Getting Started With
Functional Programming in Haskell

Jan van Eijck
CWI, Amsterdam and Uil-OTS, Utrecht

jve@cwi.nl

LOT Summer School, June 15, 2009

Abstract

The purpose of this lecture is to give a lightning introduction to the functional programming
language Haskell, and to make preparations for using Haskell for understanding more about
language, maths and logic.

New Facts You will learn a few facts about how functional programs
are written.

New Skills The main focus of this lecture.

e skills in (functional) computation, in learning to think function-
ally

e skills in representation, in getting from definitions to programs,
in ‘seeing’ the program hidden in a definition.

e skills in working with ‘the stuff of language, maths and logic'.

Attitude The most important thing. But how do you acquire it? Once
you have acquired the correct attitude you can learn to do anything.

Adjectives are words that combine with nouns to form complex nouns:
nice combines with the noun guy to form the noun nice guy. In the
grammar formalism of categorial grammar, one calls A/B the type of
a word that needs a type B word to its right in order to produce a type
A word, according to the rule:

A/B+ B =A.

Applying this to the case of adjectives and nouns: if nouns have type
N, then adjectives have type N/N, and the complex noun nice guy is
produced by the rule:

nicey/y + guyn = (nice guy)y.

Here, N/N is the grammatical function, N the grammatical argument.

Adverbials are words that map adjectives into complex adjectives:

Very(nN/n)/(N/N) T niceN/N + guyy
= (very nice)y/n + guyy
= (very nice guy)y.

Similarly, B\ A is the type of a word that needs a B type word on its
lefthand side to produce an A type word. In English, an adjective like
emeritus behaves like this:

professory + emeritusy\ y = (professor emeritus) .

Here N\ N is the function, N the argument.

Without the directional information

VEry(N_ N)—(N—N) Nicen_x guyy = (very nice)y_n guyy =
(very nice guy)n

(emeritus) y_. v professory = (professor emeritus)y.

Use of types in programming

If integer numbers have type Int, then we get:

e addition of integer numbers has type Int -> Int -> Int.
e incrementing integers by 1 has type Int -> Int.
e squaring integers has type Int -> Int.

This information is very useful to check whether a program is well typed.

Checking types is a handy way to spot common mistakes in program-
ming.

Functions and Functional Programming

Functional Programming is programming with functions.

A well-known functional programming language is Haskell, named after
the logician Haskell B. Curry.

Hugs is the implementation of Haskell that we are going to use. See
http://www.haskell.org/hugs/.

A textbook on Haskell that bridges the gap between reasoning and
programming is [2].

In this course we will illustrate material from [10] by means of Haskell
implementations.

http://www.haskell.org/hugs/

A function from a set A to a set B is an instruction to link each element
of A to an element of B.

See Chapter 2 in [10].
Notation:
f:A— B.

In the context of programming the sets are called types, and the nota-
tion is as follows:

f :: a->b>»

This is called: the type of the program f.

The instruction for the function itself is the program for f.

Example

A program reversal for the reversal of a string.
The type is String -> String.
The instruction explains how lists of characters are reversed.

For you to do: write the instruction.

Using the Hugs Haskell Interpreter

jve@vuur:~/courses/twl2008$ hugs

| T I I I I Hugs 98: Based on the Haskell 98 standard
(NN I O I I O I B Copyright (c) 1994-2005

|-—=11 ___1I1 World Wide Web: http://haskell.org/hugs
I Report bugs to: hugs-bugs@haskell.org
N

Version: March 2005 o _ _ _ __

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :7 for help
Hugs .Base>

http://haskell.org/hugs

http://haskell.org/hugs

Using the GHCI Haskell Interpreter

jve@vuur:~/courses/twl2008$ ghci

/NN NS (D)
/ /NI /) GHC Interactive, version 6.6, for Haskell 98.
/ /NN __ [/___|| http://www.haskell.org/ghc/
NN/ //N____/1_| Type :7 for help.
Loading package base ... linking ... done.
Prelude>

http://www.haskell.org/ghc/

http://www.haskell.org/ghc/

These slides form a literate program. The text you are reading is the
documentation. The actual code is the part typeset in frames. This is
how the code begins:

module GSWH

where
import List
import Char

This declares a module and imports two other modules. The code of
the module consists of the text in frames.

Loading the module

jve@vuur:~/courses/twl2008$ ghci GSWH

/NN N O
/ I/ N/ /-] GHC Interactive, version 6.6, for Haskell 98.

|
/ /NN __) /___| | http://www.haskell.org/ghc/
NN/ //N____/1_| Type :7 for help.

Loading package base ... linking ... done.

[1 of 1] Compiling GSWH (GSWH.lhs, interpreted)
Ok, modules loaded: GSWH.

*GSWH>

Haskell was named after the logician Haskell B. Curry. Curry, together
with Alonzo Church, laid the foundations of functional computation in
the era BC (Before the Computer), around 1940.

Haskell is a functional programming language, and a member of the
Lisp family. Others family members are Scheme, ML, Occam, Clean.
Haskell98 is intended as a standard for lazy functional programming.

With Haskell, the step from formal definition to program is particularly
easy. [This presupposes, of course, that you are at ease with formal
definitions.

Our reason for combining training in reasoning with an introduction to
functional programming is that your programming needs will provide
motivation for improving your reasoning skills.

Implementation of a Prime Number Test

1d n=1df 2 n

divides d n = rem n

1df k n |
|
|

prime n |
|
|

divides k
k™2 > n
otherwise

n <1
n::
otherwise

d

n

= 1df (k+1) n

error '"mot a positive integer'
False
ld n == n

somePrimes = filter prime [1..1000]

primesUntil n = filter prime [1..n]

allPrimes = filter prime [1..]

Can you work out what the filter function does?

GSWH> primesUntil 50
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]
GSWH>

Reading

e On Logic and Maths in Linguistics: [10].
e On Logic, Maths and Functional Programming: [2].

e On Computational Linguistics and Functional Programming: [3],
available from http://www.cwi.nl/~jve/cs.

e On Haskell: [1], [11],[4L.[°], [8].[5L7]

e On Grammars and Parsing: [0], available from http://www.cs.
uu.nl/docs/vakken/gont/diktaat . pdf.

http://www.cwi.nl/~jve/cs
http://www.cs.uu.nl/docs/vakken/gont/diktaat.pdf
http://www.cs.uu.nl/docs/vakken/gont/diktaat.pdf

References

[1] Hal Daume. Yet another Haskell tutorial. www.cs.utah.edu/
~hal/docs/daume02yaht . pdf.

[2] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and
Programming, volume 4 of Texts in Computing. College Publica-
tions, London, 2004.

[3] Jan van Eijck and Christina Unger. Computational Semantics with
Functional Programming. To appear with Cambridge University

Press, 2009.

[4] The Haskell Team. The Haskell homepage. http://www.
haskell.org.

[5] P. Hudak, J. Fasel, and J. Peterson. A gentle introduction to

www.cs.utah.edu/~hal/docs/daume02yaht.pdf
www.cs.utah.edu/~hal/docs/daume02yaht.pdf
http://www.haskell.org
http://www.haskell.org

Haskell. Technical report, Yale University, 1996. Online version:
http://www.haskell.org/tutorial/.

[6] J. Jeuring and D. Swierstra. Grammars and parsing. Lecture Notes,
Utrecht University, 2001.

[7] Mark P. Jones, Alastair Reid, et al. The Hugs98 user
manual. http://cvs.haskell.org/Hugs/pages/hugsman/
index.html.

[8] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The
Revised Report. Cambridge University Press, 2003.

[9] S. Peyton Jones, J. Hughes, et al. Report on the programming
language Haskell 98. Available from the Haskell homepage: http:
//www.haskell.org, 1999,

[10] Barbara H. Partee, Alice ter Meulen, and Robert E. Wall. Mathe-
matical Methods in Linguistics. Kluwer Academic Publishers, 1993.

http://www.haskell.org/tutorial/
http://cvs.haskell.org/Hugs/pages/hugsman/index.html
http://cvs.haskell.org/Hugs/pages/hugsman/index.html
http://www.haskell.org
http://www.haskell.org

[11] The GHC Team. The Glasgow Haskell compiler (GHC). http:
//www.haskell.org/ghc/.

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/

