consequent.

Applications of update semantics can be found in a variety of areas, such as
deontic modality [123]; interrogatives [53]; imperatives [89,135]; counterfactuals
and other irrealis-constructions [128].

7.4 Combining dynamic and update semantics

The dynamic semantics used in systems such as DPL and DRT can be combined
with an update type of semantics as just defined. Various proposals exists (cf.,
e.g., [31, 57]). The idea is to put the semantics for quantified formulae in an
update format. In [58] this is done as follows.

Existential quantifiers introduce new kind of objects, so-called ‘pegs’, modelled
by the natural numbers. This notion was first introduced by Vermeulen, cf.,
[129]. A referent system r is a function from a finite set of variables to pegs.
An existential quantifier ∃x add its variable x introduces the next peg and
associates x with that peg. So, if r is a referent system with domain v and
range of pegs n, then r[x/n] is the referent system r′ which is like r except that
its domain is v ∪ {x} its range is N + 1 and r′(x) = n. Let r and r′ be two
referent systems with domain v and v′, and range n and n′, respectively. Then
we say that r′ is an extension of r, r ≤ r′, iff v ⊆ v′; n ≤ n′; if x ∈ v then
r(x) = r′(x) or n ≤ r′(x); if x 6∈ v and x ∈ v′ then n ≤ r′(x).
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States s are sets of triples i consisting of the same referent system r, an as-
signment g and a world w. So states contain information about both the world
(via the possible world parameter) as well as the discourse (via the referent
system). Growth of information is then twofold as well: via the elimination of
possibilities, and via extension of the referent system. First we introduce:

i[x/d] = 〈r[x/n], g[n/d], w〉
s[x/d] = {i[x/d] | i ∈ s}

and then we define these two notions of information growth as follows. Let
i, i′ ∈ I, i = 〈r, g, w〉 and i′ = 〈r′, g′, w′〉, and s, s′ ∈ S:

i′ ≤ i′ iff r ≤ r′, g ⊆ g′, w = w′

s ≤ s′ iff for all i′ ∈ s′ : there exists an i ∈ s : i ≤ i′

Finally, we define the update semantics for existentially quantified formulae
∃xϕ as follows (the other clauses are merely repetitions of the above):

s[∃xϕ]M = ∪d∈DM
(s[x/d][ϕ]M)

This defines the update effect of ∃xϕ point-wise on the objects in the domain:
the referent system of the state s is updated by adding a peg, the variable is
associated with the peg, and an object d is selected and assigned to the peg;
then the resulting state s[x/d] is updated with ϕ; this procedure is repeated for
every object in the domain; the results are collected and together make up the
new state s[∃xϕ].

The resulting system is capable of treating complex cases concerning the inter-
action of quantifiers and modalities. For example it can be used to show that
whereas ∃xPx ∧ 3∀y¬Py is not consistent, ∃xPx ∧ ∀y3¬Py is: if we know
that something has the property P this ipso facto rules out the possibility that
no-one has that property, but it does not rule out the possibility that we are
uninformed about the identity of this P . For other examples, involving also
identity we refer the reader to [58] and [1].
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8 Concluding remarks

The overview of dynamic logics and their applications presented in this paper
has focused on a number of core systems (Floyd/Hoare logic, PDL, epistemic
PDL, QDL, DPL), and a number of central applications: program analysis, tree
description, analysis of communication, semantics of natural language. Refer-
ences to other applications were thrown in as an incentive to the reader for
further exploration.

The field of dynamic logic, including its applications in various domains, is still
developing. Dynamic logic started out as a way of studying various aspects of
computation, mainly in traditional computational settings, with a focus on se-
quential transformational programs. When theoretical computer science broad-
ened to encompass the theory of reactive systems and concurrency, dynamic
logic evolved by developing systems that could handle these too (branching
time logics and µ calculus). Thus, the core concepts of dynamic logic have
proved to be applicable in a wide range of settings, allowing formalisation of a
great diversity of concepts and phenomena.

In certain areas, such as natural language semantics, the use of dynamic con-
cepts initially arose independently, and it was only subsequently that these
notions were embedded in dynamic logic. This have given rise to interesting
interactions, that are still being actively pursued.

The application to communicative action stays somewhat closer to the original
motivation for the development of dynamic logic. Here the use of dynamic
logic ties in with an existing tradition of using modal logic in the analysis of
communication protocols [60]. Also in the analysis of various other phenomena
that are concerned with interactions between individuals and with properties
of the collectives (groups, societies) that they form, concepts of dynamic logic
play a role, as is testified by work done on, for example, collective decisions
(cf., [102] on game logic as an extension of propositional dynamic logic).

As more aspects of the ways in which human beings interact are brought into the
picture, concepts like perception, causality, justification and intention appear.
Here insights from the philosophy of action and from game theory must augment
the tool set from dynamic logic, thus creating an exciting amalgam of logic,
theoretical computer science, philosophy and game theory. Whatever the future
holds in store for this area, it seems more than likely that concepts and results
from dynamic logic will continue to play a major role in its development.
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