
Parser Combinators for Extraction

Jan van Eijck∗

Abstract

Dislocation phenomena in natural language can be, and often are, thought of as
the effects of movement transformations. We propose to handle these phenomena
in terms of parser combinators [3, 8] that transform recursive descent parsers for
a ‘deep structure language’ into parsers for a ‘surface structure language’. This
combinator approach to extraction keeps close to the ‘movement’ intuition and
gives a computational account of the well known island constraints on extraction
first proposed in [7].

1 Introduction

Left extraction in natural language occurs when a subconstituent of some con-
stituent is missing, and some other constituent to the left of the incomplete
constituent represents that missing constituent in some way. In the generative
tradition, such dislocations used to be accounted for by means of transforma-
tions that move a constituent while leaving a trace. Computational and logic-
oriented approaches to NL processing and understanding replace the transfor-
mational account with an in situ analysis, through gap threading (lexical func-
tional grammar, categorial grammar, GPSG, HPSG), through extension of the
context free rule format with wrapping operations (extraposition grammars,
tuple-based and tree-based extensions of context free grammars), or through
extension of context free rules with stacks of indices (indexed grammars). We
propose an account in terms of pushdown parser combinators for recursive de-
scent parsing. Our account allows us to remain close to the spirit of the original
movement analysis.

2 Parser Combinators

Parser combinators are functions that transform parsers for a language into
parsers for a different language [3]. We can think of a recursive descent parser
for a fragment of natural language as a function of type

[Cat]→ [(Cat, [Cat])].

∗ CWI and ILLC, Amsterdam and Uil-OTS, Utrecht

The parser transforms a list of categories — type [Cat], with the square brackets
indicating list formation — into a list of pairs (Cat, [Cat]), each consisting of
a category and a list of remaining categories. Parsing with the rule A −→
X1 · · ·Xn gives the result:

[X1, . . . , Xn, Xn+1, . . . , Xm] =⇒ A

X1 . . . Xn

[Xn+1, . . . , Xm].

Parsing the input list [X1, . . . , Xm] with a set of rules may give a number of
different results. Each successful parse of the input category-list will yield a pair
consisting of (i) a recognized category for a prefix of the category list and (ii)
the remainder of the category list. Parsing failures are indicated by return of
the empty list, ambiguous parses by return of non-unit lists.

3 A Parser Combinator for Extraction

Relative clause formation in English is a simple example of left extraction. The
structure of the relative clause in (1) is represented by the annotation that links
a relative pronoun that to its trace ti.

I hated the man thati the woman sold the house to ti. (1)

Abbreviating the type of parsers as Parser, the parser combinator that instructs
a parser to expect a DP gap — represented by a trace t — has type Parser→
Parser, and is given by the following definition by means of list comprehension:

expectDPgap :: Parser→ Parser

expectDPgap = λ parser λ xs.

[(cat, zs) | ys← randomInsert ”t” xs,

(cat, zs)← parser ys,

hasDPgap cat]

What this says is that the parser combinator expectDPgap takes a parser as a
first argument and yields a function from input category lists to lists of output
pairs consisting of categories and remainder category lists, i.e., a parser. The
function call randomInsert ”t” xs yields the list of all category lists that result
from inserting trace t somewhere in the category list xs, so ys ranges over all
such category lists, and (cat, zs) ranges over all pairs of categories and category
lists that result from running the input parser on such ys. The function call
hasDPgap cat is a Boolean check as to whether cat has an DP gap somewhere
in it. Thus, if expectDPgap combines with a parser this yields a new parser that
operates on an input category list xs by calling the input parser on category
lists that differ from the input category list in the fact that the trace t occurs

in it somewhere, and that yields as output those pairs (cat, zs) in the yield of
the input parser with cat having a DP gap.

Suppose that the trace introduced by expectDPgap is parsed as a DP
gap, and assume that parseSent is a parser for sentences. Then

expectDPgap parseSent

is a parser for relative clauses. The combinator account of movement naturally
accommodates the well known island constraint on extraction [7] that rules out
configurations of the form

. . . thati . . . [DP. . . [REL thatj [S. . . tj . . . ti . . .]]].

The island constraint is imposed to explain the ungrammaticality of examples
like (2).

*I admired the woman thati you liked the man thatj [tj sold it to ti]. (2)

This island constraint is captured in the hasDPgap check.

4 Pushdown Parsers

The parsing-as-deduction metaphor [6] assimilates parsing with CF rules to
logical deduction. The goal is to prove the sentence symbol from a list of pre-
misses corresponding to the categories of the input word list, with the CF rule
A −→ X1 · · ·Xn read as X1 · · ·Xn ` A.

In this perspective, parsing with a dislocated constituent can be seen as
parsing with a hypothesis to be discharged at the point where the corresponding
gap is encountered. Parsing with CF rules relates to parsing with CF rules
allowing hypothetical reasoning in roughly the same way as basic categorial
grammar relates to Lambek style categorial grammar, but for the fact that in
the case of categorial grammar hypothetical reasoning does not increase (weak)
expressive power [5], while in the case of CF grammar it does (see below).

The appropriate function for ‘parsing with hypotheses’ is a pushdown
parser that collects the list of undischarged hypotheses on a stack. A PdParser
is a function of the following type:

[Cat]→ [Cat]→ [(Cat, [Cat], [Cat])].

Such a function takes a list of undischarged hypotheses and a list of unparsed
categories, and it produces a list of triples consisting of a category, a list of
remaining hypotheses, and a list of remaining categories.

If a displaced constituent is encountered, a gap category is pushed onto
the stack of hypotheses. If, during the parse, a corresponding category is ex-
pected but not found in the input category list, a hypothesis may be discharged.

Suppose the parser expects a DP. If a gap of type DP is on top of the stack,
then it is possible to parse the DP as this gap, and it is also possible to parse
the DP using a DP rule, and carry the gap along. Discharging the gap is done
by using the pop parser combinator:

pop :: CatLabel→ PdParser

pop l (h : hs) xs = [(h,hs, xs) | catLabel h = l]

The following function propagates a hypothesis through a pushdown parser:

propagate :: CatLabel→ Cat→ PdParser→ PdParser

propagate l h p = λhs λxs.

[(cat, h : is, ys) | (cat, is, ys)← p hs xs, catLabel h = l]

This choice between pop and propagation ensures that the island constraint is
met: the pending hypothesis cannot be discharged inside a category with the
same label. (In the other case, i.e., if the label of the pending hypothesis is
different from the label of the expected category, the hypothesis can be used
inside.)

Yes/no questions can be thought of as the result of extracting an auxiliary
from a sentence, e.g.:

YN

AUX

do

Sent

DP

you

VP

AUX[2][pres]

#

VP

VERB

love

DP

me

A Wh-question is the result of extracting a Wh-phrase (either a DP or
a PP) from a YN-question, so parsing a Wh-question is just a matter of first
finding a Wh-phrase and next letting a parser for YN-questions look for a
matching Wh-phrase gap. Figure 1 gives a structure tree for What did they
break it with? Similarly, we get a parse for With what did they break it? by
pushing a PP gap onto the hypotheses stack.

WH

DP

what

YN

AUX

did

Sent

DP

they

VP

AUX[past]

#

VP

VERB

break

DP

it

PP

PREP

with

DP[N][Sg][3]

#

Figure 1: Parse tree for What did they break it with?

5 Semantics

For generation of logical forms, replace each category by a pair of the type
(Cat, LF), and modify the push function as follows:

push :: (Cat,LF)→ PdParser

push (gap,v) f hs xs = [((c, λv.lf), is, ys) | ((c, lf), is, ys)← f (gap,v):hs xs]

Suppose the gap variable has type α and the LF component of the output of
parser f has type β. Then the LF component of the output of the parser

push (gap, v) f
has type α → β. This makes storage of a gap category (introduction of a
hypothesis) correspond to lambda abstraction over a variable that interprets
the gap, as it should.

6 Recognizing Power

Starting out from a set of combinators for CF parsing, the addition of the
pushdown stack of hypotheses allows for the parsing of non-CF languages, as

the following example of a parser for the language anbncn illustrates:

parseS,parseZ :: PdParser

parseS = parsesAs ′S′ [symb ′a′,push ′X ′ parseS]

⊕ parseZ

parseZ = parsesAs ′Z ′ [symb ′b′,pop ′X ′ parseZ, symb ′c′]

⊕ eps

This uses only the CF combinators (symb for recognition of individual symbols,
⊕ for choice, parseAs for sequential composition of a list of parsers under a label,
and eps for recognizing the empty string), plus the push and pop combinators.

A pushdown parser for recognizing a category A comes with a local stack
of undischarged hypotheses that can be used either in recognizing A or in
recognizing categories further on in the parse process. This is similar to the
nested stack automata from [2], the machine model that matches the class of
indexed languages [1]. We conjecture that parsing with recursive descent push-
down parsers, using only parser combinators for the context free combinators,
plus the combinators for storage (push) and retrieval (pop) of hypotheses, allows
for the recognition of all indexed languages.

Pushdown parser combinators have been implemented in the lazy func-
tional programming language Haskell [4], yielding promising parsers for inter-
esting NL fragments.

References

[1] Alfred V. Aho. Indexed grammars — an extension of context-free grammars.
Journal of the ACM, 15(4):647– 671, 1968.

[2] Alfred V. Aho. Nested stack automata. Journal of the ACM, 16(3):383–406,
1969.

[3] G. Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2(3):323–343, 1992.

[4] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The Revised
Report. Cambridge University Press, 2003.

[5] M. Pentus. Lambek grammars are context free. In Proceedings of the 8th
Annual IEEE Symposium on Logic in Computer Science, pages 429–433,
Los Amalitos, California, 1993.

[6] F.C.N. Pereira and H.D. Warren. Parsing as deduction. In Proceedings
of the 21st Annual Meeting of the ACL, pages 137–111. MIT, Cambridge,
Mass., 1983.

[7] J.R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, 1967.
[8] P. Wadler. How to replace failure by a list of successes. In Jean-Pierre

Jouannaud, editor, FPCA, volume 201, pages 113–128, 1985.

