
Reducing Dynamic Epistemic Logic to PDL by Program

Transformation

Jan van Eijck
CWI, Amsterdam, Uil-OTS, Utrecht

December 7, 2004

Abstract

We present a direct reduction of dynamic epistemic logic in the spirit of [4] to propositional
dynamic logic (PDL) [17, 18] by program transformation. The program transformation
approach associates with every update action a transformation on PDL programs. These
transformations are then employed in reduction axioms for the update actions. It follows
that the logic of public announcement, the logic of group announcements, the logic of secret
message passing, and so on, can all be viewed as subsystems of PDL. Moreover, the program
transformation approach can be used to generate the appropriate reduction axioms for these
logics. Our direct reduction of dynamic epistemic logic to PDL was inspired by the reduction
of dynamic epistemic logic to automata PDL of [13]. Our approach shows how the detour
through automata can be avoided.

keywords Dynamic epistemic logic, logic of communication, propositional dynamic logic, pro-
gram transformation.

ACM Classification (1998) E 4, F 4.1, H 1.1.

1 Introduction

Dynamic epistemic logic [1, 2, 3, 4] analyses the changes in epistemic information among sets
of agents that result from various communicative actions, such as public announcements, group
messages and individual messages. The logics studied in [4] add information update operations
to epistemic description languages with a common knowledge operator, in such a way that the
addition increases expressive power. In [13] it is demonstrated how update axioms can be made
susceptible to reduction axioms, by the simple means of switching to more expressive epistemic
description languages. More in particular, it is shown in [13] how generic updates with epistemic
actions can be axiomatized in automata PDL [12, Chapter 10.3].

Knowledge of the reduction of dynamic epistemic logic to automata PDL from [13], combined
with the fact that automata PDL and standard PDL obviously have the same expressive power

1

(obviously, for every finite automaton generates a regular language, and PDL is the logic of
regular programs), kindles a natural desire for a direct reduction of DEL to PDL, a desire we will
satisfy below. We will show that the detour through automata is unnecessary, by demonstrating
how the effects of generic updating can be captured by PDL transformations of PDL programs.
In terms of these transformations a straightforward axiomatisation of dynamic update logic in
PDL is achieved.

2 PDL and Updates

Let p range over a set of basic propositions P and let a range over a set of agents Ag. Then the
language of PDL over P,Ag is given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

Employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1∨ϕ2 is shorthand for ¬(¬ϕ1∧¬ϕ2),
ϕ1 → ϕ2 is shorthand for ¬(ϕ1 ∧ ϕ2), ϕ1 ↔ ϕ2 is shorthand for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1),
and 〈π〉ϕ is shorthand for ¬[π]¬ϕ. Also, if B ⊆ Ag and B is finite, use B as shorthand for
b1 ∪ b2 ∪ · · · . Under this convention, the general knowledge operator EBϕ takes the shape [B]ϕ,
while the common knowledge operator CBϕ appears as [B∗]ϕ, i.e., [B]ϕ expresses that it is
general knowledge among agents B that ϕ, and [B∗]ϕ expresses that it is common knowledge
among agents B that ϕ. In the special case where B = ∅, B turns out equivalent to ?⊥, the
program that always fails.

The semantics of PDL over P,Ag is given relative to labelled transition systems M = (W,V,R),
where W is a set of worlds (or states), V : W → P(P) is a valuation function, and R = { a→⊆
W ×W | a ∈ Ag} is a set of labelled transitions, i.e., binary relations on W , one for each label a.
In what follows, we will take the labeled transitions for a to represent the epistemic alternatives
of an agent a.

The formulae of PDL are interpreted as subsets of WM (the state set of M), the actions of PDL
as binary relations on WM, as follows:

[[>]]M = WM

[[p]]M = {w ∈WM | p ∈ VM(w)}
[[¬ϕ]]M = WM − [[ϕ]]M

[[ϕ1 ∧ ϕ2]]M = [[ϕ1]]M ∩ [[ϕ2]]M

[[[π]ϕ]]M = {w ∈WM | ∀v(if (w, v) ∈ [[π]]M then v ∈ [[ϕ]]M)}

[[a]]M = a→M

[[?ϕ]]M = {(w,w) ∈WM ×WM | w ∈ [[ϕ]]M}
[[π1;π2]]M = [[π1]]M ◦ [[π2]]M

[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = ([[π]]M)∗

2

If w ∈WM then we use M |=w ϕ for w ∈ [[ϕ]]M.

[4] proposes to model epistemic actions as epistemic models, with valuations replaced by pre-
conditions. See also: [5, 6, 7, 8, 9, 11, 14, 19].

Action models for a given language L Let a set of agents Ag and an epistemic language
L be given. An action model for L is a triple A = ([s0, . . . , sn−1],pre, T) where [s0, . . . , sn−1] is
a finite list of action states, pre : {s0, . . . , sn−1} → L assigns a precondition to each action state,
and T : Ag → P({s0, . . . , sn−1}2) assigns an accessibility relation a→ to each agent a ∈ Ag.

A pair A = (A, s) with s ∈ {s0, . . . , sn−1} is a pointed action model, where s is the action that
actually takes place.

The list ordering of the action states in an action model will play an important role in the
definition of the program transformations associated with the action models.

In the definition of action models, L can be any language that can be interpreted in PDL models.
Actions can be executed in PDL models by means of the following product construction:

Action Update Let a PDL model M = (W,V,R), a world w ∈ W , and a pointed action
model (A, s), with A = ([s0, . . . , sn−1],pre, T), be given. Then the result of executing (A, s) in
(M, w) is the model (M⊗A, (w, s)), with M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}
V ′(w, s) = V (w)
R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

The language of PDLDEL (update PDL) is given by extending the PDL language with update
constructions [A, s]ϕ, where (A, s) is a pointed action model. The interpretation of [A, s]ϕ in
M is given by:

[[[A, s]ϕ]]M = {w ∈WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

Using 〈A, s〉ϕ as shorthand for ¬[A, s]¬ϕ, we see that the interpretation for 〈A, s〉ϕ turns out
as:

[[〈A, s〉ϕ]]M = {w ∈WM | M |=w pre(s) and (w, s) ∈ [[ϕ]]M⊗A}.

Updating with multiple pointed update actions is also possible. A multiple pointed action is a
pair (A,S), with A an action model, and S a subset of the state set of A. Extend the language
with updates [A,S]ϕ, and interpret this as follows:

[[[A,S]ϕ]]M = {w ∈WM | ∀s ∈ S(if M |=w pre(s) then M⊗A |=(w,s) ϕ)}.

In what follows we will concentrate on updates with (single) pointed action models.

3

3 Program Transformation

We will now show how PDLDEL formulas can be reduced to PDL formulas. For every action
model A with states s0, . . . , sn−1 we define a set of n2 program transformers TA

i,j (0 ≤ i < n, 0 ≤
j < n), as follows:

TA
ij (a) =

{
?pre(si); a if si

a→ sj ,
?⊥ otherwise

TA
ij (?ϕ) =

{
?(pre(si) ∧ [A, si]ϕ) if i = j,
?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃
k=0

(TA
ik(π1);TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)

where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj that can be traced

through A while avoiding a pass through intermediate states sk and higher.

In particular:

• KA
ij0(π) is a program for all the π∗ paths from si to sj that can be traced through A

without stopovers at intermediate states, i.e., if i = j it either is the skip action or a direct
π loop, and otherwise it is a direct π step.

• KA
ijn(π) is a program for all the π∗ paths from si to sj that can be traced through A, for

stopovers at any sk (0 ≤ k ≤ n− 1) are allowed.

Note that it is immaterial how many times a stopover is made at a particular intermediate state.

KA
ijk(π) is defined by recursing on k, as follows:

KA
ij0(π) =

 ?> ∪ TA
ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =

(KA
kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k 6= j,

KA
ikk(π); (KA

kkk(π))∗ if i 6= k = j,

KA
ijk(π) ∪ (KA

ikk(π); (KA
kkk(π))∗;KA

kjk(π)) otherwise (i 6= k 6= j).

For some runs through example applications of these definitions, see Section 5 below.

4

Lemma 1 (Kleene Path) Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π path from (w, si) to

(w′, sj) in M ⊗ A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there is a π∗ path from (w, si) to (w′, sj) in

M⊗A.

Proof. Use the definition of KA
ijk to prove by induction on k that (w,w′) ∈ [[KA

ijk(π)]]M iff
there is a π∗ path from (w, si) to (w′, sj) in M⊗ A that does not pass through any pairs (v, s)
with s ∈ {sk, . . . , sn−1}.

Base case, i = j: A π∗ path from (w, si) to (w′, sj) that does not visit any intermediate states
is either the empty path or a single π step from (w, si) to (w′, sj). Such a path exists iff
(w,w′) ∈ [[?> ∪ TA

ij]]M iff (w,w′) ∈ [[KA
ij0(π)]]M.

Base case, i 6= j: A π∗ path from (w, si) to (w′, sj) that does not visit any intermediate states
is a single π step from (w, si) to (w′, sj). Such a path exists iff (w,w′) ∈ [[TA

ij]]M iff (w,w′) ∈
[[KA

ij0(π)]]M.

Induction step. Assume that (w,w′) ∈ [[KA
ijk(π)]]M iff there is a π∗ path from (w, si) to (w′, sj)

in M⊗A that does not pass through any pairs (v, s) with s ∈ {sk, . . . , sn−1}.

Case i = k = j. A path from (w, si) to (w′, sj) in M⊗ A that does not pass through any pairs
(v, s) with s ∈ {sk+1, . . . , sn−1} now consists of an arbitrary number of π∗ paths from sk to sk

that do not visit any intermediate states with action component sk or higher. By the induction
hypothesis, such a path exists iff (w,w′) ∈ [[(KA

kkk(π))∗]]M iff (w,w′) ∈ [[KA
ij(k+1)(π)]]M.

Case i = k 6= j. A path from (w, si) to (w′, sj) in M⊗ A that does not pass through any pairs
(v, s) with s ∈ {sk+1, . . . , sn−1} now consists of a π∗ path starting in (w, sk) visiting states of the
form (u, sk) an arbitrary number of times, but never touching on states with action component sk

or higher in between, and ending in (v, sk), followed by a π∗ path from (v, sk) to (w′, sj) that does
not pass through any pairs (v, s) with s ∈ {sk, . . . , sn−1}. By the induction hypothesis, a path
from (w, sk) to (v, sk) of the first kind exists iff (w, v) ∈ [[(KA

kkk(π))∗]]M. Again by the induction
hypothesis, a path from (v, sk) to (w′, sj) of the second kind exists iff (v, w′) ∈ [[KA

kjk]]
M. Thus,

the required path from (w, si) to (w′, sj) in M ⊗ A exists iff (w,w′) ∈ [[(KA
kkk(π))∗;KA

kjk(π)]]M

iff (w,w′) ∈ [[KA
ij(k+1)(π)]]M.

The other two cases are similar. 2

The Kleene path lemma is the key ingredient in the following program transformation lemma.

Lemma 2 (Program Transformation) Assume A has n states s0, . . . , sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj]ϕ.

Proof. Induction on the complexity of π.

5

Basis, epistemic link case:

M |=w [A, si][a]ϕ
iff M |=w pre(si) implies M⊗A |=(w,si) [a]ϕ
iff M |=w pre(si) implies for all sj ∈ A, all w′ ∈ M :

if si
a→ sj , w

a→ w′, then M |=w′ [A, sj]ϕ

iff for all sj ∈ A : if si
a→ sj then M |=w [pre(si); a][A, sj]ϕ

iff M |=w

n−1∧
j=0

[TA
ij (a)][A, sj]ϕ.

Basis, test case:

M |=w [A, si][?ψ]ϕ
iff M |=w pre(si) implies M⊗A |=(w,si) [?ψ]ϕ
iff M |=w pre(si) implies M⊗A |=(w,si) ψ → ϕ

iff M |=w pre(si) and M⊗A |=(w,si) ψ imply M⊗A |=(w,si) ϕ

iff M |=w [?(pre(si) ∧ [A, si]ψ)][A, si]ϕ

iff M |=w

n−1∧
j=0

[TA
ij (?ψ)][A, sj]ϕ.

Induction step, cases π1;π2 and π1 ∪ π2 are straightforward. The case of π∗ is settled with the
help of the Kleene path lemma. 2

6

4 Reduction Axioms for Update PDL

The program transformations can be used to translate Update PDL to PDL, as follows:

t(>) = >
t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)

t([π]ϕ) = [r(π)]t(ϕ)
t([A, s]>) = >
t([A, s]p) = t(pre(s)) → p

t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)
t([A, s](ϕ1 ∧ ϕ2) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)

t([A, si][π]ϕ =
n−1∧
j=0

[TA
ij (r(π))]t([A, sj]ϕ)

t([A, s][A′, s′]ϕ = t([A, s]t([A′, s′]ϕ))

r(a) = a

r(B) = B

r(?ϕ) = ?t(ϕ)
r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2)
r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspection, using the program
transformation lemma for the translation of [A, si][π]ϕ formulas. The translation points the way
to appropriate reduction axioms, as follows.

Take all axioms and rules of PDL [20, 10, 16], plus the following reduction axioms:

[A, s]p ↔ (pre(s) → p)
[A, s]¬ϕ ↔ (pre(s) → ¬[A, s]ϕ)

[A, s](ϕ1 ∧ ϕ2) ↔ ([A, s]ϕ1 ∧ [A, s]ϕ2)

[A, si][π]ϕ ↔
n−1∧
j=0

[TA
ij (π)][A, sj]ϕ.

and necessitation for action model modalities. The reduction axioms for [A, s]p, [A, s]¬ϕ and
[A, s](ϕ1∧ϕ2) are as in [13]. The final reduction axiom is based on program transformation and
is new.

If updates with multiple pointed action models are also in the language, we need the following
additional reduction axiom:

[A,S]ϕ ↔
∧
s∈S

[A, s]ϕ

7

Theorem 3 (Completeness) If |= ϕ then ` ϕ.

Proof. The proof system for PDL is complete, and every formula in the language of PDLDEL

is provably equivalent to a PDL formula. 2

5 Special Cases

Public Announcement and Common Knowledge The action model for public announce-
ment that ϕ consists of a single state s0 with precondition ϕ and epistemic relation {s0

a→ s0 |
a ∈ Ag}. Call this model Pϕ.

We are interested in how public announcement that ϕ affects common knowledge among group
of agents B, i.e., we want to compute [Pϕ, s0][B∗]ψ. For this, we need TPϕ

00 (B∗), which is defined
as KPϕ

001(B).

To work out KPϕ

001(B), we need KPϕ

000(B), and for KPϕ

000(B), we need TPϕ

00 (B), which turns out to
be

⋃
b∈B(?ϕ; b), or equivalently, ?ϕ;B. Working upwards from this, we get:

K
Pϕ

000(B) =?> ∪ TPϕ

00 (B) =?> ∪ (?ϕ;B),

and therefore:

K
Pϕ

001(B) = (KPϕ

000(B))∗

= (?> ∪ (?ϕ;B))∗

= (?ϕ;B)∗.

Thus, the reduction axiom for the public announcement action Pϕ with respect to the program
for common knowledge among agents B, works out as follows:

[Pϕ, s0][B∗]ψ ↔ [TPϕ

00 (B∗)][Pϕ, s0]ψ

↔ [KPϕ

001(B)][Pϕ, s0]ψ
↔ [(?ϕ;B)∗][Pϕ, s0]ψ.

This expresses that every B path consisting of ϕ worlds ends in a [Pϕ, s0]ψ world, i.e., it expresses
exactly what is captured by the special purpose operator CB(ϕ,ψ) introduced in [13].1

1Indeed, the authors remark in a footnote that their proof system for CB(ϕ,ψ) essentially follows the usual
PDL treatment for the PDL transcription of this formula.

8

Secret Group Communication and Common Belief The logic of secret group commu-
nication is the logic of email CCs. The action model for a secret group message to B that ϕ
consists of two states s0, s1, where s0 has precondition ϕ and s1 has precondition >, and where
the accessibilities T are given by:

T = {s0
b→ s0 | b ∈ B} ∪ {s0

a→ s1 | a ∈ Ag−B} ∪ {s1
a→ s1 | a ∈ Ag}.

The actual world is s0. The members of B are aware that action ϕ takes place; the others think
that nothing happens. In this thought they are mistaken, which is why CC updates generate
KD45 models: i.e., CC updates make knowledge degenerate into belief.

We work out the program transformations that this update engenders for common knowledge
among group of agents D. Call the action model CCB

ϕ .

We will have to work out K
CCB

ϕ

002 D, K
CCB

ϕ

012 D, K
CCB

ϕ

112 D, K
CCB

ϕ

102 D.

For these, we need K
CCB

ϕ

001 D, K
CCB

ϕ

011 D, K
CCB

ϕ

111 D, K
CCB

ϕ

101 D.

For these in turn, we need K
CCB

ϕ

000 D, K
CCB

ϕ

010 D, K
CCB

ϕ

110 D, K
CCB

ϕ

100 D.

For these, we need:

T
CCB

ϕ

00 D =
⋃

d∈B∩D

(?ϕ; d) = ?ϕ; (B ∩D)

T
CCB

ϕ

01 D =
⋃

d∈D−B

(?ϕ; d) = ?ϕ; (D −B)

T
CCB

ϕ

11 D = D

T
CCB

ϕ

10 D = ?⊥

It follows that:

K
CCB

ϕ

000 D = ?> ∪ (?ϕ; (B ∩D))

K
CCB

ϕ

010 D = ?ϕ; (D −B)

K
CCB

ϕ

110 D = ?> ∪D,

K
CCB

ϕ

100 D = ?⊥

9

From this we can work out the Kij1, as follows:

K
CCB

ϕ

001 D = (?ϕ; (B ∩D))∗

K
CCB

ϕ

011 D = (?ϕ; (B ∩D))∗; (D −B)

K
CCB

ϕ

111 D = ?> ∪D

K
CCB

ϕ

101 D = ?⊥.

Finally, we get K002 and K012 from this:

K
CCB

ϕ

002 D = K
CCB

ϕ

001 D ∪KCCB
ϕ

011 D; (K
CCB

ϕ

111 D)∗;K
CCB

ϕ

101 D

= K
CCB

ϕ

001 D (since the righthand expression evaluates to ?⊥)
= (?ϕ; (B ∩D))∗

K
CCB

ϕ

012 D = K
CCB

ϕ

011 D ∪KCCB
ϕ

011 D; (K
CCB

ϕ

111 D)∗

= K
CCB

ϕ

011 D; (K
CCB

ϕ

111 D)∗

= (?ϕ; (B ∩D))∗; (D −B);D∗.

Thus, the program transformation for common belief among D works out as follows:

[CCB
ϕ , s0][D

∗]ψ ↔ [(?ϕ; (B ∩D))∗][CCB
ϕ , s0]ψ ∧ [(?ϕ; (B ∩D))∗; (D −B);D∗][CCB

ϕ , s1]ψ.

Compare [19] for a direct axiomatisation of the logic of CCs.

Group Messages and Common Knowledge The action model for a group message to B
that ϕ consists of two states s0, s1, where s0 has precondition ϕ and s1 has precondition >, and
where the accessibilities T are given by:

T = {s0
b→ s0 | b ∈ B} ∪ {s1

b→ s1 | b ∈ B} ∪ {s0
a→ s1 | a ∈ Ag−B} ∪ {s1

a→ s0 | a ∈ Ag−B}.

This captures the fact that the members of B can distinguish the ϕ update from the > update,
while the other agents (the members of Ag−B) cannot. The actual action is s0. Call this model
GB

ϕ .

A difference with the CC case is that group messages are S5 models. Since updates of S5
models with S5 models are S5, group messages engender common knowledge (as opposed to

10

mere common belief). Let us work out the program transformation that this update engenders
for common knowledge among group of agents D.

We will have to work out K
GB

ϕ

002D, K
GB

ϕ

012D, K
GB

ϕ

112D, K
GB

ϕ

102D.

For these, we need K
GB

ϕ

001D, K
GB

ϕ

011D, K
GB

ϕ

111D, K
GB

ϕ

101D.

For these in turn, we need K
GB

ϕ

000D, K
GB

ϕ

010D, K
GB

ϕ

110D, K
GB

ϕ

100D.

For these, we need:

T
GB

ϕ

00 D =
⋃
d∈D

(?ϕ; d) =?ϕ;D,

T
GB

ϕ

01 D =
⋃

d∈D−B

(?ϕ; d) =?ϕ; (D −B),

T
GB

ϕ

11 D = D,

T
GB

ϕ

10 D = D −B.

It follows that:

K
GB

ϕ

000D = ?> ∪ (?ϕ;D),

K
GB

ϕ

010D = ?ϕ; (D −B),

K
GB

ϕ

110D = ?> ∪D,

K
GB

ϕ

100D = D −B.

From this we can work out the Kij1, as follows:

K
GB

ϕ

001D = (?ϕ;D)∗,

K
GB

ϕ

011D = (?ϕ;D)∗; ?ϕ;D −B,

K
GB

ϕ

111D = ?> ∪D ∪ (D −B; (?ϕ;D)∗; ?ϕ;D −B),

K
GB

ϕ

101D = D −B; (?ϕ;D)∗.

Finally, we get K002 and K012 from this:

K
GB

ϕ

002D = K
GB

ϕ

001D ∪KGB
ϕ

011D; (K
GB

ϕ

111D)∗;K
GB

ϕ

101D

= (?ϕ;D)∗ ∪
(?ϕ;D)∗; ?ϕ;D −B; (D ∪ (D −B; (?ϕ;D)∗; ?ϕ;D −B))∗ ;D −B; (?ϕ;D)∗,

K
GB

ϕ

012D = K
GB

ϕ

011D; (K
GB

ϕ

111D)∗

= (?ϕ;D)∗; ?ϕ;D −B; (D ∪ (D −B; (?ϕ;D)∗; ?ϕ;D −B))∗.

11

Abbreviating D ∪ (D − B; (?ϕ;D)∗; ?ϕ;D − B) as π, we get the following transformation for
common knowledge among D after a group message to B that ϕ:

[GB
ϕ , s0][D

∗]ψ ↔ [(?ϕ;D)∗ ∪ ((?ϕ;D)∗; ?ϕ;D −B;π∗;D −B; (?ϕ;D)∗)][GB
ϕ , s0]ψ

∧
[(?ϕ;D)∗; ?ϕ;D −B;π∗][GB

ϕ , s1]ψ.

6 Conclusion

That any dynamic epistemic update with a finite action model can be expressed in PDL is
not new. [4] has a theorem to that effect, and it also follows from the reduction of dynamic
epistemic updating to automata PDL from [13]. What is new is the constructive definition of
the embedding of dynamic epistemic updates in PDL.

Does it follow from the reduction to PDL that dynamic epistemic logic is essentially ‘nothing but’
PDL? If one takes dynamic epistemic logic to be the result of adding generic epistemic updating
with finite action models to PDL, then the answer is ‘yes’. If one takes dynamic epistemic logic
to be the result of adding updates with finite action models to a base multimodal logic enriched
with common knowledge operators, then the answer is: maybe not. It depends on whether PDL
is more expressive than this. This technical question is still open, as far as I know.

The program transformation approach to epistemic updates makes clear that it is possible to
view the update actions themselves as a kind of finite automata. The similarity is most striking
in the definition of the transformation for starred programs. The definition of transformed π?

paths in terms of operators Kijk(π) closely resembles the definition of sets of regular languages
Lk generated by moving through a nondeterministic finite automaton without passing through
states numbered k or higher, in the well-known proof of the fact that languages generated by
nondeterministic finite automata are regular [15, Thm 2.5.1].

Finally, note that our program transformations transform regular programs to regular programs,
i.e., they act as transducers. The effect of transducers can be specified with regular relations,
so a version of PDL with regular relations might be an appropriate way of getting rid of update
models in the epistemic language altogether. E.g., the effect of the public update with ϕ is
captered by the regular relation

⋃
a∈Ag(a ::?ϕ; a), where :: denotes replacement.

Acknowledgement Thanks to Alexandru Baltag, Johan van Benthem, Barteld Kooi, Larry
Moss and Ji Ruan for helpful comments and inspiring discussion.

References

[1] Baltag, A. A logic for suspicious players: epistemic action and belief-updates in games.
Bulletin of Economic Research 54, 1 (2002), 1–45.

[2] Baltag, A., and Moss, L. Logics for epistemic programs. Synthese 139, 2 (2004),
165–224.

12

[3] Baltag, A., Moss, L., and Solecki, S. The logic of public announcements, common
knowledge, and private suspicions. Tech. Rep. SEN-R9922, CWI, Amsterdam, 1999.

[4] Baltag, A., Moss, L., and Solecki, S. The logic of public announcements, common
knowledge, and private suspicions. Tech. rep., Dept of Cognitive Science, Indiana University
and Dept of Computing, Oxford University, 2003.

[5] Benthem, J. v. Language, logic, and communication. In Logic in Action, J. van Benthem,
P. Dekker, J. van Eijck, M. de Rijke, and Y. Venema, Eds. ILLC, 2001, pp. 7–25.

[6] Benthem, J. v. One is a lonely number: on the logic of communication. Tech. Rep.
PP-2002-27, ILLC, Amsterdam, 2002.

[7] Ditmarsch, H. v. Knowledge Games. PhD thesis, ILLC, Amsterdam, 2000.

[8] Eijck, J. v. Dynamic epistemic modelling. manuscript, CWI, Amsterdam, 2004.

[9] Fagin, R., Halpern, J., Moses, Y., and Vardi, M. Reasoning about Knowledge. MIT
Press, 1995.

[10] Fischer, M. J., and Ladner, R. E. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18, 2 (1979), 194–211.

[11] Gerbrandy, J. Bisimulations on planet Kripke. PhD thesis, ILLC, 1999.

[12] Harel, D., Kozen, D., and Tiuryn, J. Dynamic Logic. Foundations of Computing.
MIT Press, Cambridge, Massachusetts, 2000.

[13] Kooi, B., and van Benthem, J. Reduction axioms for epistemic actions. Manuscript,
Groningen/Amsterdam, 2004.

[14] Kooi, B. P. Knowledge, Chance, and Change. PhD thesis, Groningen University, 2003.

[15] Lewis, H., and Papadimitriou, C. Elements of the Theory of Computation. Prentice-
Hall, 1981.

[16] Parikh, R. The completeness of propositional dynamic logic. In Mathematical Foundations
of Computer Science 1978. Springer, 1978, pp. 403–415.

[17] Pratt, V. Semantical considerations on Floyd–Hoare logic. Proceedings 17th IEEE Sym-
posium on Foundations of Computer Science (1976), 109–121.

[18] Pratt, V. Application of modal logic to programming. Studia Logica 39 (1980), 257–274.

[19] Ruan, J. Exploring the update universe. Master’s thesis, ILLC, Amsterdam, 2004.

[20] Segerberg, K. A completeness theorem in the modal logic of programs. In Universal
Algebra and Applications, T. Traczyck, Ed. Polish Science Publications, 1982, pp. 36–46.

13

