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Abstract. A new system of dynamic logic is introduced and motivated, with a
novel approach to variable binding for incremental interpretation. The system is
shown to be equivalent to first order logic and complete.

The new logic combines the dynamic binding idea from Dynamic Predicate Logic
with De Bruijn style variable free indexing. Quantifiers bind the next available
variable register; the indexing mechanism guarantees that active registers are never
overwritten by new quantifier actions. Apart from its interest in its own right, the
resulting system has certain advantages over Dynamic Predicate Logic or Discourse
Representation Theory. It comes with a more well behaved (i.c., transitive) conse-
quence relation, it gives a more explicit account of how anaphoric context grows as
text gets processed, and it yields new insight into the dynamics of anaphoric linking
in reasoning. Incremental dynamics also points to a new way of handling context
dynamically in Montague grammar.
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1. Contexts as Updating Anaphoric Contexts

Predicate logics without variables have a long history. A key paper is
(Quine, 1966). Based on this, (Kuhn, 1983) and (Purdy, 1991) have pro-
posed variable free representations for natural language understanding.
Based on an even older approach, Peirce’s existential graphs, (Sanchez,
1991) has developed a variable free natural logic. There is also a long
tradition of variable free notation in lambda calculus: combinatory logic
(Barendregt, 1984) and De Bruijn indices (de Bruijn, 1980) come to
mind here. We will take our cue from this tradition, represent a variable
context as a stack of registers, and give the simplest representation on
can imagine for quantification, as the action of pushing a new element
on top of the context stack. The interpretation of quantification as
context transition puts the approach of this paper in the tradition
of dynamic first order logic (Barwise, 1987; Groenendijk and Stokhof,
1991). For another recent combination of dynamic quantification and
variable free representation see (Clark and Kurtonina, 1999).

The resulting perspective, apart from being interesting in its own
right, sheds new light on the account of pronominal reference and
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anaphoric linking in natural language understanding. Persistent prob-
lems of pronominal reference and anaphoric linking have inspired lo-
gicians interested in natural language semantics to turn away from
classical first and higher order logics, and to look elsewhere for a prin-
cipled account of the process of linking pronouns to their antecedents.
This ‘dynamic turn’ in natural language understanding gave rise to
Discourse Representation Theory or DRT (Kamp, 1981) and to File
Change Semantics (Heim, 1982). These in turn have led to various
attempts at rational reconstruction, with (Barwise, 1987) and (Groe-
nendijk and Stokhof, 1991) as the most prominent examples. The gist of
all of the resulting frameworks is that the static variable binding regime
from standard predicate logic gets replaced by a dynamic regime, where
meanings are viewed as relations between variable states in a model.

In the original version of the ‘dynamic shift’, the basic ingredients
are contexts and constraints on contexts. A DRT-style representation
for a piece of text (or: discourse) looks basically like a context consisting
of a list (or set) of variables, plus a set of constraints on this context.
The informal picture of how the information conveyed by a piece of
text grows is that of ‘updating’ of representation structures:

‘ context ‘ new context
constraints update new constraints
on on

context context

This picture can only be made to work if we make sure that the contexts
are represented smartly. Contexts are essentially sets of variables: a
context just is a list of dynamically bound variables. These variables
represent the antecedents which are available in any extension of that
context.

The rational reconstructions of dynamic discourse representation
given by (Barwise, 1987) and (Groenendijk and Stokhof, 1991) essen-
tially represent introduction of new antecedents by means of random
assignment to a variable. The meaning of Jx becomes the relation
between variable states f,g with the property that f and g differ at
most in their z value: f[3x], iff f[z]g.

This does indeed solve the problem of how to use dynamic scoping
of variables to account for unbounded anaphoric linkings. However,
it does not give a rational reconstruction of the fact that discourse
representation is supposed to work incrementally. The problem with
incrementality is the awkwardness of the constraint that embedded
contexts (contexts occurring inside the constraints on a given context)
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and extensions of contexts (representing extensions of anaphoric pos-
sibilities) should always employ fresh variables. Such a constraint is
needed, for if old variables get reused existing anaphoric possibilities

may get blocked off by destructive value assignment.

What one would like is illustrated by the following example, where
we assume an initial representation for the sentence ‘A man entered’,
which gets updated by subsequent processing of ‘A woman entered’,

and next of ‘He smiled at her.’

[ xv |
‘ X ‘ Mx
Mx | — ‘A woman entered’” — | gy | — ‘He smiled at her’ —
Ex Wy
Ey

In a rational reconstruction of this, one would assume that the sentences
to be added to the existing representation have a representation of their

own, so one would get something like:

x| v |
Mx + Wy _
Ex Ey

Problem: what happens if we get a variable clash:

x| x|
Mx + Wx =
Ex Ex

| xy |
Mx
Ex
Wy
Ey

3

Xy

Mx
Ex
Wy
Ey
Sxy

In Kamp’s original version of discourse representation theory, and also
in the extended version presented in (Kamp and Reyle, 1993), this
problem does not occur, for the algorithm presented there always parses

new sentences in the context of an existing representation structure,

and for any indefinite noun phrase it encounters, it simply gives the
instruction take a fresh variable. In other words, Kamp never merges
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representation structures, for instead of first building a Discourse Rep-
resentation Structure (or: DRS) for the new sentence and next linking
that DRS to the ‘background’” DRS representing the context, Kamp
always processes the new sentence in the context of an existing DRS.

Still, it makes sense to abstract from context in a more radical way
than discourse representation theory (in Kamp’s original formulation)
does, and to ask for the meaning of the sentence as a ‘context change
potential’. The merge problem arises in carrying out a Montagovian or
Fregean programme of natural language analysis in a setting that takes
context and context change into account. A Montagovian or Fregean
approach insists on a genuine analysis of sentence or discourse meaning
as context change potential. Such an analysis calls for the construction
of sentence or discourse representations in a bottom-up fashion. For
such an analysis, one can still represent a context as a DRS. A new
sentence S is processed by first translating S into a DRS K, and next
merging K with the context DRS.

But how should the DRSs be merged? There are various approach-
es to the merge problem for DRSs; see (van Eijck and Kamp, 1996)
for an overview. These strategies amount to various ways of avoiding
destructive assignments to variables, i.e., to various ways of arriving
at structures which can be interpreted monotonically in terms of an
information ordering on the meanings of the representation structures.

In this paper we will argue that incremental use of an indexed stack
of dynamic variables leads to a natural monotonic interpretation, and
thus to a natural approach to the merge problem. We get ‘fresh vari-
ables’ for free if we replace the dynamic variable binding mechanism of
dynamic predicate logic with an indexing mechanism.

2. Dynamic Predicate Logic Without Variables

The De Bruijn notation for lambda calculus consists of replacing vari-
ables by indices that indicate the distance to their binding lambda op-
erator. The lambda term AzAy.(Az.(y(zz))(yx) is written in De Bruijn
notation as AX.(A.(2 (1 3))(1 2). This approach carries over to predicate
logic in a straightforward fashion. Rather than carry out the program in
any detail we refer to (BenShalom, 1994) (but note that the connection
to De Bruijn is not mentioned there).

For convenient comparison with formalisms that use ordinary vari-
able binding we will write the indices 1, 2, 3, ... as uy, ug, us, ... The
reader may think of the registers as a one-dimensional array u with
cells u[l], w[2], u[3], ... Since only one array is employed, it does not
matter whether we refer to the cells as 1, 2, 3, ... , or as uy, ug, usg, ...
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Let V := {uj | j € NT}. Let i : V. — NT be given by i(u;j) = j.
Extend this function to a function i : P(V) — P(NT) by means of
i(X) == {j | u; € X} (a map from sets of registers to the sets of
their indices). For any finite set X of positive natural numbers, let
sup(X) give the maximum of X in case X is non-empty, 0 otherwise
(the supremum function).

The language L of incremental dynamic predicate logic consists of
the union J,,cn Ln, where each L, gives the formulas that assume a
contezt of size n. Each formula is a pair (n, ¢), where n gives the size of
the context. The languages L,, are defined by simultaneous recursion,
as follows. (Note that the v; in the definition below are meta-variables
over registers; thus, if the value of v; happens to be uy, then i(v;) = k.
In other words, the index of v; may well be different from j.)

Definition 1 (Terms and formulas of L)

v o= ul\ u9 ‘---
L := (n,T) ifneN
| (n,3;0) provided (n+ 1,¢) € L
| (n,Pvy---vp; @) provided sup{i(vy),...,i(vn)} <n
and (n,¢) € L
| (n,v1 =wv;0)  provided max(i(vy),i(vy)) <n
and (n,¢) € L
| (n,—¢1; P2) provided (n,$1) € L and (n,¢3) € L

Note that we have built into the language that formulas are flat list
structures. (In fact, T may be viewed as the nil formula list that goes
with a flat list formula list constructor that prefixes formulas to formula
lists.) Every formula has the form (n,¢1;... ;¢%;T), with & > 0. If
k> 0 we will write (n, ¢1;... ;0k; 1) as (n,¢1;... ;).

We will omit unnecessary parentheses, writing the formula

(3, ~(Ruzgus))

as 3, "Ruous, etcetera. Occasionally, we will write 3; ¢ as d¢. Also, we
abbreviate =T as L, and =(¢1;- -+ ; dp; " Pnt1) as (P15 5 n) — Gnt1-

The static interpretation is replaced by a dynamic one. Let M =
(M, I) be a first order model, and o an element of M* (the set of
all finite sequences of elements taken from M). We use [(o) for the
length of ¢ € M*, and o[n| for the n-th element of ¢. Then the
term interpretation with respect to M and o is given by (we use |

for ‘undefined’):
[l = {ng)l if i(v) < (o),

otherwise.
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In what follows, we will often extend a stack o € M™* with a single value
a € M. Notation for this: c”a. Concatenation of two stacks o, 7€ M™,
in that order, is written as o"7. If 0,7 € M™* we use o C 7 for: there is
af € M* with "0 = 7. It is easy to see that C is a partial order on
M* (reflexive, transitive and anti-symmetric).

As an alternative to the De Bruijn style binding regime, where the
binding quantifier is found by counting from the inside out, it is also
possible to count from the outside in. This is similar to the way lambdas
are counted in Cartesian closed category models of the lambda calculus
(see e.g. (Gunter, 1992, Ch. 3); also (Aczel, 1996)). Call this ‘reverse
De Bruijn style.’

The reason why it is more convenient to use reverse De Bruijn
indexing rather than regular De Bruijn style is this. The key feature
of dynamic anaphora logics is the ability of the existential quantifier
to bind variables outside its proper scope. Consider the DPL text
Jx; Pz; dy; Qu; Rry. Here the x and y of Rxy are bound outside of
the proper scope by dz and Jy respectively, so variables can be viewed
as anaphoric elements linked to a preceding existential quantifier that
introduces a referent. Similarly, in DRT, the introduction of a reference
marker acts as an existential quantifier with dynamic scope.

The regular De Bruijn analogue of the above DPL formula would
be the following (we assume that the anaphoric context is empty):

(0,35 Puy; 35 Quy; Ruouy)

The register u; in Pu; and the register us in Rusui are bound by
the same quantifier (the leftmost occurrence of 3). This illustrates that
anaphoric coreference (or: dynamic binding) is no longer encoded by
use of the same index, but the antecedent of an index has to be worked
out by taking the ‘existential depth’ of the intervening formula into
account.

The awkwardness in antecedent recovery can be avoided by using
reverse De Bruijn indexing. The reverse De Bruijn analogue of the
example Jx; Px; Jy; Qy; Rxy looks like this:

(0,35 Puy; 35 Qug; Rujus)

All occurrences of u; are bound by the same quantifier (the leftmost
occurrence of 3), and similarly, all occurrences of uy are bound by the
rightmost occurrence of 3.

The semantic definition of satisfaction, for incremental dynamic
logic under the reverse De Bruijn indexing scheme, runs as follows:
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Definition 2 (Satisfaction for L)

oln, TIM iff o =,
o[, 3 )M iff 1(0) = n and there is an a € M
with o-q[n + 1, oJM,
o[, Pot - v o] iff 1o) = n, (Jui]M. .. [om] M) € I(P),
and 4 [n, pJM,
[ 1 = 053 6 iff 1(0) =, [ = o2, and ofn, G,
o[, —é1; o] M iff (o) =n, there is no 6 € M* with ,[n, ¢1])7",
and 4[n, po]M.

Note that the proviso I(o) = n in the semantic clauses guarantees that
the term functions [v;]M in predicates Py - - - vy, and identities vy = vo
are well defined.

The definition of the semantics for L is in fact a straightforward
adaptation of the dynamic semantics for predicate logic defined in
(Groenendijk and Stokhof, 1991), which is in turn closely related to
a proposal made in (Barwise, 1987). However, this semantics is not
equivalent to the semantics given by Groenendijk and Stokhof, but has
an important advantage over it. In Groenendijk and Stokhof’s seman-
tics for DPL, a repeated assignment to a single variable by means of
a repeated use of the same existential quantifier-variable combination
blocks off the individual introduced by the first use of the quantifier
from further anaphoric reference. After JxPx;dxQx, the variable x
will refer to the individual introduced by JdzQz, and the individual
introduced by dz Pz has become inaccessible.

In the so-called sequence semantics proposed in (Vermeulen, 1993)
this problem is solved by making every variable refer to a stack, and
interpreting an existential quantification for variable z as a push oper-
ation on the = stack. The quantification dx now gets a counterpart zE,
interpreted as a pop of the x stack. In our reverse De Bruijn semantics
for L we use a single finite stack, and we do not allow pops. This ensures
that existential quantification is non-destructive, in other words that
our semantics is incremental. The push stack operations are replaced
by a single push operation (the interpretation of the existential quan-
tifier). Note that quantifications never can destroy previous dynamic
assignments in the same formula, nor can they overwrite initially given
values.

To reason about the semantics for L we need the notion of the
‘existential depth’ of a formula. Intuitively, the existential depth of
(n,¢) calculates the number of positions by which the stack grows
during the semantic processing of ¢. E.g., the existential depth of (n, 3)
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is 1, for any n. If (n,¢) € L, the existential depth of ¢ is given by:

e(T) =0

e(3;9) = 1+e(9)

C(P’Ul Um7¢) - €<¢)

G(U = U2; ) = 6(¢)

e(—¢1; ¢2) = e(¢2)
Note that the definition of the semantics for L ensures that registers
ui, ... ,ug of an L-formula (k, ¢) are not affected by the stack dynamics

of the existential quantifier. The values of these positions are read from
the input state; these are the anaphoric references picked up from the
surrounding context. Positions higher up on the ‘stack’ get their value
from an existential quantifier action inside ¢. This is made formal in
the following lemma (the proof is by induction on existential depth):

Lemma 3 (Incrementality) If ,[n, )M then o C 7.

The language L is designed for the translation of open texts: texts that
may contain occurrences of pronouns which take their reference from
the surrounding context. One may think of such texts as annotated by
means of anaphoric indices 4, j, . .., where each index indicates that an
anaphoric element is to be linked to some contextually given anteceden-
t. Such a text presupposes that the context provides referents for such
indices, in such a way that all these referents might be different. In other
words, the context must be such that different indices correspond to
different register cells. The essence of anaphoric linking is the process of
picking up antecedents from context, and the framework of incremental
dynamics defines context as the sort of thing that can provide such
antecedents.
Here is a translation from L to standard DPL:

(n,
(n,3;9)* = Jups1;(n+1,4)°

=T

)
(n, Pvy -+ vpm; 9)* = Poy---vp; (n,¢)°

)

)

(n,v1 =v2;0)* = v1 =w9;(n,0)*

(n =013 ¢2)°

=(n, ¢1)%; (n, ¢2)°.

E.g., L-formula (2,3; Rujug;3; Susuy) gets translated by ® into the
DPL formula Jug; Rujus; Jug; Suguy.

Note that the DPL translations of L formulas are rather special, for
they will contain no destructive assignments, since all quantifications
are over ‘fresh’ variables.
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To show that the translation function is correct in the sense that
it preserves satisfaction of formulas, assume a DPL language over the
set of variables V' = {u; | i € NT}. Then a DPL state over a model
M = (M,I) is a member of M". We use M, s, s’ =g, ¢ for: the state
pair s, s’ satisfies the DPL formula ¢ in model M.

If s is a DPL state over M, and o € M* we define the state s, as
follows. If i < [(o) then s,(u;) := oli], otherwise s, (u;) := s(u;).

Proposition 4 For all (n,¢) € L, all models M, all o,7 € M*, all
s€ MV:  [(n, )M iff M, 85,8 Eapr (n,0)°.

The proof is by induction on the structure of ¢.

To illustrate the considerable expressive power of dynamic logic
without variables, here is a translation function from FOL to L. We
assume a set of first order variables V' = {u; | i € NT}. If f is an
assignment to V' in some domain M and o € M*, f, is defined in the
obvious way, by putting f,(u;) := o[i] for i < k, fo(u;) := f(u;) for
1> k.

To translate a FOL formula ¢, let k := sup{i | u; € FV(¢)}. Then
the L translation of ¢ is (k, ¢*), with the translation functions *, for
k € N, defined as follows:

(TF =T
(Pvq vm)k = Pvi-- vy,
(v = Ug)k = V] = Uy
(=¢)* = =(¢)*
(G1 A ¢2)" = ==(1)"; (02)"
(Fuid)® = 3; ([uprr/wi] ).

—

The substitution [ug11/u;]¢ is subject to the usual condition that
ug+1 should be free for u; in ¢. If necessary, replace ¢ by an alphabetic
variant that meets the condition.

Proposition 5 Let ¢ be a FOL formula, and let
k:=sup{i|u; € FV(¢)}.

For all models M = (M, I), all stacks ¢ € MP*, all variable assignments
f:

M, fo = & iff there is a T with ,[k, o*]M.

This is again proved by induction on the structure of ¢.
Combining the well-known translation from DPL to FOL with the
above translation, we get in two steps a translation from DPL to L. Still,
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it is instructive to define a direct translation. The fixed occurrences of
variables in a DPL formula are the variable occurrences that are neither
classically bound nor in the dynamic scope of an existential quantifier.
Let ¢ be a DPL formula, and let

k :=sup{i | u; has a fixed occurrence in ¢}.

Then ¢ translates into (k, qﬁ(k)) with *) given by:

(MW =T
(Fu))® = 3
(Pvl Um)(k) = Pvy-- vy,

(01 = vg) ) = vy =0y
(=g)®) = —(e)®
((d1:02); 03) ) := (¢1; (pa; ps)) P
(A:g)®) = A, ®)

(
(Huz’;éb)(k) = 3 (w1 /ui) ) F .
Here A denotes a DPL formula of the form Puvq --- vy, v1 = vy or —¢.
Moreover, [u11/u;]¢ denotes dynamic substitution, i.e., substitution of
ug+1 for all occurrences of u; that are neither classically or dynamically
bound, while taking care, through appropriate switches to alphabetic
variants, that the replacing occurrences of uj 1 are dynamically free in
the result (i.e., are not in the dynamic scope of an existential quantifier).
Finally, we can prove by induction on the structure of ¢:

Proposition 6 For all models M = (M,I), allc € M*, alls €V —
M, where V = {u; | i € NT}, the following holds:

HeV - M: Msg,t Egn ¢ < Ire M*: [k sPM

3. Incremental Dynamic Logic and Discourse
Representation

Next, we want to show that L formulas correspond exactly to canonical
forms of Discourse Representation Structures in the sense of (Kamp,
1981) (so-called pure DRSs). DRSs are defined by the following mutual
recursion. Again, we assume for simplicity that there are no individual
constants (and again, nothing hinges on this).

vV o= U "LLQ’

C == Pvy v, |vy =vy| 2D

D = ({v,...,0.},{C1,... ,Cn})
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IfD={v1,...,on},{C1,... ,Cp}) and D" are DRSs, then D = D’
abbreviates the condition

_|({’U1, e 7Un}7 {Cl, e 7Cm7 —|DI}).

We give a translation function ® from L formulas to DRSs, as fol-
lows (using (n,¢)§ and (n,$)} for the first and second components of

(n,¢)®):

(n, T)® == (0,0)
(n,%0)% = ({unt1} U (n+1,8)5, (n+1,9)7)
(n, Por---vm; )% = ((n,¢)g, {Pv1---vm} U (n,0)7)
(n,01 = v2;0)% == ((n, ), {v1 = v2} U (n,9)7)
(n,=(8); )% = ((n,9)§,{~(n,9)®} U (n,9)7).

An example:

RU1UQ
(2,Ru1u2;—|(EI;Ru1U3))€B =
| us |
| Rujus |

We will now show that the translation is adequate. Assume a model
M = (M, I). An embedding function in the sense of DRT is a function
from a finite subset of the set of variables {u; | i € N*} to M. We use
o for the function in {uy,...uy e} — M that corresponds to stack
o € M*, in the obvious sense (namely, by setting o®(u;) := o[i]).

Proposition 7 If (n,¢) € L then:
1. (n,$)® is a DRS.

o[n, P12 iff T wverifies (n, ¢)® in M with respect to o (in the
sense of DRT).

Both claims are proved by induction on the structure of ¢.

The DRS translations have the additional property that they yield
pure DRSs: If K’ is a sub-DRS of K then their sets of introduced
markers will be disjoint. A special case is the case of L formulas of the
form (0, ¢). These correspond precisely to so-called proper pure DRSs,
i.e., pure DRSs without ‘fixed’ variable occurrences.
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To capture the precise meaning of ‘fixed’ variables in a DRSS, we need
to distinguish three kinds of variable occurrences in a DRS: (1) fixed
by the larger context (or: free in the current context), (2) introduced
in the current context (or: dynamically bound by a quantifier in the
current context), and (3) fixed in a subordinate context (or: classically
bound).

Here are the definitions of these sets.

Definition 8 (fix, intro, cbnd)

‘ ‘ fix ‘ intro ‘ cbnd ‘
(UACh,....Cp}) | U, fir(Cy) = U | U U; cbnd(C;)
Puvy - vy, {vi,..., 0} 0 0
V] = U {v1,v2} 0 0
-D fir(D) 0 intro(D) U cbnd(D)

To define a translation from DRSs to L formulas, we can use a
technique similar to the mapping of FOL to L. Let D be a DRS, and
let k be sup{i|u; € fix(D)}. Then the L-translation of D is the formula
(k, DI¥), where the functions ¥ are given by:

@{Cr,.. G = s

({’Ul, . ,vn},{Cl, ey m})

3: ({vs, .. ,vn},{[ukﬂ/m]d,... [tnss /01]Co P
(LH = 1
(Pv1 )[ li= Pvy -0,
(7)1 = 1)2) =11 = (%)

() 1= (o)

Note that there is an element of indeterminism in this translation in-
struction, for {vy,... ,v,} is a set, and the translation recipe instructs
us to take its elements one by one. If the reader does not like this,
she can use the order on {v1,...,v,} imposed by the indices of the
variables to always pick the smallest element from this set.

Again, we have to ensure that w4 is free for v; in [ug41/v;]C, ie.,
that ugy; does not have contextually bound occurrences in C'. If this
condition is not met, we have to replace C' by an alphabetic variant
first. For all purposes, contextually bound variables in DRT behave
exactly like bound variables in FOL. Note that w1 cannot have fixed
occurrences in C, by an inductive argument based on the fact that the
initial choice of index is the highest index of the initial set of fixed
occurrences, and that fixed occurrences of variables that are not in the
initial set would have caused a variable clash at the level where they
got introduced.
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For the next proposition, we have to relate embedding functions to
stacks of elements of a domain. If f is a function in

for some k € N, then f* € M* is given by f*[i] := f(u;).

Proposition 9 Let D be a DRS, and let k be sup{i | u; € fiz(D)}.
Then the following hold:

1. (k,D¥) e L,

2. For all models M = (M, 1), all functions f : fit(D) — M : there is
a g : fir(D)Uintro(D) — M such that g verifies D with respect to f
in M (in the sense of DRT) iff there is a T € M* with [k, DIFIJM.

Both claims are proved by induction on the structure of D.

In this section we have shown that L and DRT have exactly the
same expressive power. Moreover, L formulas are isomorphic to DRSs
in canonical form, in the following sense. L formulas correspond to
pure DRSs, and L formulas of the form (0,¢) correspond to proper
pure DRSs. The advantage of L over DRT will reveal itself when we
are going to define logical consequence for L, in Section 5.

4. Merging Formulas and Merging Representation
Structures

Suppose we want to ‘merge’ two formulas (n, ¢) and (m, ) in left-to-
right order, in such a way that the output of (n,¢) serves as input to
(m, ). One could introduce a merge operation e as a partial operation
on L formulas, as follows:

(m@ommm:{W¢W)ﬁm:n+d@

T otherwise.

In case the result of merging (n, ¢) and (m, 1)) is undefined all is not lost,
however. The undefinedness may be due to the fact that the context is
too large or to the fact that the context is too small. The context is too
large in case n + e(¢) > m. In this case, the problem can be remedied
by performing a ‘write memory shift operation’ on (m, ), as follows:

(m, )
(m + k[T ]¢)

Here, [}]1 is the index substitution which replaces every i > m by
1+ k.
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Proposition 10 ,[m,y]M _iff for all 0 € M*: ,~g[m + k, [Tk]w]]é\f‘%.
The other case where the result of merging (n,¢) and (m, ), in that
order, is undefined, is the case where the context is too small. This
is the case when n + e(¢) < m. In this case we can use ‘existential
padding’. A useful abbreviation for this is 3%, defined recursively by
30 .= T, 3+1 .= 3; 3%, Existential padding is applied to conclude from
m + k., that m,3%; .

Proposition 11 U[[ma Hk; w]]f/rvl uf o’ T[m+1..m+k| [[m + k, 1/}]]7/'\4 :

The rules for memory shift and existential padding are built into the
calculus of Section 6.

As Propositions 7 and 9 have shown us, the variable free dynamic
logic L can be viewed as a rational reconstruction of DRT (in a way that
DPL cannot be viewed as such). In fact, the reconstruction has made
us sensitive to a distinction which often remains implicit in DRT: the
distinction between representation structures which contain reference
markers not introduced in the structure itself but imported from a
pre-existing representation on one hand and representation structures
which do not contain such imported markers on the other. These are
the representations in which no reference markers are imported from
outside; every marker gets introduced in the structure itself.

The variable constraint imposed in DRT (“always take fresh vari-
ables when extending a DRT structure”) avoids the destructive assign-
ment problem from DPL, but this variable constraint comes with a
heavy penalty. It necessitates a top-down DRS construction algorithm.
The variable free notation, on the other hand, points the way to a very
natural bottom-up perspective.

Several possible solutions to the merge problem for DRT are dis-
cussed in (van Eijck and Kamp, 1996). If one wants merge to be a
total operation on DRSs, the merge of DRSs D and D’, in that order,
may involve substitution of the introduced variables of D’. The present
variable free perspective on dynamic logic suggests a particular choice
for the merge operation. The DRS translations of L-formulas have the
following general form (this is the general form of a pure DRS):

‘ Um+15-+- 5 Un

Cq

Cy
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Here it is assumed that all the markers occurring in C1q,...,Cy are
among ui,...,u,. Lhe markers ui,...,u, are the fixed markers of
the DRS, the markers w1 - - - u, the introduced reference markers.

Assuming that DRSs are all in this canonical form, we can merge
them as follows, using substitution to avoid variable clashes:

Upt1 - Uptm Ugt1 " Ugin

o o

® [Uptmt1/Ugt1yee Uptmtn/Ugtn]

Ci o

Up4+1 - Uptm+n

Cy
3 Ck
/
Ciluptm+1/Ug+1, - s Uptmtn/Ugtn]
’
Cr [Up+m+1/uq+1a ce auerern/uqun]
Here is an example:
- ‘ U2, U3, Uq, Us ‘
‘ 2, U3 3, U4 Ru1u2
Rujug | ®lua/us,us/ud] | Tuiug > Suous
SU2U3 VU3U4 TU1U5
VU4U5

This example corresponds to the merge of (1,3;3; Rujug; Susus) and
(2,3; 3; Tujug; Vusuyg), in that order, after memory shift right of the
second formula over one position, to get (3,3;3; Tuius; Vugus), with
end result:

(1, 3; 3; Ruqug; Sugus; 3; 3; Tugus; Vugus).

The switch rules of the calculus of Section 6 permit to transform this
in turn into:

(1, 3; 3; 3; 3; RU1UQ; SUQU3; TU1U5; VU4U5),
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which again corresponds to (a canonical, i.e., pure, representation of)
the result DRS.

5. A Transitive Notion of Dynamic Consequence

A piece of text containing anaphoric references can either be self-
contained, in case all anaphora find their antecedent in the text itself,
or it can be linked to a context, in case some pronouns refer to an
antecedent outside the text itself, e.g. an antecedent mentioned in
previous discourse, or introduced by another speaker, or introduced
by an act of pointing, and so on. We can say that texts of the latter
kind have an anaphoric presupposition. In order to establish the truth
conditions of such a text one needs access to the context that provides
antecedents for the outward pointing anaphora, and in that sense the
anaphoric context is presupposed.

Still, it is clear that we can make (minimal) sense of a piece of text
containing unresolved anaphora, even without access to the context. We
can abstract from the context, in the usual way, by viewing the meaning
of a piece of text with anaphoric presupposition as a function from
contexts to denotations. The full information content of the text reveals
itself once the anaphoric context is plugged in. As long as the context is
unknown, the anaphora with an outside link have the weakest possible
information content: they carry the same information as a wide scope
existential quantifier. (Note how this is different from the recent pro-
posal in (Beaver, 1999): the relation ~ of ‘possible entailment’ defined
there existentially quantifies over possible ways of resolving pronoun
references, whereas we define the consequence relation for essentially
unresolved pronouns, i.e., ‘anaphora with an outside link’.)

The modeling of anaphoric presupposition as context in the scope of
an existential quantification, with this context in turn treated as a piece
of ‘read-only memory’, suggests a very natural consequence notion for
‘reasoning under anaphoric presupposition’.

The anaphoric presupposition of a formula (n,¢) is given by its
‘offset’ m, for the number of anaphoric elements that need (possibly
different) outside referents. It should be noted, though, that not every
index 4 in {1,...,n} need occur in ¢. We can now say that (n,q)
entails (m, ) iff for all models, the interpretation of (n,¢) is ‘more
informative’ than that of (m, ). The formula (n, ¢) will export n+e(¢)
anaphoric elements, for e(¢) measures the number of new referents that
are introduced by ¢. In order to ensure that all of these can be absorbed
by (m, 1), we have to assume that n+e(¢) < m. Making the assumption
n+e(¢) < m into a presupposition boils down to the statement that if
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n+e(¢p) > m then it is vacuously false that (m, ) follows from (n, ¢).
These considerations lead to the following formal definition of logical
consequence for L:

Definition 12 (L Consequence)
(n,¢) = (m, ) <= n+e(d) <m and for all M, 0,7 if 5[n, p]M
then there are 0, p with T C 6 and g[[m,z/)]]év‘.

This consequence relation is truly dynamic in that it allows carrying
anaphoric links from premise to conclusion. For example: from ‘a man
walks and he talks’ it follows that ‘he talks’:

(0,3; Muy; Wuy; Tuy) E (1, Tuy).

The following lemma shows that L consequence has a very desirable
property.

Lemma 13 (Transitivity) For all (n,¢), (m,v), (k,x) € L:
If (n,9) = (m,¢) and (m, ) |= (k, x) then (n,¢) = (k; x)-

Proof. Suppose (n,¢) | (m,v) and (m,v) E (k,x), and assume
o[n, )M, We have to show that there are 6 and p with 7 C 6 and
olk, X2

» Xlp

By (n,¢) = (m,v) and the assumption there are 7" J 7 and 6 with
+[m, ¥])t. From this and (m,¢) = (k,x) we get ¢ J 0 and p with
o[k, X]]év‘. By incrementality and by transitivity of C, we get 7 C 6’
and we are done.

One of the problems with the dynamic consequence relation of DPL
(Groenendijk and Stokhof, 1991) is the fact that it is not transitive, as
witnessed by Van Benthem’s example (van Benthem, 1987):

Suppose a man owns a house. Then he owns a garden.
Suppose he owns a garden. Then he sprinkles it.
BUT NOT: Suppose a man owns a house. Then he sprinkles it.

Right now, let us gloss over the role of pronominal reference resolution
in interpreting this natural language example. We will return to that
aspect below, at the end of the section.

The DPL version of this example can be taken as a playful reminder
of the lack of transitivity of DPL consequence:

Jx; Mx; Jy; Hy; Ozy [=apr 32; G2z Oxz 32, Gz Oz F=ap Sxz
z; Mx; 3y; Hy; Oxy Fap Sxz
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What this illustrates is that the DPL consequence relation =4, is not
transitive. Here =4, is defined by: ¢ |=4y @ iff for all M,o,0": if
M, 0,0 =gp ¢ then there is some ¢” with M, o', 0" f=gp1 1).

Interestingly, the same example can be brought to bear on DRT. Let
us adopt as the DRT consequence relation the obvious meta-language
counterpart of the DRS operation —, namely the relation = for which
we have: D; — Dy is true in all models iff D; = Dy. Now assume we
represent the example like this:

ESA R
Mx - Gz Gz =gt Sxz
Hy Ozxz Ozxz
Oxy

ESA

Mzx bt Sxz
Hy
Oxy

The problem exhibited by the example hinges on the fact that reference
markers used in a constraint of a discourse representation structure
D without being introduced in the set of reference markers of that
structure D are assumed to get their reference from context, but in
the example case this leads to the wrong reading, for they should be
existentially quantified over.

This suggests that the DRT representation of the example may have
been wrong in the first place. If we take care to introduce markers
from an antecedent box again in the consequence box the problem
vanishes, so admittedly, the DRS rules may be construed in such a way
that they engender transitivity of the DRT consequence relation for
this particular example. But only at a cost. The cost is that the
distinction between markers that get their reference from context (the
marker occurrences that we have called fized) and markers occurrences
that we have called introduced has to go. For it is precisely the fixed
marker z in

|

‘sz‘
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that causes trouble. It seems to me that the distinction between fixed
and introduced markers is an essential feature of the framework. In-
deed, how else could one give an account of the difference between
picking up a reference from context on one hand and introducing a
new topic of conversation on the other? I take it, therefore, that the
DRT consequence relation is not transitive.

The incremental dynamics framework fares better than both DPL
and DRT here, for it allows us to both maintain the distinction between
references picked up from context and newly introduced references, and
to have a transitive consequence relation. We get the following new
version of Van Benthem’s example:

(0,3; Muy;3; Hug; Ouruz) E (2,3; Gus; Ourus) (2, 3; Gus; Ourus) | (3, Suius)
(0, 3; Mul; 3; HUQ; OUlUQ) ': (3, Su1U3)

This is a valid argument, for as we have seen the consequence notion
of L is transitive. Note that in the definition of valid consequence for
L existential padding is used to provide an antecedent for the index 3.
The conclusion should be read as:

Suppose a man owns a house. Then there is a thing which he
sprinkles.

Thus we see that ‘existential padding’ preserves the logical meaning of
(3, S Ui U3).

The following proposition, proved by induction on k, shows that we
can always choose to make existential padding explicit:

Proposition 14 For all (n,¢), (m,y) € L with n+ e(¢p) < m:
(n7¢) ): (mﬂ/)) iff (nvqb) ': (n+€(¢)a Hk;%b); where k = m — (n+6(¢))

Of course, the incremental dynamics version of the garden sprinkling
example is slightly at odds with linguistic intuition about pronoun refer-
ence resolution, for the contextual element u3 is not linguistically salient
in a context set up by (0, 3; Muq; 3; Hug; Ouqug). But then salience for
anaphoric resolution is not our concern here.

A concluding remark on Van Benthem’s example is in order. I have
focussed on the logical pointe about failure of transitivity, but one might
wish to read more in the example (as one of the reviewers did). “Van
Benthem’s Natural Language example is evidence for the claim that
NL reasoning with anaphora is not transitive. DPL and DRT correctly
reflect this fact. In other words, from a ‘linguistic’ point of view, the
lack of transitivity in DPL is good, and the author’s logic is not good.”
Needless to say, I cannot agree. There is more to Van Benthem’s exam-
ple than meets the eye at the first glance. The intermediate conclusion

idKLUWER.tex; 1/02/2000; 16:55; p.19



20

he owns a garden introduces a new context element, and this context
element is picked up by the pronoun ¢t in he sprinkles it. For this
context link to be established, the intermediate phrase he owns a garden
is indispensable. Pruning this intermediate conclusion also prunes the
context, with a dangling reference for it as a result.

A natural way to read the concluding argument is with ¢t picking up
a reference to the only appropriate item in the antecedent of this argu-
ment, a house. Here linguistic intuition (‘the only appropriate referent
for it is a house’) and logical intuition (‘the meaning-in-context of then
he sprinkles it should be preserved in the application of the transitivity
rule’) are at odds. Our logical intuition says that in the application of
the move from A = B, B |= C to A |= C the meaning of C' should not
change. Incremental dynamics agrees with this logical intuition, DPL
and DRT do not.

Still, there is something odd about the incremental dynamics solu-
tion: it resolves the pronoun to a context item that is not linguistically
salient. It is clear, then, that a full account of all that goes on in the
example has to take the process of pronominal reference resolution on
board. See the remarks in Section 10 for how this could be done.

6. A Calculus for Incremental Dynamic Reasoning

In this section, we will give a set of sequent deduction rules for in-
cremental dynamic reasoning. We postpone the treatment of equality
to Section 9. As an aside, we mention here that as a fringe benefit the
calculus of this section has served as a basis for sequent axiomatizations
of some frameworks criticized in the present paper, witness the sequent
style calculi for DPL and DRT in (van Eijck, 1999).

We will write sequents as (n, ¢) = (m, 1), where = is the sequent
separator. Note that (n,¢) = (m, L), for any m > n+e(¢), expresses
that (n, ¢) is inconsistent.

In the calculus we are about to present, we need some further no-
tation for substitutions, in addition to [';]. Recall that [7,] is the
substitution that replaces every index n > m by n+ k. This is useful to
create room for k new indices starting from position m + 1. What we
also need is an operation that removes a gap after the substitution of a
referent for an 3 that binds position m. The operation for this is [™];
this replaces every index n > m by n — 1. Finally, [k/m] has the usual
meaning: replace index m by k everywhere. We abbreviate [™][k/m)]

as [k/m]~ (‘substitute k for m and close the gap’). And that’s all we
need.
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In the calculus, we use C, with and without subscripts, as a variable
over contexts (formula lists composed with ;, including the empty list).
We extend the function e to contexts by stipulating that e(C') = 0 if C
is the empty list. Substitution is extended to contexts in a similar way.
In the rules below we will use T" as an abbreviation of formulas ¢ with
e(¢) =0 (T for Test formula).

STRUCTURAL RULES

6.0.0.1. Test Aziom

) = 1) T El

6.0.0.2. Soundness of Test Aziom If ,[n,T]M then o = 7 (because
T is a test) and therefore ,[n, T]M. Thus, (n,T) = (n,T).

6.0.0.3. Transitivity Rule

(n,¢) = (m,y) (m, ) = (k, x)
(n, ) = (k,x)

6.0.0.4. Soundness of Transitivity Rule This was established in Lem-
ma 13.

6.0.0.5. Test Swap Rule

(TL, ClTl; TQC2) — (ma Qb)
(TL, CIT2; TIC2) — (ma Qb)

Note: a test swap rule for the right hand side is derivable, because a
formula in the right hand side of a sequent always can be moved over to
the left hand side by means of the negation and double negation rules
(see below).

6.0.0.6. Soundness of Test Swap Rule Immediate from the fact that
[[na Tla TQ]]M - [[na T2a Tl]]M

6.0.0.7. 3 Swap Rule

n,C1T;3 Cy = (m, ¢)
n,C13; ([54]T)Co => (m, ¢)

k=mn+e(Ch)
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This rule allows us to pull 3 leftward through a test T', provided we
increment the appropriate indices in 7'.

Pulling 3 through a test T' in the opposite direction is allowed in
those cases where 3 does not bind anything in 7. Now we must adjust
T by decrementing the appropriate indices:

(n, 13, TCs) = (m, ¢)
(n, C1([84]T);3 C2) = (m, §)

k=n-+e(Ci), k+1notinT

6.0.0.8. Soundness of 3 Swap Rules Soundness of the rule for moving

3 to the left follows from the fact that [k, T;3]M = [k, 3; [ || T]M.
Soundness of the rule for moving 3 to the right follows from the fact

that if index k+1 does not occur in T, then [k, 3; T]™ = [k, ([*,]T); I]M.

CONTEXT RULES

6.0.0.9. Memory Shift Rules

(n,¢) = (m,¥) (n,¢) = (m,¥)
(n+1,[1]¢) = (m+1,[11]9) (n, @) = (m + 1, [T1]¢)

6.0.0.10. Soundness of Memory Shift Rules Memory shift on left hand
side: If 5 [n, p] 17 then for all a € M, o-o[n+1, [1;]¢]4""a’T. Soundness

of memory shift on right hand side is established similarly.

6.0.0.11. Context Extension
(n,3;¢9) = (m, 1)
(n+1,¢9) = (m,¢)

The counterpart to the rule of context extension (i.e., context ab-
sorption) is the rule for introducing an existential quantifier in the
antecedent (see the logical rules below).

What context extension and absorption express is that linking in-
formation to an outside context (of which nothing further is known)
is equivalent, for all purposes of reasoning, to assuming that your
information is existentially quantified over.

This is how one can make sense of a ongoing conversation about
an unknown ‘he’: instead of asking questions of identification that
might interrupt the flow of the gossip one simply inserts an existential
quantifier and listens to what is being said.

6.0.0.12. Soundness of Context Extension Follows from the fact that
o[, 3; Q)M iff for some a € M, 5-o[n + 1, pJM.
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LocicAaL RULES

The rule for 3 Left (the converse of context extension) is a special case
of the rule ; Left. See below.

6.0.0.13. 3 Right
(n,¢) = (m, [F/mi1]"¥)
(n,¢) = (m, 3 ¢)

This format is familiar from the Gentzen format of F-right in stan-
dard predicate logic. Here is an example application:

(1, Rulul; —|(3; SU1UQ)) — (1, Rulul; —\(3; S'LL1UQ))
(1, Rulul; —\(3; S'LL1UQ)) — (1, 3; RU,1UQ; —|(3; SUQU;J,))

Ruquy; —(3; Suius) equals [1/2]~ (Rujug; —(3; Sugug)), so this is in-
deed a correct application of the rule.

6.0.0.14. Soundness of 3 Right Assume a model M with input and
output assignments o, 7 such that ,[n, ¢]]£4 Then by the soundness of
the premise there is a @ J 7 and a p with

olm, [* /m1] 0],

Let [k])' = a. Then, by the definition of the substitution [¥/,,41]",
0~a[m+1, 1/}}]2”. It follows that ¢[m, 3; w]]ﬁ/‘. This proves n, ¢ = (m, 3; ).

6.0.0.15. ; Left and Right

(n+e(9),¥) = (m,x)
(n, ¢59)) = (m, x)

(n,¢) = (m,¥) (n, ¢) = (m,x)
(TL, ¢) == (m7 1/}; [Te(qp)]X)

The first of these does double duty as a left weakening rule. An-
tecedent weakening is always extension on the left hand side. This
is because extension on the right hand side might affect the stack.
Weakening with a test is valid anywhere in the antecedent; the swap
rules account for that.

An example application of the rule for ; right is:

(1, Rujuy) = (1,3; Rujus) (1, Rujuy) = (1,3; Rusuq)
(1,RU1U1) - (1,3;Ru1u2; H;Ru;),ul)
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6.0.0.16. Soundness of ; Left Suppose [n, ¢; W[M. Let o’ := 7[1..e(¢)].
Then o [n+4e(¢), ). By the soundness of the premise, there are § J 7
and p with g[m, X]]év‘. This establishes

(n, ¢39) F= (m, x)-

6.0.0.17. Soundness of ; Right Assume ,[n, ¢]. Then by the sound-
ness of the second premise, there are § J 7 and p with g[m, X]]ﬁ". By

Proposition 10, for any 8’ € Me®),

oo [m + e(®), [T X105,

By the soundness of the first premise, combined with Lemma 3, there
is a 0 € MW with

9[[m7 w]]é\fte"

It follows that ¢[m, 1; [Te(w)]x]]é\flepp. This establishes

(TL, ¢) ): (mﬂ!); [Te(¢)]X)

6.0.0.18. — Left and Right

(n,¢) = (n+ ¢(9), )
(n, ;) = (m, 1)

(n, ¢3¢)) = (m, L)
(nv (b) = (TL + e(¢)7 _‘w)

m>n+e(0)

6.0.0.19. Soundness of = Left Assume ,[n, ¢; ~p]M. Then ,[n, oM
and there is no 0 with .[n + e(¢), ¥])*. Contradiction with the sound-
ness of the premise. This establishes (n, ¢; =) = (m, L).

6.0.0.20. Soundness of = Right Assume ,[n, $]. Then by the sound-
ness of the premise, there is no 6 with ,[n+e(¢), @D]]év‘ This establishes

(TL, ¢) ): (n + e(¢)7 _'11&)
6.0.0.21. Double Negation Rules

(n’ ¢) = (ma _'_'¢) (n’ oF _'_‘w) = (m’ J—)
(n,¢) = (m, ) (n, ¢;¢) = (m, L)
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6.0.0.22. Soundness of Double Negation Rules For Double Negation
Left, assume ,[n, #]*. Then by the soundness of the premise, for no
0 3 7 is there a p with

0 [[m7 _'11&]]'[/)\/( .
In particular, we do not have g[m, —np]]é\". Therefore, there is a p with

9[[m7 ¢]]£A .

This establishes (n,¢) = (m,1). The soundness of Double Negation
Right is established similarly.

This completes the presentation of the calculus. Since we have checked
the soundness of of all the axioms and rules, we have established the
following:

Theorem 15 The Calculus of Incremental Dynamic Reasoning is sound.

7. Derivable Rules for Incremental Dynamic Reasoning

We derive some extra rules that we need for the completeness reasoning
in Section 8.

Proposition 16 (Contradiction Rule) The following rule is deriv-
able:

(TL, ¢ ﬁlﬂ) = (n + 6(¢), _‘X) (na 0F _'w) = (n + 6((]5), X)
(n,¢) = (n+e(9),¥)

Proof. Consider the following derivations:
(n, ;) = (n + e($), ~x) (n, ;=) = (n+e(¢), X)
(TL, ¢7 _‘Tﬁ) = (7’L + 6(¢), X X)
test axiom
-1

n

T

(n + e(¢)v _'X) — (n + e(¢)v _'X)
(n+e(9),x;x) = (n+e(9), 1)
(n+e(@), 7 x;x) = (n+e(d), L)

From these two, by transitivity, we get (n, ¢, ¢) = (n+e(¢), L).
From this, we derive the desired conclusion as follows:

(n, ;) = (n+e(9), x) (n,¢; ) = (n +e(d),x)
(n, ¢; =) = (n+e(¢), L)
(n,¢) = (n+e(¢), )
(n,0) = (n+e(),v)

see above

-r

dn
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Proposition 17 (Cases Rule) The following rule is derivable:

(n’ oF _'1!}) = (n + e(¢)v X) (TL, ¢; _‘_'170) = (TL + 6(¢)7 X)
(n,¢) = (n+e(9), x)

Proof.

(n, ;) = (n +e(9),x) o (n, ¢; ==p) = (n +e(9),x) o
(n, ¢; 9; 7x) = (n+e(9), L) (n, ¢; = ; ~x) == (n +e(¢), L)
(n, ¢; ~x; ) = (n +e(9), L) . (n, ¢; —x; ) = (n+ e(9), L)
(n, ¢;—x) = (n + e($), ") (n, ¢;~x) = (n + e(¢), ")
)

— (n+e(9), x)

swap

)

-r

contrad
(n,

Proposition 18 (Ex Falso Rule) The following rule is derivable:

(n, L) = (n,9)

Proof.

(n, L) = (n,9)

Proposition 19 (Inconsistency Rule) The following rule is deriv-
able:

(n,¢) = (m, L)

(n’ ¢) — (m, ¢)
Proof.
(n,¢) = (m, L) (m, 1) — (m, %) zc falso
(TL, ¢) - (m, 7/))

Proposition 20 (Modus Ponens) The following rule is derivable:

(n,¢) = (n+e(@),(~—¢) = x) (n,¢) = (n+e(9),¥)
(n, @) = (n+ e(9), x)

Proof.
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(n, ) = (n+ e($), ~(==¢; =x))) O
(n, ¢; 7 =(==;~x)) = (n+ e(9), 1) n
(n7 ¢; _‘_‘d)§ _‘X) (n + 6(¢)7 L) r (n7 ¢) - (n + €(¢), 1/J) —r
(n, ¢; ==p) == (n + e(¢), 7—x) (n, ;) = (n +e($), 1)
(.0 0) — nte@) " (6 0) = it e@)n)
(n, ) = (n +e($), x)

cases

8. Completeness of the Calculus

To establish the completeness of the calculus, we assume that

(n, @) #= (m, ).

The definition of L consequence immediately yields that (n, ¢) [~ (m, )
for all m with m < n + e(¢), so we may assume that m > n + e(¢).
Since we can shift memory on the right hand side, we may furthermore
assume without loss of generality that m = n + e(¢). Because of the
context extension rule, we may even assume that the context is initially
empty. Indeed, from (n, ¢) = (m, 1)), with n > 0, it follows by context
extension that (0,3"; ¢) &= (m, ).

We will construct a counter model by a slight modification of the s-
tandard Henkin construction for the completeness of classical predicate
logic. It is convenient to use k for e(¢) throughout the reasoning that
follows. Also, in the following, we extend the language with individual
constants.

Definition 21 A set of L formulas is k-bounded if every member of
the set is in Ly, i.e., every formula in the set has the form (k,¢). We
use (k,T') to refer to k-bounded sets of formulas.

¢ br & there are (k,¢1),... ,(k,¢n) € (k,T) with

(0,0; 715+ 3 0n) = (K, 1),

(k,T) is consistent with (0, ¢) if there is a (k,v) with ¢ b ¢

(k,T) is negation complete with respect to (0, @) if for every (k ) €
L either ¢ Fr ¢ or ¢ Fp .

(k,T') has witnesses for (0, ¢) if for every (k,3;1) such that ¢ Fr 3;¢
there is a ¢ for which (k,——3¢% — [/k+1]"¢) € (k,T).

Note that in the definition of ¢ Fr ¥ the extra premises from I' do
not extend the ‘anaphoric context’: the context change potential of the
premises from I' is blocked off by means of double negation signs.
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Proposition 22 If ¢ I/ ¢ then at least one of
(k, T) U{(k, ) }.(k, T) U{(k, =)}

is consistent with (0, ¢).
Proof. Use the Cases Rule.

Let (k,3;x1),... be alist of all k-bounded formulas of L that start
with 3. Let Cy := c(l), ... be a list of fresh individual constants. Let Lg
be L(Cy) (the result of adding the constants Cy to L).

(k, Ao) = {(k,~=3xi — [ /k+1] "xi) | i € NT}.

Let (k,3x7"),... be a list of all k-bounded existential formulas which

occur in L,,. Let Cppy1 := c’{“H, ... be a list of fresh individual con-

stants. Let Ly, 41 := Ly (Crog1).
m cmtl —.m .
(b, Amsr) o= {(k, =3 = (57 ] ) [ € N,

Let C :=J,, Cm, and let (k,A) be the set of L(C') formulas given by:

(B, A) =k, Ap).

m

The presence of constants forces a slight extension of our notation
for substitutions; we will use [¢/k11]” for the substitution that puts
constant c in place of all occurrences of upy1 and closes the gap.

Proposition 23 If (k,T") consists of L(C) formulas, and
(k,T) 2 (k,A),

then (k,I') has witnesses for (0, ¢).

Proof. Take some (k,3¢) with ¢ Fp J. Then F¢ € L, for some
m. So there is some ¢ € C with =—3¢ — [/p11] ¢ € Apt1. So
(k, 7= — [*/ka]"¢) € (K, A) € (K, T).

Proposition 24 If (k,T') has witnesses for (0,¢) and ¢ Fr J, then
there is some ¢ € C with ¢ Fr [¢/ 1] .

Proof. By the fact that Modus Ponens is a derivable rule (Proposi-
tion 20).
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Proposition 25 If (k,T") is consistent with (0, ) then there is a
(k,T") 2 (k,T)

which is consistent with (0, ¢), negation complete with respect to (0, ¢),
and has witnesses for (0, ¢).

Proof. Assume (k, I") consistent with (0, ¢). Let (k, x1),... , (k, Xi), - -
be an enumeration of all k-bounded formulas of the language L(C).
Extend (k,T") as follows to a (k,I"”) with the required properties.

(k,To) := (k,T) U (k, A)

(k,T )= (k, T U{xm}) if (k, Ty U{xm}) consistent with (0, ¢),
AT (B, T) otherwise.

(k,T7) = (k| Tm)

(k,T") O (k,A), so by Proposition 23 (k,I') has witnesses for (0, ¢).
Assume (k,T") is inconsistent with (0, ¢). Then some (k,T',) has to
be inconsistent with (0,¢) and contradiction with Proposition 22. So
(k,T") is consistent with (0, ).
Finally, (k,I"”) is negation complete by construction.

Definition 26 (Canonical Model) Let (k,T') be a set of k-bounded
formulas that is consistent with (0, ¢), negation complete with respect
to (0,¢), and has witnesses for (0,¢). Then My = (D, I) is defined as
follows. D := the set of natural numbers {1, ... ,k} together with the set
of constants C occurring in T'U{¢}. For all terms of the language, let
I(t) :=t. Let I(P) := {(t1,... ,tx) | ¢ Fr Pt1---tg)} (where it is given
that all the t; are either constants or indices in the range 1,... k).

Lemma 27 (Satisfaction Lemma) Let (k,T') be a set of k-bounded
formulas that is consistent with (0, @), negation complete with respect

to (0,¢), and has witnesses for (0,¢). For all k-bounded &:
¢ b & iff I with 1y [k, YT

Proof. Induction on the structure of &.

¢Fr T by (k, T) = (k, T) plus ; left.

¢ Fp 3;¢ iff (T has witnesses) ¢ Fp [¢/gr1] € iff (i.h.)

there is a 7 with 1_g) [%, [C/k+1]_§]]?14,r,k>w
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fF (1 [k, 3 €D e
G br Pty -ty Eff (t1..t,) € I(P) and ¢ Fr € iff

(.xy[k, Pty tn]]?f.r.k)
and (i.h.)
there is a 7 with 1 [[k:,{]]?frk)T
iff
there is a 7 with (1 g [k, Pty - tn; 5]]?{%)7

¢ Fp —&1; & iff (T negation complete) ¢t/ & and ¢
vdashpéy iff (1h. twice) [k, ﬂfl]]?frm and

there is a 7 with (1 g, [[k7§2]]?fr.k)‘r
iff
there is a 7 with (1 ) [F, _‘51552]]?{%)%'

Proposition 28 Let (k,T") be consistent with (0, ¢), be negation com-
plete with respect to (0,¢), and have witnesses for (0,¢). Then

M,
€ [[07 ¢]] <1Fk> .

Proof. Let 3¢/ be the result of applying the rule for moving 3
leftward as many times as necessary to ¢ to ensure that e(¢’) = 0. Then
(0, ¢) and the formula (0,3%¢’) are proof equivalent. Furthermore, we
have:

test axiom

(k, ¢') = (k. &) 31, k times

(0,3%¢) = (k, ¢')
(0,¢) = (k, ¢)

swap rules

Therefore, ¢ Fr ¢/, and by the satisfaction lemma, (1 g [F, qb’]]?frm
Also, by definition of the semantics for 3, we have that [0, Hk]]?frm By

the semantic equivalence of ¢ and 3*¢' we get ([0, ¢] %F@

Theorem 29 (Completeness)
If (n,¢) |= (m, ) then (n, ¢) = (m,¢)).
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Proof. Assume (n, ¢) 7= (m, ). Without loss of generality we may
assume that (n,¢) #= (k,v), where k := n + e(¢), because from
(n,¢) = (k,v) it follows by a suitable number of applications of
memory shift on the right hand side that (n,¢) = (m, '), where ¢/
is the result of shifting the ‘write registers’ of 1 to the right.

By context extension, it follows from (n, ¢) #= (k,v) that

(0,3"¢) #= (k, ).

Set ¢’ := 3"¢. Then k = e(¢’), and {(k, 1))} is consistent with (0, ¢’).
By proposition 25, there is a (k,I") 2 {(k, —1)} which is consistent with
(0,¢"), is negation complete with respect to (0,¢’), and has witnesses
for (0,¢'). Construct the canonical model and apply the satisfaction
lemma to get:

M
(1..k) [[kv _‘1/}]] (LF,k)-
By the semantic clause for negation we have that for all 7:

(Lk),7) ¢ Tk, o]0
By proposition 28:

[0, 61"

This proves (0,¢") = (k,1), ie., (0,3%¢) ¥ (k,v), and therefore,
(n, @) B~ (K, ).

9. Anaphoric Reasoning with Equality

Anaphoric linking makes extensive use of equality. See (van Eijck, 1993)
for an in-depth analysis of the use of equality in anaphoric descriptions.
An anaphoric definite description like the garden can be treated as a
definiteness quantifier followed by a link to a contextually available
index. The translation of He sprinkles the garden would then be some-
thing like 2,¢ : (ug = ug; Gus); Sujus. Also, the determiner another
often has an implicit anaphoric element. In such cases, the treatment
involves non-identity links to contextually available referents. He met
another woman gets a translation like 2, 3;us # ug; Wug; Mujus. Be-
low we indicate how to handle equality, while leaving the axiomatization
of definiteness in the present framework for another occasion.

The following rules must be added to the calculus to deal with
equality statements (we now assume the presence of a set Cons of
individual constants):
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9.0.0.23. Reflexivity Aziom

(n,¢) = (m,t =1t) n+e(d) <m, te€ ConsU{uy,...,un}

9.0.0.24. Soundness of Reflexivity Axiom The axiom expresses that
equality is reflexive.

9.0.0.25. Substitution Rule

(n,¢) = (m, [" /1,]¥)
(n7¢;t1 = t2) == (mvd})

ti,to € Cons U {uq,... ,un}

Example application:

0,7) — (0.a=a) "

(0,a =b) = (0,b =a)

subst

For the correctness of this application, note that a = a is of the form
[*/p]b = a.

test axiom

0,a=0) = (0,a =0
( ) ( ) subst

(0,a =b;b=c) = (0,a =)

For the correctness of this application, note that a = b is of the form

[°/c]a = c.
The quantified version of the transitivity rule can be derived as
follows:

(3,U1 = UQ) — (3,’LL1 = UQ) test aXll)Oin
(3,u1 = ug;us = uz) = (3,u1 = ug) Subs .
dl, 3 times

(073;3;3;'“1 = Ug; U2 = Ug) — (37u1 = U3)

9.0.0.26. Soundness of the Substitution Rule Assume

o[, ¢;t1 = to] M.

Then ,[n, ], and [t;]JM = [t2]M. By the soundness of the premise,
there are § 2 7 and p with ¢[m, [* /tQ]w]]f)V‘. Therefore, g[m, ¢]]£4- This
shows (n, ¢;t1 = ta) E (m, ).

The completeness of the anaphoric calculus with equality is proved
by modifying the Henkin construction in the usual way: instead of
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terms we take equivalence classes of terms under provable equality as
elements of the canonical model.

10. Conclusion

Semanticists sympathetic to DRT do not tend to worry about the top
down construction algorithm for DRSs, with a novelty condition to
ensure incrementality of interpretation. Those interested in carrying
out a Montagovian or Fregean enterprise of building representations for
complex constituents out of representations for its components insist
on the formulation of a bottom up procedure, however. This interest in
a Montagovian perspective on dynamic interpretation has led to the e-
mergence of various dynamic logics intended as rational reconstructions
of the DRT programme. Unfortunately, the most well known of these,
DPL, has a problem of destructive assignment, and is therefore not the
best candidate for a reformulation of DRT in Fregean or Montagovian
terms. This flaw is remedied in the present proposal.

Moreover, the incremental dynamics framework advocated here has
as advantage over the DRT framework that it comes with a clearer
distinction between the following two kinds of actions:

— picking up a reference from context,

— introducing a new topic of conversation for future reference.

We have seen that attempts to formulate a transitive relation of logical
consequence relation for DRT force one to blur this distinction. The
framework of incremental dynamics presented in this paper improves
on this, for it yields both a clear distinction between ‘picking up an old
reference’ and ‘introducing a new reference’ and a transitive relation of
logical consequence.

When looking at the general picture of frameworks for dynamic
interpretation, there may not emerge a single ‘best’ framework. Instead,
it might well be the case that various proposals shed light on different
aspects of the dynamics of text processing that all merit study in their
own right. The present ‘calculus of incremental dynamics’ focuses on
the abstraction over anaphoric context in reasoning. It gives an explicit
account of anaphoric links between premises and conclusion in rea-
soning, and is more well behaved than previous DRT-like frameworks
(if one accepts transitivity of the consequence relation as a mark of
good behaviour, that is). To be sure, the present sequent approach
to axiomatizing dynamic logic can also be used to get still closer to
standard DRT, or to axiomatize DPL and its variants: see the proof
systems that are given in (van Eijck, 1999).
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Here is a mere sketch of what an incremental Montague grammar in
the spirit of the present system might look like. Such a system would
use type scheme patterns that allow context type schemes of the form
[i], for a context consisting of ¢ elements, with 7 an index variable. With
these we can represent the meaning of a man as:

)\QD(HLK).)\c[i])\c'[HKH].er(man A ((Q(i +1))cz))).

Intuitively, a man introduces a new context element, states that this
element is a man, points at that man with an index ¢ 4 1, and extends
the context by an unspecified number of further items to be provided
by the verb phrase.

In the formula, Q(;41,K) represents an index into a context tran-
sition with the index indicated by >, the input context of size i + 1,
i.e., non-empty, and a context increment of size K, i.e., the transition
extends the context with K elements. Intuitively, this is the type of the
verb phrase that combines with a man.

The ¢, ¢’ represent contexts, and we see from the translation that the
indefinite article extends the input context by one element, for there is
an element x such that extending the input context ¢ with it (denoted
by ¢"z) yields an intermediate context to which the verb phrase meaning
is to be applied. Finally, note that the index ¢4 1 in the formula is used
to keep track of the subject; it refers to the item introduced by the
indefinite, for this occupies position ¢ + 1 in the context.

Note that the presence of type schemes for contexts provides a neat
interface for anaphoric reference resolution: pronouns can be translated
as invitations to pick a reference from the current context. The author
is aware that this sketch is far too concise, but a more detailed account
of all this will have to wait for another occasion.

To wind up our story we mention some connections to related work.
Via the translation to DRT in Section 3 (proposition 7) we have a
proof system for a streamlined version of DRT. The calculus makes the
discipline of using and modifying the anaphoric context and of handling
dynamically bound indices fully explicit. It can be viewed as a proof
system for ‘pure’ DRSs, a proof system that avoids the award reference
to alphabetic variance in the rules of proof proposed in (Kamp and
Reyle, 1996). Like the DRT calculus of (van Eijck, 1999), the present
calculus differs from the earlier proof system for DRT in (Saurer, 1993)
in the fact that it does not rely on an implicit translation to FOL.

Finally we mention the connections with (Dekker, 1994), where a
similar plea is made for incremental dynamics but the problem of a
calculus for reasoning is not addressed, with (Visser and Vermeulen,
1995) and (Visser, 1994; Visser, 1997), and with (Blackburn and Ven-
ema, 1995) and (Hollenberg, 1997). Indeed, the Hollenberg equational
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axioms of dynamic negation and relational composition are all derivable
in the calculus of incremental dynamics.
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