
Model Generation from Constrained Free VariableTableauxJan van Eijk?CWI and ILLC, Amsterdam, Uil-OTS, Utreht; jve�wi.nlAbstrat. The tableau substitution rule in free variable tableau reasoning is destru-tive, for in general, T has onsequenes that T� laks. We show how this destrutivefeature an be eliminated in favour of a set-up that replaes tableau substitution withthe generation and inremental merge of variable onstraints on tableau branhes. Theapproah di�ers from other onstraint based tehniques in tableau reasoning in thatwe onstrain tableau branhes rather than lauses, and use disuni�ation onstraintsrather than uni�ation onstraints. We prove soundness and ompleteness, with theompleteness proof based on a new way to generate models from open tableaux.1 Basi De�nitionsLanguage. Let � be a �rst order signature, and Fsko an in�nite set of skolem fun-tions, with Fsko\F� = ;. Call the extended signature ��. If v ranges over variables,f over funtion symbols and P over prediate symbols, then the extended languageL�� is given by: t ::= v j f(t1; : : : ; tn) where f n-aryS ::= > j ? j v1 � t1 ^ � � � ^ vn � tn j S1 ^ S2C ::= > j ? j v1 6� t1 _ � � � _ vn 6� tn j C1 _ C2� ::= > j ? j P (t1; : : : ; tn) where P n-ary j :� j�1 ^ � � � ^ �n j �1 _ � � � _ �n j 8v� j 9v�An expression of the form S is alled a substitution expression, an expression of theform C a variable onstraint. The de�nitions of literals and lauses are as usual.Substitutions. A substitution � is a funtion V ! T�� that makes only a �nitenumber of hanges, i.e., � has the property that dom (�) = fv 2 V j v� 6= vg is�nite. We use � for the substitution with domain ; (the identity substitution), andwe represent a substitution � in the standard way, as a listfv1 7! v1�; : : : ; vn 7! vn�g;where fv1; : : : ; vng is dom (�). Alternatively, substitutions an be viewed as onjun-tions of equalities, i.e., � orresponds to the onjuntion v1 � v1� ^ � � � ^ vn � vn�.We an interpret suh onjuntions in the initial term algebra T (��) (the algebraof all losed �� terms), by means of:[[�℄℄ := f� 2 V T (��) j T (��) j=� �g:? Many thanks to the members of the Dynamo team: Balder ten Cate, Juan Heguiabehere andBreannd�an �O Nuall�ain.



It is not hard to see that this gives: [[�℄℄ = [[>℄℄ = V T (��), and [[� ^ �℄℄ = [[�℄℄\ [[�℄℄. If�; � are substitutions, then � � � if � is less general than �, i.e., if there is a � with� = ��. Note that � � � i� [[�℄℄ � [[�℄℄.1 The relation � is a pre-order (transitive andreexive), and its poset reetion is a partial order. For this, put � � � if � � � and� � �, and onsider substitutions modulo renaming. This immediately gives: � � �i� [[�℄℄ = [[�℄℄.The interpretations of substitution expressions in the initial term algebra under� form a meet semi-lattie, with onjuntion interpreted as \ (lattie meet), i.e.,we have [[S1 ^ S2℄℄ = [[S1℄℄ \ [[S2℄℄. If [[S1 ^ S2℄℄ = [[?℄℄ = ; we say that S1 and S2 donot unify. In the other ase, S1 ^ S2 is (interpreted as) a most general uni�er for S1and S2. We get that [[>℄℄ (or [[�℄℄), the set of all variable maps in the ground termalgebra, is the top of the lattie, and [[?℄℄ = ; its bottom.Variable Constraints. From a substitution �, derive a variable onstraint � by om-plementation, as follows: � =_fv 6� �(v) j v 2 dom (�)g:E.g., the omplement � of � = fx 7! a; y 7! bg is x 6� a _ y 6� b. Note that � = ?.The interpretations of variable onstraints in the initial term algebra under �form a join semi-lattie, with disjuntion interpreted as [ (lattie join), i.e., we have[[C1_C2℄℄ = [[C1℄℄[[[C2℄℄. Again, the set of all variable maps in the ground term algebrais the top of the semi-lattie, and [[?℄℄ = ; its bottom. If [[C1 _C2℄℄ = [[>℄℄ = V T (��)we say that C1 and C2 merge, or that C1 _ C2 is universally satis�able. We getthat [[?℄℄ (or [[�℄℄) equals ;, so � only merges with >. Call two onstraints C1 and C2equivalent if [[C1℄℄ = [[C2℄℄.Tableaux, Closed and Open Branhes. A tableau over � is a �nitely branhing treewith nodes labeled by L�� literals, or by variable onstraints. A branh in a tableauT is a maximal path in T . A branh B in a tableau T is losed if ? ours onB, otherwise B is open. To explain how a tableau for a set � of L�� formulas isonstruted we assume the usual Smullyan [8℄ typology:� ; �1; : : : ; �n�1 ^ � � � ^ �n ; �1; : : : ; �n:(�1 _ � � � _ �n); :�1; : : : ;:�n::� ; �:> ; ?:? ; >
� ; �1; : : : ; �n�1 _ � � � _ �n ; �1; : : : ; �n:(�1 ^ � � � ^ �n); :�1; : : : ;:�n�)  ; :�;   ; 18v�(v) ; �(v):9v�(v); :�(v) Æ ; Æ1:8v�(v); :�(v)9v�(v) ; �(v)The formulas deompose as follows: to deompose an � formula on a branh, extendthe branh with �1; : : : ; �n; to deompose a � formula on a branh, grow n new leafs1 We write � for `less general than' rather than the other way around, to get this natural orre-spondene with interpretations in the initial term model.



�1; : : : ; �n; to deompose a  formula, extend the branh with (w), where w is avariable that is fresh to the tableau; to deompose a Æ formula, extend the branhwith Æ1(skoÆ(v1; : : : ; vn)), where v1; : : : ; vn are the free variables in Æ, and skoÆ is askolem funtion for Æ. See [5℄.Initialization. Put > at the root node of the tableau.Expansion. Branhes of a tableau for a set of formulas � are expanded aording tothe Smullyan deomposition reipe.Rigid Variables. The rigid variables of a branh are de�ned in terms of the rigidvariables of a node. The root node R has r(R) = ;. The nodes that are reated byan �;  or Æ rule have the same rigid variables as their parent node. If an appliationof a � rule reates daughter nodes N1, . . . , Nn, then r(Ni) is given by:r(Ni) := r(N) [(var (�i) \[fvar (�j) j 1 � j � n; i 6= j; �i ours on an open branh g):The set of rigid variables of a branh B is the rigid variable set at the end node ofB if B is �nite, or the set SN2B r(N) otherwise. This de�nition is extended to setsof branhes in an obvious way.Constraint Generation. Here omes the new element:L; L0� ;where L and L0 are literals with opposite sign on the urrent branh, and � is therestrition to the rigid variables of the urrent node of a most general substitution �with L� = L0�, where � has the property that it does not rename any rigid variablesof the branh.Remark. It is onvenient to use substitions � in the onstraint generation rule thatdo not rename any rigid branh variables. Suppose Px is a positive literal on abranh, with x rigid, and suppose that y is not rigid on the branh. Then a mathwith :Py an rename either x or y. If x is renamed, a onstraint x 6� y is generated.If y is renamed, the onstraint ? is generated, beause we an take the onstraintbased on �, the restrition of the unifying substitution fy 7! xg of Px;:Py to therigid variables on the branh. This loses the branh without further ado.Loked Variables. A rigid variable v is loked in a tableau if there is a tableau subtreeT with{ 1(v) at the root of T ,{ T has di�erent open branhes B;B0, with onstraints C on B, C 0 on B0, andwith v 6� t 2 C; v 6� t0 2 C 0, t and t0 di�erent,{ the part of B starting at C does not ontain 1(w) for any w.A loked variable is freed by a reappliation of an appropriate  rule, either to B orto B0, in suh a way that this does not generate an alphabeti variant of T .



Computation Rules; Fairness A tableau omputation rule F is a funtion that forany tableau T for � omputes the next rule to be applied to T . This de�nes a partialorder on the set of tableaux for �, with the suessor of T given by F . Then thereis a (possibly in�nite) sequene of tableaux for � starting from the initial tableau,and with supremum T1. A omputation rule F is fair if the following holds for allbranhes B in T1:1. All formulas of type �; �; ; Æ ourring on B or in � were used to expand B,2. All loked variables ourring on B were freed by a reappliation of an appro-priate  rule (either to B or to the other branh involved in the lok).Note that it is thanks to the presene of onstraints that we an restrit repetitionof the  rule, and that in�nite expansion of  formulas is not required in general. (Ifthe  rule reappliation that frees a loked variable reates an alphabeti variant,the reappliation is spurious.)Variable Constraint Redution. To hek a tableau onsisting of n branhes forlosure, we apply onstraint merge for losure, to be de�ned in terms of joins ofvariable onstraints. Computing joins of variable onstraints is nothing but syntatiterm uni�ation under a di�erent guise. It is lear that � _ � redues to > i� � and� do not unify. Moreover, we have that � _ � redues to > i� � _ � is universallysatis�able:Theorem 1. � _ � redues to > i� [[� _ �℄℄ = [[>℄℄.Constraint Merge for Closure Chek. If B1; : : : ;Bn are tableau branhes, and forall i 2 [1::n℄, �i is a onstraint on Bi, then the Constraint Merge for Closure Chekgoes like this: �1; � � � ; �nlosure by: �1 ^ � � � ^ �n�1 _ � � � _ �n 6� >:The idea of onstraint merge for losure is that if the disjuntion of � and � is notuniversally satis�able, then this means there exists an assignment that satis�es both� and �, whih means in turn that � and � an be uni�ed, and that (a substitutionorresponding to) �^� loses both branhes. Next, we try to extend the substitution�^� to a losing substitution for other branhes, until we get at a substitution thatloses the whole tableau.Open and Closed Tableaux. A tableau is open if one of the following two onditionsholds, otherwise it is losed :{ some branh in the tableau arries no onstraint,{ all branhes in the tableau arry onstraints, but all ways of piking onstraintsfrom di�erent branhes and merge them yield > (if one piks an �i on eah Bi,then always �1 _ � � � _ �n � >).



Tableau Bundles; Herbrand Universes for Open Tableaux. A pair of di�erent branhesin a tableau is onneted if some variable distributes over the two branhes (i.e., somerigid variable ours on both branhes). Sine onnetedness is symmetri, the re-exive transitive losure of this relation is an equivalene. A tableau bundle is anequivalene lass of onneted� branhes. We will onsider term models built fromHerbrand universes of ground terms. The Herbrand universe of a bundle B in atableau is the set of terms built from the skolem onstants and funtions that ourin B, or, if no skolem onstants are present, the set of terms built from the onstant and the skolem funtions that our in B. If B ontains no skolem funtions andB is �nite, the Herbrand universe of B is �nite; if B ontains skolem funtions itis in�nite. The models over suh a Herbrand universe are ompletely spei�ed by aset of ground positive literals. We use HB for the Herbrand universe of B, and weall a variable map � with dom (�) = vars(B) and rng (�) � HB a grounding for Bin HB, and a ground instane of a lause under a grounding for B in HB an HBinstane. Note that a grounding need not be a substitution, as the set vars(B) maybe in�nite.2 ExamplesUpperase haraters are used for prediates, x; y; z; u; : : : for variables, a; b; ; : : : forindividual onstants (skolem onstants), f; g : : : for skolem funtions.Fig. 1. Refutation Proof Example.8xzy(Rxy ^Ryz ) Rxz);8u:Ruu; 9vw(Rvw ^ Rwv)Rab;RbaRxy ^Ryz ) Rxz:(Rxy ^ Ryz):Rxyx 6� a _ y 6� bx 6� b _ y 6� a :Ryzy 6� a _ z 6� by 6� b _ z 6� a
Rxz:Ruu?

Refutation Proof Example 1. To prove that every transitive and irreexive relationis asymmetri, we refute the following onjuntion:8xzy(Rxy ^Ryz ) Rxz) ^ 8u:Ruu ^ 9vw(Rvw ^Rwv):



The tableau is given in Fig. 1. On the rightmost branh, we take are to use theonstraint based on the substitution fu 7! x; u 7! yg that does not rename the rigidvariables x; y. This immediately leads to the onstraint � = ?, for u is not a rigidvariable of the branh.Constraint merge of x 6� a_y 6� b_y 6� a_z 6� b yields >, and so does onstraintmerge of x 6� b _ y 6� a _ y 6� b _ z 6� a, so these ombinations will never lead to arefutation of universal satis�ability. Constraint merge of x 6� a_y 6� b_y 6� b_z 6� ayields the onstraint x 6� a_ y 6� b_ z 6� a. Constraint merge of x 6� b_ y 6� a_ y 6�a_z 6� b yields the onstraint x 6� b_y 6� a_z 6� b. Both of these yield a non-trivialonstraint when merged with ?. Thus, the substitutions fx 7! a; y 7! b; z 7! ag,fx 7! b; y 7! a; z 7! bg lose the tableau.Fig. 2. Another Refutation Proof Example.8xy(Sxy _ Syx);9zu(:Szu ^ :Suz):Sab ^ :Sba:Sab;:SbaSxy _ SyxSxyx 6� a _ y 6� bx 6� b _ y 6� a Syxy 6� a _ x 6� by 6� b _ x 6� aRefutation Proof Example 2. A tableau for the sentene8xy(Sxy _ Syx) ^ 9zu(:Szu ^ :Suz)is given in Fig. 2. The onstraint merges that lead to non-trivial onstraints, andthus to losing substitutions, are: x 6� a _ y 6� b _ y 6� b _ x 6� a and x 6� b _ y 6�a _ y 6� a _ x 6� b.Closure Through Reappliation of  Rule. In Figure 3, a ase is shown where reap-pliation of a  rule is ruial to ahieve losure.Model Generation Example. Consider a tableau for the sentene8xy(Rxy _ Sxy) ^ :9zRza ^ :9uSub;



Fig. 3. Closure Through Reappliation of a  Rule.8x Px;:Pa _ :PbPy:Pay 6� aPzz 6� a
:Pby 6� b

Fig. 4. Model Generation Example.8xy(Rxy _ Sxy);:9zRza;:9uSubRxy _ SxyRxy:Rzax 6� z _ y 6� a Sxy:Subx 6� u _ y 6� bgiven in Fig. 4. This tableau does not lose, for the disjuntion of the two onstraintsis universally satis�able, as it witnessed by the fat that x 6� z_y 6� a_x 6� u_y 6� bredues to >.Reappliation of the  rule to 8xy(Rxy _ Sxy) does give a subtree that is analphabeti variant of the tree we started out with, so suh reappliations are spurious.Other than that, there are no further rule appliations, so we have an opentableau. A model for the sentene is not generated by a single branh in this ase,as the two branhes share onstrained variables. The domain of a model generatedfrom this tableau is the set of losed terms of the tableau, i.e., the set fa; bg. The setof groundings in this domain onsists of �1 = fx 7! a; y 7! ag, �2 = fx 7! a; y 7! bg,�3 = fx 7! b; y 7! ag, �4 = fx 7! b; y 7! bg. �1 satis�es only the right branh, so itgenerates the fat Saa. �2 satis�es only the left branh, so it generates the fat Rab.�3 satis�es only the right branh, so it generates the fat Sba. Finally, �4 satis�esonly the left branh, so it generates the fat Rbb. The model is given by the set offats fSaa;Rab; Sba;Rbbg.



3 Soundness, Model Generation, CompletenessAn assignment � in a model M meets a onstraint � if M j=� �. Let [[�℄℄M� give theterm interpretation in the model with respet to �. Then we have:Theorem 2. M j=� � i� there is a v 2 dom (�) with �(v) 6= [[v�℄℄M� .An assignment � satis�es a branh B of a tableau T in a model M if � meets allonstraints on B, andM j=� L for all positive literals L on B. Notation: M j=� B.An assignment � satis�es a tableau T in a model M if � satis�es a branh of T .Notation: M j=� T . A tableau T is (universally) satis�able if for some model M itis the ase that all assignments � for M satisfy T in M. Notation: M j= T .Theorem 3 (Satis�ability). If � is a satis�able �rst order sentene, then anytableau for � is satis�able.Proof. Let T be a tableau for �. Then either there is a �nite tableau sequeneT 1; : : : ;T n = T , or there is an in�nite sequene T 1; : : :, with T = S1i=1 T i. In anyase, T 1 onsists of a single node >, and T i+1 is onstruted from T i by an appli-ation of one of the tableau expansion rules, or by an appliation of the onstraintgeneration rule. To prove by indution on n that T is satis�able, we have to hekthat satis�ability is preserved by eah of these steps, and by the proess of takinglimits. The only non-standard ase is that of onstraint generation.Take some M with M j= �. Assume that M j= T i, and T i+1 is the resultof applying onstraint generation to T i. Assume the branh to whih ConstraintGeneration is applied isB, the branh literals used in the rule are L;L0, the unifyingsubstitution is �, and the restrition of � to the rigid branh variables is �.Consider an assignment � that satis�es T i in M. In ase � satis�es a branhdi�erent from B then the new onstraint � will not a�et this, and � will satisfyT i+1 in M. Suppose, therefore, that � satis�es only B. We have to show that �satis�es �. Sine L;L0 are on branh B, we know that M j=� L and M 6j=� L0.Let assignment �0 be given by �0(v) = [[v�℄℄M� . We distinguish two ases. (1) IfM j=� L�, thenM j=�0 L, andM j=�0 L0, so �0 does not satisfyB. (2) IfM 6j=� L�,thenM 6j=�0 L, andM 6j=�0 L0, so again �0 does not satisfy B. In both ases, by theuniversal satis�ability of T i, there has to be a B0 with M j=�0 B0. Sine B is byassumption the only branh withM j=� B,M 6j=� B0. So there has to be a variablev that is both on B and B0 with the property that �(v) 6= �0(v). But this meansthat v 2 dom (�) and v is rigid in T i. It follows that v 2 dom (�), and that � doesmeet �, i.e., M j=� �. utTheorem 4 (Merge). If a tableau T loses by onstraint merge, then T is notuniversally satis�able.Proof. If T loses by onstraint merge then there is a way to pik onstraints �1,. . . , �n, one on eah tableau branh, suh that �1 _ � � � _ �n does not redue to >.By Theorem 1, this means that �1 _ � � � _ �n is not universally satis�able in theinitial term algebra. It follows that �1 _ � � � _ �n is not universally satis�able in anymodel. ut



Theorem 5 (Soundness). If there is a tableau refutation for a sentene �, then� is unsatis�able.Proof. Immediate from the Satis�ability Theorem and the Merge Theorem. utA variable map � meets a onstraint � if � 2 [[�℄℄. A variable map � is ompatiblewith a branh B if � meets all onstraints � on B. A variable map � is ompatiblewith a bundle B if � is ompatible with at least one branh B of B.Theorem 6 (Compatibility). If a tableau bundle B is open, then every variablemap � is ompatible with B.Proof. Assume B onsists of branhes Bi (i�0). We have to show that every variablemap is ompatible with at least one Bi. Suppose � is a variable map that is notompatible with any B 2 B. Then for eah of the Bi there is a onstraint �i on Bisuh that � 2 [[�i℄℄. Sine variable maps modulo renaming form a omplete lattieunder �, it follows that � � V(i�0) �i. Now any onstraint is at �nite distane fromthe root of the tableau, so there has to be a �nite set of onstraints �1; : : : ; �n with8i � 0 9j � n suh that �j ours on Bi. But then �1 _ � � � _ �n does not redue to>, and ontradition with the assumption that B is open. utTheorem 7 (Model Generation). Every open tableau is satis�able.Proof. Sine in a Herbrand universe groundings play the role of assignments, all wehave to do to satisfy a tableau T in a Herbrand model is look at all the groundinstanes of the tableau. To generate a model from an open tableau, proeed asfollows. Pik an open bundle B, and onsider groundings for B in HB.{ If there is an unonstrained B 2 B, the set of all HB instanes of the positiveliterals along B onstitutes a model for the tableau. It is lear that the modelsatis�es the tableau.{ If all branhes in B are onstrained, then generate HB instanes from groundingsfor B inHB, as follows. For every grounding � for B inHB, we an pik, aordingto the Compatibility Theorem, a branhB in B that is ompatible with �. Colletthe ground instanes of the positive literals of B. The union, for all groundings�, of the sets of ground positive literals olleted from branhes ompatible with�, onstitutes a model for the tableau. Again, it is lear that the model satis�esthe tableau. utTheorem 8 (Completeness). If a set of formulas � is unsatis�able, then thereexists a tableau refutation for �.Proof. Immediate from the Model Generation Theorem. ut4 Fair ComputationA tableau alulus is non-destrutive if all tableaux that an be onstruted withthe help of its rules from a given tableau T ontain T as an initial subtree [5℄.The usual versions of free variable tableaux are all destrutive. Clearly, the present



alulus is non-destrutive. A tableau alulus is proof onuent if every tableau foran unsatis�able set of formulas � an be extended to a losed tableau [5℄. Again, it islear that the present alulus is proof-onuent. Beause of its non-destrutivenessand proof-onuene, fair omputation with onstrained tableaux is easy. The usualfairness onditions for tableau expansion are replaed by more sophistiated ones interms of onstraints (freeing of loked variables, utting o� rule appliations thatlead to alphabeti variants). As the alulus is non-destrutive, no baktraking isever needed in the merge hek for losure.5 Related WorkThe standard referene for free variable reasoning in �rst order tableaux is [2℄, butthe idea to use free variables in theorem proving as plaeholders to delay instan-tiation is already present in Prawitz [7℄. With the introdution of free variables intableaux, easy model generation from open tableaux got lost. Working with vari-able onstraints in the manner explained above restores this delightful property oftableau reasoning.The researh for this paper was sparked o� by a suggestion from [3℄ to do tableauproof searh by merging losing substitutions for tableau branhes into a losing sub-stitution for the whole tableau (see also [4℄). From the model generation perspetive,this is turned around: the negations of the substitutions that lose a branh an beviewed as onstraints on branh satis�ability. The perspetive of the present paperis worked out more fully in [9℄ in the ontext of hyper tableaux [1℄. We are experi-menting with implementations of onstrained (hyper) tableau reasoning in Haskell[6℄, with merge heks for losure performed on tableau branhes represented as lazylists.Referenes1. P. Baumgartner, P. Fr�ohlih, and I. Niemel�a. Hyper tableaux. In Proeedings JELIA 96, LetureNotes in Arti�ial Intelligene. Springer, 1996.2. M. Fitting. First-order Logi and Automated Theorem Proving; Seond Edition. Springer Verlag,Berlin, 1996.3. Martin Giese. Proof searh without baktraking using instane streams, position paper. InPro. Int. Workshop on First-Order Theorem Proving, St. Andrews, Sotland, 2000. Availableonline at http://i12www.ira.uka.de/~key/do/2000/giese00.ps.gz.4. Martin Giese. Inremental losure of free variable tableaux. In IJCAR 2001 Proeedings, 2001.5. R. H�ahnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning. Elsevier Siene Publishers, to appear, 2001.6. S. Peyton Jones, J. Hughes, et al. Report on the programming language Haskell 98. Availablefrom the Haskell homepage: http://www.haskell.org, 1999.7. D. Prawitz. An improved proof proedure. In J. Siekmann and G. Wrightson, editors, Automationof Reasoning. Classial Papers in Computational Logi, pages 162{201. Springer, 1983. Originallyappeared in Theoria in 1960.8. R. Smullyan. First-order logi. Springer, Berlin, 1968.9. J. van Eijk. Constrained hyper tableaux. In Proeedings of CSL'01 (to appear), 2001. Eletron-ially available ast http://www.wi.nl/~jve/papers/01/Eijk01b.ps.gz.


