
First Order Theorem Proving

Jan van Eijck
CWI & ILLC, Amsterdam

Functional Specification of Algorithms, Lecture 6, 2016

Abstract

This Chapter gives an overview of basic concepts of first order theorem proving implemented
in a functional language. The Chapter discusses the role of substitution and unification in rea-
soning processes involving variables. These ingredients play an important role in the reasoning
engines behind functional programming languages such as Haskell and logic programming lan-
guages such as Prolog. They are also crucial for the design of engines for automated theorem
proving. At the end of this tutorial we will implement a basic Prolog engine based on the reso-
lution rule and a tableau-style theorem prover.1

Keywords
substitution, unification, skolemization, resolution, tableau construction.

module TOTP

where

import Data.List

1The Haskell code in this chapter is based in part on a Prolog implementation in Haskell written by Mark P. Jones
that (once) was distributed as part of the hugs demo programs. Studying this implementation is highly recommended.
See http://darcs.haskell.org/nofib/real/prolog/Examples

http://darcs.haskell.org/nofib/real/prolog/Examples

Representing Substitutions

Substitution is the replacement of expressions in expressions by other expressions.
To see that substitutions are a fundamental (perhaps the fundamental) issue in com-
putation, consider a programming language with basic programming instructions of
the form v 7→ e, where v is a variable, and e is an expression that may itself contain
variables. Then the command P 7→ Q would allow us to get Q ⇒ (Q ⇒ Q) from
P ⇒ (Q ⇒ P). We denote the process of applying the substitution v 7→ E to an
expression E ′ as {v 7→ E}E ′.
The command n 7→ (Sn) applied to (Sn) gets us (S(Sn)), the same command
applied to plus((S(Sm)n gets us plus((S(Sm)(Sn), and so on.

Function application is itself a substitution process. Successor is the function λn.Sn.
Applying this function to an argument a is a matter of substituting a for n in Sn.
We can view the application process as a substitution {n 7→ a}(Sn). Evaluation of
functional expressions is a matter of performing substitutions.

A first thing to note is that the order in which we perform substitutions may make
a great difference. Consider again P ⇒ (Q ⇒ P) as a starting point. Suppose we

first perform P 7→ (Q⇒ Q), and next Q 7→ P . This yields:

(P ⇒ P)⇒ (P ⇒ (P ⇒ P)).

Suppose on the other hand that, starting out from the same formula, we first perform
Q 7→ P and next P 7→ (Q⇒ Q). This yields:

(Q⇒ Q)⇒ ((Q⇒ Q)⇒ (Q⇒ Q)).

Finally, we may consider performing the substitutions simultaneously. The result
is:

(Q⇒ Q)⇒ (P ⇒ (Q⇒ Q)).

Different notations are used for the application of a substitution to an expression.
We will write the substitution as a function preceding its argument (this is useful
because it agrees with the implementation in functional programming that we will
consider below).

We will employ {v1 7→ E1, . . . , vn 7→ En}E for the simultaneous substitution of
E1 for v1, . . . , En for vn in E. Thus, we have:

{P 7→ Q,Q 7→ (Q⇒ Q)}(P ⇒ (Q⇒ P) = (Q⇒ ((Q⇒ Q)⇒ Q)).

We have already seen that in general substitutions do not commute: the result of
performing a first substitution, and next a second one is not always the same as first
performing the second one and next the first one. For another example: {y 7→ z}
after {x 7→ y} is equivalent to the simultaneous substitution {x 7→ z, y 7→ z},
{x 7→ y} after {y 7→ z} is equivalent to the simultaneous substitution {x 7→ y, y 7→
z}.
The example also explains why it is useful to allow simultaneous substitution next to
single variable substitution. This is because we sometimes want to perform one sub-
stitution after another, and the result of combining two single variable substitutions
will in general not be a single variable substitution. For example, first performing
{x 7→ y} and next {y 7→ z} has the same effect as performing the simultaneous
substitution {x 7→ z, y 7→ z}.

Representing Identifiers, Terms, Formulas

We will study substitution in the context of formal languages, so first we have to
make up our minds about how to represent the ingredients of these languages. In
this section we define predicate logical formulas as a Haskell data type.

Suppose a set of variables V and a set of function names F are given. Then the
recursive definition of the language of terms over these is:

• If v is a variable in V , v is a term.

• If f is a function name in F and [t1, . . . , tn] is a list of terms then f [t1, . . . , tn]
is a term.

This definition is to be understood with an implicit closure condition: nothing else
is a term.

A function f with two arguments t1 and t2 gets represented as f [t1, t2]. We can rep-
resent almost anything that we have encountered so far in this book as a term. Think
of a constant c as a function of the form c[]. Also, we have seen that we can look
at the propositional connectives as function symbols, so P ∧Q can get represented

as (∧)[P,Q]. A Haskell function fct of type a→ b→ c can be represented with its
two arguments x and y as fct[x, y]. A binary relation symbol R with two arguments
x and y gets represented as R[x, y]. A conjunction Rxy ∧ Ryz gets represented as
(∧)[R[x, y], R[y, z]], and so on.

To implement this, we start out from identifiers (type Id), pairs of strings and in-
dices. The indices that we use in identifiers are needed later on for tree indexing, so
we implement them as lists of integers.

type Name = String
type Index = [Int]
data Id = Id Name Index deriving (Eq,Ord)

It is useful to put Id in the Show class:

instance Show Id where
show (Id name []) = name
show (Id name [i]) = name ++ (’_’: show i)
show (Id name is) = name ++ (’_’: showInts is)

where showInts [] = ""
showInts (i:is) = show i ++ showInts is

Some examples of variable indices:

ix = Id "x" []
iy = Id "y" []
iz = Id "z" []

Terms are now given by:

data Term = Var Id | Struct Id [Term] deriving Eq

It is useful to have an ordering on terms:

instance Ord Term where
compare (Var x) (Var y) = compare x y
compare (Var x) _ = LT
compare _ (Var y) = GT
compare (Struct a ts) (Struct b rs)
| a == b = compare ts rs
| a < b = LT
| a > b = GT

Some examples of variable terms:

x = Var ix
y = Var iy
z = Var iz

Some examples of constant terms:

a = Struct (Id "a" []) []
b = Struct (Id "b" []) []
c = Struct (Id "c" []) []
zero = Struct (Id "z" []) []
s = Struct (Id "s" [])
t = Struct (Id "t" [])
u = Struct (Id "u" [])
one = s[zero]
two = s[one]
three = s[two]
four = s[three]
five = s[four]

Here is the declaration of Term as an instance of the Show class:

instance Show Term where
show (Var id) = show id
show (Struct id []) = show id
show (Struct id ts) = show id ++ concat [show ts]

The function isVar checks whether a term is a variable:

isVar :: Term -> Bool
isVar (Var _) = True
isVar _ = False

The functions varsInTerm and varsInTerms give the variables that occur in
a term or a term list. Variable lists should not contain duplicates; the function nub
cleans up the variable lists.

varsInTerm :: Term -> [Id]
varsInTerm (Var i) = [i]
varsInTerm (Struct i ts) = varsInTerms ts

varsInTerms :: [Term] -> [Id]
varsInTerms = nub . concat . map varsInTerm

Once we have identifiers and terms, it is straightforward to declare a data type for
the language of predicate logic. We assume that P is a set of predicate names. For
convenience we will represent conjunction and disjunction as operations on lists of
formulas. We use prefix notation for implications and equivalences.

• If P is a predicate name in P, and [t1, . . . , tn] is a list of terms then P [t1, . . . , tn]
is an atom.

• If A is an atom then A is a formula.

• If F is a formula then ¬F is a formula.

• If F1 and F2 are formulas,
then then (⇒)F1F2, (⇔)F1F2 are formulas.

• If [F1, . . . , Fn] is a list of formulas,
then (∧)[F1, . . . , Fn] and (∨)[F1, . . . , Fn] are formulas.

• If F is a formula and v is a variable then ∀vF and ∃vF are formulas.

Again we have an implicit closure condition: nothing else is a formula.

Exercise 1 What are the truth conditions for generalized conjunctions and disjunc-
tions? Applying these to the special cases C [] and D [], what is the result?

Exercise 2 Give the free occurrences of x in the formula

(∧)[P [x],∃x(∨)[R[x, y], S[x, y, z]]].

A data type for quantified formulas can be declared in Haskell as follows (for con-
venience, we use identifiers as predicate names):

data Frm = Atom Id [Term]
| Eq Term Term
| N Frm
| I Frm Frm
| E Frm Frm
| C [Frm]
| D [Frm]
| Forall Id Frm
| Exists Id Frm

deriving (Eq,Ord)

Note that an ordering on formulas is derived from the ordering on terms.

A show function for formulas:

instance Show Frm where
show (Atom id []) = show id
show (Atom id ts) = show id ++ concat [show ts]
show (Eq t1 t2) = show t1 ++ "==" ++ show t2
show (N form) = ’-’: (show form)
show (I f1 f2) = "(" ++ show f1 ++ "==>" ++ show f2 ++ ")"
show (E f1 f2) = "(" ++ show f1 ++ "<=>" ++ show f2 ++ ")"
show (C fs) = "*(" ++ showLst fs ++ ")"
show (D fs) = "+(" ++ showLst fs ++ ")"
show (Forall id f) = "!" ++ show id ++ (’ ’ : show f)
show (Exists id f) = "?" ++ show id ++ (’ ’ : show f)

showLst,showRest :: [Frm] -> String
showLst [] = ""
showLst (f:fs) = show f ++ showRest fs
showRest [] = ""
showRest (f:fs) = ’,’: show f ++ showRest fs

Exercise 3 Give a implementation of a function freeVarsInFrm :: Frm -> [Id]
that gives the list of variables with free occurrences in a formula.

Representing Substitutions

Assume we have a set of variables V , and a set of expressionsE with v ⊆ E. Then a
substitution σ is a finite set of bindings, where a binding is a pair v 7→ e, with v ∈ V
and e ∈ E. Alternatively, a substitution can be viewed as a function σ : V → E

with the property that only finitely many members of V are affected. In other words,
σ : V → E is a substitution if {v | σ(v) 6= v} is a finite set. For σ : V → E we
define Dom (σ) := {v | θ(v) 6= v}, and Rng (σ) := {θ(v) | θ(v) 6= v}.
For extending a substitution σ : V → E to a mapping σ◦ : E → E, i.e., a map
from expressions to expressions, we have to know a bit more about the nature of
the expressions. If the expressions contain binders, we have to make sure that we
only replace free occurrences of the variables. To keep matters simple, let us at
first assume that we have a language without binders, e.g., a language of terms as
defined in the previous section.

Here is a data type declaration for substitutions as lists of bindings.

type Subst = [(Id,Term)]

The identity substitution ε (the substitution that changes nothing) gets defined as:

epsilon :: Subst
epsilon = []

Domain and range of a substitution.

dom :: Subst -> [Id]
dom = map fst

rng :: Subst -> [Term]
rng = map snd

The restriction of a substitution σ (viewed as a set of binders) to a set of variables
W is the substitution

σ − {(v, σv) | v /∈ W}.
Here is the implementation:

restriction :: [Id] -> Subst -> Subst
restriction ids = filter (\ (x,_) -> elem x ids)

Application of a substitution to an identifier (in fact, a conversion from the repre-
sentation as a list of binders to the representation as a map from variables to terms):

appI :: Subst -> Id -> Term
appI [] y = (Var y)
appI ((x,x’):xs) y | x == y = x’

| otherwise = appI xs y

Exercise 4 Is it also possible to convert in the other direction? What difficulty do
you encounter?

Lifting of objects σ of type Subst to functions of type Term -> Term is done
by means of:

• σ◦(v) := σ(v).

• σ◦(f [t1, . . . , tn]) := f [σ◦(t1), . . . , σ
◦(tn)].

We will often write σ◦ as σ. Thus, if t is a term and σ a substitution then we write
σt for the term obtained from t by simultaneously replacing every occurrence of a
variable v ∈ Var (t) by its θ image θv. To give an example:

{x 7→ g[x, y], y 7→ z} g[x, y] = g[g[x, y], z].

Exercise 5 Which terms are meant by the following:

1. {x1 7→ f [x1]} g[x1, f [x1]],

2. {x1 7→ y1} g[y1, f [x1]].

3. {x1 7→ f [x1]}{x1 7→ y1} g[y1, f [x1]].

4. {x1 7→ y1}{x1 7→ f [x1]} g[y1, f [x1]].

5. {x1 7→ y1, y1 7→ f [x1]} g[y1, f [x1]].

In the implementation, the lift from σ to σ◦ gets handled by the following applica-
tion functions for application of a substitution to a term or a term list.

appT :: Subst -> Term -> Term
appT b (Var y) = appI b y
appT b (Struct n ts) = Struct n (appTs b ts)

appTs :: Subst -> [Term] -> [Term]
appTs = map . appT

It is convenient to apply the terminology for substitutions σ also to the corre-
sponding term mappings σ◦. Thus, we agree that Dom (σ◦) := Dom (σ) and
Rng (σ◦) := Rng (σ).

Note that terms, as defined here, do not contain variable binders. As soon as we
have variable binders we should make a distinction between bound and free occur-
rences of variables, and we should make sure that we only substitute for the free
occurrences.

If σ : T → T and v is a variable we let σv be given by σv(w) := w if w is the same

variable as v, σv(w) := σ(w) otherwise.

If σ : V → T is a substitution then the function σ• : L→ L is defined by structural
recursion on the formulas of L, as follows:

σ•P [t1, . . . , tn] := P [σt1, . . . , σtn]

σ•¬F := ¬σ•F
σ•(∧)[F1, . . . , Fn] := (∧)[σ•F1, . . . , σ

•Fn]

σ•(∨)[F1, . . . , Fn] := (∨)[σ•F1, . . . , σ
•Fn]

σ•(⇒)F1F2 := (⇒)σ•F1σ
•F2

σ•(⇔)F1F2 := (⇔)σ•F1σ
•F2

σ•∀wF := ∀w(σv)
•F

σ•∃wF := ∃w(σv)
•F

Note that the first clause in the definition uses σ◦ : T → T , the term map corre-
sponding to σ. Note also that this definition substitutes only for free occurrences of
variables. Here is an example application of the definition:

{x 7→ g[x, y], y 7→ z} ∀xP [g[x, y]] = ∀xP [g[x, z]].

And here is the corresponding implementation:

appF :: Subst -> Frm -> Frm
appF b (Atom a ts) = Atom a (appTs b ts)
appF b (N f) = N (appF b f)
appF b (I f1 f2) = I (appF b f1) (appF b f2)
appF b (E f1 f2) = E (appF b f1) (appF b f2)
appF b (C fs) = C (appFs b fs)
appF b (D fs) = D (appFs b fs)
appF b (Forall v f) = Forall v (appF b’ f)

where b’ = filter (\ (x,_) -> x /= v) b
appF b (Exists v f) = Exists v (appF b’ f)

where b’ = filter (\ (x,_) -> x /= v) b

appFs :: Subst -> [Frm] -> [Frm]
appFs b = map (appF b)

Again, usually we blur the distinction between σ and σ• by omitting the •. Thus, if
σ is a substitution and E an expression (term or formula) then we write σE for the

application of σ◦ or σ• to E, and we call σE an instance of E.

Exercise 6 The example {y 7→ x}∀xR[x, y] illustrates a problem that we may en-
counter when performing a substitution in a quantified formula. The problem is
this: the variable y in the original formula is free, but the variable x that replaces
it gets bound by the universal quantifier that ranges over x. This is unfortunate,
for the formulas ∀xR[x, y] and ∀zR[z, y] intuitively mean the same thing, and
{y 7→ x}∀zR[z, y] does not lead to ‘accidental capture’ of the newly introduced
variable x. Define a notion ‘t is free for v in F ’ stating the conditions under which
{v 7→ t}F will not lead to accidental capture of variables in t.

Exercise 7 Write a function that implements the check for ‘t is free for v in F ’
from the previous exercise.

Working with Substitutions

The kind of substitutions we need for reasoning in functional programming, in Pro-
log, and in automated theorem proving are term substitutions. Let a set of variables
V and a language of terms T be given.

It is useful to be able to switch back and forth between term maps (functions in
T → T) and substitutions (sets of bindings v 7→ t).

If θ = {v1 7→ θv1, . . . , vn 7→ θvn} and σ = {w1 7→ σw1, . . . , wm 7→ σwm} are
substitution in explicit form, where {v1, . . . , vn} = Dom (θ), and {w1, . . . , wm} =
Dom (σ), what then is the explicit form of their composition? By the composition
we mean the function θ◦ · σ : V → T that is the result of applying θ◦ : T → T

after σ : V → T . To remain close to the prefix notation for functions of the
implementation language, we will write substitutions as prefix operators, and read
composition of substitutions θσ as ‘θ after σ’.

The explicit form for θ · σ (again we omit the ◦) can be obtained by employing the
recipe of the following definition:

Definition 8 (Composition of substitution representations) Let

θ = [v1 7→ t1, . . . , vn 7→ tn] and σ = [w1 7→ r1, . . . , wm 7→ rm]

be substitution representations. Then θ ◦ σ is the result of removing from the se-
quence

[w1 7→ θ(r1), . . . , wm 7→ θ(rm), v1 7→ t1, . . . , vn 7→ tn]

the bindings w1 7→ θ(ri) for which θ(ri) = wi, and the bindings vj 7→ tj for which
vj ∈ {w1, . . . , wm}.

Exercise 9 Prove that this definition gives the correct result.

Bindings of the form v 7→ v have to be suppressed from a substitution representa-
tion. The function cleanUp takes care of this.

cleanUp :: Subst -> Subst
cleanUp = filter (\ (x,x’) -> x’ /= (Var x))

Applying the recipe for composition to {x 7→ y} · {y 7→ z} gives {y 7→ z, x 7→ y},
applying it to {y 7→ z} · {x 7→ y} gives {x 7→ z, y 7→ z}. compose xs ys
implements application of substitution xs after substitution ys.

compose :: Subst -> Subst -> Subst
compose xs ys =

(cleanUp [(y,(appT xs y’)) | (y,y’) <- ys])
++

(filter (\ (x,x’) -> x ‘notElem‘ (dom ys)) xs)

To demonstrate this, here are abbreviations for examples.

demo1 = compose [(ix,y)] [(iy,x)]
demo2 = compose [(iy,x)] [(ix,y)]
demo3 = compose [(iy,z)] [(ix,y)]

This gives:

TOTP> demo1
[(x,y)]
TOTP> demo2
[(y,x)]
TOTP> demo3
[(x,z),(y,z)]

As we noted already, this illustrates the fact that order of composition matters (sub-
stitutions do not commute).

Exercise 10 1. Write {x 7→ y} · {y 7→ f [x, y]} as a substitution in canonical
form. Next check your answer with compose.

2. Write {x 7→ a[], y 7→ a[]} · {x 7→ y} as a substitution in canonical form. Next
check your answer with compose.

We extend the terminology for expressions to substitutions. If σ = ρ · θ, then we
call σ an instance of θ.

Since substitutions are functions, we know immediately that composition of substi-
tutions is associative: if θ, σ, ρ are substitutions, then (θ · σ) · ρ = θ · (σ · ρ).

A substitution θ : V → T is called a renaming for a set of variables W if θ � W is
injective and the range of θ � W consists of variables.

In terms of this we define renamings for terms, quantifier-free formulas and variable
maps, and renamings per se, as follows:

• θ is a renaming for term t if θ is a renaming for Var (t).

• θ is a renaming for quantifier-free formula F if θ is a renaming for Var (F).

• θ is a renaming for variable map σ if θ is a renaming for
⋃
{Var (σv) | v ∈

Dom (σ)}.

• θ is a renaming if θ is a renaming for Dom (θ).

Here is a check whether a substitution is a renaming.

isRenaming :: Subst -> Bool
isRenaming s = all isVar rngS && (nub rngS) == rngS

where rngS = rng s

It is easy to see that every renaming θ has an inverse θ−1, with the property that
θ · θ−1 = ε = θ−1 · θ. For if θ is the renaming {v1 7→ w1, . . . , vn 7→ wn}, then
{w1 7→ v1, . . . , wn 7→ vn} is also a renaming, and it has the desired property.

If θ is a renaming for expression E, then θE is called a variant (or: alphabetical
variant) of E. For example, g[x, f [y]] is a variant of g[y, f [x]], but g[x, f [x]] is not
a variant of g[y, f [x]].

Exercise 11 Show that if θ is a renaming for E, then there is a renaming σ with
(σ · θ)E = E.

Exercise 11 tells us that the relation of being a variant of (for expressions) is sym-
metric. If θ is a renaming for substitution σ, then θ ◦ σ is called a variant of σ. The
fact that renamings have inverses guarantees that the relation of being a variant of
(for substitutions) is symmetric.

The following exercise turns exercise 11 around:

Exercise 12 Prove: If (σ · θ)E = E, then θ is a renaming for E.

Exercise 13 Prove: If E1, E2 are terms or quantifier-free formulas, then E1, E2 are
variants of each other iff they are instances of each other.

We define a relation v on the set M of all substitutions (for given sets V and T),
as follows. θ v σ iff there is a substitution ρ with θ = ρ · σ. (θ v σ is sometimes
pronounced as: ‘θ is less general than σ.’)

The relation v is a pre-order: reflexive and transitive. v is reflexive because for all
θ we have that θ = ε · θ. v is transitive because if θ = ρ · σ and σ = τ · γ then
θ = ρ · (τ · γ) = (ρ · τ) · γ, i.e., θ v γ.

Exercise 14 is similar to Exercise 12, but now for substitutions.

Exercise 14 Prove: If ρ, θ, σ are substitutions, and σ ·θ ·ρ = ρ, then θ is a renaming
for ρ.

Exercise 15 Prove that substitutions θ and σ are variants of each other iff they are
instances of each other.

It follows from Exercise 15 that for any substitution σ, the set

{θ ∈M | σ v θ and θ v σ}

is the set which consists of all variants of σ. Thus, using σ ∼ θ for σ v θ ∧ θ v σ,
we can form the po-set reflection (M/∼,�) of (M,v), as follows:

|σ| := {θ | σ ∼ θ}
|σ| � |ρ| :≡ σ v ρ.

Thus, the |σ| are equivalence classes of substitutions. Intuitively, |σ| consists of σ
plus all its variants. If θ ∈ |σ| we say that θ is a representative of |σ|.
To verify that � is well-defined, we have to show that the relation does not depend
on the representatives used in the definition. In other words, if σ ∼ σ′, ρ ∼ ρ′, and
σ v ρ, then σ′ v ρ′. For this, note that σ ∼ σ′ entails that there is a renaming α
with σ′ = α · σ, and ρ ∼ ρ′ entails that there is a renaming β with ρ = β · ρ′. Now
σ v ρ iff there is a θ with σ = θ · ρ, so σ′ = α · σ = α · θ · ρ = α · θ · β · ρ′, and it
follows that σ′ v ρ′.

Exercise 16 Show that |ε| is the set of all renamings.

Unification

If we have two expressions A and B, that each contain variables, then we are inter-
ested in the following questions:

• Is there a substitution θ that makes A and B equal?

• How do we find such a substitution in an efficient way?

We introduce some terminology for this. The substitution θ unifies expressions
A and B if θA = θB. The substitution θ unifies two sequences of expressions
(A1, . . . , An) and (B1, . . . , Bn) if, for 1 ≤ i ≤ n, θ unifiesAi andBi. Note that uni-
fication of pairs of atomic formulas reduces to unification of sequences of terms, for
two atoms that start with a different predicate symbol do not unify, and two atoms
P [t1, . . . , tn] and P [s1, . . . , sn] unify iff the sequences [t1, . . . , tn] and [s1, . . . , sn]
unify.

What we are going to need to apply resolution reasoning (see Section) to quantified
logic is unification of pairs of atomic formulas. For example, we want to find a
substitution that unifies the pair

P [x, g[a, z]], P [g[y, z], x].

In this example case, such unifying substitutions exist. A possible solution is

{x 7→ g[a, z], y 7→ a}.

for applying this substitution gives P [g[a, z], g[a, z]]. Another solution is

{x 7→ g[a, b], y 7→ a, z 7→ b}.

In this case, the second solution is an instance of the first, for

{x 7→ g[a, b], y 7→ a, z 7→ b} v {x 7→ g[a, z], y 7→ a},

because

{x 7→ g[a, b], y 7→ a, z 7→ b} = {z 7→ b} · {x 7→ g[a, z], y 7→ a}.

So we see that solution {x 7→ g[a, z], y 7→ a} is more general than solution {x 7→
g[a, b], y 7→ a, z 7→ b}.
If a pair of atoms is unifiable, it is useful to try and identify a solution that is as
general as possible, for the more general a solution is, the less unnecessary bindings
it contains. These considerations motivate the following definition.

Definition 17 If θ is a unifier for a pair of expressions (a pair of sequences of
expressions), then θ is called an mgu (a most general unifier) if σ v θ for every
unifier σ for the pair of expressions (the pair of sequences of expressions).

In the above example, {x→ g[a, z], y 7→ a} is an mgu for the pair P [x, g[a, z]], P [g[y, z], x].

Theorem 18 (Unification Theorem) If a unifier for a pair of sequences of terms
exists, then an mgu for that pair exists as well. Moreover, there is an algorithm that
produces an mgu for any pair of sequences of terms in case these sequences are
unifiable, and otherwise ends with failure.

Proof. The first part of the theorem follows from the second part, so we will
describe the unification algorithm, and prove that it does what it is supposed to do.

We give the algorithm in the form of a Haskell program.

Unification of terms. Three cases:

• Unification of two variables x and y gives the empty substitution if the vari-
ables are identical, and otherwise a substitution that binds one variable to the
other.

• Unification of x to a non-variable term t fails if x occurs in t, otherwise it
yields the binding {x 7→ t}.

• Unification of f t̄ and gr̄ fails if the two variable names are different, otherwise
it yields the return of the attempt to do term list unification on t̄ and r̄.

If unification succeeds, a unit list containing a representation of a most general uni-
fying substitution is returned. Return of the empty list indicates unification failure.

unifyTs :: Term -> Term -> [Subst]
unifyTs (Var x) (Var y) =

if x==y then [epsilon] else [[(x,Var y)]]
unifyTs (Var x) t2 =

[[(x,t2)] | x ‘notElem‘ varsInTerm t2]
unifyTs t1 (Var y) =

[[(y,t1)] | y ‘notElem‘ varsInTerm t1]
unifyTs (Struct a ts) (Struct b rs) =

[u | a==b, u <- unifyTlists ts rs]

Unification of term lists:

• Unification of two empty term lists gives the identity substitution.

• Unification of two term lists of different length fails.

• Unification of two term lists t1, . . . , tn and r1, . . . , rn is the result of trying to
compute a substitution σ = σn ◦ · · · ◦ σ1, where

– σ1 is a most general unifier of t1 and r1,

– σ2 is a most general unifier of σ1(t2) and σ1(r2),

– σ3 is a most general unifier of σ2σ1(t3) and σ2σ1(r3),

– and so on.

unifyTlists :: [Term] -> [Term] -> [Subst]
unifyTlists [] [] = [epsilon]
unifyTlists [] (r:rs) = []
unifyTlists (t:ts) [] = []
unifyTlists (t:ts) (r:rs) =
[compose s2 s1 | s1 <- unifyTs t r,

s2 <- unifyTlists (appTs s1 ts)
(appTs s1 rs)]

Our task is to show that these functions do what they are supposed to do: produce
a unit list containing an mgu if such an mgu exists, produce the empty list in case
unification fails.

The proof consists of a Lemma and two Theorems. The Lemma is needed in The-
orem 21. The Lemma establishes a simple property of mgu’s. Theorem 22 estab-
lishes the result. 2

Lemma 19 If sigma1 is an mgu of t1 and s1, and sigma2 is an mgu of

[(appT sigma1 t2)..(appT sigma1 tn)],

[(appT sigma1 s2)..(appT sigma1 sn)],

then compose sigma2 sigma1 is an mgu of [t1..tn] and [s1..sn].

Exercise 20 Prove Lemma 19

Theorem 21 shows, by induction on the length of term lists, that if unifyTs t s
does what it is supposed to do, then unifyTlists also does what it is supposed
to do.

Theorem 21 Suppose unifyTs t s yields a unit list containing an mgu of t and
s if the terms are unifiable, and otherwise yields the empty list. Then unifyTlists
ts ss yields a unit list containing an mgu of ts and ss if the lists of terms ts
and ss are unifiable, and otherwise produces the empty list.

Proof. If the two lists have different lengths then unification fails. The implemen-
tation reflects this, in the cases for unifyTlists [] (r:rs) and unifyTlists (t:ts) [].

Assume, therefore, that ts and ss have the same length n. We proceed by induc-
tion on n.

Basis n = 0, i.e., both ts and ss are equal to the empty list. In this case the
epsilon substitution unifies ts and ss, and this is certainly an mgu.

Induction step n > 0. Assume ts = [t1..tn] and ss = [s1..sn], with
n > 0. Then ts = t1:[t2..tn] and ss = s1:[s2..sn].

What the algorithm does is:

1. It checks if t1 and s1 are unifiable by calling unifyTs t1 s1. By the
assumption of the theorem, unifyTs t1 s1 yields a unit list [sigma1],
with sigma1 an mgu of t1 and s1 if t1 and s1 are unifiable, and yields
the empty list otherwise. In the second case, we know that the lists ts and
ss are not unifiable, and indeed, in this case unifyTlistswill produce
the empty list.

2. If t1 and s1 have an mgu sigma1, then the algorithm tries to unify the
lists

[(appT sigma1 t2)..(appT sigma1 tn)],
[(appT sigma1 s2)..(appT sigma1 sn)],

i.e., the lists of terms resulting from applying sigma1 to [t2..tn]
and [s2..sn]. By induction hypothesis we may assume that applying
unifyTlists to these two lists produces a unit list [sigma2], with
sigma2 an mgu of the lists, if the two lists are unifiable, and the empty
list otherwise.

3. If sigma2 is an mgu of the two lists, then the algorithm returns a unit list
containing compose sigma2 sigma1. By Lemma 19, compose sigma2 sigma1
is an mgu of ts and ss.

2

Theorem 22 clinches the argument. It proceeds by structural induction on terms.
The induction hypothesis will allow us to use Theorem 21.

Theorem 22 The function unifyTs t s either yields a unit list [u] or the
empty list. In the former case, u is an mgu of t and s. In the latter case, t and s
are not unifiable.

Proof. Structural induction on the complexity of (t,s). There are 4 cases.

1. t = Var x, s = Var y. In this case, if x = y, then the epsilon substitution
is surely an mgu of t and s. This is what the algorithm yields. If x 6= y, then
the substitution [(x,Var y)] is an mgu of x and y. For suppose sigma x =
sigma y. Then

sigma x = (compose sigma [(x,Var y)]) x,

and for all z 6= x, sigma z = (compose sigma [(x, Var y)]) z. So

sigma = compose sigma [(x,Var y)].

2. t = Var x, s not a variable. If x /∈ varsIn s, then [(x,s)] is an mgu of t
and s. For if sigma x = sigma s, then sigma x = (compose sigma [(x,s)]) x,

and for all variables z 6= x, sigma z = (compose sigma [(x,s)]) z. So

sigma = compose sigma [(x,s)].

3. s = Var x, t not a variable. Similar to case 2.

4. t = Struct a ts and s = Struct b ss. Then t and s are unifiable iff a
= b, and ts and ss are unifiable. Moreover, u is an mgu of t and s iff a = b and
u is an mgu of ts and ss.

By the induction hypothesis, we may assume for all subterms t’ and s’ of t and
s that

unifyTs t’ s’

yields the empty list if t’ and s’ do not unify, and a unit list [u], with u an mgu
of t’ and s’ otherwise. This means the condition of Theorem 21 is fulfilled, and it
follows that unifyTlists ts ss yields [u], with u an mgu of ts and ss, if
the term lists ts and ss unify, and unifyTlists ts ss yields the empty list
if the term lists do not unify.

This establishes the Theorem. 2

The following code is useful to play around with the unification algorithm:

unif :: Term -> Term -> Subst
unif tm1 tm2 = case unifyTs tm1 tm2 of

[] -> error "terms do not unify"
[s] -> s

Some output of this:

TOTP> unif x y
[(x,y)]
TOTP> unif x (t[x,y])

Program error: terms do not unify

TOTP> unif x (t[y,z])
[(x,t[y,z])]
TOTP> unif (t[x,a]) (t[y,x])
[(x,a),(y,a)]

Skolemization

For an efficient use of the unification technique from Section in the context of pred-
icate logic, it is common practice to transform the formulas into a more convenient
format.

As a crucial step, we will transform the formulas of predicate logic into equivalent
quantifier free formulas. For this, we will replace each existential quantification by
a so-called skolem term. This process is called skolemization.

Exercise 23 Below, we will assume that the formulas we start out with do not con-
tain equivalences and implications. Implement a translation function

arrowfree :: Frm -> Frm

that translates every formula into an equivalent formula without occurrences of the
constructors Impl and Equi.

An occurrence of ∃vF in a formula expresses existential quantification if it is within
the scope of an even number of negations. An occurrence of ∀vF in a formula
expresses existential quantification if it is within the scope of an odd number of
negations. Skolemization replaces the quantifiers that express existential quantifi-
cation. The skolem term for an ∃vF in a positive context (within the scope of an
even number of negations) will depend on all universal quantifiers that have scope
over ∃vF , and similarly for the skolem term for a ∀vF in a negative context (within
the scope of an odd number of negations).

Exercise 24 Replace as many of the quantifiers as you can by appropriate skolem
terms.

1. ∀x∃yRxy.

2. ¬∀x∃yRxy.

3. ∀x∀y(∃zRxz ∧Rzy ⇒ Rxz).

4. ∀x∀y(Rxy ⇒ ∃z∃wSzw).

In the implementation, we will maintain a list of identifiers for the variables of the
outscoping universal quantifiers. A skolem term is constructed from an identifier
list and an Int as follows. The identifiers represent all the universal parameters
that the skolem term depends on.

skolem :: Int -> [Id] -> Term
skolem k is = Struct (Id "sk" [k]) [(Var x) | x <- is]

An example application: “make a skolem function with index 5 depending on vari-
ables x, y, z”:

TOTP> skolem 5 [xi,yi,zi]
sk_5[x,y,z]

To see whether a variable occurrence v in a formula is universally quantified, we not
only have to know whether v is bound by ∀v or ∃v, but also whether that quantifier
is in the scope of an even or an odd number of negations. An occurrence v is
universally quantified if

• v is bound by ∀v, and ∀v is in the scope of an even number of negations (the
subformula ∀vF has positive polarity in the whole formula), or

• v is bound by ∃v, and ∃v is in the scope of an odd number of negations (the
subformula ∃vF has negative polarity in the whole formula).

The skolemize function sk computes by a call to skf, an auxiliary function that has
a list argument for the current list of wide scope quantifier indices and a Boolean
argument to indicate the current polarity, and that passes a parameter for skolem
indices.

sk :: Frm -> Frm
sk f = fst (skf f [] True 0)

Arguments of skf:

1. the first argument is the current formula to be put in skolemized form,

2. the second argument is the list of identifiers for universal quantifiers that have
scope over the current formula (these are needed as parameters for the next
skolem term),

3. the third argument is the polarity of the current context (True for positive,
False for negative),

4. the fourth argument is the next available Int for a skolem identifier (this is
needed to ensure that skolem terms for different existentially quantified vari-
ables are different).

Note that the code of skf uses application of a substitution to a formula.

skf :: Frm -> [Id] -> Bool -> Int -> (Frm,Int)
skf (Atom n ts) ixs pol k = ((Atom n ts),k)
skf (C fs) ixs pol k = ((C fs’),j)

where (fs’,j) = skfs fs ixs pol k
skf (D fs) ixs pol k = ((D fs’),j)

where (fs’,j) = skfs fs ixs pol k
skf (Forall x f) ixs True k = ((Forall x f’),j)

where (f’,j) = skf f ixs’ True k
ixs’ = insert x ixs

skf (Forall x f) ixs False k = skf (appF b f) ixs False (k+1)
where b = [(x,(skolem k ixs))]

skf (Exists x f) ixs True k = skf (appF b f) ixs True (k+1)
where b = [(x,(skolem k ixs))]

skf (Exists x f) ixs False k = ((Exists x f’),j)
where (f’,j) = skf f ixs’ False k

ixs’ = insert x ixs
skf (N f) ixs pol k = ((N f’),j)

where (f’,j) = skf f ixs (not pol) k

skfs puts lists of formulas in skolemized form. Same arguments as skf.

skfs :: [Frm] -> [Id] -> Bool -> Int -> ([Frm],Int)
skfs [] _ _ k = ([],k)
skfs (f:fs) ixs pol k = ((f’:fs’),j)

where
(f’, j1) = skf f ixs pol k
(fs’,j) = skfs fs ixs pol j1

Some example formulas and their skolemized forms. First some relation symbols:

p,q,r :: [Term] -> Frm
p = Atom (Id "p" [])
q = Atom (Id "q" [])
r = Atom (Id "r" [])

Examples of relational properties expressed in predicate logic. See, e.g., http:
//en.wikipedia.org/wiki/Binary_relation.

http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Binary_relation

refl = Forall ix (r [x,x])
irrefl = Forall ix (N (r [x,x]))
corefl = Forall ix (Forall iy (I (r [x,y]) (Eq x y)))
trans = Forall ix (Forall iy (Forall iz

(D [N (r [x,y]),N (r [y,z]),r [x,z]])))
ctrans = Forall ix (Forall iy (Forall iz

(D [r [x,y], r [y,z],N (r [x,z])])))
symm = Forall ix (Forall iy

(D [N (r [x,y]), r [y,x]]))
antisymm = Forall ix (Forall iy

(I (C [r [x,y], r [y,x]]) (Eq x y)))
asymm = Forall ix (Forall iy

(D [N (r [x,y]), N (r [y,x])]))
serial = Forall ix (Exists iy (r [x,y]))
serial1 = Forall ix (Forall iy (Exists iz (r [x,y,z])))
serial2 = Forall ix (Exists iy (Exists iz (r [x,y,z])))
trichotomous = Forall ix (Forall iy (D [r[x,y],r[y,x],Eq x y]))
euclidean = Forall ix (Forall iy (Forall iz

(I (C [r[x,y],r[x,z]]) (r[y,z]))))

Some properties expresses in terms of those above:

relprop1 = D [N asymm,irrefl]
relprop2 = D [N trans,N irrefl,asymm]
relprop3 = D [N trans,N symm,N serial,refl]

And some example skolemizations:

*TOTP> serial
!x ?y r[x,y]

*TOTP> serial1
!x !y ?z r[x,y,z]

*TOTP> serial2
!x ?y ?z r[x,y,z]

*TOTP> sk serial
!x r[x,sk_0[x]]

*TOTP> sk serial1
!x !y r[x,y,sk_0[x,y]]

*TOTP> sk serial2
!x r[x,sk_0[x],sk_1[x]]

*TOTP> sk (N serial)
-?y r[sk_0,y]

*TOTP> sk (N serial1)
-?z r[sk_0,sk_1,z]

*TOTP> sk (N serial2)
-?y ?z r[sk_0,y,z]

*TOTP> sk (N (D [serial,serial1,serial2]))
-+(?y r[sk_0,y],?z r[sk_1,sk_2,z],?y ?z r[sk_3,y,z])

Conversion to Prenex Form

A formula of first order logic is in prenex form or prenex normal form if it written as
a sequence of quantifiers followed by a quantifier free matrix. Every FOL formula
is equivalent to a formula in prenex form.

To make the conversion process go smoothly, assume that every bound variable v
in a formula is bound by the same quantifier (this rules out ∀xPx∧∃xQx), and that
variables that occur free in a formula do not occur bound in the same formula (this
rules out Px ∧ ∃xQx). Call a formula that satisfies these properties safe.

Exercise 25 Write a Haskell function for checking whether a FOL formula is safe.

Exercise 26 Write a Haskell function that transforms a FOL formula into an equiv-
alent safe formula.

To put a formula in prenex form, use the following equivalences:

¬∃vϕ ⇔ ∀v¬ϕ
¬∀vϕ ⇔ ∃v¬ϕ

(∀vϕ) ∧ ψ ⇔ ∀v(ϕ ∧ ψ)

(∀vϕ) ∨ ψ ⇔ ∀v(ϕ ∨ ψ)

(∃vϕ) ∧ ψ ⇔ ∃v(ϕ ∧ ψ)

(∃vϕ) ∨ ψ ⇔ ∃v(ϕ ∨ ψ)

and the De Morgan laws. Note that the conversions that extend the scope of a
quantifier over ∨ or ∧ are only valid on the assumption that the formula is safe.

Exercise 27 Write a Haskell function for converting a (safe) FOL formula to prenex
form.

Exercise 28 Skolemization and conversion to prenex form are both meaning pre-
serving. Still it is not a good idea to perform skolemization after conversion to
prenex form. Why not?

As a matter of fact, there is no need for conversion to prenex form after skolemiza-
tion. If we assume that free variables in a formula are universally quantified, then
after a formula is skolemized we can just remove all the quantifier occurrences ∀v
or ∃v. Since the variables are interpreted universally anyway, this does not change
the meaning of the formula.

The following function can be used to prune the quantifier occurrences from an
(arrow-free) formula in prenex form:

prune :: Frm -> Frm
prune f@(Atom _ _) = f
prune (N f) = N (prune f)
prune (C fs) = C (map prune fs)
prune (D fs) = D (map prune fs)
prune (Forall _ f) = prune f
prune (Exists _ f) = prune f

Exercise 29 Rewrite the function skf for skolemization so that it prunes quantifier
occurrences on the fly. Check the result by testing whether the new function defines
the same transformation as pruning after the old function for skolemization.

From Formulas to Clauses

Literals and Clauses

A literal is a atomic formula or its negation. A clause is a disjunction of literals. It
is customary to write a clause

¬A1 ∨ · · · ∨ ¬An ∨B1 ∨ . . . ∨Bm,

where the Ai and the Bj are atomic formulas, as

[A1, . . . , An]⇒ [B1, . . . , Bm].

All the variables should be taken as universally quantified. Thus, e.g., [Rxy,Ryz]⇒
[Rxz] is the clause that expresses transitivity of R.

Exercise 30 Translate back into standard predicate logical formulas:

1. []⇒ [Px,Qxy].

2. [Px,Qxy]⇒ [].

3. []⇒ [].

Blurring the distinction between atomic formulas and terms, we may implement
clauses as follows:

data Cl = Cl [Term] [Term] deriving (Eq,Ord,Show)

The first list holds the negative terms, the second list the positive terms.

Application of a substitution to a clause or a list of clauses:

appCl :: Subst -> Cl -> Cl
appCl s (Cl neg pos) = Cl (appTs s neg) (appTs s pos)

appCls :: Subst -> [Cl] -> [Cl]
appCls b = map (appCl b)

Variables in a clause:

varsInClause :: Cl -> [Id]
varsInClause (Cl neg pos) =

nub (varsInTerms neg ++ varsInTerms pos)

From Quantifier Free Form to Clause Form

First convert to conjunctive normal form. We may assume that there are no occur-
rences of quantifiers or⇒ or⇔ signs in the formula.

Here is a function that converts an arrow free and quantifier free formula to negation
normal form:

nnf :: Frm -> Frm
nnf f@(Atom _ _) = f
nnf f@(N (Atom _ _)) = f
nnf (N (N f)) = nnf f
nnf (C fs) = C (map nnf fs)
nnf (D fs) = D (map nnf fs)
nnf (N (C fs)) = D (map (nnf.N) fs)
nnf (N (D fs)) = C (map (nnf.N) fs)

Next, from negation normal form to conjunctive normal form:

cnf :: Frm -> Frm
cnf f@(Atom _ _) = f
cnf f@(N (Atom _ _)) = f
cnf (C fs) = C (map cnf fs)
cnf (D []) = D []
cnf (D [f]) = cnf f
cnf (D (f:fs)) = dist (cnf f) (cnf (D fs))

Application of De Morgan’s law P ∨ (Q ∧R))⇔ (P ∨Q) ∧ (P ∨R):

dist :: Frm -> Frm -> Frm
dist (C []) _ = C []
dist (C [f1]) f2 = dist f1 f2
dist (C (f1:fs)) f2 = C [dist f1 f2, dist (C fs) f2]
dist _ (C []) = C []
dist f1 (C [f2]) = dist f1 f2
dist f1 (C (f2:fs)) = C [dist f1 f2, dist f1 (C fs)]
dist f1 f2 = D [f1,f2]

Flattening of conjunctions and disjunctions:

flat :: Frm -> Frm
flat (C fs) = C (flatC fs)
flat (D fs) = D (flatD fs)
flat f = f

flatC :: [Frm] -> [Frm]
flatC [] = []
flatC ((C fs):gs) = flatC (fs ++ gs)
flatC (f:fs) = flat f : flatC fs

flatD :: [Frm] -> [Frm]
flatD [] = []
flatD ((D fs):gs) = flatD (fs ++ gs)
flatD (f:fs) = f: flatD fs

nubF :: Frm -> Frm
nubF (C fs) = C (map nubF fs)
nubF (D fs) = D (nub (sort fs))
nubF f = f

After this, conversion to clause form is a breeze. Here is how to convert a disjunc-
tion of literals to a clause. Notice that atomic formulas get converted to terms.

dsj2cl :: Frm -> Cl
dsj2cl (D lits) =

Cl [(Struct n ts) | (N (Atom n ts)) <- lits]
[(Struct n ts) | at@(Atom n ts) <- lits]

dsj2cl lit = dsj2cl (D [lit])

Convert a formula in cnf to a clause list:

cnf2cls :: Frm -> [Cl]
cnf2cls (C fs) = map dsj2cl fs
cnf2cls f = cnf2cls (C [f])

A clause is trivial if it contains a literal and its negation.

nonTriv :: Cl -> Bool
nonTriv (Cl neg pos) = null (intersect neg pos)

Conversion to clausal form: string all the transformations together.

cls :: Frm -> [Cl]
cls = nub . filter nonTriv .

cnf2cls . nubF . flat . cnf . nnf . prune . sk

Pure Prolog and the Reasoning Engine behind it

A Prolog clause or definite clause is a clause of the form [A1, . . . , An] ⇒ [A], i.e.,
a clause with a single positive literal. It is customary to write definite clauses in the
form A :− A1, . . . , An. In the special case where n = 0 we get clauses of the form
A :− . These are called Prolog facts, and usually written as A. without further ado.

If we represent the atomic predicates as terms, we get the following format (the
fixity declaration introduces :- as a non-associative infix operator with binding
power 6):

infix 6 :-
data Dclause = Term :- [Term] deriving Show

A Prolog goal is a sequence of the form ? − A1, . . . , An, where the Ai are atomic
predicates. Again representing these as terms, we get the following data type:

type Goal = [Term]

Here is an example of a Prolog clause:

father of (X, Y) :− man(X), parent of (X, Y).

Our representation of this would be:

Struct "father_of" [Var ("X",[]), Var ("Y",[])] :-
[Struct "man" [Var ("X",[])],
Struct "parent_of" [Var ("X",[]),Var ("Y",[])]]

This clause gives a definition of the relation of fatherhood in terms of the property
of being male and the relation of parenthood.

Here is an example with an anonymous variable:

father(X) :− father of (X,).

This clause defines the property of being a father in terms of the fatherhood relation:
a father is someone who is the the father of someone. Our representation of this
would be:

father, fatherOf :: [Term] -> Term
father = Struct (Id "father" [])
fatherOf = Struct (Id "father_of" [])

fatherC :: Dclause
fatherC = father [Var (Id "X" [])]

:- [fatherOf [Var (Id "X" []),Var (Id "_" [])]]

This gets displayed as follows:

TOTP> fatherC
father[X] :- [father_of[X,_]]

If more anonymous variables occur in a clause, we have to make sure that they all
get different representations _, __, and so on. We do not use the indices for that, as
we we need them for a different purpose (see below).

In the syntax of pure Prolog there is no constraint to the effect that a given predicate
constant should always have the same arity. The same predicate constant can be
used with different numbers of argument terms in the same clause. The following

is a correct Prolog clause:

respect(X) :− respect(X,X).

This defines the property of being a respecter as a thing which respects itself. Our
definition of Goal handles this correctly. Also, the definition allows Prolog terms
like

father of (father of (X))

to talk about the paternal grandfather of X ,

father of (mother of (X))

for talking about the maternal grandfather of X , and terms specifying list patterns,
roughly along the lines that we know from Haskell. Prolog uses

[[]]

for the list which has the empty list as its only element,

[[]|]

for any list which starts with the empty list, and

[a|]

for any list which has a as its first element. In short, Prolog uses [t|ts] where
Haskell uses (t:ts). In fact, the notation [t|ts] is an abbreviation for cons(t, ts),
just as [] is an abbreviation for nil.

The list [a|] is represented in our implementation as:

Struct "cons" [Struct "a" [],Var ("_",[])]

Here are some useful abbreviations:

nil :: Term
nil = Struct (Id "nil" []) []

cons :: [Term] -> Term
cons = Struct (Id "cons" [])

The list [a, b, c] is represented in our implementation as:

Struct "cons" [Struct "a" [],
Struct "cons" [Struct "b" [],

Struct "cons" [Struct "c" [], Struct "nil" []]]]

This gets displayed as cons[a,cons[b,cons[c,nil]]].

A Prolog database is a list of predicate definitions, where each predicate defi-
nition consists of a list of clauses for a particular predicate (e.g., the predicate
father_of). We can represent definitions and databases as:

type Definition = (Name,[Dclause])
data Database = Db [Definition] deriving Show

Looking up the definition of a particular predicate in a Prolog database is done as
follows:

dclausesFor :: Name -> Database -> [Dclause]
dclausesFor a (Db defs) =

case dropWhile (\ (n,def) -> n<a) defs of
[] -> []
((n,def):_) -> if a==n then def else []

The code assumes that the database is ordered by the names of the predicates de-
fined in it.

(\(n,def) -> n<a)

is a specification of a predicate by means of lambda abstraction. It maps a pair
(n,def) consisting of a name and a definition to the value False in case the
name precedes the name a that we are looking for, and to True otherwise.

The function dropwhile is predefined in Prelude.hs as:

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

dropWhile takes a predicate p and a list xs and throws away the initial segment
of the list of those elements that do not satisfy p.

It should be clear that dclausesFor finds the definite clauses that define a given

predicate if the definition for that predicate is in the database, and returns the empty
list otherwise.

Remark. The language of pure Prolog is in fact properly contained in the lan-
guage of quantified logic, only the formulas appear under a slightly different guise.
The following are translation instructions for translating Prolog program facts, pro-
gram clauses and goal clauses into standard quantified logical notation (irrelevant
brackets in conjunctions are omitted):

A ; ∀x1 · · · ∀xnA
A :− A1, · · · , An ; ∀x1 · · · ∀xn((A1 ∧ · · · ∧ An)→ A)

?− A1, · · · , An ; ∀x1 · · · ∀xn(¬A1 ∨ · · · ∨ ¬An)

The list x1, . . . , xn is the list of all variables occurring in the fact or clause. Thus,
all Prolog facts, program clauses and goal clauses clauses correspond to closed
formulas of quantified logic.

Exercise 31 Translate the following from Prolog notation to standard quantified
logic notation:

father of (X, Y) :− man(X), parent of (X, Y).

father(X) :− father of (X,).

Exercise 32 Translate the following from standard quantified logic notation to Pro-
log notation. (Hint: which principles do these sentences express? Do they express
different principles?)

∀x∀y∀z((Rxy ∧Ryz)→ Rxz).

∀x∀z(∃y(Rxy ∧Ryz)→ Rxz).

Resolution Reasoning in Prolog

The two main ingredients of the reasoning engine behind Prolog are resolution,
more in particular SLD resolution, for: selection-rule driven linear resolution for
definite clauses, and unification.

Propositional resolution is the rule (repeated from Page ??):

C1 ∪ {P} {¬P} ∪ C2

C1 ∪ C2

where C1, C2 are sets of literals (atomic propositions or negations of atomic propo-
sitions) considered as generalized disjunctions.

In the case of Prolog we can get by with a more specific version of this. To see
why this is so, note that a Prolog goal clause ? − A1, . . . , An is equivalent to a
set of literals {¬A1, . . . ,¬An}, where we think of this set as a generalized dis-
junction. A Prolog program clause B :− B1, . . . , Bm is equivalent to a clause
{B,¬B1, . . . ,¬Bm}. A Prolog program fact is a special case of this, with m = 0.
Given a goal clause {¬A1, . . . ,¬An} and a program clause rule {B,¬B1, . . . ,¬Bm

there is a natural way to to do resolution, by finding an Ai that equals B, so we can
do:

¬A1, . . . ,¬Ai, . . .¬An B :− B1, . . . , Bm Ai = B¬A1, . . . ,¬Ai−1,¬B1, . . . ,¬Bm,¬Ai+1, . . . ,¬An

In the propositional case, a question ?−A1, . . . , An is handled by resolving it against
a Prolog database (a set of program clauses, or rules), as follows:

goal1 rule1
goal2 rule2

goal3 rule3. . .

This form of resolution is called linear resolution (the name derives from the fact
that there is a linear sequence of goal clauses).

In the general case we have to take into account that the predicates may contain
variables. So instead of resolving a goal against a rule by selecting a negated atom
from the goal list and matching it with the non-negated atom from some program
clause by checking whether they are equal, now we attempt to unify the two atoms.

Suppose we have a goal ? − A1, . . . , An and a program clause B : −B1, . . . , Bm

(where B is the head of the clause). The goal is shorthand for ¬A1∨ . . .∨¬An, and
the rule for B ∨ ¬B1 ∨ . . . ∨ ¬Bm. Suppose we want to match Ai against B. This
is possible if we can find substitutions α and β for which αAi = βB. We can then
perform the following general resolution step:

¬A1, . . . ,¬Ai, . . . ,¬An B ← B1, . . . , Bm αAi = βB
α¬A1, . . . , α¬Ai−1, β¬B1, . . . , β¬Bm, α¬Ai+1, . . . , α¬An

Exercise 33 Show that this reasoning step is sound.

The result of this reasoning step is a new goal clause.

The key question now becomes: how do we find the substitutions α and β? The
answer is, of course, that these are provided by the unification algorithm. We first
make sure that the goal ¬A1, . . . ,¬Ai, . . .¬An and the program clause H ∨¬B1 ∨
. . . ∨ ¬Bm have no variables in common, by applying a renaming σ to the program
clause. This is called: standardizing the variables apart.

To standardize variables apart in our implementation, we rename the variables in a
term by giving them a new index (depending on the level in the current derivation
tree; see below).

renameVars :: Int -> Term -> Term
renameVars level (Var (Id s n)) = Var (Id s [level])
renameVars level (Struct s ts) =

Struct s (map (renameVars level) ts)

Given a Prolog database, an index that has not been used before for standardizing
apart in the current refutation process, and a term representing the currently selected
goal-atom from the goal, here is how to find the list of suitably renamed clauses in

the database that are candidates for a match:

renDclauses :: Database -> Int -> Term -> [Dclause]
renDclauses db n (Var _) = []
renDclauses db n (Struct (Id a _) _) =

[r tm:-map r tp | (tm:-tp) <- dclausesFor a db]
where r = renameVars n

In case the goal atom is a variable there are no matches. In case it is a predicate
with name a, look up the clauses for predicates with that name and rename them by
giving them a new index.

Next, we try to unify the selected goal Ai with the head σB of the program clause.
If this succeeds, the result is an mgu θ, and we have found α = θ, β = θ · σ.

¬A1, . . . ,¬Ai, . . .¬An σB ← σB1, . . . , σBm θ mgu of Ai, σBθ¬A1, . . . , θ¬Ai−1, θ · σ¬B1, . . . , θ · σ¬Bm, θ¬Ai+1, . . . , θ¬An

This reasoning step is called an SLD resolution step: S for selection driven (a selec-
tion rule is employed to select the goal Ai), L for linear resolution (the derivation

trees are in fact linear sequences), and D for definite clauses (indicating that the
program clauses are disjunctions with precisely one positive member).

In general, there will be a list of possible matches B :− B1, . . . , Bm for a particular
goal atom Ai. Each successful match will yield a list of an mgu θ for Ai and B,
and a list of clauses θB1, . . . , θBm. Here is a data type for collecting the successful
matches:

type Alt = ([Term], Subst)

Finding the list of alternatives from a given database, given a fresh index for instan-
tiating apart, and given a goal atom, is done as follows:

alts :: Database -> Int -> Term -> [Alt]
alts db n g = [(tp,u) | (tm:-tp) <- renDclauses db n g,

u <- unifyTs g tm]

SLD derivations are sequences of SLD resolution steps. The soundness of SLD
resolution follows immediately from the soundness of general resolution.

The selection rule in Prolog is: select the leftmost goal-atom first. Another matter
is the selection of the program clause to be matched against the selected goal atom.
Here the Prolog search rule is: try the program clauses starting from the first. The
search space that the choice of program clauses gives rise to is pictured in so-called
SLD derivation trees, where the nodes are labeled by goal clauses, and every suc-
cessful attempt to match a goal clause against a program clause is indicated by an
arc to a daughter (labeled by the number of the program clause and the mgu that
was used to effect the match). The leaf nodes are of two kinds:

• nodes labeled with a non-empty goal that cannot be matched against any pro-
gram clause: these are the failed nodes,

• nodes labeled with the empty goal: these are the success nodes.

An example will hopefully make this clear. Consider the following Prolog predicate
definition:

/* member(-Item,+List) :- Item occurs in List. */

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

The representation for this definition in our Haskell implementation for Prolog
clauses is given by:

memb :: [Term] -> Term
memb = Struct (Id "member" [])

member :: Definition
member = ("member", [memb [x,cons [x,y]] :- [],

memb [x,cons [y,z]] :- [memb [x,z]]])

db = Db [member]

The Prolog database db contains just a single definition.

member(X,[a,b,c])

[] member(X,[b,c])

[] member(X,[c])

[]

Figure 1: Finite successful SLD tree.

Figure gives an SLD derivation tree for the goal clause member(X,[a,b,c]).
Note that before every attempt at finding a match, the variables of the goal and the
program clause are instantiated apart. The new program variables are calledX1, X2

. . . . All the leaf nodes in this derivation tree are success nodes. This indicates that
the refutation of member(X,[a,b,c]) fails, and indeed every leaf node corre-
sponds with a substitution that makes the goal succeed. These three substitutions
for X give the three members of [a,b,c].

member(a,X)

[] member(a,T)

[] member(a,T1)

[] . . .

Figure 2: Infinite successful SLD tree.

Thus, SLD derivation trees picture the Prolog search space for a given goal clause.
Note that it does not follow from the definition that an SLD derivation tree should
be finite. Indeed, Prolog allows for search processes that are pictured by infinite
trees, indicating that the Prolog search process may get into an infinite loop. This
is illustrated by the SLD derivation tree for the call to the membership program
with a variable in the second position: member(a,X). As the SLD tree in Figure
indicates, this Prolog query has infinitely many correct answers: X = [a|], X =
[, a|], X = [, , a|], . . . , i.e., the pattern of a list with the element a at the first
position, the pattern of a list with the element a at the second position, and so on.

In our implementation, the goal member (X,[a,b,c]) looks as follows:

goal = memb [x, cons [a, cons [b, cons [c,nil]]]]

Using the Prolog database from the example above, we can perform the first reso-
lution step:

resolStep = alts db 0 goal

The result is the following list of alternatives:
TOTP> resolStep
[([],[(x,a),(x_0,a),(y_0,cons[b,cons[c,nil]])]),
([member[x_0,z_0]],[(x,x_0),(y_0,a),(z_0,cons[b,cons[c,nil]])])]

The first member represents the solution {x 7→ a}. The second member yields a
substitution {x 7→ x0, z0 7→ cons[b, cons[c, nil]]} and a new goal member[x_0,z_0].

One way to set up the Prolog reasoning engine is as a stack of triples (σ,G,As),
where σ is the current computed substitution, G is the current goal clause, and As
is the current list of alternatives, where each alternative gives a different way for
continuing the computation to find a solution. If the list of alternatives is empty,
the computation fails at that point, and backtracking to a previous backtrack point
(σ,G,As) is necessary, by means of the backtrack function. If the list of alter-
natives is non-empty, each alternative is tried in turn by the choose function. An
empty goal is solved; a non-empty goal gets solved by solving all of its members in
turn, by means of the solve function.

Here is the code for the Prolog theorem prover (adapted from the Haskell demo
Prolog engine):

type Stack = [(Subst, [Term], [Alt])]

prove :: Database -> [Term] -> [Subst]
prove db gl = solve 1 epsilon gl []

where
solve :: Int -> Subst -> [Term] -> Stack -> [Subst]
solve n s [] ow = s : backtrack n ow
solve n s (g:gs) ow = choose n s gs (alts db n (appT s g)) ow

choose :: Int -> Subst -> [Term] -> [Alt] -> Stack -> [Subst]
choose n s gs [] ow = backtrack n ow
choose n s gs ((tp,u):rs) ow =

solve (n+1) (compose u s) (tp++gs) ((s,gs,rs):ow)

backtrack :: Int -> Stack -> [Subst]
backtrack n [] = []
backtrack n ((s,gs,rs):ow) = choose (n-1) s gs rs ow

For our example, this gives the following result:
TOTP> prove db [goal]
[[(x,a),(x_1,a),(y_1,cons[b,cons[c,nil]])],
[(x,b),(y_1,a),(z_1,cons[b,cons[c,nil]]),
(x_1,b),(x_2,b),(y_2,cons[c,nil])],
[(x,c),(y_1,a),(z_1,cons[b,cons[c,nil]]),(x_1,c),
(y_2,b),(z_2,cons[c,nil]),(x_2,c),(x_3,c),(y_3,nil)]]

Here is a check how the Prolog engine handles example goal member(a,X):

TOTP> take 3 (prove db [memb [a,x]])
[[(x_1,a),(x,cons[a,y_1])],
[(x_1,a),(x,cons[y_1,cons[a,y_2]]),(x_2,a),(z_1,cons[a,y_2])],
[(x_1,a),(x,cons[y_1,cons[y_2,cons[a,y_3]]]),
(x_2,a),(z_1,cons[y_2,cons[a,y_3]]),(x_3,a),(z_2,cons[a,y_3])]]

Exercise 34 Extend the Prolog proof engine with code for handling the cut pred-
icate. The Prolog cut predicate, or “!”, eliminates choices in a Prolog derivation
tree. The cut goal succeeds whenever it is the current goal, and the derivation tree
is trimmed of all other choices on the way back to and including the point in the
derivation tree where the cut was introduced into the sequence of goals. E.g., the
goal member (a,X),! would succeed only once.

Resolution Theorem Proving

In the general case, where clauses are not necessarily definite, the resolution rule
has to be applied to all possible pairs of clauses that contain complementary literals.

Exercise 35 Implement resolution theorem proving for arbitrary FOL clause sets.
You will need search and resolution with unification.

Exercise 36 Implement resolution theorem proving for arbitrary first order infer-
ences with a premise set {ϕ1, . . . , ϕn} and a conclusion ψ.

Exercise 37 Validity of inference in FOL is not decidable. How does that reflect in
your implementation?

Detecting Inconsistencies with Semantic Tableaux

The method of semantic tableaux was invented in the 1950s by Beth [2] and Hin-
tikka [7] to provide a systematic procedure for detecting logical inconsistencies. If
there is an inconsistency in a (finite) set of formulas, we are bound to find it, pro-
vided we spell out all the possible states of affairs, while keeping track of all the
basic inconsistencies that we encounter, where a basic inconsistency is the presence
of a pair of alleged facts a,¬a.

The semantic tableau method proceeds in a step by step fashion, in each step replac-
ing a check of an inconsistency by a simpler check, by decomposition of sentences
and distinction of cases. Complex sentences come in two flavours: conjunctive
compositions and disjunctive compositions. The disjunctive compositions are the
ones that give rise to a case distinction. Following Smullyan [9], we call conjunc-
tive compositions α-sentences and disjunctive compositions β-sentences. Here is
what their components look like:

conjunctive disjunctive
α α1 α2 β β1 β2

P ∧Q P Q ¬(P ∧Q) ¬P ¬Q
¬(P ∨Q) ¬P ¬Q P ∨Q P Q

¬(P ⇒ Q) P ¬Q P ⇒ Q ¬P Q

¬(P ⇐ Q) ¬P Q P ⇐ Q P ¬Q

This extends to longer disjunctions and conjunctions in an obvious way. For in-
stance, the sentence ¬(y1 ∨ b1 ∨ g1 ∨ o1) is an α-sentence, with decomposition
¬y1,¬b1,¬g1,¬o1. Note that ¬y1 ∧¬b1 ∧¬g1 ∧¬o1 is also an α sentence, with the
same decomposition.

A tableau for a set of sentences is constructed by applying to sentences from the set
the following decomposition rules:

¬¬P
P

α

α1

α2

β
β1 | β2

In tableau matters, an example picture to get across the idea often conveys more
than a fully spelt out procedure in words. Here is a tableau tree for checking the

consistency of ¬((P ⇒ Q ∧Q⇒ R)⇒ (P ⇒ R)).

¬(P ⇒ Q ∧Q⇒ R)⇒ (P ⇒ Q)

P ⇒ Q ∧Q⇒ R

¬(P ⇒ Q)

P ⇒ Q
P ⇒ R

P

¬R

¬P

¬Q R

Q

¬Q R

The picture shows that first ¬((P ⇒ Q ∧Q⇒ R)⇒ (P ⇒ R)) was decomposed
in its α1 and α2 parts P ⇒ Q ∧ Q ⇒ R and ¬(P ⇒ R). In the next step, the
sentence P ⇒ Q ∧ Q ⇒ R was decomposed into its α1 and α2 parts P ⇒ Q

Q ⇒ Q. Next, ¬(P ⇒ R) was decomposed into its α1 and α2 parts P and ¬R.
At this point the β-sentence P ⇒ Q got tackled, causing a split into its β1 and
β2 components ¬P and Q. Finally, in both branches the β-sentence Q ⇒ R got
decomposed, causing a further split on both sides.

The tableau shows that the sentence we started out with is inconsistent, for a check
of the four branches reveals the pair P,¬P along the first branch, the pairs P,¬P
and ¬R,R along the second branch, the pair Q,¬Q along the third branch, and the
pair ¬R,R along the fourth branch. This shows that all these avenues are closed. In
fact, there was no need for the final decomposition step of Q⇒ R on the left hand
side, for once a tableau branch is closed, the search for a consistent state of affairs
along that avenue is over.

Now if ¬((P ⇒ Q ∧ Q ⇒ R) ⇒ (P ⇒ R)) is inconsistent, (P ⇒ Q ∧ Q ⇒
R) ⇒ (P ⇒ R) has to be true no matter what. The tableau method can be viewed
as a refutation method: we have tried to refute (P ⇒ Q ∧ Q ⇒ R) ⇒ (P ⇒ R),
but in vain, so we have discovered a truth of logic.

Next consider P ⇒ Q ∧Q⇒ R ∧ ¬R. This gives the following tableau; this time
we indicate closure of a branch by means of ×.

P ⇒ Q ∧Q⇒ R ∧ ¬R

P ⇒ Q
Q⇒ R
¬R

¬P

¬Q R
×

Q

¬Q
×

R
×

The example indicates that the sentence we started out with is consistent, because
in the state of affairs ¬P,¬Q,¬R the sentence is true.

Some reflection shows that the sentences that we can harvest from a fully developed
open branch in a tableau satisfy a number of simple requirements:

• For no sentence P are both P and ¬P present in the set.

• If a doubly negated sentence ¬¬P is present in the set, then P is also present.

• If an α-sentence is present in the set, then both its α1 and α2 components are
present.

• If a β-sentence is present in the set, then either its β1 or β2 component is
present.

A set of sentences satisfying these requirements is called a Hintikka set.

A propositional state of affairs is called a Boolean valuation: if we consider the
proposition letters as variables, a Boolean valuation is a function from the set of
proposition letters to the truth values t and f. Every Hintikka set can be taken as
an approximation of a valuation: map propositional variable a to t if a is in the
Hintikka set, to f if ¬a is in the Hintikka set. In general, a Hintikka set is not a
full specification of a valuation, for there may be basic propositions a that are not
decided by the Hintikka set (neither a nor ¬a is in the set).

It is clear that propositional tableaux can be viewed as a systematic procedure for
constructing Hintikka sets. If a Hintikka set for a propositional sentence exists, then
the tableau method will find it in a finite number of steps. A propositional tableau is
fair if for any of its branches holds that either the branch is closed, or any α sentence
has both its α1 and its α2 component on the branch, any β sentence has either its β1
or its β2 component on the branch, and any doubly negated sentence ¬¬P has P
on the branch. It takes a finite number of steps to develop a fair tableau for a propo-
sitional sentence. Tableaux are a decision method for propositional consistency or
propositional satisfiability.

From Propositional Logic to Predicate Logic

If we make the step from propositional logic to predicate logic by allowing predi-
cates and quantification over individuals satisfying those predicates, things get more
involved, and more interesting. We now allow sentences of the form ‘for all x F
holds’, or symbolically ∀xF , and ‘for some x F holds’, or symbolically ∃xF . The
intended meaning is clearly that with respect to a certain universe U a universal sen-
tence ∀xF is true if and only if F remains true, no matter which element d in U we
let x refer to. Similarly, an existential sentence ∃xF is true if and only if F remains

true for at least one choice of an element d in U that x can refer to. It is useful to
have a notation for “F , with x interpreted as d”. For this, we use [x 7→ d]F .

The tableau treatment of quantification reflects the way quantifiers are dealt with in
mathematical reasoning. If it has been established in the course of a mathematical
argument that there exists an object having a certain property P , then it is customary
to say: let a be such an object. This boils down to giving one of the things satisfying
P the name a. In such cases one always has to make sure that a is not used as a
name for anything else: after all, we have not established that anything has P , but
just that at least one thing has P . But as long as the baptism does not clash with
other naming conventions the switch from ∃xPx to Pa is legitimate. To be on the
safe side, one should take a fresh name.

The Smullyan classification of sentences gets extended with universal or γ sen-
tences and existential or δ sentences.

universal existential
γ γ1 δ δ1
∀xF [x 7→ d]F, d any name ∃xF [x 7→ d]F, d a new name
¬∃xF [x 7→ d](¬F), d any name ¬∀xF [x 7→ d](¬F), d a new name

To facilitate talk about γ and δ sentences and their components, we agree to call the
γ1 component of a certain γ formula, with d as the chosen name, γ(d). Similarly,
we agree to call the δ1 component of a certain δ sentence, with d as the new name,
δ(d). Thus, if the γ sentence is ∀xRxb, and the chosen name is b, then γ(b) indicates
the sentence Rbb.

A tableau for a set of sentences of predicate logic is constructed by applying to
sentences from the set the following decomposition rules:

¬¬F
F

α

α1

α2

β
β1 | β2

γ
γ(d)

δ
δ(d) , d new

It is not difficult to see that the propositional and the γ tableau rules preserve con-
sistency. For the δ rule, we state and prove the consistency as follows:

Proposition 38 If S is satisfiable, δ ∈ S, and d is any name that occurs nowhere in
S, then S ∪ {δ(d)} is satisfiable.

Proof: satisfiability of S means that there is a universe U and an interpretation I of
the predicates from S in U , together with an assignment s that maps the constants
in S to elements of U , such that for every F ∈ S it holds that Fs is true in (U, I).

In particular, δs is true in (U, I). From this it follows that for at least one u ∈ U ,
δ(u)s is true in (U, I). Now let s′ be the assignment that extends s by sending d to
u. Then s′ is defined for all constants in S ∪ {δ(d)}, and, since δ(d)s′ equals δ(u)s,
δ(d)s′ is true in (U, I).

If a tableau branch is consistent, i.e., if there is a model that makes all formulas
along the branch true, then extending the tableau by means of one of the tableau
decomposition rules will result in a consistent tableau. It follows from this that the
tableau method is sound:

Theorem 39 (Soundness) If F is consistent, then any tableau for F will have an
open branch.

The example tableau in Figure 3 establishes that ¬(∀x(Px ⇒ Qx) ⇒ (∀xPx ⇒
∀xQx)) is inconsistent, or, in other words, that ∀x(Px ⇒ Qx) ⇒ (∀xPx ⇒
∀xQx) is a predicate logical validity.

Note that the object (named) d1 gets introduced into the tableau by decomposition
of the δ sentence ¬∀xQx. This yields δ(d1) = ¬Qd1. Next, apply the γ rules, for
object d1, to the sentences ∀xPx and ∀x(Px⇒ Qx).

To start off a tableau for a γ sentence, assume the universe is non-empty, so it

Figure 3: Closed Tableau.

¬(∀x(Px⇒ Qx)⇒ (∀xPx⇒ ∀xQx))

∀x(Px⇒ Qx)
¬(∀xPx⇒ ∀xQx)

∀xPx
¬∀xQx

¬Qd1

Pd1

Pd1 ⇒ Qd1

¬Pd1
×

Qd1
×

contains an object d1:

∀x∃yRxy

∃yRd1y

Since γ formulas impose a standing obligation (for all names d that turn up along
a tableau branch, the appropriate γ(d) sentence has to be added), predicate logical
tableaux can run on indefinitely, as is demonstrated in the tableau for

∀x∃yRxy ∧ ∀x∀y∀z((Rxy ∧Ryz)⇒ Rxz) ∧ ∀x¬Rxx
in Figure 4. In this example case, this infinite tree generation process is due to the
format of the δ rule; a slight relaxation would allow us to re-use d1 as the object
satisfying ∃yRd2y. This would have resulted in an open branch corresponding to
the model • ←→ •.
But it is easy to see that clever emendations of the tableau rules cannot remedy the
situation in general. The extra requirement of asymmetry rules out loops. Thus, the
following formula only has infinite models • −→ • −→ • −→ • −→ . . .

∀x∃yRxy ∧ ∀x∀y∀z((Rxy ∧Ryz)⇒ Rxz) ∧ ∀x¬Rxx ∧ ∀x∀y(Rxy ⇒ ¬Ryx).

Figure 4: Infinite tableau development.

∀x∃yRxy ∧ ∀x∀y∀z((Rxy ∧Ryz)⇒ Rxz) ∧ ∀x¬Rxx

∀x∃yRxy
∀x∀y∀z((Rxy ∧Ryz)⇒ Rxz)

∀x¬Rxx

∃yRd1y

¬Rd1d1

Rd1d2

¬Rd2d2

(Rd1d2 ∧Rd2d1)⇒ Rd1d1

¬(Rd1d2 ∧Rd2d1)

¬Rd1d2
× ¬Rd2d1

∃yRd2y

Rd2d3

¬Rd3d3

...

Rd1d1
×

A tableau branch corresponding to a model for this sentence is bound to be infinite.

The requirements for a Hintikka set for predicate logic reflect the treatment of uni-
versal and existential sentences. A Hintikka set, for a universe U , now is a set of
sentences satisfying the following:

• For no sentence F are both F and ¬F present in the set.

• If a doubly negated sentence ¬¬F is present in the set, then F is also present.

• If an α-sentence is present in the set, then both its α1 and α2 components are
present.

• If a β-sentence is present in the set, then either its β1 or β2 component is
present.

• If a γ-sentence is present in the set, then for all d ∈ U , γ(d) is in the set.

• If a δ-sentence is present in the set, then for at least one d ∈ U , δ(d) is present
in the set.

Again, fair tableau development should yield Hintikka sets along the open branches.
The requirement on γ sentences leads to a crucial difference with the propositional

case: there is no longer a guarantee that fair tableaux are finite. As a consequence,
tableaux in predicate logic are not a decision engine for predicate logical satisfia-
bility.

Crucial for establishing completeness of the tableau method for predicate logic
(“if F has a closed tableau then F is not satisfiable”) is the following satisfiabil-
ity lemma for Hintikka sets.

Lemma 40 Every Hintikka set H for a domain U is satisfiable in U .

The proof of this is a matter of constructing an appropriate predicate logical model
from a Hintikka set. To specify the model, simply give any sentence Pt1 · · · tn the
value t if Pt1 · · · tn is in H , the value f if Pt1 · · · tn is not in H . The terms ti can
range over individual variables of the language, together with names from U . If the
language has individual constants, then these should be included in U . Next, show
by induction on sentence structure for each sentence F of H that F will get the
value t in this model.

To use this for a completeness proof, we have to establish that open branches in
fully developed tableaux yield Hintikka sets. Unfortunately, this is not true without
further ado. Since γ rules have to be repeated we can get infinite tableaux. Since

tableaux are finitely branching trees, by König’s lemma (“Every finitely branching
infinite tree has an infinite branch”), an infinite tableau must have an infinite branch.
Infinite branches are open, of course, but to make them fair we need to develop the
tableau according to a strategy guaranteeing a fair treatment of every formula. In
particular, not only do all α and β sentences have to be decomposed into their α1, α2

or β1, β2 components, and all δ sentences have to spawn a δ(d) for a fresh d, but
all γ sentences have to generate γ(d) on a branch for all d occurring on the branch.
One way to achieve this is to let an application to a γ rule to a branch be followed
by the act of putting a copy of the γ formula at the end of the branch [9].

A fair tableau is finished if it cannot be extended by further applications of the
fair tableau development procedure. For finished fair tableaux we have that open
branches correspond to Hintikka sets. This yields: if F has a finished fair tableau
with an open branch, then F is consistent. In other words:

Theorem 41 (Completeness) If F is a contradiction, then a fair tableau procedure
will yield a closed tableau for F after finitely many steps.

The formulation of the completeness theorem illustrates once more that tableau
reasoning is a refutation method. To show that F is a theorem, try to refute ¬F

by means of fair tableau development. If this procedure terminates with a closed
tableau then F is a theorem. Note again that tableau reasoning for predicate logic
is not a decision algorithm: the fair tableau development for ¬F may run forever.

Free Variable Tableaux

A problem with the implementation of tableau reasoning for predicate logic is with
the efficiency of the treatment of the γ sentences. A γ formula has to yield γ(d) for
all d along the branch, but which d should be tried first?

The idea of free variable tableaux [5, 6] is to postpone this choice by letting a
γ formula yield γ(x), for a free variable x. This allows the use of unification in
checking for closure. But one has to be careful, as the following example illustrates:

∀x(Px ∨Qx) ∧ ¬Pa ∧ ¬Qb

∀x(Px ∨Qx)
¬Pa
¬Qb

Px ∨Qx

Px

x 7→ a
×

Qx

x 7→ b
×

This may look like a closed tableau, but in fact the sentence we started out with
is consistent: take universe {a, b} and let Pb,Qa give the interpretation of P and
Q. The problem is that the free variable x is a so-called rigid variable: it occurs on
both sides of a tableau split. The trouble with rigid variables is that they cannot be
interpreted universally on a single tableau branch, but have to be read universally on
the whole tableau. Thus, closure cannot be checked on single branches, but should
be checked globally, for the whole tableau.

Another complication is that introduction of new names in δ rule applications may
introduce hidden dependencies on free variables. Consider our earlier example:

∀x∃yRxy

∃yRxy

Rxd1

This tableau suggests, misleadingly, that Rxd1 will be true irrespective of the refer-
ence of x. This is wrong, for it blurs the scope distinction between ∀x∃yRxy and
∃y∀xRxy. In fact, the choice of d1 is a dependent choice. This has to be made
explicit by the use of a skolem function:

∀x∃yRxy

∃yRxy

Rxf(x)

By far the easiest way to deal with δ sentences is by prefixing a translation step to
skolemized formulas to the tableau procedure, so that the tableau rules do not have
to deal with δ sentences at all.

The Automation of Tableau Reasoning

To automate tableau reasoning, we need a marriage of tableau development and
unification for checking tableau closure. To perform unification on tableaux, let a
tableau branch consist of two lists of terms (the terms corresponding to the positive
literals, and the terms corresponding to the negative literals), plus a list of pend-
ing formulas. A node of a tableau consists of an index in the tableau tree, plus
information about the initial segment of the tableau branch up to that node:

data Node = Nd Index [Term] [Term] [Frm] deriving Show

The tree indexing scheme that we will use is illustrated in the following example
tree:

[]

[0]

[0, 0] [0, 1]

[1]

[1, 0] [1, 1]

[1, 1, 0]

A tableau, expanded to a certain depth, is a list of nodes:

type Tableau = [Node]

As we work with formulas in skolemized form, there are no δ rule applications.
Here is code for distinguishing between α, β and γ formulas:

alpha :: Frm -> Bool
alpha (C _) = True
alpha (N (D _)) = True
alpha _ = False

beta :: Frm -> Bool
beta (D _) = True
beta (N (C _)) = True
beta _ = False

gamma :: Frm -> Bool
gamma (Forall _ _) = True
gamma (N (Exists _ _)) = True
gamma _ = False

Code for identifying the positive literals, the negative literals, and the double nega-
tions:

plit, nlit, dneg :: Frm -> Bool
plit (Atom n ts) = True
plit _ = False
nlit (N (Atom n ts)) = True
nlit _ = False
dneg (N (N f)) = True
dneg _ = False

Function for converting a literal (an atom or a negation of an atom) to a term:

f2t :: Frm -> Term
f2t (Atom n ts) = Struct n ts
f2t (N (Atom n ts)) = Struct n ts

The components of a (non-literal) formula are given by:

components :: Frm -> [Frm]
components (C fs) = fs
components (D fs) = fs
components (N (C fs)) = map (\ f -> N f) fs
components (N (D fs)) = map (\ f -> N f) fs
components (N (N f)) = [f]
components (Forall x f) = [f]
components (N (Exists x f)) = [N f]

For universal sentences, the following function returns the binder:

binder :: Frm -> Id
binder (Forall x f) = x
binder (N (Exists x f)) = x

For universal sentences, the following function allows to strip the list of all universal
quantifiers:

decompose :: Frm -> ([Id],Frm)
decompose form = decomp [] form where

decomp xs f = if gamma f then decomp (xs ++ [x]) f’
else (xs,f)

where x = binder f
[f’] = components f

Because of the fact that γ formulas are not decomposed tableau expansion can go
on forever. An expansion step of a branch looks like this.

It is convenient to prune branches as quickly as possible, by removing nodes that
close under any substitution.

Note that γ formulas are not removed from the list of pending formulas: if ∀xF
is treated, ∀xF gets replaced at the head of the formula list by a renaming of F ,
and ∀xF gets appended to the formula list. Similarly, if ¬∃xF is treated, ¬∃xF
gets replaced at the head of the formula list by a renaming of ¬F , and ¬∃xF gets
appended to the formula list.

step :: Node -> Tableau
step (Nd i pos neg []) = [Nd i pos neg []]
step (Nd i pos neg (f:fs))

| plit f = if elem (f2t f) neg
then [] else [Nd i ((f2t f):pos) neg fs]

| nlit f = if elem (f2t f) pos
then [] else [Nd i pos ((f2t f):neg) fs]

| dneg f = [Nd i pos neg ((components f) ++ fs)]
| alpha f = [Nd i pos neg ((components f) ++ fs)]
| beta f = [(Nd (i++[n]) pos neg (f’:fs)) |

(f’,n) <- zip (components f) [0..]]
| gamma f = [Nd i pos neg (f’:(fs++[f]))]
where
(xs,g) = decompose f
b = [((Id x j), Var (Id x i)) | (Id x j) <- xs]
f’ = appF b g

The treatment of γ formulas is a potential source of infinitary behaviour. We can

set an arbitrary boundary by keeping track of the number of γ rule applications. For
this, we need a version of step with a parameter for γ-depth [5].

stepD :: Int -> Node -> (Int,Tableau)
stepD k node@(Nd i pos neg []) = (k,[Nd i pos neg []])
stepD k (Nd i pos neg (f:fs))

| plit f = if elem (f2t f) neg
then (k,[]) else (k,[Nd i ((f2t f):pos) neg fs])

| nlit f = if elem (f2t f) pos
then (k,[]) else (k,[Nd i pos ((f2t f):neg) fs])

| dneg f = (k,[Nd i pos neg ((components f) ++ fs)])
| alpha f = (k,[Nd i pos neg ((components f) ++ fs)])
| beta f = (k,[(Nd (i++[n]) pos neg (f’:fs)) |

(f’,n) <- zip (components f) [0..]])
| gamma f = (k-1,[Nd i pos neg (f’:(fs++[f]))])
where
(xs,g) = decompose f
b = [((Id x j), Var (Id x i)) | (Id x j) <- xs]
f’ = appF b g

A tableau node is fully expanded if its list of pending formulas is empty.

expanded :: Node -> Bool
expanded (Nd i pos neg []) = True
expanded _ = False

To expand a tableau up to a given positive γ depth n, apply expansion steps to the
first node that needs expansion, until the γ depth gets decreased, next move on with
the next node. This ensures that the nodes are treated fairly. Recursively carry out
this procedure until the γ depth becomes 0 or the tableau is fully expanded.

expand :: Int -> Tableau -> Tableau
expand 0 tableau = tableau
expand _ [] = []
expand n (node:nodes) = if expanded node

then (node:(expand n nodes))
else if k == n
then expand n (newnodes ++ nodes)
else expand (n-1) (nodes ++ newnodes)

where (k,newnodes) = stepD n node

To check a branch for closure at a node, we make use of the fact that the literals are
represented as terms, so we can apply unifyTs to its lists of positive and negative
literals. A node closes when it is possible to unify one of its positive literals against
one of its negative literals. The unifying substitutions are needed to instantiate the
rest of the tableau, so we collect them in a list.

checkN :: Node -> [Subst]
checkN (Nd _ pos neg _) =

concat [unifyTs p n | p <- pos, n <- neg]

To check a tableau for closure, we try to close its first branch. For any closing
substitution σ that we get, we try to close the σ image of the remaining branches.
For this we need functions for applying substitutions to nodes and tableaux.

appNd :: Subst -> Node -> Node
appNd b (Nd i pos neg forms) =

Nd i (appTs b pos) (appTs b neg) (appFs b forms)

appTab :: Subst -> Tableau -> Tableau
appTab = map . appNd

The function checkT is used in the closure check for a tableau. Note that a tableau
consisting of an empty list of nodes counts as closed, because all of its nodes close.
A tableau is closed if its list of closing substitutions is non-empty.

checkT :: Tableau -> [Subst]
checkT [] = [epsilon]
checkT [node] = checkN node
checkT (node:nodes) =

concat [checkT (appTab s nodes) | s <- checkN node]

No-one can devise a program that decides FOL theorem hood, as Church and Turing

discovered in the 1930s. Our refutation engine will expand a formula to a given γ
depth, and then check for closure.

The function initTab creates an initial tableau for a formula.

initTab :: Frm -> Tableau
initTab form = [Nd [] [] [] [form]]

The function refuteDepth tries to refute a formula by expanding a tableau for
it up to a given γ depth.

refuteDepth :: Int -> Frm -> Bool
refuteDepth k form = checkT tableau /= []

where tableau = expand k (initTab form)

Exercise 42 Write a function for checking whether a formula is a theorem, using
the tableau engine. The type is thm :: Int -> Frm -> Bool, where the
first argument gives the search depth.

Exercise 43 Write a function for checking whether a formula is satisfiable, using
the tableau engine. The type is sat :: Int -> Frm -> Bool, where the
first argument gives the search depth.

Exercise 44 Use the tableau engine to show that every strict partial order is asym-
metric.

Exercise 45 Use the tableau engine to show that every asymmetric relation is ir-
reflexive.

Exercise 46 Write a random formula generator for testing some of the transforma-
tions on formulas.

Exercise 47 Write a number of testable properties for checking (some of) the code
of this tutorial. Use the formula generator to test the properties. Hint: implement a
function for propositional equivalence, and use this to check the propositional part
of the conversions.

Exercise 48 Try your hand at some problems from the TPTP (Thousands of Prob-
lems for Theorem Provers) library. See http://www.cs.miami.edu/˜tptp/.
Your first task is to write a parser for the TPTP format.

http://www.cs.miami.edu/~tptp/

Further Reading

Excellent textbooks on Prolog are [3, 8, 10]. The logic behind Prolog is explained
more fully in Apt [1] and Doets [4]. The classic account of tableau reasoning for
first order logic is [9]. An illuminating textbook on theorem proving with first
order logic is [5]. See also the TPTP library, documented at http://www.cs.
miami.edu/˜tptp/TPTP/QuickGuide/.

http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/
http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/

Appendix

data Quant = Un Id | Ex Id deriving (Eq,Show)

pf :: Bool -> Frm -> [Quant]
pf _ (Atom _ _) = []
pf pol (N f) = pf (not pol) f
pf pol (C fs) = concat (map (pf pol) fs)
pf pol (D fs) = concat (map (pf pol) fs)
pf True (Forall i f) = Un i : pf True f
pf False (Forall i f) = Ex i : pf False f
pf True (Exists i f) = Ex i : pf True f
pf False (Exists i f) = Un i : pf False f

prefix :: [Quant] -> Frm -> Frm
prefix qs f = prf (reverse qs) f where

prf [] f = f
prf (Un i:qs) f = prf qs (Forall i f)
prf (Ex i:qs) f = prf qs (Exists i f)

prenex :: Frm -> Frm
prenex f = let

p = pf True f
f’ = prune f

in prefix p f’

To prove that a formula is a theorem, negate it, put it in skolemized form, and feed
it to the refutation engine for a given γ depth.

thm :: Int -> Frm -> Bool
thm n = (refuteDepth n) . sk . N

To check whether a formula is satisfiable, put it in skolemized form, feed it to the
refutation engine (for a given γ depth), and negate the answer.

sat :: Int -> Frm -> Bool
sat n = not . (refuteDepth n) . sk

We use the tableau engine to prove that every transitive, symmetric and serial rela-
tion is reflexive.

formula = D [N trans, N symm, N serial, refl]

We get:
TOTP> thm 10 formula
False
TOTP> thm 20 formula
True

This shows that the formula is a theorem of quantified logic.

References

[1] K.R. Apt. From Logic Programming to Prolog. International series in com-
puter science. Prentice Hall, London etc, 1997.

[2] E.W. Beth. The Foundations of Mathematics. North Holland, Amsterdam,
1959.

[3] I. Bratko. Prolog Programming for Artificial Intelligence (3rd edition). Addi-
son Wesley, 2001.

[4] H.C. Doets. From Logic to Logic Programming. MIT Press, Cambridge,
Massachusetts, 1994.

[5] M. Fitting. First-order Logic and Automated Theorem Proving; Second Edi-
tion. Springer Verlag, Berlin, 1996.

[6] R. Haehnle. Tableaux and related methods. In J.A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers,
2001.

[7] J. Hintikka. Form and content in quantification theory. Acta Philosophica
Fennica, 8:7–55, 1955.

[8] R.A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

[9] R. Smullyan. First-order logic. Springer, Berlin, 1968.

[10] L. Sterling and E. Shapiro. The Art of Prolog (Second Edition). MIT Press,
1994.

