
About Testing and Specification . . .
and about First Order Logic

Jan van Eijck

jve@cwi.nl

Master SE, September 15, 2010

Abstract

Introduction to a number of issues related to testing and specification.
Brief review of first order logic.
Use of first order logic for specification, in the specification tool Alloy.

What is the Use of Formal Methods?

• Why are formal methods useful for software engineering?

• Why are formal methods useful for software testing?

• Isn’t software testing supposed to be practical?

A Letter I Received a Week Ago

from Tobias Schoofs <tobias.schoofs@gmx.net>

reply-to tobias.schoofs@gmx.net

to Jan.van.Eijck@cwi.nl

date Thu, Sep 9, 2010 at 9:05 PM

subject Exercise Solutions for "Haskell Road"

Dear Jan,

I have just started to read the ”Haskell Road” and would be interested

in getting the solutions to exercises.

Perhaps a word on my motivation to study your book: I am working

for a software company (www.gmv.com) that is active in the area of

critical software development. I am personally responsible for research

programmes in the area of aeronautical and space on-board systems.

There is growing interest in the industry in what is often called ”formal

methods”. We have some experience with such formal methods, mainly

by using commercial/open source tools (frama-c, Rodin, etc.). (If you

are interested I can send you some information.) However, tools are still

far from being perfect, costly or time-intensive, buggy or too limited.

An alternative could be a kind of ”grassroots” approach that aims at

sharpening the understanding of programmers for their code, or, in

other words, by teaching programmers to formally reason about the

algorithms and data structures they tend to use by intuition. I am

planning to create a course for this purpose (for the moment just for

internal use). The method to use would be Haskell; the ”Haskell Road”

looks very promising as a possible outline for this course.

Thank you in advance.

Best regards,

Tobias

Alan Kay about Software ‘Engineering’

“If you look at software today, through the lens of the history

of engineering, it’s certainly engineering of a sort—but it’s the

kind of engineering that people without the concept of the arch

did.

Most software today is very much like an Egyptian pyramid

with millions of bricks piled on top of each other, with no

structural integrity, but just done by brute force and thousands

of slaves.”

Alan Kay in an interview

Alan Kay is one of the designers of Smalltalk, and winner of the Turing

Award 2003. (Ruby is considered by some to be a modern version of

Smalltalk.)

Tony Hoare about Software Engineering

Just recently, I have discovered that an early advocate of the

assertional method of program proving was none other than

Alan Turing himself. On June 24, 1950 at a conference in

Cambridge, he gave a short talk entitled “Checking a Large

Routine” which explains the idea with great clarity. “How can

one check a large routine in the sense of making sure that

it’s right? In order that the man who checks may not have

to difficult a task, the programmer should make a number of

definite assertions which can be checked individually, and from

which the correctness of the whole program easily follows.”

Tony Hoare (winner of the Turing Award 1980) in his Turing Award

lecture.

About the design of the successor of Algol 60, in the same lecture:

[. . .] I gave desperate warnings against the obscurity, the com-

plexity, and overambition of the new design, but my warnings

went unheeded. I conclude that there are two ways of con-

structing a software design: One way is to make it so simple

that there are obviously no deficiencies and the other way is to

make it so complicated that there are no obvious deficiencies.

Hoare [1981]

Hoare on the Need of Mathematical Abstraction

The absence or even conscious avoidance of mathematical ab-

straction in programming education explains why many pro-

grammers have often been regarded more like craftsmen or

technicians than engineers. They are wonderful people, with

experience and skills greatly to be admired and valued. But

they work best in isolation on self-contained tasks. They have

no language to discuss, explain and justify their work to their

colleagues and superiors. Documentation is their bane. They

do not read the technical literature to keep abreast of their

field. On promotion, they find it difficult to maintain intellec-

tual control of the work of their teams.

Hoare [1999]

Terminology: Bugs, Faults, Defects

[. . .] the word bug suggests something humans can touch and

remove — and are probably not responsible for. This is already

one reason to avoid the word bug. Another reason is its lack

of precision. Applied to programs, a bug can mean:

• An incorrect piece of program code (“This line is buggy”)

• An incorrect program state (“This pointer, being null, is a

bug”)

• An incorrect program execution (“The program crashes;

this is a bug”)

Andreas Zeller, Why programs fail Zeller [2005], Ch 1.

Improved Terminology

The following terminology is more precise Zeller [2005]

Defect An incorrect program code

Infection An incorrect program state

Failure An observable incorrect program behaviour

Now we can say that defects cause infections which lead to failures.

Or conversely: failures allow us to track infections, which lead us to

defects that we can fix.

What makes a test a good test?

Answer depends on the test purpose.

• Check whether the program meets the test? (naive view)

• Exercise software to reveal faults? (Myers, The Art of Software

Testing Myers [1979])

• Finding a measure for the dependability of the software under

scrutiny? (Dick Hamlet)

• Making the designer of the software aware of what the software is

supposed to do? (Tony Hoare)

What is Software Testing?

Five ideas about the essence of software testing:

• Finding defects through hard work

• Estimate probabilities of program failures.

• Increasing software reliability, where reliability is taken to be the

probability of correct behaviour in situations with given conditions

of use, and well-delimited periods of time.

• Establishing a measure for reliability: development of a measure

for our trust in the correctness of software.

• Testing the methods by which the software was constructed.

Testing in Practice

Idea of coverage: The quality of a test is a function of how well the

test ‘covers’ the program (or the specification).

• Functional coverage: based on specification

• Control coverage: based on program structure

Alternatives:

• Formal development methods: towards provably correct software.

• Formal specification with automated testing

• Software inspection.

In practice, often a mix of these techniques is used.

Partition testing versus random testing

The input domain is split into subdomains covering the whole domain.

Black box testing, white box testing, path-coverage structured testing,

. . . These are all forms of partition testing.

Statistic analysis of the difference between partition testing and random

testing revealed that partition testing

• hardly reveals any more failures, and

• hardly increases the probability to find a specific failure.

The reason for this is that partition testing would work better if we

knew a priori that some subdomains contained more defects.

In practical situations it is often unknown ‘where the bugs are’.

Random testing: when is it appropriate?

• Random testing is in fact: taking samples from the space of possible

input values of the program, and observing the results.

• Are tests statistical samples of expected behaviours for given in-

puts? Opponents of this view point out that software defects are

reproducible, in contrast with the influence of accidental physical

circumstances.

• It does make sense to say that a dyke is designed with a risk of one

flooding in a thousand years in mind. What does it mean to say

that a software system is designed with the risk of one defect in

10.000 code lines in mind. Or with a risk of one infection in 10.000

instructions in mind? Or with a risk of one failed output in 10.000

possible outputs? Or with a risk of one failure in 10.000 hours of

uptime?

A Puzzle About Probability

An urn contains a single marble, either white or black. Mr A puts

another marble in the urn, a white one. The urn now contains two

marbles. Next, Mrs B draws one of the two marbles from the urn. It

turns out to be white. What is the probability that the other marble is

also white?

The Monty Hall Puzzle

Probabilistic Functional Programming

See http://web.engr.oregonstate.edu/~erwig/pfp/

MontyHall> eval stay

Lose 66.7%

Win 33.3%

*MontyHall> eval switch

Win 66.7%

Lose 33.3%

http://web.engr.oregonstate.edu/~erwig/pfp/

Risk and Probability

Someone wants to borrow money from you, say 300 euros. He promises

to pay you back in one year.

You know that there is a 1
4 chance that he will not keep his promise.

How much should you ask him to pay you back in one year to compen-

sate for the risk?

Risk and Probability 2

That was not very realistic.

Someone wants to borrow money from you, say 300 euros. He promises

to pay you back in one year.

You don’t know what the risk is that he will not keep his promise.

Suppose he has borrowed money from you twice before, and he has

paid it back both times.

Can you still calculate how much you should ask him to pay you back

in one year to compensate for the risk?

Relevance for Software Testing

http://journals.pepublishing.com/content/d507776477w13026

Using Bayesian statistics to support testing of software systems Journal

Proceedings of the Institution of Mechanical Engineers, Part O: Journal

of Risk and Reliability Publisher Professional Engineering Publishing

ISSN 1748-006X (Print) 1748-0078 (Online) Issue Volume 221, Number

1 / 2008 Pages 85-93 DOI 10.1243/1748006XJRR2

http://journals.pepublishing.com/content/d507776477w13026

Very Short Intro to Probability and Statistics

Suppose someone invites you to toss a coin repeatedly, and assures you

that the coin is fair. You start tossing and this is what you get:

hhhhth

Do you still believe the coin is fair? You go on tossing, and this time

you get:

hhthhhhhhthhh

At some point your initial belief that you are tossing a fair coin will be

shaken. But why? The outcome of

hhhhthhhthhhhhhthhh

is just as likely as any other possible outcome . . . Or isn’t it?

Laws of Conditional Probability

Let H be an event with positive probability. Let A be any event. Then

we define:

P (A|H) =
P (AH)

P (A)
.

From this:

P (AH) = P (A|H) · P (A).

Suppose H1, . . . , Hn are mutually exclusive events, and their union is

the whole sample space Ω. That is, one of the Hi necessary occurs.

Then we have for any event A:

A = AH1 ∪ AH2 ∪ · · · ∪ AHn.

Since the AHi are mutually exclusive, their probabilities add:

P (A) =

n∑
j=1

P (A|Hj) · P (Hj).

For the special case of Hj we have:

P (Hj|A) =
P (AHj)

P (A)
.

Expanding P (AHj) and P (A), we get:

P (Hj|A) =
P (A|Hj) · P (Hj)∑n
i=1 P (A|Hi) · P (Hi)

.

This is called Bayes’ Law.

Applying Bayes’ law to the problem of checking whether a coin is fair:

http://en.wikipedia.org/wiki/Checking_whether_a_coin_is_

fair.

http://en.wikipedia.org/wiki/Checking_whether_a_coin_is_fair
http://en.wikipedia.org/wiki/Checking_whether_a_coin_is_fair

Hoare on the Purpose of Testing

Philosophers of science have pointed out that no series of ex-

periments, however long and however favourable can ever prove

a theory correct; but even only a single contrary experiment

will certainly falsify it. And it is a basic slogan of quality as-

surance that ”you cannot test quality into a product”. How

then can testing contribute to reliability of programs, theories

and products? Is the confidence it gives illusory?

The resolution of the paradox is well known in the theory of

quality control. It is to ensure that a test made on a product is

not a test of the product itself, but rather of the methods that

have been used to produce it — the processes, the production

lines, the machine tools, their parameter settings and operating

disciplines. If a test fails, it is not enough to mend the faulty

product. It is not enough just to throw it away, or even to

reject the whole batch of products in which a defective one

is found. The first principle is that the whole production line

must be re-examined, inspected, adjusted or even closed until

the root cause of the defect has been found and eliminated.

Hoare [1996]

Hoare on the Value of Testing

The real value of tests is not that they detect bugs in the code,

but that they detect inadequacy in the methods, concentration

and skills of those who design and produce the code. Program-

mers who consistently fail to meet their test- ing schedules are

quickly isolated, and assigned to less intellectually demanding

tasks. The most reliable code is produced by teams of program-

mers who have survived the rigours of testing and delivery to

deadline over a period of ten years or more. By experience,

intuition, and a sense of personal responsibility they are well

qualified to continue to meet the highest standards of quality

and reliability. But don’t stop the tests: they are still essential

to counteract the distracting effects and the perpetual pressure

of close deadlines, even on the most meticulous programmers.

Hoare [1996]

Informal Specification Versus Formal Specification

• Informal specification: natural language, or drawings

• Formal specification: formal language, or language of drawings

• Examples of formal languages:

– Logical languages: First order logic, Higher order logic, . . .

– Picture languages: UML, . . .

• What makes a formal language formal? Precise definition of what

each language construct means.

• Expressive power versus tool support: more expressive = more dif-

ficult to check or reason with.

Importance of Declarative Thinking

declarative thinking thinking in terms of states of affairs. Key ques-

tion: what is the case?

operational thinking thinking in terms of actions, changes in com-

puter memory, etc. Key question: what happens?

States of affairs are conceptually simpler than actions.

Learning (predicate) logic is one way of learning how to think declara-

tively. Learning functional programming is another.

How does declarative thinking help to become better at testing?

Java programmers are often very poor at declarative thinking. Haskell

programmers are often very good at it. Why?

Relations

Usually, we are not only interested in meaningful collections of objects

but also in the ways in which objects are related to each other.

Everyday examples of how objects can be related: motherhood, being

married, or being the brother of someone’s sister-in-law.

Mathematical relations: relations between numbers, like divisibility or

being twin primes.

Formally, a relation between two sets A and B is a collection of ordered

pairs (a, b) such that a ∈ A and b ∈ B.

An ordered pair is a collection of two distinguishable objects, in which

the order plays a role.

(Bonnie,Clyde) is the ordered pair that has Bonnie as its first element

and Clyde as its second element.

The notation for the set of all ordered pairs with their first element

taken from A and their second element taken from B is A× B. This

is called the Cartesian product of A and B.

A relation between A and B is a subset of A×B.

Example: Talking about Chess

The Cartesian product of the sets A = {a, b, . . . , h} and B = {1, 2, . . . , 8}
is the set

A×B = {(a, 1), (a, 2), . . . , (b, 1), (b, 2), . . . , (h, 1), (h, 2), . . . , (h, 8)}

of chess positions.

If we multiply the set of chess colours C = {White,Black} with the

set of chess figures,

F = {King,Queen,Knight,Rook,Bishop,Pawn},

we get the set of chess pieces C × F .

If we multiply this set with the set of chess positions, we get the set of

piece positions on the board, with (White,King, (e, 1)) indicating that

the white king occupies square e1.

To get the set of moves on a chess board, take ((C×F)× ((A×B)×
(A×B))), and read ((White,King, ((e, 1), (f, 2)) as ‘white king moves

from e1 to f2’, but bear in mind that not all moves in ((C × F) ×
((A×B)× (A×B))) are legal in the game.

Exercise 1 Take A to be the set {Kasparov,Karpov,Anand}. Find

A× A.

A× A can also be written as A2.

Binary Relations, Ternary Relations, . . .

Sets of ordered pairs are called binary relations.

Sets of ordered triples are called ternary relations.

An example of a ternary relation is that of borrowing something from

someone. This relation consists of triples, or: 3-tuples, (a, b, c), where

a is the borrower, b is the owner, and c is the thing borrowed.

In general, an n-ary relation is a set of n-tuples (ordered sequences of n

objects). We use An for the set of all n-tuples with all elements taken

from A.

Unary Relations: Properties

Unary relations on A are just subsets of A.

They are also called properties.

A property can always be represented as a set, namely the set that

contains all entities having the property.

For example, the property of being divisible by 3, considered as a prop-

erty of integer numbers, corresponds to the set

{. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.

Composition of Relations

An important operation on binary relations is composition.

If R and S are binary relations on a set U , i.e., R ⊆ U 2 and S ⊆ U 2,

then the composition of R and S, is the set of pairs (x, y) such that

there is some z with (x, z) ∈ R and (z, y) ∈ S.

Notation R ◦ S
Example: the composition of {(1, 2), (2, 3)} and (2, 4), (2, 5)} is

{(1, 4), (1, 5)}.

Exercise 2 What is the composition of {(n, n + 1) | n ∈ N} with

itself?

Relational Converse, Symmetry

Another operation on binary relations is converse.

If R is a binary relation, then Rˇ is the relation given by Rˇ = {(y, x) |
(x, y) ∈ R}.
The converse of the relation ‘greater than’ on the natural numbers is

the relation ‘smaller than’ on the natural numbers. If a binary relation

has the property that Rˇ⊆ R then R is called symmetric.

Exercise 3 Show that it follows from Rˇ⊆ R that R = R .̌

Identity Relation, Reflexivity

If U is a set, then the relation I = {(x, x) | x ∈ U} is called the

identity relation on U .

If a relation R on U has the property that I ⊆ R, then R is called

reflexive.

The relation ≤ (‘less than or equal’) on the natural numbers is reflexive,

the relation < (‘less than’) is not.

Transitivity

A relation R is called transitive if it holds for all x, y, z that if (x, y) ∈ R

and (y, z) ∈ R, then also (x, z) ∈ R.

To say that the relation of ‘friendship’ is transitive boils down to saying

that it holds for anyone that the friends of their friends are their friends.

Exercise 4 Which of the following relations are transitive?

1. {(1, 2), (2, 3), (3, 4)}.

2. {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)}.

3. {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}.

4. {(1, 2), (2, 1)}.

5. {(1, 1), (2, 2)}.

Exercise 5 Check that a relation R is transitive if and only if it holds

that R ◦R ⊆ R.

Exercise 6 Can you give an example of a transitive relation R for

which R ◦R = R does not hold?

Functions

Functions are relations with the following special property: for any (a, b)

and (a, c) in the relation it has to hold that b and c are equal.

Thus a function from a set A (called domain) to a set B (called range)

is a relation between A and B such that for each a ∈ A there is one

and only one associated b ∈ B.

A function can be viewed as a mechanism that maps an input value to

a uniquely determined output value.

Functions are important because they allow us to express the concept

of dependence.

Extensional View of Functions

Functions can be seen as sets of data, represented as a collection of

pairs of input and output values. This tells us something about the

behaviour of a function, i.e. what input is mapped to which output.

As an example, consider the following conversions between temperature

scales.

Kelvin Celsius Fahrenheit

0 -273.15 -459.67 (absolute zero)

273.15 0 32 (freezing point of water)

310.15 37 98.6 (human body temperature)

373.13 99.98 211.96 (boiling point of water)

Intensional View of Functions

Another way to look at functions is as instructions for computation.

This is called the intensional view of functions.

In the case of temperature conversion the intensional view is more con-

venient than the extensional view, for the function mapping Kelvin to

Celsius can easily be specified as a simple subtraction

x 7→ x− 273.15

This is read as ‘an input x is mapped to x minus 273.15’. Similarly,

the function from Celsius to Fahrenheit can be given by

x 7→ x× 9

5
+ 32

Calculation as Rewriting Expressions

If we have a temperature of 37 degrees Celsius and want to convert it to

Fahrenheit, we replace x by 37 and compute the outcome by multiplying

it with 9
5 and then adding 32.

37× 9

5
+ 32→ 66.6 + 32→ 98.6

This shows that the intensional view of functions can be made precise by

representing the function as an expression, and specifying the principles

for simplifying (or: rewriting) such functional expressions.

Rewriting functional expressions is a form of simplification where part

of an expression is replaced by something simpler, until we arrive at an

expression that cannot be simplified (or: reduced) any further. This

rewriting corresponds to the computation of a function.

Function Composition

Functions can be composed, as follows. Let g be the function that

converts from Kelvin to Celsius, and let f be the function that converts

from Celsius to Fahrenheit. Then f · g is the function that converts

from Kelvin to Fahrenheit, and that works as follows.

First convert from Kelvin to Celsius, then take the result and convert

this to Fahrenheit. It should be clear from this explanation that f · g is

defined by

x 7→ f (g(x)),

which corresponds to

x 7→ (x− 273.15)× 9

5
+ 32

Exercise 7 The function s : N→ N on the natural numbers is given

by n 7→ n + 1. What is the composition of s with itself?

Characteristic Functions

The characteristic function of subset A of some universe (or: domain)

U is a function that maps all members of A to the truth-value True
and all elements of U that are not members of A to False. E.g. the

function representing the property of being divisible by 3, on the domain

of integers, would map the numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .

to True, and all other integers to False. Characteristic functions char-

acterize membership of a set. Since we specified relations as sets, this

means we can represent every relation as a characteristic function.

Exercise 8 ≤ is a binary relation on the natural numbers. What is

the corresponding characteristic function?

Equivalence

An equivalence relation on A is a binary relation on A that is reflexive,

symmetric and transitive.

Exercise 9 Let f : A→ B be a function. Show that the relation R ⊆
A2 given by (x, y) ∈ R if and only if f (x) = f (y) is an equivalence

relation on A.

First Order Logic: Syntax, LAI Section 6.2

Grammar for the language of predicate logic (see LAI, page 139):

t ::= x | c | f (t, . . . , t)

ϕ ::= P (t1, . . . , tn) | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (∀xϕ) | (∃xϕ)

Free and bound variables in a formula ϕ.

Substitution of a term t for a variable x in ϕ. Notation ϕ[t/x].

t is free for x in ϕ

Alphabetic variant of a formula ϕ.

Semantics: LAI Section 6.3

Universes.

Models of predicate logic.

Why does the truth table method from propositional logic fail for pred-

icate logic?

Notion of a lookup-table or environment for a universe.

Truth definition: LAI pages 150–152.

Semantic entailment.

The treatment of equality.

First Order Logic and Alloy

• Alloy based on First Order Logic + Relational Operations

• Check only possible for small domains

• Small domain hypothesis: ‘most design errors show up in small

domains’

• Abstract level of representation

• No theorem proving needed!

• Form of automated testing of specifications

• Check out the Alloy homepage http://alloy.mit.edu for quick-

start guide and further tutorial material.

http://alloy.mit.edu

From the FM 2006 Alloy Tutorial

• Alloy = logic + language + analysis

• logic: first order logic + relational calculus

• language: syntax for structuring specifications in the logic

• analysis: bounded exhaustive search for counterexample to a claimed

property using SAT

First Order Signatures

First order model (or: predicate logical model) consists of

• objects of various kinds (the domain of discourse),

• predicates (properties of objects),

• relations between objects.

• These together are called the signature.

• Hardest thing to understand about formal specification: nothing is

assumed except what is stated in the specification.

Example: Birthday Book; Signature

This example is in Alloy 4.1, directory models/examples/toys/birthday.

als

sig Name {}

sig Date {}

sig BirthdayBook {known: set Name, date: known -> one Date}

• Domain of discourse: Name objects, Date objects, BirthdayBook

objects.

• Predicate known, relation date.

• known denotes a set of names

• date relates known names to single dates.

models/examples/toys/birthday.als
models/examples/toys/birthday.als

Predicates

pred AddBirthday (bb, bb’: BirthdayBook, n: Name, d: Date) {

bb’.date = bb.date ++ (n->d)

}

pred DelBirthday (bb, bb’: BirthdayBook, n: Name) {

bb’.date = bb.date - (n->Date)

}

Adding a birthday: changes an old birthday book bb to a new one bb’,

by adding a pair consisting of a name n and a date d (the birthday of

the person named).

Deleting a (person and his/her) birthday: changes an old birthday book

bb to a new one bb’, by removing the pair of a name n and its birthday.

More Predicates

pred FindBirthday (bb: BirthdayBook, n: Name, d: lone Date) {

d = bb.date[n]

}

pred Remind (bb: BirthdayBook, today: Date, cards: set Name) {

cards = (bb.date).today

}

FindBirthday finds someone’s birthday in a birthday book.

Remind: who should get birthday cards? Predicate that relates a birth-

day book bb to a date today and a set of cards (names of those whose

birthday is today).

One More Predicate

pred InitBirthdayBook (bb: BirthdayBook) {

no bb.known

}

InitBirthdayBook: predicate that specifies an empty birthday book.

Assertions

assert AddWorks {

all bb, bb’: BirthdayBook, n: Name,

d: Date, d’: lone Date |

AddBirthday (bb,bb’,n,d)

&& FindBirthday (bb’,n,d’) => d = d’

}

AddWorks asserts that AddBirthday works as it should: if you add an

entry, then look it up, you get back what you just entered.

Assertions, ctd

assert DelIsUndo {

all bb1,bb2,bb3: BirthdayBook, n: Name, d: Date|

AddBirthday (bb1,bb2,n,d) && DelBirthday (bb2,bb3,n)

=> bb1.date = bb3.date

}

DellsUndo asserts that performing DelBirthday after AddBirthday un-

does it.

Checking Assertions

check AddWorks for 3 but 2 BirthdayBook

check DelIsUndo for 3 but 2 BirthdayBook

The first check checks the predicate AddWorks, up to a maximum of 3

for every kind of thing in the signature except BirthdayBook, for which

the maximum is 2.

Will this succeed or fail?

The second check checks the predicate DellsUndo, up to a maximum

of 3 for every kind of thing in the signature except BirthdayBook, for

which the maximum is 2.

Will this succeed or fail?

Counterexamples

check DelIsUndo for 3 but 2 BirthdayBook

BirthdayBook0
($DelIsUndo_bb1, $DelIsUndo_bb2)

Date
($DelIsUndo_d)

date [Name]

Name
($DelIsUndo_n)

known

BirthdayBook1
($DelIsUndo_bb3)

Predicates defined with Formulas

pred BusyDay (bb: BirthdayBook, d: Date){

some cards: set Name | Remind (bb,d,cards) && !lone cards

}

What does this say?

run BusyDay for 3 but 1 BirthdayBook expect 1

Example

BirthdayBook
($BusyDay_bb)

Date
($BusyDay_d)

date [Name0]date [Name1]

Name0
($BusyDay_cards)

known

Name1
($BusyDay_cards)

known

References

C.A.R. Hoare. The emperor’s old clothes. Communications of the ACM,

24(2):75–83, 1981.

C.A.R. Hoare. How did software get so reliable without proof? In

FME ’96: Proceedings of the Third International Symposium of For-

mal Methods Europe on Industrial Benefit and Advances in Formal

Methods, pages 1–17, London, UK, 1996. Springer-Verlag. Keynote

Address.

C.A.R. Hoare. Software: Barrier or frontier? Technical report, Oxford

University Computing Laboratory, 1999.

G. Myers. The Art of Software Testing. Wiley, New York, 1979.

Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.

Morgan Kaufmann, 2005.

