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Abstract

Current dynamic epistemic logics often become cumbersome and opaque when common knowl-
edge is added for groups of agents. Still, postconditions regarding common knowledge express
the essence of what communication achieves. We present some methods that yield so-called
reduction axioms for common knowledge. We investigate the expressive power of public an-
nouncement logic with relativized common knowledge, and present reduction axioms that give
a detailed account of the dynamics of common knowledge in some major communication types.

1 Introduction

Epistemic logic typically deals with what agents consider possible given their current information.
This includes knowledge about facts, but also higher-order information about information that
other agents have. A prime example is common knowledge. A formula ϕ is common knowledge
if everybody knows ϕ, everybody knows that everybody knows that ϕ, and so on. How higher
order information develops in multi-agent systems due to communication is the focus of many
investigations (see for example [1, 5, 10, 13]). Common knowledge is particularly interesting in
these contexts, because it is often exactly what communication tries to achieve. Update logics also
aim to analyze changes in higher-order information.

In update logics reduction axioms play an important role. They provide easy completeness
proofs, they provide expressivity results, and they provide a precise account of what updates
achieve by relating what is the case after an update to what is the case before an update. For
instance, the logic of public announcements without common knowledge has an easy completeness
proof due to axioms such as [ϕ]2aψ ↔ (ϕ → 2a[ϕ]ψ). This reduction axiom says that knowledge
of ψ for agent a is achieved by the announcement that ϕ iff ϕ implies that agent a knows that after
the announcement that ϕ it is the case that ψ. The completeness proof works by a translation that
follows the reduction axioms. Formulas with announcements are translated to provably equivalent
ones without announcements. Then completeness follows from completeness of the base logic. This
approach is also taken in [6] and [2] for more general epistemic updates.

Reduction axioms are not readily available in update logics with common knowledge, as the
logic with updates is more expressive than the logic without them [2]. In [8] relativized common
knowledge was introduced to overcome this problem for public announcement logic with common
knowledge, and it was also shown that the problem can be overcome with an epistemic Automata
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PDL. In this paper we investigate the expressive power of epistemic logic with relativized common
knowledge (EL-RC) and public announcement logic with common knowledge. Based on the results
in [4, 3] we also show how reduction axioms can be acquired for epistemic PDL. These yield
reduction axioms that can be used to can analyze how common knowledge is attained in some
major communication types.

2 Logics of Public Announcement

2.1 Language and Semantics of PAL

Public announcement logic (PAL) was first developed by Plaza [11]. A public announcement is
an epistemic update where all agents commonly know that they learn a certain formula. This is
modeled by an operator [ϕ], where [ϕ]ψ is read as ‘ψ holds after the announcement of ϕ’. The
languages LPAL and LPAL-C (with common knowledge) are interpreted in epistemic models.

Definition 1 (Epistemic models) Let a finite set of propositional variables P and a finite set
of agents N be given. An epistemic model is a triple M = (W,R, V ) such that

• W 6= ∅ is a set of possible worlds,

• R : N → ℘(W ×W ) assigns an accessibility relation R(a) to each agent a, and

• V : P → ℘(W ) assigns a set of worlds to each propositional variable. ¤

In epistemic logic the relations are usually restricted to equivalence relations. Here we treat the
general modal case. The semantics are defined with respect to models with a distinguished ‘actual
world’: M,w.

Definition 2 (Semantics of PAL and PAL-C) Let a model M,w with M = (W,R, V ) be given.
For atomic propositions, negations, conjunctions, we take the usual definition. Let ϕ,ψ ∈ LPAL.

M,w |= 2aϕ iff M, v |= ϕ for all v such that (w, v) ∈ R(a)
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

M,w |= CBϕ iff M, v |= ϕ for all v such that (w, v) ∈ R(B)∗

where R(B) =
⋃

a∈B R(a), and R(B)∗ is its reflexive transitive closure. The updated model M |ϕ =
(W ′, R′, V ′) is defined by restricting M to ϕ-worlds. Let

[[ϕ]] = {v ∈W |M, v |= ϕ}.

Now let W ′ = [[ϕ]], R′(a) = R(a) ∩ [[ϕ]]2, and V ′(p) = V (p) ∩ [[ϕ]]. ¤

A completeness proof for public announcement logic without an operator for common knowledge
(PAL) is easy using reduction axioms.

Definition 3 (Proof system for PAL) The proof system for PAL is that for multi-modal S5 epis-
temic logic plus the following reduction axioms:

At [ϕ]p↔ (ϕ→ p) (atoms)
PF [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) (partial functionality)
Dist [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) (distribution)
KA [ϕ]2aψ ↔ (ϕ→ 2a[ϕ]ψ) (knowledge-announcement)

as well as an inference rule of necessitation for all announcement modalities. ¤
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The formulas on the left of these equivalences are of the form [ϕ]ψ. In At the announcement
operator no longer occurs on the right-hand side. In the other reduction axioms formulas within
the scope of an announcement are of higher complexity on the left than on the right.

For public announcement logic including a common knowledge operator (PAL-C), a completeness
proof with reduction axioms is impossible. There is no reduction axiom for formulas of the form
[ϕ]CBψ, given the expressivity results in [2].

2.2 Relativized Common Knowledge: EL-RC

The semantic intuition for [ϕ]CBψ is clear, however. Let a B-path be a sequence of worlds
w0, . . . , wn such that for all i < n there is an a ∈ B such that (wi, wi+1) ∈ R(B). We can
now say when a formula of the form [ϕ]CBψ is true as follows: if ϕ is true in the old model, then
every B-path in the new model ends in a ψ world. This implies that in the old model every B-path
that consists exclusively of ϕ-worlds ends in a [ϕ]ψ world. To facilitate this, we use the operator
CB(ϕ,ψ), which expresses that every B-path which consists exclusively of ϕ-worlds ends in a ψ

world. CB(ϕ,ψ) can be paraphrased as ‘If ϕ were announced to B, then it would be common
knowledge among B that ψ was the case’. It is called relativized common knowledge.

Definition 4 (Language and Semantics of EL-RC) The language of EL-RC is that of EL, to-
gether with the operator for relativized common knowledge, with semantics given by:

M,w |= CB(ϕ,ψ) iff M, v |= ψ for all v such that (w, v) ∈ (R(B) ∩ [[ϕ]]2)∗

where (R(B) ∩ [[ϕ]]2)∗ is the reflexive transitive closure of R(B) ∩ [[ϕ]]2. ¤

Note that common knowledge relativized to ϕ is not what results from a public update with ϕ.
E.g., [p]CB3a¬p is not equivalent to CB(p,3a¬p), for [p]CB3a¬p is always false, and CB(p,3a¬p)
holds in models where every p path ends in a world with an a successor with ¬p. We will show that
CB(p,3a¬p) cannot be expressed in PAL-C in Section 2.4. The semantics of the other operators is
standard. Ordinary common knowledge can be defined with the new notion: CBϕ ≡ CB(>, ϕ). To
obtain a proof system for EL-RC we need just a slight adaptation of the usual axioms. To prove
completeness for our extended static language, one can follow [9]. Details can be found in [8].

2.3 Reduction Axioms for PAL-RC

Next, let PAL-RC be the logic with both relativized common knowledge and public announcements.
We can find a reduction axiom for [ϕ]CB(ψ, χ), the formula that expresses that after public an-
nouncement of ϕ, every ψ path leads to a χ world. Note that this holds exactly in those worlds
where every ϕ path where announcing ϕ makes ψ true ends in a world where announcing ϕ makes
χ true. This observation yields the following proof system for PAL-RC:

Definition 5 (Proof system for PAL-RC) The proof system for PAL-RC is that for EL-RC plus
the reduction axioms for PAL, together with:

C-Red [ϕ]CB(ψ, χ) ↔ CB(ϕ ∧ [ϕ]ψ, [ϕ]χ) (common knowledge reduction)

as well as an inference rule of necessitation for all announcement modalities. ¤

This proof system is sound and complete. It turns out that PAL-RC is no more expressive than
EL-RC by a direct translation, where the translation clause for [ϕ]CB(ψ, χ) relies on the above

255



EL

PAL

EL-C

PAL-C

EL-RC

PAL-RC

Figure 1: The expressive power of various epistemic logics. L −→ L′ means that L′ is more expressive
than L.

insight. For details, see [8]. It also provides a precise characterization how common knowledge can
be achieved. One open problem posed in [8] is whether EL-RC is more expressive than PAL-C.

2.4 Expressivity via Model Comparison Games for EL-RC

We provide characteristic games for the logics presented so far.

Definition 6 (Model comparison games) Let two epistemic models M = (W,R, V ) and M ′ =
(W ′, R′, V ′) be given. Starting from each w ∈ W and w′ ∈ W ′, the n-round model comparison

game between Spoiler and Duplicator is given as follows. If n = 0 Spoiler wins if w and w′ differ in
their atomic properties, otherwise Duplicator wins. Otherwise Spoiler makes one of the scenarios
available to him dependent on the operators in the logical language in each round:

2a-move Spoiler chooses a point x in one model which is an a-successor of the current w or
w′, and Duplicator responds with an a-successor y of the other current world in the other model.
The output is x, y.

CB-move Spoiler chooses a point x in one model which is reachable by a B-path from w or w′,
and Duplicator responds by choosing a matching world y in the other model. The output is x, y.

RCB-move Spoiler chooses a B-path x0 . . . xn in either of the models with x0 the current w or
w′. Duplicator responds with a B-path y0 . . . ym in the other model, with y0 = w′. Then Spoiler
can (a) make the end points xn, ym the output of this round, or (b) he can choose a world z on
Duplicators path, and Duplicator must respond by choosing a matching world u on Spoilers path,
and z, u is the output.

[ϕ]-move Spoiler chooses a number r < n, and sets S ⊆ W and S ′ ⊆ W ′, with the current
w ∈ S and likewise w′ ∈ S′. Stage 1 : Duplicator chooses states s in S∪S ′, s in S∪S′. Then Spoiler
and Duplicator play the r-round game for these worlds. If Duplicator wins this subgame, she wins
the n-round game. Stage 2 : Otherwise, the game continues in the relativized models M |S,w and
M ′|S′, w′ over n− r rounds.

After each move the game continues with the new output states. If these differ in their atomic
properties, Spoiler wins – otherwise, a player loses whenever he cannot perform a move while it is
his turn. If Spoiler has not won after all n rounds, Duplicator wins the whole game. ¤

With these games we can show the expressivity results summarized in Figure 1. In [2] it was
already shown that PAL-C is more expressive than EL-C.
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We can show that EL-RC is more expressive than PAL-C with models of the type shown below.

¬p

∗

∗

The idea is that Duplicator cannot distinguish the top line from the bottom line of these models
when they are long enough. The formula

C(p,¬2p)

is true in the starred world in the top line, but false in the starred world in the bottom line. However
there is not one formula in LPAL-C that can distinguish these world for all the models of the type
shown above. The idea leads to the following theorem.

Theorem 1 EL-RC is more expressive than PAL-C. ¤

3 A New Logic of Communication and Change

Our methodology for epistemic logic with announcements from Section 2 also works more generally.
In this section, we make the same move in the general dynamic logic of updates with events involving
combinations of communication and actual change, which also lacks a reduction axiom for common
knowledge. This will provide a general method for finding reduction axioms for any update. The
method be used to find particular reduction axiom for major communication types.

3.1 Update Models and their Execution

Dynamic updates with epistemic aspects, such as communication or other information-bearing
events, are quite similar to static epistemic situations. In [2] this analogy is used as the engine for
general update of epistemic models under epistemic actions. Here we extend this with substitutions
that effect changes in valuations at particular worlds.

Substitutions L substitutions distribute over all language constructs, and map all but a finite
number of basic propositions to themselves. L substitutions can be represented as sets of bindings
{p1 7→ ϕ1, . . . , pn 7→ ϕn} where all the pi are different, and where no ϕi is equal to pi. If σ is a L

substitution, then the set {p ∈ P | σ(p) 6= p} is called its domain, notation dom(σ). Use ε for the
identity substitution. Let SUBL be the set of all L substitutions.

Definition 7 (Epistemic Models under a Substitution) If M = (W,V,R) is an epistemic
model and σ is a L substitution (for an appropriate epistemic language L ), then V σ

M is the
valuation given by λwλp·w ∈ [[σ(p)]]M . In other words, V σ

M assigns to w the set of basic propositions
p such that σ(p) is true in world w in model M . For M = (W,V,R), call Mσ the model given by
(W,V σ

M , R). ¤
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Definition 8 (Update models) An update model for a finite set of agents N with a language
L is a quadruple U = (E,R, pre, sub) where E = {e0, . . . , en−1} is a finite non-empty set of events,
R : N → ℘(E2) assigns an accessibility relation R(a) to each agent a ∈ N , pre : E → L assigns a
precondition to each event, sub : E → SUBL assigns a L substitution to each event. A pair U, e is
an update model with a distinguished actual event e ∈ E. ¤

The effect of executing an update is modeled by the following product construction; our defini-
tion extends the definition of [2] by taking the effects of the substitutions into account.

Definition 9 (Update Execution) Given a static epistemic model M = (W,R, V ), a world
w ∈ W , an action model U = (E,R, pre, sub) and an action state e ∈ E with M,w |= pre(e), we
say that the result of executing U, e in M,w is the static model M ◦ U, (w, e) = (W ′, R′, V ′), (w, e)
where W ′ = {(v, f) | M, v |= pre(f)}, R′(a) = {((v, f), (u, g)) | (v, u) ∈ R(a) and (f, g) ∈ R(a)},

V ′(u, f) = V
sub(f)
M (u). ¤

Definitions 8 (with all substitutions equal to ε) and 9 provide a semantics for the logic of epistemic
actions LEA of [2]. The language LLEA contains formulas [U, e]ϕ, where a U is any finite update

model for LLEA. These say that ‘every execution of U, e yields a model where ϕ holds’. In [2] a
proof system is presented for LEA with a complicated completeness proof, and without reduction
axioms for common knowledge. So, we will extend this language to get reduction axioms after all.
Again, the semantic intuition about the crucial case M,w |= [U, e]CBϕ is clear. It says that, if
there is a B-path w0, . . . , wn (with w0 = w) in the static model and a matching B-path e0, . . . , en

(with e0 = e) in the update model with M,wi |= pre(ei) for all i ≤ n, then M,wn |= ϕ. These are
the sort of object that propositional dynamic logic (PDL) is very well suited for reasoning about.

3.2 Epistemic PDL

We assume the reader is familiar with the language and semantics of PDL. For a textbook in-
troduction see [7]. In our epistemic perspective, relational atoms will be viewed as (the epistemic
accessibilities of) single agents. Also, if B ⊆ N and B is finite, use B as shorthand for b1∪ b2∪ · · · .
Under this convention, the general knowledge operator EBϕ takes the shape [B]ϕ, while the com-
mon knowledge operator CBϕ appears as [B∗]ϕ, i.e., [B]ϕ expresses that it is general knowledge
among agents B that ϕ, and [B∗]ϕ expresses that it is common knowledge among agents B that
ϕ. In the special case where B = ∅, B

3.3 LCC, a Dynamic Logic of Communication and Change

Now we have all the ingredients for the definition of the logic of communication and change that
allows reduction axioms.

Definition 10 (LCC, Language) The language LLCC is the result of adding a clause [U, e]ϕ for
update execution to the language of PDL, where U is an update model for LLCC. ¤

Definition 11 (LCC, Semantics) The semantics is the standard semantics of PDL, with the
meaning of [U, e]ϕ in M = (W,R, V ) given by:

M,w |= [U, e]ϕ iff M,w |= pre(e) implies M ◦ U, (w, e) |= ϕ.

¤
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3.4 Expressive Power: Reducing LCC to Epistemic PDL

In order to reduce LCC to PDL we need a reduction axiom for formulas of the form [U, e][π]ϕ. As
before, the quest for reduction axioms starts with the attempt to describe what is the case after
the update in terms of what is the case before the update. In the case of LCC, epistemic relations
can take the shape of arbitrary PDL programs. So we must ask ourselves how we can find, for a
given relation [[π]]M◦U a corresponding relation in the original model M,w.

A formula of the form 〈U, ei〉〈π〉ϕ is true in some modelM,w iff there is a π-path inM◦U leading
from (w, ei) to a ϕ world (v, ej). That means there is some path w . . . v in M and some path ei . . . ej

in U such that (M,w) |= pre(ei) and . . . and (M, v) |= pre(ej) and of course (M, v) |= 〈U, ej〉ϕ. The
program TU

ij (π) captures this. A TU
ij (π)-path in the original model corresponds to a π-path in the

updated model. But in defining TU
ij (π) we cannot refer to a model M . The definition of TU

ij (π)
only depends on π, U, ei and ej . These transformers are used in the reduction axiom, which can
be formulated as follows:

[U, ei][π]ϕ ↔
∧n−1

j=0 [TU
ij (π)][U, ej ]ϕ.

The program transformer TU
ij is defined as follows:

Definition 12 (T U

ij Program Transformers)

TU
ij (π1;π2) =

⋃n−1
k=0(T

U
ik(π1);T

U
kj(π2))

TU
ij (π1 ∪ π2) = TU

ij (π1) ∪ T
U
ij (π2)

TU
ij (π

∗) = KU
ijn(π)

TU
ij (a) =

{

?pre(ei); a if eiR(a)ej ,

?⊥ otherwise

TU
ij (?ϕ) =

{

?(pre(ei) ∧ [U, ei]ϕ) if i = j,

?⊥ otherwise

where KU
ijn(π) is given by Definition 13. ¤

We need the program transformer KU
ijn in order to build the paths corresponding to the transitive

closure of π in the updated model step by step, where we take more and more events into account.

Definition 13 (KU

ijk Path Transformers) KU
ijk(π) is defined by recursing on k, as follows:

KU
ij0(π) =

{

?> ∪ TU
ij (π) if i = j,

TU
ij (π) otherwise

KU

ij(k+1)(π) =















(KU
kkk(π))∗ if i = k = j,

(KU
kkk(π))∗;KU

kjk(π) if i = k 6= j,

KU
ikk(π); (KU

kkk(π))∗ if i 6= k = j,

KU
ijk(π) ∪ (KU

ikk(π); (KU
kkk(π))∗;KU

kjk(π)) otherwise (i 6= k 6= j).

¤

Theorem 2 (Reduction) Assume U has n states e0, . . . , en−1. Then:

M,w |= [U, ei][π]ϕ iff M,w |=
n−1
∧

j=0

[TU
ij (π)][U, ej ]ϕ.

What the Reduction Theorem gives us is that LCC is equivalent to PDL, and that a proof system
for LCC can be given in terms of axioms that reduce formulas of the form [U, e]ϕ to equivalent
formulas ψ. This approach makes clear that it is possible to view the updates as a kind of finite
automata. This was used in [8] to obtain reduction axioms for automata PDL with update models.
These results point the way to appropriate reduction axioms for LCC, as follows.
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Definition 14 (Proof system for LCC) The proof system for LCC consists of all axioms and
rules of PDL plus the following reduction axioms:

[U, e]p ↔ (pre(e) → psub(e))
[U, e]¬ϕ ↔ (pre(e) → ¬[U, e]ϕ)
[U, e](ϕ1 ∧ ϕ2) ↔ ([U, e]ϕ1 ∧ [U, e]ϕ2)

[U, ei][π]ϕ ↔
∧n−1

j=0 [TU
ij (π)][U, ej ]ϕ.

and necessitation for update model modalities. ¤

Thus, we see that LCC is no more expressive than PDL; indeed, we can translate LCC to PDL.

Theorem 3 (Completeness for LCC) |= ϕ iff ` ϕ. ¤

Proof The proof system for PDL is complete and every formula in LLCC is provably equivalent to
one in LPDL. ¤

4 Analyzing Major Communication Types

The program transformation approach provides a systematic perspective on communicative up-
dates. In the case of public announcement and common knowledge, it was still possible to generate
appropriate reduction axioms by hand. Such axioms can also be generated automatically by pro-
gram transformation.

The update model for a public announcement that ϕ consists of a single state e0 with precon-
dition ϕ and the universal relation for all agents. Call this model Pϕ. By program transformations
we find the following reduction axiom

[Pϕ, e0][B
∗]ψ ↔ [(?ϕ;B)∗][Pϕ, e0]ψ.

Compare this to the special purpose operator CB(ϕ,ψ) from Section 2.2.
Also consider a secret group communication CCB

ϕ , e0 where ϕ is sent to group B, and the other

agents think nothing happens (CCB
ϕ , e1)), the program transformation for common belief among

group D (which may or may not overlap with B) works out as follows:

[CCB
ϕ , e0][D

∗]ψ ↔ [(?ϕ; (B ∩D))∗][CCB
ϕ , e0]ψ ∧ [(?ϕ; (B ∩D))∗; (D \B);D∗][CCB

ϕ , e1]ψ.

Compare [12] for a direct axiomatization of the logic of CCs.
Finally, we consider group messages. This example is one of the simplest cases that shows that

program transformations gives us reduction axioms that are no longer feasible to give by hand.
The update model for a group message to B that ϕ consists of two states e0, e1, where e0 has
precondition ϕ and e1 has precondition >, and where the accessibilities T are given by:

T = {e0R(b)e0 | b ∈ B} ∪ {e1R(b)e1 | b ∈ B} ∪ {e0R(a)e1 | a ∈ N \B} ∪ {e1R(a)e0 | a ∈ N \B}.

Abbreviating D ∪ (D \ B; (?ϕ;D)∗; ?ϕ;D \ B) as π, we get the following transformation for
common knowledge among D after a group message to B that ϕ:

[GB
ϕ , e0][D

∗]ψ ↔ [(?ϕ;D)∗ ∪ ((?ϕ;D)∗; ?ϕ;D \B;π∗;D \B; (?ϕ;D)∗)][GB
ϕ , e0]ψ ∧

[(?ϕ;D)∗; ?ϕ;D \B;π∗][GB
ϕ , e1]ψ.
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5 Conclusion

Update logics provide excellent means for studying exchange of factual and higher-order informa-
tion. In this many-agent setting, common knowledge is an essential concept. We have taken two
extended languages for update logic that admit explicit update/common knowledge reduction ax-
ioms: one (EL-RC) for public announcement only, and one (PDL) for general update. They allow
us to investigate many communication types of which we have given some examples. The program
transformations give us detailed analyses of the change in common knowledge due to communicative
updates.
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